当前位置: 仪器信息网 > 行业主题 > >

纳米结构直写机

仪器信息网纳米结构直写机专题为您提供2024年最新纳米结构直写机价格报价、厂家品牌的相关信息, 包括纳米结构直写机参数、型号等,不管是国产,还是进口品牌的纳米结构直写机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米结构直写机相关的耗材配件、试剂标物,还有纳米结构直写机相关的最新资讯、资料,以及纳米结构直写机相关的解决方案。

纳米结构直写机相关的仪器

  • 3D纳米结构高速直写机 — —纳米光刻与微米光刻兼顾的联合图形化工艺方案 NanoFrazor光刻技术,衍生于IBM Research研发的热扫描探针光刻技术——快速、地控制纳米针的移动及温度,利用热针实现对热敏抗刻蚀剂的快速刻写,从而为纳米制造提供了许多新颖的、特的可能性。NanoFrazor Explore以高的速度、精度和可靠性运行,在目前所有扫描探针光刻技术中属于速度快、应用广泛的一种。NanoFrazor Explore配备了先进的硬件和软件,以合适的方式控制可加热的NanoFrazor悬臂梁,以便进行书写和成像,实现基于闭环光刻技术的各种高精度图案化工艺。2019年,Explore增配了激光直写模块,有效加快了特征线宽在微米或亚微米水平的图形的加工速度,成为纳米光刻与微米光刻兼顾的联合图形化工艺方案。由此,在针对同一抗刻蚀层的图案化工艺中,实现了纳米刻写与微米刻写的无缝衔接。从而可以根据不同的图案特征线宽,采用不同精度的刻写技术,兼顾精度与速度。 主要特点:★ 利用加热针直接刻写图案,分辨率优于15 nm;★ 利用激光热挥发实现图案化,分辨率优于1 μm;★ 高速直写 10 mm/s★ 高速原位AFM轮廓成像;★ 样品尺寸100×100 mm2;★ 闭环光刻;★ 灰度曝光,分辨率及精度达到2 nm;★ 利用原位AFM实现的对准,从而实现无掩膜套刻及写场拼接;★ 的隔音及隔振性能;★ 无需洁净间,亦无特殊的实验室环境要求闭环光刻NanoFrazor光刻系统是基于热扫描探针光刻技术,其核心部件是一种可加热的、非常锐的针,利用此针可以直接进行复杂纳米结构的刻写并且同时探测刻写所得结构的形貌。加热的针通过热作用,直接挥发局部的抗刻蚀剂,从而实现对各类高分辨纳米结构的制备。此外,NanoFrazor的光刻技术能够与各类标准的图形转移方案(如lift-off、刻蚀)兼容,从而实现各类材料的图形化制备。“闭环光刻”技术确保图形化工艺的高度纳米光刻与微米光刻兼顾的图形化工艺方案自2019年开始,NanoFrazor Explore增配了激光直写模块,由此在保障纳米分辨率图案刻写精度的同时,大大提升了NanoFrazor Explore对微米分辨率图形的刻写速度。激光刻写基于激光的热作用,以亚微米精度,快速、直接地挥发抗刻蚀剂,从而实现大面积的图案化工艺(例如微纳结构的引线或焊点图形制备)。热探针直写对于纳米结构或纳米器件关键部分的高精度、高分辨率刻写。刻写所得结构的测量、观测、对准由于抗刻蚀剂直接挥发,无须湿法显影操作即可实现抗刻蚀剂的图案化。在图案化过程中,同一根探针能够原位、高速的对图案化抗刻蚀剂进行AFM成像和测试。微米尺度及纳米尺度的哈佛大学校徽,对PPA刻蚀剂的刻蚀深度为30 nm,图像由NanoFrazor Explore的探针进行AFM成像获得。(Courtesy of Harvard CNS)3D灰度纳米光刻★ 可在针扫描的每个位置对图案化工艺的深度进行设定(即每个像素点的灰度值)★ 闭环光刻技术能够实现很高的灰度刻写精度(经论证,对大于16个灰阶的结构进行图案化工艺,灰度刻写的误差小于1纳米)用于TEM的电子光学系统的三维相盘,由PPA中的微结构转移至SiN薄膜获得(Courtesy of EPFL and KIT)刻写在PPA中的多全息图的局部(图片由Explore的探针在刻写同时进行AFM成像获得);小图展示的是转移至Si中的全息图局部的SEM图像(Courtesy of Sun Yat-Sen University)无掩膜套刻与拼接★ 通过原位AFM功能实现高精度的无掩膜套刻及拼接(经论证,精度优于10 nm);★ 埋在抗刻蚀剂PPA下的图案结构(如纳米片、纳米线等)可用作“天然的”对准标记写场的自动关联拼接;由金的lift-off工艺获得的)反射全息图包含1×108个像素点,每个写场为边长50 μm的正方形,写场间的拼接由AFM相关技术实现利用无掩膜光刻在单根纳米线上制备金属电:(a)由Explore的AFM成像功能探测到的纳米线轮廓及位置信息(绿线标出)与拟制备的电结构布局图(粉色区域);(b)lift-off工艺后获得的带有金属电的单根纳米线的SEM图像高分辨率★ 锐的针,为了高分辨率的实现(经论证,在PPA抗刻蚀剂中能够实现的半节距优于10纳米)★ 无须针对临近效应的修正由PPA抗刻蚀剂转移至硅基衬底的鳍型结构和沟槽结构(Courtesy of IBM Research and imec) 其他特性能★ 低损伤:制备过程中没有引入带电粒子束流,基于敏感材料的微纳器件能够获得更好器件特性★ 纳米尺度的材料转换:多种材料的直接热诱导修饰(相变、化学反应… … )新型号:NanoFrazor Scholar — 小面积直写■ 3D纳米直写能力 高直写精度 (XY: 高可达20nm, Z: 3nm) 高速直写 0.5 mm/s■ 无需显影,实时观察直写效果 形貌感知灵敏度0.1nm 样品无需标记识别,多结构套刻,对准精度 50 nm ■ 无临近效应 高分辨,高密度纳米结构 ■ 无电子/离子损伤 高性能二维材料器件■ 区域热加工和化学反应 多元化纳米结构改性■ 小样品台 30mm X 30mm应用案例三维光子分子(3D PHOTONIC MOLECULES)(Courtesy of IBM Research Zurich, publication in 2018)单电子器件Courtesy of IBM Research Zurich, publication in 2018基于二维原子晶体的器件(Courtesy of Prof. Elisa Riedo, NYU)基于准一维纳米材料的纳米器件(Courtesy of S. Karg & A. Knoll, IBM Research – Zurich)基于布朗马达的纳米器件,可用于纳米颗粒分类(Courtesy of IBM Research, Publications in Science and PRL 2018) 国内外客户已发表的文献● Wolf (JVST B 2015) Sub20nm Liftoff and Si Etch and InAs nanowire contacts● Garcia (Nat Nano 2014) Advanced scanning probe lithography● Rawlings (IEEE Nano 2014) Nanometer accurate markerless pattern overlay using thermal Scanning Probe Lithography● Holzner (SPIE EMLC 2013) Thermal Probe Nanolithography● Cheong (Nanoletters 2013) Thermal Probe Maskless Lithography for 27.5 nm Half-Pitch Si Technology● Fei Ding (PhysRevB 2013) Vertical microcavities with high Q and strong lateral mode confinement● Carrol (Langmuir 2013) Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography● Paul (Nanotechnology 2012) Field stitching in thermal probe lithography by means of surface roughness correlation● Kim (Advance Mat 2011) Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates● Holzner (APL 2011) High density multi-level recording for archival data preservation● Holzner (Nanoletters 2011) Directed placement of gold nanorods using a removable template● Paul (Nanotechnology 2011) Rapid turnaround scanning probe nanolithography● Wang (Adv Funct Mat 2010) Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects● Wei and King (Science 2010)Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics● Pires (Science 2010) Nanoscale 3DPatterning of Molecular Resists by Scanning Probes● Knoll (Adv Materials 2010) Probe-Based 3-D Nanolithography Using SAD Polymers● Fenwick (Nat Nano 2009) Thermochemical nanopatterning of organic semiconductors● Lee (Nanoletters 2009) Maskless Nanoscale Writing of Nanoparticle-Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes● Nelson (APL 2006) Direct deposition of continuous metal nanostructures by thermal dip-pe
    留言咨询
  • 产品详情瑞士Swisslitho 3D纳米结构高速直写机NanoFrazor-源自IBM最新研发成果 NanoFrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的最新研究成果。NanoFrazor纳米3D结构直写机第一次将纳米尺度下的3D结构直写工艺快速化、稳定化。 NanoFrazor采用尖端直径为5nm的探针,通过静电力精确控制实现直写3D高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测。相对于其他制备技术如电子束曝光/光刻技术(EBL), 聚焦离子束刻蚀(FIB)有以下特点: ■ 3D纳米直写能力 高直写精度 (XY: 10nm, Z: 1nm) 高速直写 20 mm/s 与EBL媲美 ■ 无需显影,实时观察直写效果 形貌感知灵敏度0.1nm 样品无需标记识别,多结构套刻,对准精度 5nm ■ 无临近效应 高分辨,高密度纳米结构 ■ 无电子/离子损伤 高性能二维材料器件 ■ 区域热加工和化学反应 多元化纳米结构改性 ■ 大样品台 100mm X 100mm 新产品发布:NEW!! NanoFrazor Scholar --小面积直写 ■ 3D纳米直写能力 高直写精度 (XY: 30nm, Z: 1nm) 高速直写 10 mm/s ■ 无需显影,实时观察直写效果 形貌感知灵敏度0.1nm 样品无需标记识别,多结构套刻,对准精度 10 nm ■ 无临近效应 高分辨,高密度纳米结构 ■ 无电子/离子损伤 高性能二维材料器件 ■ 区域热加工和化学反应 多元化纳米结构改性 ■ 小样品台 30mm X 30mm 该技术自问世以来已经多次刷新了世界上最小3D立体结构的尺寸,创造了世界上最小的马特洪峰模型,最小立体世界地图,最小刊物封面等世界记录。 独特的直写与反馈流程 。PPA(聚苯二醛) 直写胶涂敷在样品表面。。背热式直写探针,微区电阻式加热针尖。与针尖接近的PPA受热瞬间分解,周围部分由于PPA热导率低而不受影响。。热针震动模式直写,直写时探针加热,每次下针幅度受静电力控制,垂直精度 1 nm,从而写出3D图形。。冷针接触模式扫描,回程扫描时探针冷却,由侧壁的热感应器探测样品高度变化(精度0.1nm), 获得样品形貌。反馈数据修正下一行直写。 独有的直写针尖设计 普通的AFM针尖无法满足上述NanoFrazor直写流程的需求,因此NanoFrazor所用针尖是由IBM专门研发设计的。该针尖具有两个电阻加热区域,针尖上方的加热区域可以加热到1000oC。 第二处加热区域作为热导率传感器位于侧臂处,其能感知针尖与样品距离的变化,精度高达0.1 nm。因此在每行直写进程结束后的回扫结构时,并不是通过针尖 起伏反馈形貌信息,而是通过热导率传感器感应形貌变化,从而实现了比AFM快1000余倍的扫描速度,同避免了针尖的快速磨损消耗。 NanoFrazor技术特点 其他功能● 纳米颗粒有序定位排列● 纳米局部化学反应诱导● 表面化学图案、结构生成纳米颗粒有序定位排列 氧化石墨烯的定位还原
    留言咨询
  • 魔技纳米DLW-Bio专为生物应用设计的加工检测一体纳米级三维激光直写设备DLW-Bio具备纳米级高精度3D加工能力,满足复杂生物结构的微纳制造需求,同时可兼有生物荧光显微功能。设备配备多种生物样品台,可根据具体需求灵活配置和定制,适应不同生物医学样品和微流控芯片等打印要求。该设备还特别配备多种生物相容性打印材料,包括无生物毒性且具备亚微米特征和高纵横比的光敏聚酯、水凝胶,均符合ISO-10993-5/USP87标准,可在生物医学领域安全应用。用户可以根据研究需要选择适合的材料,实现定制化的生物医学样品打印。从组织工程到微流控芯片,从药物递送系统到个性化医疗,DLW-RD-Bio为多样化的生物医学应用提供强大的材料支持。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • 魔技纳米MJ-Works-Fiber专为光纤应用设计的纳米级三维激光直写设备MJ-Works-Fiber是一款专为光纤传感与光通信应用而生的超高精度加工而设计的高性能3D激光直写设备,配有超清成像及纳米级定位对准系统,可实现在光纤纤芯或光芯片表面及内部进行纳米级3D加工。配备有专门的卷对卷光纤自动输送装置,并配有应力监测,纤芯自动识别、定位及对准,实现高通量精准快速生产。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。【企业简介】魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • NanoFrazor Scholar适合科研领域的中小型实验净房与纳米加工的学术研究领域 Thermal Scanning Probe Lithography Toolwith In-situ Imaging and Grayscale Patterning Capabilities适合科研领域的中小型实验净房与纳米加工的学术研究领域原位成像和灰度光刻模块的热探针光刻解决方案NanoFrazor® Scholar特别适合纳米加工研究的学术单位,用于在1D/2D 材料,例如量子点和纳米数组上制作量子器件的纳米结构,其独特的功能使能够应用任何新材料。例如,灰度光子学设备、纳米流道结构或用于细胞生长的仿生基质等进阶应用;通过加热探针对材料进行局部改性,例如化学反应和物理相变。关于我们Stella InternationalStella International携手光刻技术领航者-海德堡仪器公司,共同为客户带来*的综合应用效能,同时建立紧密的合作伙伴关系。为了服务客户更广泛多元的应用领域,Stella International于 2016年在苏州成立海德堡仪器演示中心,以海德堡原厂伙伴技术支援,提供客户技术交流平台以及各式前段打样的基础研究,这些年来已服务许多的国内知名大学,研究院所与企业前期研发单位。品牌介绍德国海德堡 高精密无掩膜激光直写设备HEIDELBERG MASKLESS AND LASER LITHOGRAPHY SYSTEM 德国海德堡设备(Heidelberg Instruments),创始于1984年,在激光直写设备的发展和设计上持续地改良、在各种应用上客制化。应用范围包括:微电脑和纳米科技, MEMS, 平面屏幕, BGA, ASICS, TFT, Plasma Displays, Micro Optics, 和其他相关领域。销售横跨欧洲、美国、亚洲等超过50几个国家、700个以上销售据点,用于研发、快速原型制作和工业生产系统,是企业研究和发展的伙伴。
    留言咨询
  • 魔技纳米UV-Smart桌面级无掩膜直写光刻设备专为实验室科研需求和小批量生产设计。其小巧紧凑的设计使其适用于实验室环境,并具有高直写速度、高分辨率和高对准精度等特点。采用集成化设计和全自动控制,操作简便,适合快速加工、建模或小批量生产。广泛应用于微流控、半导体、生物技术和微电子等领域。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • 双光子聚合激光直写3D纳米光刻机MicroFAB-3D双光子聚合3D纳米光刻机是一款超紧凑、超高分辨率交钥匙型3D打印机。双光子聚合3D纳米光刻机基于双光子聚合(TPP)激光直写技术,兼容多种高分子材料,包括生物材料。MicroFAB-3D 3D纳米光刻机帮助您以亚微米的分辨率生产出前所未有的复杂的微部件,MicroFAB-3D的zui小特征尺寸可低至0.2um宽,为微流体、微光学、细胞培养、微机器人或元材料领域开辟了新的前景。MicroFAB-3D具有开放性和适应性,可以满足您的个性需求。双光子聚合激光直写3D纳米光刻机关键特性:较高的直写精度和分辨率(可达0.2um)(已有客户使用此设备实现低至67nm分辨率的结构)直写速度快兼容任何CAD模型和文件兼容广泛的聚合物,以及生物材料紧凑的设计适用于层流架适用于无菌、无尘室以及工业环境双光子聚合激光直写3D纳米光刻机核心优势:新的TPP切片工具复杂的3D结构下高直写速度三维微零件无形状限制适用于微部件、微流体、超材料、细胞培养、微机器人、微力学、组织工程、表面结构或任何你可能拥有的微制造理念的技术。双光子聚合激光直写3D纳米光刻机规格指标:双光子聚合激光直写3D纳米光刻机适用材料:我们为我们的双光子聚合激光直写3D纳米光刻机提供了10种zhuanli光刻胶,这些树脂的各种性能允许您探索许多应用领域。我们的系统可与各种商业上可用的光刻胶兼容,如Ormocomp, SU8, FormLabs树脂,NOA-line树脂,甚至水凝胶或蛋白质等。这些光刻胶可能是生物兼容的,甚至已被认证实现微型医疗设备。如果您想使用定制的、自制的聚合物,我们也可以帮助您调整系统以适应您的工艺。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致 力于引 进国 外创 新性的光电技术与可 靠产品!与来自美国、欧洲、日本等众多知 名光电产品制造商建立了紧 密的合作关系。代理品牌均处于相关领域的发展前 沿,产品包括各类激光器、光电调制器、光学测量设备、精 密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国 防及前沿的细分市场比如为量 子光学、生物显微、物联传感、精 密加工、激光制造等。我们的技术支持团队可以为国内前 沿科研与工业领域提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等优 质服务,助力中国智 造与中国创 造! 为客户提供适合的产品和提 供完 善的服务是我们始终秉承的理念!
    留言咨询
  • 魔技纳米UV-Ultra高性能无掩膜直写光刻设备UV-Ultra是一款专为高端和工业级应用而设计的高性能无掩膜直写光刻设备。它采用先进的超高速加工方式,采用自研算法和高性能硬件,实现更高的对准、拼接和套刻精度。具备高直写速度和高分辨率,适用于快速、精准的加工需求。MN-UV-Ultra采用集成化设计和全自动控制,操作简便,适用于高达12英寸的基材。广泛应用于微流控、半导体、生物技术和微电子等领域。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 企业介绍 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • DALI是由Aresis、CENN Nano center 和 LPKF 联合研发的高精度无掩膜纳米光刻机,是一款性能稳定,操作简单,对环境要求低,界面友好,零维护的桌面型高精度激光直写设备。其采用的是AOD声光调制器来控制激光进行高精度光刻,可以实现优于80nm平滑的边缘结构,100-150nm最小结构间距,最高400nm套刻精度,是实验室级微纳加工与器件制作不二选择。DALI凭借优异的性能,目前已广泛应用到微电子、微器件、纳米光学、材料科学、自旋电子学等研究领域。先进的AOD技术,定位分辨率优于0.1nmA. 可以获得任意平滑、锐利的结构边缘B. 可高分辨调整特征结构间的距离C. 可以实现亚微米级精细结构的构建主要特点:# 最小特征结构小于1μm# 针对I-line光刻胶进行优化(SU-8,AZ,……)# 超快与超高精度定位,光斑定位分辨率<1nm# 可构建高深宽比结构(可达10:1)# 12nm-1μm光斑间距调节以获得超高平滑度# 100-150nm最小结构间距# 最高400nm套刻精度# 适用于从CAD设计到各种结构的快捷构建# 具备非平表面直写能力产品优势1. 超稳定,长寿命375nm激光器相对于其它各种光源,在精密光学仪器应用中,激光光源在光束质量,稳定性,耐用性等方面具有无与伦比的优越性。DaLI无掩膜纳米光刻机采用最优的激光光源,以保证超一流的性能和用户体验。2. 广泛的适应性DaLI无掩膜纳米光刻机广泛适用于各种I-line光刻胶,AZ系列正胶,SU-8系列负胶等,在各种厚胶与薄胶应用中有着出色的表现。3. 非平表面直写功能4. 整机恒温系统,保证最佳的性能DaLI无掩膜纳米光刻机采用了超越光刻技术极限的亚纳米级AOD激光操控技术,光斑定位精度可达0.1nm。为充分发挥AOD技术的优势,我们建立了整机恒温系统,控温精度可达±0.1℃,将设备所有部件和温差形变和热漂移降到最低,从而实现真正的高精度光刻。5. 准确的图形结构6. 工作范围与曝光拼接大光斑直写工具单个工作区域 为 900μm X 900μm;小光斑直写工具单个工作区域为 300μm X 300μm工作区域100mm X 100mm 工作区域间的平滑过渡机制(软拼接与硬拼接);DaLI的软拼接可以将曝光扫描线延伸到临近区域,并梯度降低激光强度(红线)。在临近区域,激光强度梯度增加(蓝线),从而获得干净均一的拼接图案7. 用户友好的操作软件DaLI控制软件通过USB接口与设备快速通讯,可以对设计图中的区块和每一个微结构的曝光参数进行设置,对图形设计的预览和快速栅格化,对样品的观察、准直、调平等。该软件具备图形设计和展示功能,可选用多种绘图工具,支持对 dxf, gerber, bm 等格式文件的导入与修改。8. 更好的深宽比
    留言咨询
  • 魔技纳米DLW-RD桌面级经济型三维激光直写设备DLW-RD基于多光子聚合原理,具有封闭光路设计,独特隔振温控系统,使得小型化、经济型设备也具有加工过程中的长时稳定性。得益于多光子聚合和高自由度的设计,给出了一种经济型纳米级3D制造的解决方案,适配多功能的材料,可应用于生物医学工程、微光学器件、超材料等应用领域。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。【企业介绍】 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • Super Lithography 3D 纳米光刻系统提供纳米级高精度的无掩膜光刻和纳米级3D 微纳结构打印,配合定制的软件系统,可以智能完成高精度无掩膜光刻的制造和其它纳米级 3D 器件的激光直写光刻。
    留言咨询
  • NanoFrazor Explore具有激光直写和灰度光刻功能的热探针光刻解决方案 Hermal Scanning Probe Lithography Tool With a Hybrid Direct Laser Sublimation and Grayscale Patterning Capability具有激光直写和灰度光刻功能的热探针光刻解决方案NanoFrazor® Explore是最经济实惠热探针光刻工具,用于1D/2D材料,例如量子点、量子器件的纳米结构,其独特的功能使能够应用任何新材料。例如,灰度光子学设备、纳米流道结构或用于细胞生长的仿生基质等进阶应用;通过加热探针对材料进行局部改性,例如化学反应和物理相变。 关于我们Stella InternationalStella International携手光刻技术领航者-海德堡仪器公司,共同为客户带来*的综合应用效能,同时建立紧密的合作伙伴关系。为了服务客户更广泛多元的应用领域,Stella International于 2016年在苏州成立海德堡仪器演示中心,以海德堡原厂伙伴技术支援,提供客户技术交流平台以及各式前段打样的基础研究,这些年来已服务许多的国内知名大学,研究院所与企业前期研发单位。品牌介绍德国海德堡 高精密无掩膜激光直写设备HEIDELBERG MASKLESS AND LASER LITHOGRAPHY SYSTEM德国海德堡设备(Heidelberg Instruments),创始于1984年,在激光直写设备的发展和设计上持续地改良、在各种应用上客制化。应用范围包括:微电脑和纳米科技, MEMS, 平面屏幕, BGA, ASICS, TFT, Plasma Displays, Micro Optics, 和其他相关领域。销售横跨欧洲、美国、亚洲等超过50几个国家、700个以上销售据点,用于研发、快速原型制作和工业生产系统,是企业研究和发展的伙伴。
    留言咨询
  • 美国SonoPlot是柔性印刷电子行业内畅销的高品质微纳米材料沉积喷墨打印系统(又名高分辨毛细作用直写打印系统),广泛用于制备可控电极薄膜、聚合物光电器件、碳纳米管石墨烯器件、微电子器件 、不同材料的多重构筑以及定位定量微纳修补等应用领域。创新的超声谐振释放机制可以完美解决传统压电式喷墨打印技术线宽限制问题,打印不连续,打印材料受限,不能打印一维二维材料,薄膜不均匀,无法定位以及更换喷头昂贵的诸多技术瓶颈。
    留言咨询
  • 美国SonoPlot是柔性印刷电子行业内畅销的高品质微纳米材料沉积喷墨打印系统(又名高分辨毛细作用直写打印系统),广泛用于制备可控电极薄膜、聚合物光电器件、碳纳米管石墨烯器件、微电子器件 、不同材料的多重构筑以及定位定量微纳修补等应用领域。创新的超声谐振释放机制可以完美解决传统压电式喷墨打印技术线宽限制问题,打印不连续,打印材料受限,不能打印一维二维材料,薄膜不均匀,无法定位以及更换喷头昂贵的诸多技术瓶颈。
    留言咨询
  • 魔技纳米PROME-Uni基于多光⼦ 聚合原理的超⾼ 速度一体化纳米级三维加⼯ 设备自研专利技术,大幅提高加工效率,突破多光子聚合速度限制,适应不同尺度的精密加工需求;拥有多项稳定系统,可长时无需维护,稳定工作;采用模块化的光机电设计,拥有极高的灵活性和可扩展性;为科研和工业领域提供全新的3D加工技术解决方案,适用于微光学器件、微流控芯片、微机械、超材料、微纳传感器件光子芯片集成等领域 主要特点: 如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 企业介绍 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • 魔技纳米MJ-Works适用多种材料的超快激光微纳加工中心超快激光微纳加工中心,不仅拥有纳米级3D加工能力,还配备了双波长飞秒激光输出,可加工更广泛的材料。可对玻璃、光纤、晶体内部和表面进行改性或刻蚀,也可对金属、合金、陶瓷等硬质材料进行微米级精度的处理,包括打孔、表面结构处理、选择性激光消融、改性等多种功能。MJ-Works同样拥有高精度、超高速度的特点,并且可进行大幅面加工、全自动操控、长时稳定性、简单直观的软件操作以及适配多种材料的特点,适用于微纳光学、生物医学、半导体、光通信等行业的微纳加工领域。 如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。 魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询
  • 长行程压电纳米位移台基于粘滑仿生运动原理及特殊设计的驱动和纳米伺服技术,具有纳米级重复定位精度,可实现数百mm的运动行程。该促动器结构紧凑,具有较高的保持力与长期的稳定性,能够实现跨尺度的纳米定位和复杂的轨迹运动。支持面向不同应用和需求的产品开发与定制。 技术特点:超长行程:36mm高分辨率:传感器分辨率为1.2nm超高精度:重复定位精度小于5nm运动速度:可达10mm/s高稳定性:保持力可达8N超高真空兼容性;运动模式:支持开环与闭环轻量化、结构紧凑,高可靠性模块化设计,摩擦单元可替换应用领域:扫描电镜(SEM)样品操纵主动光学超分辨成像样品移动大范围电子束直写(EBL)微纳装备及制造集成电路制造与检测高真空样品精度对准及调姿纳米聚焦与扫描显微及纳米CT
    留言咨询
  • 单轴长行程压电纳米位移台基于粘滑仿生运动原理及特殊设计的驱动和纳米伺服技术,具有纳米级重复定位精度,可实现数百mm的运动行程。该促动器结构紧凑,具有较高的保持力与长期的稳定性,能够实现跨尺度的纳米定位和复杂的轨迹运动。支持面向不同应用和需求的产品开发与定制。技术特点:长行程:16mm高分辨率:传感器分辨率为1.2nm超高精度:最小步长2nm运动速度:可达10mm/s高稳定性:保持力可达8N超高真空兼容性;运动模式:支持开环与闭环轻量化、结构紧凑,高可靠性模块化设计,摩擦单元可替换应用领域:扫描电镜(SEM)样品操纵主动光学超分辨成像样品移动大范围电子束直写(EBL)微纳装备及制造集成电路制造与检测高真空样品精度对准及调姿纳米聚焦与扫描显微及纳米CT
    留言咨询
  • 百及纳米ParcanNano 探针电子束光刻机P-SPL21 简介: 公司以全球首家专利的针尖技术为核心竞争力,技术源自于德国伊尔默瑙工业大学,致力于主动式针尖技术在微纳米结构制备和表征方面的研发,及其相关设备的产业化。 公司研制一套基于扫描针尖低能电子场发射的原理、采用压阻式微纳米针尖和多维纳米定位与测量技术、在半导体器件材料表面制造尺寸小于5纳米线宽结构的高性能微纳加工系统。可在大气环境下,高经济效益、快速直写5纳米以下结构和制备纳米级器件。该系统的闭环回路可实现使用同一扫描探针对纳米结构的成像、定位、检测和操纵。 技术特点:。场发射低能电子束。大幅降低电子束背底散射。几乎消除电子束临近效应。光刻5纳米以下单线宽结构。光刻结构间距小于2纳米。接近原子级分辨的套刻精度。线写速度高达 300 μm/s。大气环境下可实现正负光刻。正光刻流程无需显影步骤。无需调制电子束聚光。大范围分步重复工艺。Mix & Match 混合光刻模式。针尖曝光与结构成像实时进行。真空原位观测光刻图案 功能指标
    留言咨询
  • R2P纳米压印系统又名桌面式微纳米结构复制机,可以说是"The most cost-effective holographic printing technology available today 现阶段最有效的全息印刷技术工艺". 印刷电子技术受限于线宽精度的要求无法实现复杂微米及亚微米结构,而使用高精度R2R/R2P纳米压印技术可获得小到亚微米甚至几十纳米结构,这样可以很好的应用于对于结构有高精度要求的应用领域,如显示如裸眼3D,全息成像,AR眼睛等,太阳能领域,光照领域,及其他如微流控和防伪标签等,在工艺上节省时间成本的基础上,更好的开拓了微纳米结构产业化的新机遇。技术优势在于: • 全欧洲知名的R2P专利压印技术• 可快速复制超清晰均匀的微纳结构• 适用于几乎任何表面–柔性或固体、透明或不透明• 优异的光学固化引擎和易于操作的独特设计• 适用于20纳米至100微米的特征尺寸• 全系列优化的压印及模板制作材料• 超过30000次超长寿命聚合物印刷模板典型应用包括:• 光学验证防伪的衍射结构• 衍射光学元件• 增强光伏器件光电转换率的微纳米结构• 增强LEDs光电性能的微纳米结构• 光波导• 光导纤维• 微流控器件• 超亲水或超疏水功能层表面• 促进或阻止细胞生长的表面结构• 等离子体超材料结构• 生物化学微阵列• 光固化树脂材料性能测试验证• NIL蚀刻掩膜版图案制作
    留言咨询
  • MicroMaster 激光直写光刻机MicroMaster 是一款多功能的紫外激光写入器,具有高精度的组件,专为用户在感光层上设计创建最高自由度的微结构。 MicroMaster 是一个完整的操作系统。它拥有405纳米波长光学模块,能够在光阻层中写入最小0.8微米的结构。这个用户友好的工具支持高达4095级的灰度或纯二进制模式,并允许3D光学结构,表面结构以及掩模项目。 激光控制的实时自动对焦和激光强度控制,确保整个曝光过程中的高质量成像。 MicroMaster 广泛应用于半导体光刻, LED芯片, 微流控芯片, 微纳结构, 灰度光刻, 三维加工, 全息影像等多个领域。MicroMaster 无掩模激光直写系统性能规格
    留言咨询
  • XY长行程纳米促动器 400-860-5168转6164
    XY长行程纳米促动器基于粘滑仿生运动原理及特殊设计的驱动和纳米伺服技术,具有纳米级重复定位精度,可实现数百mm的运动行程。该促动器结构紧凑,具有较高的保持力与长期的稳定性,能够实现跨尺度的纳米定位和复杂的轨迹运动。支持面向不同应用和需求的产品开发与定制。技术特点:超长行程:10mm~数百mm高分辨率:传感器分辨率为1.2nm超高精度:重复定位精度小于5nm运动速度:可达10mm/s高稳定性:保持力可达8N超高真空兼容性;运动模式:支持开环与闭环轻量化、结构紧凑,高可靠性模块化设计,摩擦单元可替换应用领域:扫描电镜(SEM)样品操纵主动光学超分辨成像样品移动大范围电子束直写(EBL)微纳装备及制造集成电路制造与检测高真空样品精度对准及调姿纳米聚焦与扫描显微及纳米CT规格参数:型号 NH-XY-16A NH-XY-16B NH-XY-36A NH-XY-36B NH-XY-36MS 运动轴 X轴、Y轴 X轴、Y轴 X轴、Y轴 X轴、Y轴 X轴、Y轴 传感器类型 光栅编码器 光栅编码器 光栅编码器 光栅编码器 光栅编码器 行程(mm) 16 16 36 36 36 保持力(N) 5 5 5 5 5 最大承载力(N) 20 20 20 20 20 尺寸(mm) 52x52x22.5 60x60x26.6 52x52x22.5 60x60x26.6 60x60x26.6 重量 ( g) 150 160 150 160 160 速度(mm/s) 5 5 5 5 5 分辨率(nm) 1.22 12.51.2212.512 闭环重复定位精度(nm) 55055050 材料 铝合金/钛合金 真空度 (mBar) 超真空兼容(5X10-9 )
    留言咨询
  • 长行程纳米促动器基于粘滑仿生运动原理及特殊设计的驱动和纳米伺服技术,具有纳米级重复定位精度,可实现数百mm的运动行程。该促动器结构紧凑,具有较高的保持力与长期的稳定性,能够实现跨尺度的纳米定位和复杂的轨迹运动。支持面向不同应用和需求的产品开发与定制。技术特点:超长行程:10mm~数百mm高分辨率:传感器分辨率为1.2nm超高精度:重复定位精度小于5nm运动速度:可达10mm/s高稳定性:保持力可达8N超高真空兼容性;运动模式:支持开环与闭环轻量化、结构紧凑,高可靠性模块化设计,摩擦单元可替换应用领域:扫描电镜(SEM)样品操纵主动光学超分辨成像样品移动大范围电子束直写(EBL)微纳装备及制造集成电路制造与检测高真空样品精度对准及调姿纳米聚焦与扫描显微及纳米CT规格参数: 型号 NH-X-16A NH-X-16B NH-X-36A NH-X-36B 运动轴 X轴 X轴 X轴 X轴 传感器类型 光栅编码器 光栅编码器 光栅编码器 光栅编码器 行程(mm) 16 16 36 36 保持力(N) 5 5 5 5 最大承载力(N) 20 20 20 20 尺寸(mm) 50x52x12.5 50x50x12.5 65x50x12.5 65x50x12.5 重量 ( g) 75.5 75 115 112 速度(mm/s) 5 5 5 5 分辨率(nm) 1.22 12.51.2212.5 闭环重复定位精度(nm) 550550 材料 铝合金/钛合金 真空度 (mBar) 超真空兼容(5X10-9 )
    留言咨询
  • R2P/R2R纳米结构压印机 400-860-5168转2623
    随着全球市场对于全息印刷如防伪安全及其他光学显示应用的需求增长,为了替代现有落后繁琐的全息印刷工艺,Stensborg发明了Holoprint,世界上首创在线的全息印刷生产工艺。Stensborg公司服务于全欧洲压印客户超过20年,提供全息原版片和压印模板包括防伪安全用途以及其他数量庞大的光学应用。Stensborg公司专利的Holoprint压印技术,应用于桌面型的UNI A6 DT设备,以及客户定制化的设备,在印刷工艺中集成了纳米压印工艺,因此用户可以进行高分辨3D微纳米结构快速制备比如全息复制到预涂布好的材料上而不需要使用预加工好的箔片。我们这项独特的前沿纳米压印技术优势在于: • 全欧洲知名的R2P专利压印技术• 可快速复制超清晰均匀的微纳结构• 适用于几乎任何表面–柔性或固体、透明或不透明• 优异的光学固化引擎和易于操作的独特设计• 适用于20纳米至100微米的特征尺寸• 全系列优化的压印及模板制作材料• 超过30000次超长寿命聚合物印刷模板 R2P纳米压印系统又名桌面式微纳米结构复制机,可以说是"The most cost-effective holographic printing technology available today 现阶段最有效的全息印刷技术工艺". 印刷电子技术受限于线宽精度的要求无法实现复杂微米及亚微米结构,而使用高精度R2R/R2P纳米压印技术可获得小到亚微米甚至几十纳米结构,这样可以很好的应用于对于结构有高精度要求的应用领域,如显示如裸眼3D,全息成像,AR眼睛等,太阳能领域,光照领域,及其他如微流控和防伪标签等,在工艺上节省时间成本的基础上,更好的开拓了微纳米结构产业化的新机遇。典型应用包括:• 光学验证防伪的衍射结构• 光学衍射元件• 增强光伏器件光电转换率的微纳米结构• 增强LEDs光电性能的微纳米结构• 光波管• 光导纤维• 微流控器件• 超亲水或超疏水功能层表面• 促进或阻止细胞生长的表面结构• 等离子体超材料结构• 生物化学微阵列• 光固化树脂材料性能测试验证• 用于NIL蚀刻掩膜版图案制作 应用领域:SEM微纳结构照片:
    留言咨询
  • 原子力显微镜(工业型)产品简介基于专利的、源自德国的主动式针尖技术,百及纳米科技开发了下一代工业智能型原子力显微镜系统,针对工业领域应用提供快速、智能的样品形貌表征,适用于工业型检错、质量评定和量化测量等,尤其适用于检测大尺寸晶圆或光学晶圆。系统集成了大尺寸样品位移台、全自动光学导航系统和配套自动控制软件,可对大尺寸样品进行的光学成像定位,根据光学成像结果自动标定多个准确测量区域,并根据缺陷/待测结构的特点进行模式识别,智能选取原子力显微镜测量参数,在样品多个位置间自动移动,进行可重复的高分辨率测量,生成检测书面报告,整个过程无需人工参与,实现对大尺寸样品形貌的智能化、自动化的高速、高质量纳米级测量。产品特点: 顶级自动化功能、测量过程无需激光调节、即插即用式针尖更换方案、快速自动进针, 针对高深宽比的沟槽或孔洞结构,采用特制的长针尖提供微纳米结构的三维形貌准确测量, 可升级至多针尖并行测量模式,大幅提高微纳结构表征的范围和效率, 可升级为基于针尖光刻的微纳米结构高性能加工系统,大气环境下快速直写5nm以下结构。功能指标样品尺寸100 mm x 100 mm (4英寸) 至 300 mm x 300 mm (12英寸)成像分辨率优于1 nm (水平方向:0.3 nm, 垂直方向:0.2 nm)样品台定位精度运动精度优于1nm,重复精度优于10nm,采用闭环回路定位准确控制。单场扫描范围 (X, Y, Z)35μm x 35μm x 10μm (备选: 100μm x 100μm x 30μm)测量模式1. 非接触式(形貌、相位、误差) 接触式&力曲线2. 扩展模式(导电探针(C-AFM)、开尔文探针力显微镜 (KPFM)、磁力显微镜 (MFM)、扫描针尖光刻 (SPL)等)
    留言咨询
  • VSParticle VSP-P1 纳米印刷沉积系统纳米印刷是柔性电子领域重要的区域性沉积技术, VSP-P1 采用独家的气溶胶冲压沉积技术,将原材料通过火花烧蚀的方式转变成纳米级气溶胶颗粒,并在真空系统配合下实现图案的绘制。该方法避免了传统喷墨打印需要导电油墨以及后续热处理去除油墨的弊端,保证图案的纳米结构最大程度的保留,避免产生气孔等缺陷。运行原理气溶胶颗粒会通过火花烧蚀的方式在前端产生,颗粒经由惰性气体带动运输至喷嘴处,经过真空系统作用,腔室的气压会保持在 10mbar 以下,而经由喷嘴喷出的气溶胶会在基底表面冲压沉积。而利用 XYZ 轴控制喷嘴的移动,即可实现图案的绘制。利用该方法,可轻松实现:1. 金属,合金,氧化物颗粒的印刷沉积2. 无添加剂,无废液3. 一步沉积,设备模块化,前端的气溶胶发生器可独立拆卸工作,进行其它方向的纳米研究4. 颗粒初始粒径可保持在 0-20nm 之间,形成多孔结构应用领域 高通量合金催化剂的筛选利用气溶胶喷印在多个通道打印沉积比例不同的合金催化剂,从而快速考查电催化性能。该方法可用于在工业相关电流密度下的流体力学条件下制备和筛选电极材料,可用于确定最佳催化剂和催化剂制备的稳健性。Ni / Fe 的复合电极被用于进行验证,64 个不同比例的催化阳极电极在快速筛选后可得到反应电位的变化。SERS表面增强拉曼光谱需要精细的 Au, Ag 等纳米结构,从而实现对低信号量化学物质的灵敏检测。利用气溶胶喷印技术在基底表面快速绘制纳米图案,进行拉曼光谱检测。这种方法避免添加剂对检测的干扰,在较低的温度处理后便可进行后续检测。纳米印刷结构在对罗丹明 6G,PMBA,三聚氰胺的检测中,标准基片表现出了优异的信号增强性能。气体传感器 金属氧化物 (MOX) 气体传感器通过半导体金属氧化物薄膜的电阻变化来检测气体,但氧化物涂层需要温和的沉积,故而常用的 PVD 与 CVD 手段均不适用。现有方法为利用溶胶凝胶法结合丝网印刷实现区域的沉积。利用气溶胶喷印直写可以实现精准的印刷沉积,避免热处理。
    留言咨询
  • 此款设备集成多种微纳加工技术于一体,是一台桌面型纳米材料加工中心。可以自由切换不同纺丝模块,进行熔体/溶液近场直写、静电纺丝和静电喷雾实验。可以组合使用近场直写/静电纺丝/静电喷雾技术,制备有序微纳米纤维/无序纳米纤维膜/纳米微球中一种或两种或三种复合材料。特别适用于制备组织工程支架材料,也可用于制备常规静电纺、静电喷雾材料
    留言咨询
  • 近场直写静电纺丝技术分类1. 溶液直写溶液直写静电纺丝工艺,即将打印材料制备成溶液状,在静电场的作用下进行打印,可制备50nm-20μm丝径范围的纤维,材料适用范围更广。2.熔体直写熔体直写静电纺丝工艺,即将打印材料加热熔融,在静电场的作用下进行打印,可制备500nm-50μm丝径范围的纤维,适合用于生物三维组织工程支架的制造。
    留言咨询
  • 激光直写光刻机 400-860-5168转4796
    PicoMaster ATE-150 PicoMaster ATE-150是一款具有超高精度组件的多功能紫外激光写入器,专为用户提供在感光层中创建最高自由度的微结构而设计。系统的光栅化工作原理,搭配上高速扫描以及可调螺距步进激光头,确保了整个曝光制程在感光层表面准确而稳定地完成。系统优点v系统支持高达4095级的灰度、纯二进制模式;v系统对准精度最高小于250纳米,线宽均匀性小于50纳米;v系统最大支持6英寸基版,200毫米/秒扫描速度,150x150毫米曝光面积;v系统采取全封闭结构设计,必需的部件、控制架构和真空泵都在外壳内,便于快速安装;v系统连接到空气温度调节器机组开始供应空调空气时,内置堆式过滤器将产生干净的交叉气流; v系统运动平台由机械缓振系统支撑,它将过滤掉绝大多数的噪音振动,以确保工作时的振动最小v紧凑型光学模块,将整个光路包含其内,这使得光路尽可能地缩短,与传统光学装置相比,其指向稳定性将大大提高; v为获得最佳的光斑形状,光学模块设计了光束整形光学元件,配合长寿命的405纳米氮化镓激光二极管进行光刻制程; v搭配拥有自主专利的高数值孔径物镜,这使得市场上最小的高质量激光束光斑成为现实;v光学模组中,650纳米红色激光控制自动对焦系统可自动校正高度变化。v选项:可根据要求提供375纳米波长的光学模块替换405纳米光学模组。 v选项:对于要求较低的任务,可通过使用全自动数值孔径开关来选择较大的光斑大小。此开关允许系统使用更大的光斑尺寸来提高直写速度。 v选项:系统配备375 纳米光学模块后,将支持用户使用仅适用于I-line光源的光阻,而光斑尺寸会减小到270纳米,这将允许系统以更高的分辨率写入线条。 光学系统直写激光405纳米或375纳米激光寿命超过10000个工时,5年以上;激光强度光斑强度最大3毫瓦,可由软件控制;灰度控制4095级直写模式直写精度0.3微米, 0.6微米, 0.9微米曝光区域最大150x150毫米基版尺寸最小5x5毫米, 最大160x160毫米直写表征线宽尺寸最小0.3微米
    留言咨询
  • 自21世纪以来,由半导体微电子技术引发的微纳米加工时代依赖于微纳米尺度的功能结构与器件,实现功能结构微纳米化的基础是先进的微纳米加工技术。传统的光刻工艺需要设计定制掩膜版,而激光直写光刻技术无需掩膜工序,在光刻胶上直接曝光绘出所要的图案器件;此外,激光直写光刻技术也突破了曝光尺寸和效率的限制,使其作为一种先进的微纳加工制作技术,在许多高新技术领域有着重要的应用。 台式无掩膜激光直写光刻系统打破了市面上传统激光直写设备高昂价格壁垒,是现阶段市面上高性价比的一款先进的激光直写光刻系统;采用集成化设计,全自动控制,可靠性高,操作简便,不仅具有无掩膜直写系统灵活性,而且还具有高刻写效率,写场范围大,操作成本低,多种光学校准补偿等特点,从成本、性能上均可以取代传统微纳加工工艺中传统光刻机的功能.
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制