当前位置: 仪器信息网 > 行业主题 > >

纳米级透射电镜

仪器信息网纳米级透射电镜专题为您提供2024年最新纳米级透射电镜价格报价、厂家品牌的相关信息, 包括纳米级透射电镜参数、型号等,不管是国产,还是进口品牌的纳米级透射电镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米级透射电镜相关的耗材配件、试剂标物,还有纳米级透射电镜相关的最新资讯、资料,以及纳米级透射电镜相关的解决方案。

纳米级透射电镜相关的资讯

  • 日本电子全自动高速纳米级分析型透射电镜问世
    2011年7月12日,日本电子株式会社全球同步推出一款高度自动化的透射电镜JEM-2800.它一改以往透射电镜操作复杂的缺点,可进行简单高速观察与分析。 JEM-2800不再使用传统的荧光屏观察,通过计算机实现高分辨的TEM, STEM, 和SE 图像观察。高度自动化设计和即为人性化操作导航,使得操作透射电镜不再需要非常专业的培训。 最适合半导体企业对于简单高速分析的实际需求。
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 可视化原位透射电镜技术 见证纳米颗粒舞动之美
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/insimg/4afc0317-e9f0-488f-acc8-55f85320fe4d.jpg" title=" Kydt_Wyc_20130514.jpg" width=" 600" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 400px " /    /p p & nbsp & nbsp & nbsp & nbsp 随着对纳米尺度的理解,中国研究者团队研发了一种可视化的基于原位透射电镜技术,该技术直接将原子尺度的结构和物化性能联系起来,可提供新颖而强大的功能。 /p p   在纳米世界里的生活是很快的,就致力于纳米尺度的基本机制研究而言,其发展更加迅速,这个世界,便是尺寸只有十亿分之一米的原子和离子之类的颗粒的舞蹈。 /p p   随着对纳米尺度的理解,中国研究者团队研发了一种可视化的基于原位透射电镜技术,该技术可以提供新颖而强大的功能,它能够直接将原子尺度的结构和物化性能联系起来。 /p p   在这周AIP出版的Applied Physics Letters期刊里,研究者们说明了他们的发现对新一代科技设备的设计和制造的重要性。这项研究具有广泛的应用潜力,从基于电致色变科技的智能窗到管理能源、信息和环境的新型器件。 /p p   团队负责人、中科院物理所白雪冬研究员介绍道, span style=" color: rgb(0, 0, 0) " “目前,应用于能源、信息和环境方面的新设备的原子机制是一个重要的议题。物化现象中原子过程的实时成像是原位透射电镜技术的任务。我们研究的目标之一是理解从原子尺度可获得的设备的基本原理,另一个目标是探索基于原子过程中原位透射电镜成像的革新的设备。” /span /p p   在诺贝尔奖透射电镜科技中,电子束取代了用于传统电镜中的光束,通过一个金属试样传输。与光学显微镜相比,由于电子具有更短的波长,透射电子显微镜提供给研究者更高的分辨率,以至于他们可以观察到更多的信息。 /p p   白强调了结构和性能之间的关系是材料科学一个根本的关注。然而,研究这种关系的约束之一是使用传统的方法,结构表征和性能测定通常是分开的,对于纳米材料来说尤其如此。他们的创新之处在于将这些步骤结合起来。 /p p   白还说道,“过去的十五年来,我们的研究工作集中于原位透射电镜技术的构造和应用,所以在不同的物理因素(包括电的和光的)下原子尺度的性能都通过透射电镜进行了研究。” /p p   该团队尤其对于应用最广泛的电化学材料之一—氧化钨和其产物的一个关键相转变进行了研究。通过使用他们简化了的内含电化学电池的透射电镜技术,他们的微观的、动态的观察显示了实时的详细机理,涉及了电化学氧化钨纳米线的形成和演变,并且在工业上有很多应用。 /p p   他们的研究最有趣的方面之一是探究离子电迁移过程和其诱导的动态结构转变。他们发现这些与电化学性能密切相关,加深了原位透射电镜成像研究的广泛应用潜力。 /p p   白说道,“新特性和重要的科学问题可以通过原位透射电镜成像来显示,例如,电驱动的氧化还原反应过程,锂离子电池中锂原子的占据位点和电机学反应电池中的物质转移都能从原位透射电镜成像中观察到。” /p p   接下来,研究者们将扩展原位透射电镜原子尺度成像技术,使之与超快光谱结合起来。通过这个扩展,高分辨成像在空间和时间上都将成为可能。 /p p   论文地址: span style=" color: rgb(0, 112, 192) " a href=" https://www.sciencedaily.com/releases/2016/06/160607113110.htm" target=" _blank" title=" " In-situ transmission electron microscopy imaging of formation and evolution of LixWO3 during lithiation of WO3 nanowires /a /span /p p br/ /p
  • iCEM 2016邀请报告:环境透射电镜中的纳米实验室
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)邀请报告 /strong /p p style=" TEXT-ALIGN: center" strong 环境透射电镜中的纳米实验室 /strong /p p style=" TEXT-ALIGN: center" & nbsp img title=" 解德纲.jpg" style=" HEIGHT: 267px WIDTH: 200px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201609/insimg/db7cef06-bc66-454a-a0a4-d74af6cfd427.jpg" width=" 200" height=" 267" / /p p style=" TEXT-ALIGN: center" strong 解德刚 博士 /strong /p p style=" TEXT-ALIGN: center" strong 西安交通大学 /strong /p p strong 报告摘要: /strong /p p   材料科学是研究材料的成分、结构、组织、处理工艺与服役性能的学科。透射电子显微镜自发明以来,由于在表征材料的成分、结构、组织方面有着高分辨的优势,极大地推动了材料学科的发展。近年来,随着实验技术的发展,透射电镜正快速从一种静态表征技术拓展为动态表征技术,即原位技术。原位透射电镜技术在保持电镜固有的高分辨的同时,再将各种力、热、光、电、磁等物理场中的一个或多个施加给电镜样品,并利用相机记录材料在该刺激下的响应过程,相当于在电镜内部搭建了一个纳米实验室。另外,新的环境透射电镜以及新的样品杆设计能够为样品提供一定的气体或液体环境。如此一来,环境透射电镜中的纳米实验室也可以用来表征材料科学的最后的两大块:材料处理与服役性能。本报告将介绍原位透射电镜技术在近年来的新发展,以及西安交大金属强度国家重点实验室微纳中心利用该技术在材料科学研究中所进行的一些应用和探索。 /p p strong 报告人简介: /strong /p p   解德刚,西安交通大学微纳尺度材料行为研究中心(CAMP-Nano)新讲师,西安交大-日立联合研发中心(XHRDC)副主任。 /p p   教育经历 /p p   2010年9月——2016年3月 西安交通大学获博士学位 /p p   2011年9月——2012年8月 麻省理工学院材料科学与工程系访问学生 /p p   2006年9月——2010年7月 西安交通大学获学士学位 /p p   研究方向 /p p   氢脆、氢损伤的微观机制 /p p   微纳尺度材料在力、热、电等刺激下的特殊行为 /p p   微纳尺度的电化学过程 /p p   会议报告 /p p   1. Xie D.-G. Li S.-Z. Wang Z.-J. Gumbsch P. Li J. Shan S.-W., “In Situ TEM Investigation of the Effects of Hydrogen on the Behavior of Dislocation and Cracking in Aluminum”, 2015 TMS Annual Meeting & amp Exhibition, Orlando, FL, USA, Mar. 15-19, 2015 (Oral) /p p   2. Xie D.-G. Li M. Wang Z.-J. Shan Z.-W., “Hydrogen embrittlement in aluminum investigated by in situ bending in environmental TEM”, 2015 International Workshop on Materials Behavior at the Micro- and Nano-Scale, Xi’an China, Jun. 1-3, 2015 (Oral) /p p   3. Xie D.-G. Wang Z.-J. Sun J. Ma E. Li J. & amp Shan Z.-W. “In situ TEM Investigation of Blister Formation on Aluminum Surface in Hydrogen Environment”, 2015 MRS Fall meeting, Boston, MA, USA, Nov 29 – Dec 4, 2015 (Oral) /p p strong 报告时间: /strong 2016年10月25日下午 /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /a /p
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
  • 新技术,美国成功制造了用于半导体纳米晶体的液池透射电镜仪器
    不同尺寸和形状的半导体纳米晶体可以控制材料的光学和电学性质。液池透射电子显微镜LCTEM是一种新兴的方法,用于观察纳米尺度的化学变化,并为具有预期结构特征的纳米结构的精确合成提供信息。科学家们正在研究半导体纳米晶体的反应,方法是研究过程中通过液体辐解产生的高反应环境。在最近发表的一份新论文中,科学家们利用了辐射分解过程,取代了典型半导体纳米材料的单粒子蚀刻轨迹。工作期间使用的硒化铅纳米管代表了各向同性结构,以通过逐层机制保持用于蚀刻的立方形状。各向异性箭头形硒化镉纳米棒保持了带有镉或硒原子的极性刻面,透射式液体细胞电子显微镜的轨迹揭示了液体环境中特定表面的反应性如何控制半导体的纳米级形状转变。半导体纳米晶体包含广泛可调的光学和电学特性,这些特性取决于其尺寸和形状,适用于多种应用。材料科学家已经描述了特定块体晶体小面对生长和蚀刻反应的反应性,开发出任意的图案纳米晶体的多面性及其反应机制使其成为直接研究的热点,胶体纳米晶体的热力学可以影响限定它们的有机或者无机界面。液体细胞透射电子显微镜提供了所需的时空分辨率,以观察纳米级动力学,如自组装过程。因此,科学家们在两个透射电子显微镜网格的超薄碳层之间夹了一个含有纳米晶体的水性袋,并使用三(羟甲基)氨基甲烷盐酸盐,这是一种有机分子来调节敏感半导体纳米晶体的蚀刻。LCTEM和纳米晶体的现有研究仅限于贵金属,因为它们在辐射分解过程中无法调节化学环境,导致活性材料降解。这项新的研究表明,有可能为LCTEM设计新的环境,以观察反应性纳米晶体的单粒子蚀刻轨迹。在实验过程中,三氨基甲烷盐酸盐添加剂调节了蚀刻过程的电化学电位,团队使用动力学建模来估计液体电池中胺自由基物种的浓度和电化学电位。为了证明这一概念,美国科学家们获得了真空中硒化铅纳米立方体的代表性透射电子显微镜图像,并在硒化铅奈米晶体的逐层蚀刻过程中收集了一系列图像。LCTEM成像结果显示,作为蚀刻反应的产物,在硒化铅纳米晶体周围形成了具有较高图像对比度的物质,似乎在蚀刻过程中,硒氧化并分散到液体中,以促进氯化铅的形成,铅袋中有氯离子。与硒化铅的立方晶格相比,纤锌矿硒化镉具有各向异性晶格,镉和硒原子交替层。在纤锌矿硒化镉纳米晶体的生长过程中,表面活性剂配体有利地结合到镉区域,以促进硒区域的快速生长。未来的研究将或者利用核/壳纳米晶体以及通过无机或者有机界面组装的纳米晶体,获得关于功能纳米结构阵列转化的实时信息。
  • 付学文、朱溢眉团队合作:超快透射电镜实现等离激元纳米飞秒尺度可视化
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队与美国布鲁克海文国家实验室Yimei Zhu教授团队等开展合作,基于自主开发的4D超快透射电镜,观测到了银膜上飞秒激光诱导表面等离激元的分布及动力学过程,为等离激元器件的设计和应用提供了指导。该研究于近日以“Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy”为题,发表在国际重要学术期刊《Nano Letters》。近年来,付学文教授研究团队与合作者在4D超快透射电镜中发展了基于自由电子-光子强相互作用的光子诱导近场电子显微镜(PINEM)技术,并提出了一种新型双色光子超快泵浦-探测方案,将四维超快电镜的时间分辨提升了一个数量级(达到50飞秒),在飞秒与纳米时空尺度揭示了单个Mott绝缘体VO2纳米线的绝缘体-金属相变动力学过程(Nat. Commun. 2020, 11, 5770)。在本工作中,研究团队进一步用PINEM成像技术研究了银膜上表面等离激元的分布及超快动力学过程。表面等离激元是金属表面自由电子的集体共振振荡,可以将光限制在非常小的尺寸,实现在纳米尺度操纵光场。这些独特的优点使得表面等离激元在表面增强拉曼光谱、传感器、光伏器件和量子通信等领域具有广阔的应用前景。由于银纳米结构具有从可见光到近红外光范围内可调谐的表面等离激元共振特性,因此被认为是最重要的表面等离激元材料之一。银纳米结构表面等离激元的共振特性可以通过改变其形态、大小和其他参数来调节。为了更好地设计和使用等离激元器件,理解表面等离激元的产生、传播和衰减过程是至关重要的。然而,所有这些过程都发生在飞秒的时间尺度和纳米的空间尺度上。因此,以合适的时空分辨率直接表征和捕获不同银纳米结构的表面等离激元具有重要的意义。研究团队利用配备了电子能量损失谱仪的4D超快透射电子显微镜,通过PINEM技术研究了银膜上飞秒激光(波长515 nm)诱导的表面等离激元。实验得到的电子与表面等离激元近场相互作用后的能谱呈现出典型的PINEM能谱特征:电子能谱零损失峰(ZLP)两侧出现一系列离散的峰,其间隔为入射光子能量的整数倍,意味着电子在与表面等离激元近场相互作用中吸收或放出了多个光子(图1a)。通过改变泵浦激光的能量密度并对电子能量谱中的PINEM部分积分, 他们发现PINEM强度首先随激光能量密度线性增长,在15mJ/cm2达到饱和(图1a、b)。在15mJ/cm2的入射激光能量密度下,通过改变激光的偏振研究了PINEM强度的偏振依赖性。发现与纳米线、纳米棒等结构的偏振依赖性不同,激光偏振方向的改变不会影响银膜上的PINEM强度(图1c)。图1:a、不同入射激光能量密度下的电子能谱;b、相对PINEM强度与入射激光能量密度的关系;c、PINEM强度与入射激光偏振方向的关系。通过只选择吸收光子能量的电子进行能量过滤成像,他们直接观测到了表面等离激元的空间分布,并通过改变入射激光的偏振方向揭示了激光偏振方向对表面等离激元分布的影响(图2a)。表面等离激元在产生后首先沿着激光的偏振方向传播,然后在垂直于偏振方向的晶界处发生散射,在能量过滤图像中表现为偏振依赖的条纹。通过改变激光脉冲和电子脉冲之间的时间延迟,他们跟踪了光激发表面等离激元随时间的演化,实现了在纳米飞秒尺度对表面等离激元的直接可视化(图2b)。图2:a、t=-1.2 ps(左)和t=0 ps(中、右)时的能量过滤图像,激光偏振方向如绿色箭头所示;b、不同时间延迟下的能量过滤图像,其中激光脉冲的偏振方向与a(中)的偏振方向相同。棒状纳米结构的PINEM效应被广泛用于识别4D超快电镜中泵浦激光脉冲和探测电子脉冲的时空重叠。但是在这些实验中激光脉冲的偏振应该垂直于纳米结构的纵向轴,以最大限度地提高近场激发,这就使得这种方法在实际使用中受到一定限制。相比之下,银膜的PINEM信号不存在偏振依赖性,即入射飞秒激光的偏振可以是任意方向的,这使得银膜成为识别4D超快电镜时间零点的更好平台。此外,能量过滤PINEM图像上观察到的条纹也可能与光诱导周期表面结构(LIPSS)的机理有关,而LIPSS的形成过程是一个复杂的非平衡过程,其物理机制尚不清楚。鉴于PINEM成像的高时空分辨率,未来可进一步用PINEM技术从实验上探索LIPSS的物理机制。该研究工作不仅为各种微纳结构与超材料的表面等离激元分布及动力学研究提供了高时空分辨手段,同时对于银膜表面等离激元的激光能量密度和偏振依赖性,以及超快动力学过程的研究结果对微纳尺度表面等离激元器件的设计和应用具有重要指导意义。南开大学物理科学学院付学文教授为论文第一作者兼通讯作者,Yimei Zhu教授为共同通讯作者,南开大学2020级硕士生孙泽鹏为共同一作,南开大学为论文第一单位。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。(戴建芳)视频S1:通过 PINEM 成像 ( AVI )获得的飞秒激光激发下银膜上消逝表面等离激元的时间演化视频 S2:通过 PINEM 成像 ( AVI ) 获得的飞秒激光激发下银膜上消逝表面等离激元的时间演化,其中激光偏振与视频S1 中的偏振正交。文章链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04774付学文,南开大学物理科学学院教授,博士生导师,南开大学超快电镜实验室负责人,国家“四青”人才,天津市杰出青年基金获得者,担任国家重点研发计划青年首席科学家,入选2021强国青年科学家提名。2014年博士毕业于北京大学凝聚态物理专业(导师:俞大鹏教授),曾先后在美国加州理工学院和美国布鲁克海文国家实验室从事研究工作。2019年受聘于南开大学物理科学学院,建立了南开大学超快电子显微镜实验室和超快动力学研究团队,长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究,在国际上率先发展了液相4D超快电镜技术、双色近场光学超快电镜技术和基于微波脉冲电子发生器的新型4D超快电镜技术。在Science、Science Advances、Nature Communications、Advanced Materials、ACS Nano、Nano Letters、PNAS等具有影响力的国际期刊发表学术论文近50篇,其中第一/通讯作者论文26篇,申请发明专利5项。
  • 了解球差校正透射电镜,从这里开始
    p   作者:Mix + CCL br/ /p p & nbsp & nbsp & nbsp strong 前言: /strong /p p   球差校正透射电镜(Spherical Aberration Corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高分辨率配合诸多分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。本期我们将给大家介绍何为球差,ACTEM的种类,球差的优势,何时才需要ACTEM、以及如何为ACTEM准备你的样品。最后我们会介绍一下透射电镜的最前沿,球差色差校正透射电镜。 /p p    strong 什么是球差: /strong /p p   100 kV的电子束的波长为0.037埃,而普通TEM的点分辨率仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。 /p p style=" text-align: center" img style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201803/insimg/565984ed-0352-4b62-8539-a16db18b6f6b.jpg" title=" 1.jpg" height=" 246" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 图1:球差和色差示意图 /strong /p p 自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置(图3)调节和控制电磁透镜的聚焦中心从而实现对球差的校正(图4),最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/2080a2cf-4ab3-41ab-b731-7719f0c32d28.jpg" title=" 2.jpg" / /p p style=" text-align: center "   strong  图2 三种多极子校正装置示意图 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/090bb4c0-aeea-4ab4-8601-79bcf74b7c8e.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 图3 球差校正光路示意图 /strong /p p    strong ACTEM的种类: /strong /p p   我们在前期TEM相关内容已经介绍了透镜相关内容,TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。 /p p    strong 球差校正电镜的优势: /strong /p p   ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。 /p p    strong 何时才需要用球差校正电镜呢? /strong /p p   虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。 /p p    strong 如何为ACTEM准备你的样品: /strong /p p   首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何准备样品。在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量 二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等 三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础 四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。 /p p    strong 球差色差校正透射电镜: /strong /p p   球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/04b96c4d-c6fe-40d2-85c0-b86ce091e6e8.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong 图4 Titan G3 50-300 PICO、TitanG3 20-80 SALVE及其矫正器 /strong /p
  • 纳米流式检测技术,粒径表征媲美透射电镜——访厦门大学颜晓梅教授
    仪器信息网讯 厦门大学颜晓梅教授团队于2014年9月研制成功第一台纳米流式检测仪原型机,2015年10月第四代原型机研制成功,2016年1月中旬在北京计量科学研究院进行第一次试用,2016年6月第一代科研级纳米流式检测仪完美亮相CYTO 2016国际流式学术大会,2016年10月专业版软件NF Profession 1.0研发成功。纳米流式技术发展处于什么阶段?纳米流式技术成果商业化过程有哪些故事?国产仪器自主创新存在哪些痛点和不足?近期,仪器信息网在ACCSI2021现场特别采访了厦门大学颜晓梅教授,请她就上述问题进行了分享。三年实现快速成果转化,粒径表征媲美透射电镜目前,流式细胞仪在生命科学、临床医学等领域是重要的分析检测工具之一。据颜晓梅教授介绍,纳米流式检测技术是基于流式细胞技术,将检测下限推进到纳米尺度。颜晓梅教授团队首创性地结合瑞利散射和鞘流单分子荧光检测技术,研发成功具有自主知识产权的纳米流式检测技术,实现单个纳米颗粒(7-500 nm)以及外泌体、病毒、细菌、亚细胞器等天然生物纳米颗粒的粒径及其分布、颗粒浓度、和生物化学性状的高通量多参数同时表征。该技术的粒径表征分辨率媲美透射电镜,检测速率高达每分钟上万个颗粒,同时兼备电子显微镜难以实现的生物化学性状分析功能,填补了国际空白。项目团队积极推进技术产业化,成立了厦门福流生物科技有限公司,仅用3年时间就将“纳米流式检测技术”研发成果转化为“中国智造”。 厦门福流生物 纳米流式检测仪点击查看参数详情科学仪器研发平台离不开交叉学科人才培养在采访中,颜晓梅教授强调了复合型科研人才的培养对于国产科学仪器的发展至关重要,科学仪器研制的过程通常是创新技术密集(光、声、电等技术)、管理复杂的活动,需要不同学科的交叉融合,尤其成果转化过程也需要金融、市场等背景支持。因此培养兼具科研、工程和管理能力的复合型人才对于国产科学仪器成果转化具有推动作用。提高纳米医药业核心竞争力,纳米流式未来可期据颜晓梅教授介绍,纳米流式检测技术不仅应用于传统的生命科学、临床医学领域,还在食品药品安全以及能源材料等领域发挥重要作用。并且纳米流式检测仪产业化项目技术密集、附加值高、成长空间大、带动作用强,是纳米医药业核心竞争力的集中体现。 据悉,厦门福流生物科技有限公司生产的纳米流式检测仪目前已经出口到全球顶尖的医疗机构、科研单位和高科技企业,如梅奥诊所(Mayo Clinic,2018年全美排名榜首的医院)、美国德州大学安德森癌症中心(MD Anderson Cancer Center,全球排名第一的肿瘤科研与临床研究机构)、约翰霍普金斯医学院、美国国立卫生研究院(NIH)、外泌体诊断和治疗应用开发领军企业Codiak Biosciences公司、瑞士联邦理工学院(欧陆第一理工大学)、诺和诺德(世界领先的生物制药公司)、瑞典哥德堡大学、德国马尔堡大学、悉尼大学、台湾大学、复旦大学等。
  • 新突破!中国科学家领衔,率先实现“三维透射电镜技术”成熟应用
    2023年12月1日,重庆大学作为第一完成单位和第一通讯作者单位在顶级期刊《Science》发表最新研究成果。论文题目为《3D microscopy at the nanoscale reveals unexpected lattice rotations in deformed nickel》(纳米分辨三维电镜揭示变形镍的异常晶格转动),是材料科学与工程学院黄晓旭团队及其合作者利用自主研发的三维透射电镜技术在纳米金属研究领域取得的新突破。此前,重庆大学材料科学与工程学院在材料科学领域已有5篇论文发表在《Science》和《Nature》上。黄晓旭教授传统的电子显微镜技术,只能观察样品的表层,或者观察材料内部三维结构的二维投影,这大大限制了人们对材料微观组织的认识。因此,过去二十多年,在全球范围内,广大科学家致力于开发三维表征技术,空间分辨率在微米尺度的三维表征技术研发已取得了重要进展,其应用促进了材料科学领域的重要科学发现。但是,更多更深层次的材料科学问题需要纳米级甚至原子级的三维表征技术,将空间分辨率从微米级提高到纳米级,需要提高三个数量级,这是一个巨大的挑战。黄晓旭团队经过十多年的不懈努力,在国家重点研发计划等项目的支持下,成功开发了一系列基于电子衍射的三维透射电镜技术,空间分辨率1nm。这些技术的研发填补了纳米级三维电镜取向成像技术的空白,将大大促进三维材料科学的发展。金属中位错界面的三维透射电镜成像纳米金颗粒的三维透射电镜成像本研究利用三维取向成像技术,首次实现了纳米金属塑性变形的三维电镜研究。发现了纳米金属塑性应变可恢复的反常现象,并揭示了这一现象的物理本质。本工作的新发现发展了纳米金属塑性变形理论,将为先进纳米结构材料研发、纳米材料使役行为的预测和控制以及微纳器件功能优化提供理论指导。纳米金属镍变形前(A)和变形后(B)三维形貌与晶体取向变化黄晓旭团队长期致力于先进表征技术和纳米金属研究,在三维表征技术的研发、纳米金属的变形机理和强化机制研究等方面已取得了多项创新工作,相关成果多次在《Science》和《Nature》杂志发表。重庆大学/西南技术工程研究所贺琼瑶博士和欧洲散裂中子源Søren Schmidt博士为共同第一作者,重庆大学/北京科技大学吴桂林教授、清华大学Andrew Godfrey教授和重庆大学黄晓旭教授为共同通讯作者。重庆大学朱万全博士、黄天林教授、张玲教授和冯宗强副教授,以及丹麦技术大学Dorte Juul Jensen教授为共同作者。原文链接:https://www.science.org/doi/10.1126/science.adj2522黄晓旭团队部分成员
  • 透射电镜主流厂商大揭秘
    p   作者:汪玉玲 /p p   本文仅代表作者个人观点 /p p   如今的透射电子显微镜市场主流厂商包括日本电子,日立和FEI。除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。本文带你全面了解透射电镜厂商的前世今生。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 1 你不知道的日本电子株式会社JEOL /strong /span /p p   首先介绍一下老大哥日本电子株式会社JEOL。 /p p   提起日本电子,大家应该都不陌生,目前在我国各大科研院所都不难看到JEOL电镜的影子。日本电子株式会社是一家世界顶级的科学仪器生产制造商。能在这么多的仪器制造商中鹤立鸡群室有原因的,日本电子有着非常丰富且高端的产品线,生产的都是技术含量非常高的科技产品,电子显微镜,核磁共振,质谱仪,X射线光电子能谱,俄歇电子能谱等。是世界上有且仅有的一家企业可以同时生产这些高端仪器产品的企业。 /p p    strong 透射电子显微镜 /strong /p p   日本电子生产透射电子显微镜的历史算得上是非常悠久,它的前身是1949年5月在东京成立的日本电子光学实验室有限公司,成立同年就推出了第一代透射电子显微镜—JEM-1透射电子显微镜,见下图。 /p center p style=" text-align:center" img style=" width: 500px height: 334px " title=" " alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/65d5174298474dea9d7f6baf29abeb8c.jpeg" height=" 334" hspace=" 0" border=" 0" vspace=" 0" width=" 500" / /p /center p style=" text-align: center " strong JEM-1透射电子显微镜 /strong /p p    strong 你知道吗? /strong /p p   其实,我们国家也在同时期开始了透射电镜的研发工作,算起来起步并不算晚,但是由于之后一些年的各种历史原因,不得不中断了。现在,日本已经是毫无疑问的电镜生产大国,而我们国家的电镜发展却只有个别在国家资助下的小规模研究(之后的文章会有专项介绍),这么重要的科研设备掌握在别人的手里,为长远考虑,国产电镜的发展必须跟上才行。 /p p   1961年该公司正式改名为日本电子株式会社(JEOL Ltd.),日本电子是在二战后开始透射电镜研发,并且是以电子显微镜起家的。六十余年的技术沉淀让它的电镜产品不断的发展壮大,逐渐得形成了它的品牌影响力,成为了全球市场市场上的领头羊。 /p p   2009年,日本电子成立六十周年庆,推出了当时世界上分辨率最高的商业化球差校正透射电镜JEM-ARM200F,透射模式分辨率达0.19nm,STEM-HAADF的分辨率可达0.078nm,这款产品大获成功,开启了球差校正的新时代。如下图, /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/1a4762c278d74239aa3a94f4b48213bc.jpeg" height=" 287" width=" 249" / /center p   第一台JEM- ARM200F安装在德州大学圣安东尼奥分校University of Texas at San Antonio,2010年1月安装结束,二月初就获得了惊人的实验结果。该仪器展示了JEOL实打实的超级稳定性和超高分辨率。2010年,西安交通大学也购入了中国首台该型号的电镜,也是中国大陆第一台STEM球差校正透射电镜。之后,上海交通大学,武汉大学,东北大学,中国科技大学,中科院大连化物所,中科院物理所,神华集团低碳清洁能源研究所等也陆续上马。目前,中国大陆已经有十几台该型号电镜,相信前方大批的高能科研成果也正在路上…… /p p   2014年,日本电子再次引领潮流,发布了终极分辨率的大杀器——新一代球差校正透射电镜JEM-ARM300F,也称为GRAND ARM,这是一款300kV原子分辨级透射电子显微镜,是JEM-ARM200F的升级版,采用了日本电子独自研发的十二级像差校正器,分布率达到 0.05nm,STEM-HAADF的分辨率可达0.063nm,日本电子再一次把商业化的透射电镜推向了一个新的极限,巩固了自己在电子显微镜领域的世界领先地位。 /p p    strong 日本电子的成功的原因 /strong /p p   1. 研发与制造技术的长期积累。一台JEM-ARM300F有三万多个零配件,最佳的电子显微镜表现能力要求每一个零件都能做到百分之百。 /p p   2. 销售和售后服务保障。日本电子有较为成熟的销售和售后服务渠道,可以保证高品质的维修配件的流通速度和高素质的产品服务工程师。 /p p   3. 电镜专业人才培养。日本电子虽然是一家仪器制造商,但是却在一直通过各种活动对青年科研人员提供资助,例如,风户研究基金会,早在1969年就成立了,目的就是鼓励和推广电子显微镜领域的学习和研究。 /p p   随着我国科技的逐步发展,中国的电镜市场已经越来越大,成为了全球第一大市场,但是中国所使用的透射电子显微镜却全部都是进口的,这种现象应该引起我们所有电镜小工匠们的深思。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 2 关于FEI的那些“小事儿” /strong /span /p p   接下来介绍JEOL在透射电镜领域最有力的竞争者——FEI。FEI是一家美国的高科技公司,是为全球纳米技术团体提供解决方案的创新者和领先供应商, “TOOLS FOR NANOTECH”,生产的产品主要面向半导体、数据存储、结构生物学、材料和工业领域。 /p p    strong FEI的透射电镜历史 /strong /p p   1971 /p p   FEI公司成立于1971年,仅从年份上上看,似乎它起步要比JEOL要晚很多,但是FEI生产透射电子显微镜的历史可不是从1971年开始的。要知道美国的FEI公司开始并不是做透射电子显微镜的,最初它只致力于提供高纯,单一取向晶体作为场发射材料。 /p p   1997 /p p   事情发生在1997年,香港回归了,这一年,除了这件大事还发生了一件小事:FEI和荷兰的飞利浦电子集团电子光学公司(PEO)宣布合并其全球业务,飞利浦电子集团成为了FEI的最大股东。由此FEI开始了电镜产业领袖之路。 /p p   1949 /p p   在透射电镜的商业化历史上,1949年有着重要的意义。飞利浦电子光学公司在这一年向世界推出了全球第一台商用透射电子显微镜 “EM100”,要知道JEOL的第一台JEM-1也是在1949年推出的。可以说,飞利浦电子光学公司一直是举世公认的电镜产业领袖之一。 /p p   2009 /p p   FEI公司最新发布第二代球差校正电镜Titan G2 60-300透射电镜,这是Titan系列电镜中一项革命性产品。FEI Titan系列产品是FEI的明星系列,自2005年推出,包括有Titan G2 60-300,Titan3 G2 60-300,Titan Krios和Titan ETEM (环境透射电镜)。该系列产品以其具有突破性的稳定优异的性能获得了商业上的巨大成功。 /p p   Titan G2 60-300它的STEM分辨率可达0.08nm,Titan3 G2 60-300可达0.07nm,它是世界上唯一能够同时实现亚埃分辨率及分析型机靴(S-TWIN)的透射电镜,而且是世界上唯一的300kV Cs球差校正透射电镜。 /p p   在我国,该系列的电镜普及率也是相当高的,清华大学,浙江大学,中科院金属所,重庆大学,西安交通大学,中南大学,东南大学,深圳大学,广西大学等科研院所及高校,都装备了该系列的球差校正透射电镜,随着国内科学技术的进一步发展,相信越来越多的镜子会在这片土地上生根发芽,开花结果。 /p p    strong 你知道吗? /strong /p p   美国总统奥巴马曾经在西海岸技术巡视时去Intel,在他们的TEM实验室里亲自经历了一把,他说:“我看到了一些原子。”从图片上就可以看到,他使用的就是正是FEI Titan系列的球差透射电镜。 /p p   2016:FEI出嫁了! /p p   与JEOL不同,FEI公司的发展历经多次的收购与合并,通过这样的强强联合,使自己的实力越来越强大。 /p p   1996年:收购美国ElectronScan公司及其“环境扫描(ESEM)”技术 收购位于捷克布尔诺的Delmi公司 /p p   1997年:FEI和飞利浦电子光学合并其全球业务 /p p   1999年:新的FEI购并美国Micrion公司 /p p   2002年:FEI收购Atomika (SIMS二次离子质谱仪) /p p   2003年:FEI收购Emispec (ESVision) /p p   2016年:FEI 正式出嫁。在2016年5月27日,赛默飞以交易最终金额为42亿美元的聘礼迎娶了电镜制造商FEI公司,这笔交易应该会在2017年年初完成,完成后,FEI将成为赛默飞旗下分析仪器业务中的一员。赛默飞是生命科学领域的领导者,FEI的电子分析技术的加入将与赛默飞的质谱技术结合。相信赛默飞也将利用公司的全球规模和商业化运作进一步推广FEI的产品。 /p p   未来的透射电子显微镜领域,可以预见FEI将在生物领域大放异彩,只是不知道那时候它家的产品该姓什么?赛默飞还是FEI?毕竟都是嫁出去的人了嘛!*(^_^)/* /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 3 无所不能的HITACHI——日立 /span /strong /p p   接下来主要来谈一下三家主要的透射电镜供应商的最后一家——日立HITACHI。如果说JEOL和FEI算是比较专一型的企业的话,那么Hitachi就是比较博爱了。 /p p   HITACHI /p p   日立是日本的一家超级大国企,可以说它本身就是一个完整的工业体系,涉及的产业从核电站,铁路,军工,到家电,医疗,物流,通信,金融以及各种黑科技(^_?)☆,可以说是无所不做。他的总员工数约32万人,在日本是继丰田汽车之后的第二大的企业。 /p p    strong 日立的历史 /strong /p p   日立的前身是久原矿业日立矿山附属的机械修理厂,1910日立制作所正式成立。在1920年,改组成名为日立制作所株式会社。同样,在之后的第一次世界大战及二次世界大战,给日立提供了很好的发展机会,生产各种军舰,坦克,发了战争财。到1944年,日立已经发展起来了,拥有了11家工厂。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/fa3c45af7ced427d93e998728a129f11.jpeg" height=" 300" width=" 444" / /center p style=" text-align: center " strong 日立树—日立集团的统一品牌形象 /strong /p p    strong 你知道吗? /strong /p p   日立树位于夏威夷瓦胡岛,树龄120年,属于雨树,日立每年支付40万美元用于维持该树的摄影资格。日立树含义有几种说法,一般认为是日立有像大树一样广阔的事业群,不过,现在也有人解读为日立把非营利业务放置在巨大的树荫下藏起来。 /p p    strong 日立高新技术 /strong /p p   如上所说,日立的产业和产品十分丰富,子公司也非常多。而日立的电子显微镜部门属于日立高新技术公司。 /p p   2001 /p p   日立高新于2001 年由日立制作所旗下的测量仪器集团、半导体制造设备集团及贸易集团Nissei Sangyo公司合并而成,日立制作所持有日立高新52%的股份。虽说“日立高新”只有十几年的历史,但是其实体则于1947年就已经存在了。现在的日立高新主要提供电子显微镜、全自动生化分析仪、通用分析仪器、半导体元器件检测设备等尖端技术产品,从近两年的市场表现来看,可以说日立高新还是相当成功的。 /p p   2012 /p p   从FEI的发展历史可以看到,并购是一个扩充核心业务、增强企业竞争力的重要策略。然而对于日本企业来说,并购并不多见。但是2012年日立高新的一个并购项目相当成功,2012年5月日立高新收购精工电子旗下全资子公司精工电子纳米科技,成立了日立高新技术科学。精工电子以光、电子线、X射线、热分析为核心技术,特别是它的聚焦离子束技术有很好的历史和评价。同年,日立高新就推出了实时三维结构分析聚焦离子束扫描电镜(FIB-SEM)新品NX9000。 /p p    strong 你知道吗? /strong /p p   日立高新科学仪器营业本部本部长Okada Tsutomu曾说过,尽管日立高新的分析产品有很多,其他仪器的销售台数比电镜多很多,但是销售额却远赶不上电镜业务!可以看出,电镜业务的利润有多大,但是没办法,我们做不出来嘛!!! /p p   日立透射电子显微镜 /p p   目前,日立高新在扫描电镜技术方面积累颇丰,成果也十分显著,但相比较来说,日立在透射电镜尤其是高端透射电镜技术方面却稍逊一筹。 /p p   2015:球差校正透射电镜 /p p   日立推出了一款球差校正透射电镜HF5000,虽然比其他两家企业稍晚一点,但是,这也标志着日立在电镜方面的水平和实力。这台球差校正电镜采用了日立高新经过考验而被认可的冷场发射电子枪技术,达到了亚埃级的空间分辨率(0.1 nm或更低)。另外,它的镜筒和样品台经过了重新的设计。该产品的推出使得日立高新形成了120kV、200kV、300kV全系列的透射电镜产品。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/f71329b25fb3443482c4b6a5adba9477.jpeg" height=" 465" width=" 574" / /center p   环境透射电镜 /p p   另一台比较成熟的商用电镜是日立原位环境透射电镜,可以通过特制样品台施加外场刺激,同时进行实时观察。三款环境透射平台分别为H-9500ETEM、HF- 3300ETEM/STEM/SEM,以及HF-3300S Cs-corrected ETEM / STEM / SEM。在我国,浙江大学、西安交通大学、北京化工大学都安装了该系列电镜。 /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/cd78ef2556b24502beb2733bb5af5d2a.jpeg" height=" 359" width=" 505" / /center p   有人说:中国工业想要比过日本要先比过日立!确实,作为一个有完整工业体系的超级大公司,确实有很多值得学习的地方,中国工业还有很长的路要走。 /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 4 光学“大咖”——卡尔 蔡司 /span /strong /p p   世界上能生产透射电子显微镜的厂家并不多,除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。 /p p   蔡司公司是一家老牌光学仪器公司,蔡司的历史相比于其他几家公司的历史都来得悠久。公司名称起源于创始人,德国光学家卡尔· 蔡司(Carl Zaiss),上图为蔡司商标的演变。最后一个大家一定很熟悉,在各种镜头,金相显微镜,扫描电镜上面你会经常见到。 /p p    strong 蔡司的历史 /strong /p p   1846年,卡尔· 蔡司创立了一家精密机械及光学仪器车间,自此开始了蔡司的创奇时代。蔡司凭借其在光学领域的卓越品质,成功的经营了一个世纪,到二战以后,由于政治原因,德国被迫分裂,蔡司公司也被迫一分为二,之后,东德的产品冠名为Carl Zeiss Jena,西德产品冠名为Carl Zeiss,但东、西蔡在设计上都秉承了蔡司的优质传统。正所谓分久必合,到1990年,两个公司又重新重组成一个公司,总部设在奥伯考亨,东西合璧一直到今天,蔡司公司仍然是光学领域的执牛耳者。 /p p    strong 你知道吗? /strong /p p   蔡司公司还是一个非知名的军工企业。二战中德国的狙击枪,最先进的主站坦克 “豹”2A6,德国214型潜艇,性能超凡,他们都装备了蔡司公司的光学设备。因此,在战争年代,各国把光学工业列为战略工业,制造光学玻璃的原材料石英矿成为了战略物资,光学玻璃产业在军事领域的意义不亚于航天技术。 /p p    strong 蔡司——光学领域 /strong /p p   在光学领域,蔡司是毫无疑问的独孤求败。一百多年来,蔡司光学显微镜在各行各业都展现了其强大的魅力。十九世纪末,Robert Koch博士利用蔡司显微镜发现杆菌是导致结核病的原因。1911年,挪威探险家首次踏上南极大陆,他当时用的就是蔡司的望远镜。可以说在医学,生理学,物理学,化学,军事,天文学等多个领域,都不难找到蔡司显微镜的影子。 /p p   strong  蔡司——电子光学领域 /strong /p p   蔡司公司在电子光学领域却并不像它在光学领域如此出色。虽然蔡司公司有很悠久的历史,但是其在电子光学领域要晚于其他几家制造商,蔡司电子光学的前身为LEO(里奥),在透射电镜领域有60多年的经验。蔡司的光学技术是有口皆碑的,它的电子束技术也并不差。在1949年,就制成了世界上第一台静电式透射电镜,1992年制成了第一台带有成像滤波器的透射电镜,2003年制成了第一台具有Loehler照明的200KV场发射透射电镜及第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜。 /p p   目前,蔡司主要的一款透射电镜为LIBRA能量过滤式透射电子显微镜,(libra是天秤座的意思,不知道蔡司为什么以星座来命名他的产品,知道的可以留言给小编哦!)该电镜配备了独特的OMEGA二阶校正能量过滤器和Koehler库勒照明系统。该款电镜有两种配置:LIBRA 200 CS TEM以能量过滤型200KV LIBRA TEM为基础,做了物镜透镜的球差校正。通过使用校正器,可以采集分辨率0.7A的图像。 LIBRA 200 STEM具有为聚光镜配备的校正器,可以用于在扫描模式下对分辨率远远低于1A和极高分辨率下样品化学分析的成像,尤其是EELS。校正后聚光镜允许探针尺寸减小到1A,同时增大强度。此外,独特的单色仪把能量扩散减小到0.15eV。这对于材料科学的基础研究尤其有利(尤其是纳米颗粒的化学分析)。 /p p   蔡司的透射电镜普及率比另外几家较少,国外哈佛大学,德国马普研究所,国内的重庆大学等也装备了该系列蔡司透射电子显微镜。 /p p   透射电镜自发明之日起已经有八十多年的历史了,它的发明对人类的科技工作的贡献不容小觑,但是能成功的进行商业化生产的公司却不多,电镜生产之繁琐复杂可见一斑。除了上述四家公司之外,国内外还有许多企业在朝着这个方向努力,我们也期待电镜国产化的那一天。 /p
  • 低电压透射电镜LVEM 5助力“生物导弹”载体复合物纳米颗粒的相关研究
    癌症的治疗一直是医学科学家研究的前沿方向,靶向治疗作为一种定向杀灭癌/肿瘤细胞的治疗方法,俨然成为癌症治疗的研究热点。简单来说,靶向治疗就是在细胞分子水平上,针对已明确的致癌位点来设计相应的治疗药物,药物进入体内会特定选择致癌位点相结合,杀死特定的肿瘤细胞,但不会波及肿瘤周围的正常组织细胞,因此又被称为“生物导弹”。 在这种“生物导弹”研究中,生物可降解聚合物纳米粒子经常作为药物的载体应用于靶向治疗。纳米颗粒的一个优势是,他们利用肿瘤发生过程中,肿瘤区域的血管和淋巴具有增强的渗透和截留(EPR)特性,允许纳米的颗粒通过血管壁。进入肿瘤区后,通过溢出,这些粒子可以实现封装药物释放,并杀灭肿瘤细胞。安德烈斯贝罗大学(Santiago, 智利),Luis A.Velasquez教授在《Biomaterials》杂志上发表文章,结合物理化学特性和生物分析对可生物降解的聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒癌症细胞株的吸收、释放和细胞毒性进行了详细研究。分子模拟显示复合物纳米颗粒具有高水亲和力的界面和多孔纳米结构,具有48小时窗口期的毒性保护,228~264nm颗粒尺寸范围让它们具有适当的EPR被动靶向的效果,其-6~8.9 mV的负电性也适合生物环境允许的颗粒细胞的内吞作用,并完成癌症细胞内的药物释放,对IIIc浆液性卵巢癌细胞有很好的治疗效果。Time-dependence of the NP-Taxel size and surface-polymer structuresduring Taxel liberation processes observed using LVEM. 0 (A), 1 (B), 2 (C), 3(D), 4 (E) and 5 (F) days 该研究过程中,低电压透射电子显微镜LVEM 5起到了非常关键的作用。Velasquez教授应用的纳米颗粒为有机聚合物,组成为C,H,O,N等轻质原子的分子,这些分子对电子的散射能力较弱。常规透射电子显微镜的加速电压通常为80~300kV,有机分子在不通过重金属染色的情况下,电子束大部分透过了样品到达荧光屏,无法呈现高对比度的形貌图像。然而,重金属染色后的样品由于和重金属的络合作用造成有机分子的畸变,以至于观察到的形貌不是天然状态,影响研究结果的后续分析和结论的准确判断。Velasquez教授借助低电压显微镜LVEM 5对样品进行观察,由于加速电压小(约5kV),未经染色的样品可以得到高对比度清晰的TEM图像,实现生物有机分子纳米结构的天然状态下的检测。低电压显微镜LVEM 5呈现的图像有效帮助Velasquez教授完成聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒针对卵巢癌细胞治疗过程的机理及动力学问题的分析和研究。 相关产品:LVEM5 超小型透射电子显微镜: http://www.instrument.com.cn/netshow/SH100980/C157727.htmLVEM25小型低电压透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C234215.htm
  • 关于举办“透射电镜分析技术”培训通知
    近年来电子显微领域的技术发展突飞猛进,硬件和软件的新技术和新功能不断的推出。透射电镜越来越受到科研人员的重视,用途日益广泛。现在透射电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、化学化工、生命科学、转化医学、半导体材料与器件、地质勘探、工业生产中的产品质量鉴定及生产工艺控制等。为适应广大分析技术工作者的需求,进一步提高透射电镜用户的应用和研究水平,推动显微分析应用的进一步发展,上海交通大学分析测试中心特举办“ATP 004透射电镜分析技术”培训班,NTC授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。 现将有关事项通知如下:一、 培训目标:了解透射电镜的基本结构与原理;了解透射电镜检测/校准项目及相关要求;掌握国家标准中透射电镜的检测方法。(一)通过学习理论知识,观摩实际操作,排查仪器故障,调谐最佳机器运转状态。(二)面对应急问题,学员可理论联系实际,查找故障原因,进行仪器自检及修复。二、 时间地点:培训时间:2023年10月16日-10月18日 上海(时间安排:授课2天,考核1天)三、 课程大纲:时间内容10月16日上午透射电镜的发展、成像原理、基本结构10月16日下午透射电镜的样品制备、像衬度、基本操作及维护10月17日全天透射电镜实操培训及答疑10月18日全天考核四、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉NTC/ATP 004 透射电镜分析技术大纲要求,具有NTC教师资格,长期从事透射电镜技术研究的专家。五、 授课方式:(一) 讲座课程;(二) 仪器操作;六、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,费用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。七、 颁发证书: 本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培训委员会(NTC)网站上查询(https://www.cstmedu.com/)。八、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。(二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。(三) 报名截止时间是10月10日16:00前。(四) 如报名人数不足6人取消本次培训。 九、 联系方式联系人:吴霞(报名相关事宜)、郭新秋(技术咨询)电话:021-34208496-6102(吴霞)、021-34208496-6205(郭新秋)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • 原位液体环境透射电镜技术初相遇
    p   撰文:王文 /p p   在透射电子显微镜中,搭建nano-lab,原位观察纳米材料在外场,如力、热、光、电、磁等作用下的行为,对于纳米材料研究者已经并不陌生。目前,原位电镜研究进行地如火如荼,并取得了很多令人瞩目的成果。今天,就为大家简单介绍一下原位透射电镜技术中的一种——液体环境透射电镜(Liquid cell TEM)。 /p p    strong 一、为什么要研究液体环境透射电镜技术? /strong /p p   绝大多数的液体,包括水和其他有机溶剂,有着较大的饱和蒸气压,无法在透射电镜的高真空环境中存在,因此在研究液体环境中纳米材料的行为时,需要构建液体存放单元,将液体与电镜中高真空环境隔离开来,这就需要利用Liquid cell TEM。Liquid cell TEM实际上就是通过微纳加工,制作液体存放单元(Liquid cell),然后将它固定在普通样品杆或者专用液体样品杆头部,放入电镜进行观察。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ad89408b-a05e-4162-a393-3ace84a9b2e2.jpg" title=" 1.jpg" / /p p style=" text-align: center "   strong  图 1. Liquid Cell 结构示意图 /strong /p p    strong 二、原位液体透射电镜技术发展史 /strong /p p   In-situ Liquid cell TEM的雏形可以追溯到1934年,比利时布鲁塞尔自由大学的Morton,利用两片铝箔包裹样品的方法首次尝试活体生物样品的透射电子显微学研究,但是由于铝片及液体层较厚,其分辨率仅能达到微米量级。 /p p   近年来得益于微纳加工技术以及微流控技术的进步,Liquid cell的制备得到突破性进展。2003年F. M. Ross设计制作的原位电化学Liquid cell芯片,是近代Liquid cell制备的里程碑。其结构如图2所示,底层硅片沉积一层多晶金电极,与顶层硅片之间通过SiO2环垫片胶合形成电化学反应器,顶层硅片有两个容器,分别引出两个电极用来施加电偏压。使用时将液体注入,通过毛细作用流入观察窗口,然后将Liquid cell密封,放入电镜中观察。由于成像电子束需要透过100nm氮化硅薄膜窗口,以及接近1μm液体层空间分辨率仅为5nm。这种在两层硅片之间形成液体腔室,采用氮化硅薄膜做观测窗口的芯片,是后续很多改进Liquid cell的发展原型。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/472b1387-271a-44da-a837-6d00c56951ea.jpg" title=" 2.jpg" / /p p    strong 图2 (A). Liquid cell示意图,(B)二电极Liquid cell光学照片(Rosset al., Nat. Mater., 2003, 532)。 /strong /p p   目前Liquid cell制作方式主要有两种,一类是closed cell,另一类是包含液体流通管道的flow cell(见图3)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/f501f1c1-4897-4d45-a12b-57c2381ca6f6.jpg" title=" 3.jpg" / /p p    strong 图 3. A.closed cell 三维结构示意图,B. 沿A图中横线横断面结构图(Zhenget al., Science, 2009, 1309)C. flow cell结构示意图(de JongeN et al., PNAS, 2009, 106). /strong /p p   2009年郑海梅报道了一种超薄氮化硅窗口Liquid cell如图3A& amp B,其氮化硅薄膜厚度仅为25nm,上下层芯片之间用超薄铟垫片键合形成Liquid cell室,观测窗口内液体层厚度约为200nm。在此基础上,2014年Liao等人对超薄氮化硅窗口Liquid cell技术进行改进,将氮化硅薄薄膜度进一步减小为13nm,液体层厚度约为100nm,有效地将空间分辨率提高到原子级。 /p p   2009年Neils de Jonge等人设计了开放Liquid cell,如图3C,在无需冷冻和干燥的条件下,原位观察完整细胞中的单个分子。其液层厚度约为7μm,空间分辨率可以达到4 nm。 /p p   除了采用氮化硅薄膜作为观测窗口,2012年Jong Min Yuk首次提出利用石墨烯薄膜制备Liquid cell,并原位研究了钯纳米晶体的生长过程,如图4。利用石墨烯作为观察窗口材料,可以有效较少甚至忽略电子散射进而实现原子级分辨率。随后,利用石墨烯作为电子束透射窗口,衍生出了多种复杂的石墨烯Liquid cell结构。特别的,2014年JongMin Yuk利用Liquid cell观察了硅纳米颗粒表面各向异性锂化过程,使得利用石墨烯Liquid cell进行电化学研究成为可能。但由于石墨烯薄膜很薄,很难放置常规的电化学电极,石墨烯Liquid cell用来研究电化学过程仍然受到很大的限制。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/d7943de3-4150-46a7-b462-f5f785b7233b.jpg" title=" 4.jpg" / /p p style=" text-align: center "    strong 图 4 石墨烯 Liquid cell 示意图(Li et al.,Science 2010,330). /strong /p p   Liquid cell TEM不仅可以用来原位观察液体环境中纳米材料的行为,还可以在Liquid cell芯片和液体杆上集成加热、冷冻元件,用于纳米材料功能性测试,极大地拓宽了透射电镜的研究范围。如Haimei Zheng 课题组Kai-Yang Niu等利用可加热Liquid cell,原位研究了柯肯达尔作用下,氧化铋空心纳米颗粒的形成过程。K.Tai利用冷冻平台,研究了结晶期间冰中的相变,以及结晶前表面与金颗粒的动态相互作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a142ae6e-5b9c-46c5-805d-1c81aab4e20f.jpg" title=" 5.jpg" / /p p    strong 图5. A.Hollownanoparticle growth dynamics via Kirkendall effect (Paul Alivisatoset al., Nano Lett,2013,13). B.The dynamic interactions of Aunanoparticles at the ice crystallization front (Dillon et al.,Microsc. Microanal, 2014, 330) /strong /p p   综上,目前Liquid cell芯片多是基于硅基衬底加工,窗口材料一般采用超薄氮化硅薄膜,Haimei Zheng课题组可以将氮化硅薄膜做到13nm左右,其他课题组以及商业化Liquid cell窗口材料一般做到30nm左右,窗口大小50*50μm。分辨率可以达到原子级,接近电镜固有分辨率。并且可以集成加热和冷冻功能,但对liquid cell稳定性要求较高,并不容易实现。 /p p   strong  三、原位液体透射电镜技术的应用 /strong /p p   利用In-situ Liquid cell TEM可以观察纳米颗粒成核和生长的过程,用实验证明一直存在争议的问题,例如纳米颗粒液相生长过程中主导机制是单体附加,还是颗粒融合。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/deb70f24-dd19-4eba-8290-004651bb1c0e.jpg" title=" 6.jpg" / /p p   strong  图 6. Video images showing simple growth by means of monomer addition (left column) or growth by means of coalescence (right column). (Zheng et al., Science, 2009, 1309) /strong /p p   可以研究异质纳米晶体生长过程 /p p style=" text-align: center" img style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201803/insimg/d3a4a6f9-e362-45d2-9efc-3eb88e58cc1c.jpg" title=" 7.jpg" height=" 246" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图7. Comparison of Pdgrowth on 5 and 15 nm Au seeds. (a, d)Starting dark-field STEM images of a 5 nm(a) and a 15 nm (c) Au nanoparticles in 10 μM aqueous PdCl2 solution (samescale). (b,e) The same two particles after Pd deposition (84 s total beamexposure). (c, f) Schematic illustration of the Pd growth morphology for thetwo sizes of Au seed nanoparticles (E. A. Sutter et al., Nano Lett, 2013, 13) . /strong /p p   可以研究纳米颗粒自组装过程 /p p style=" text-align: center" img style=" width: 450px height: 409px " src=" http://img1.17img.cn/17img/images/201803/insimg/a1977cd7-4f4d-412b-a23d-ae50c19761d1.jpg" title=" 8.jpg" height=" 409" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图8.TEM images of NPassembly formed under electron beam irradiation (a,b) and drop casting (c,d) onSiNx TEM grid. The scale bar is 100 nm (Jungwon Park et al., ACS NANO, 2012, 6) . /strong /p p   可以研究锂离子电池锂化过程。Huang 等人在开放 Liquid cell 中原位研究锂离子电池锂化过程中,氧化锌纳米线的膨胀、伸长和螺旋行为。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/965878a3-55a6-46c9-b846-05e5d30fc04a.jpg" title=" 9.jpg" / /p p    strong 图 9. Schematic of the experimental setup(Li et al.,Science 2010,330). /strong /p p   还可以用来观察一些生物样品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a94ef351-8826-4e37-be8b-e3ff343c362c.jpg" title=" 10.jpg" / /p p    strong 图 10. Image of the edge of a fixed COS7 cell after 5-min incubation with EGF-Au(de Jonge N et al., PNAS, 2009, 106). /strong /p p   当然Liquid cell TEM的研究内容不仅局限于这些,感兴趣的可以阅读Hong gang Liao 2016年发表在Annu. Rev. Phys.Chem.的一篇综述文章Liquid Cell Transmission Electron Microscopy。 /p p   看到这里,估计有人会问,在研究过程怎么排除电子束对反应过程的影响呢?电子束的确是让人又爱又恨的存在,既需要利用它来成像,又不希望它与研究材料发生相互作用影响实验结果。不过,别担心,Liquid cell TEM领域大牛Ross已经为你提供了量化电子束影响的理论依据!说到这里,小编不禁要感叹,Ross是一位学术造诣很深又乐于分享的大牛。某次会议有幸向Ross当面请教,她非常nice地鼓励了我蹩脚的英语和并不成熟的想法,并且很耐心地给我讲解,我们刚入门的科研人需要这样优秀的偶像。 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ef62778c-b47c-42b7-af9f-ca7df8f18d17.jpg" title=" 00.jpg" / /p p   strong  四、国内研究现状 /strong /p p   08年以来国内的透射电镜发展十分迅速,目前国内应该有超过60台带有球差校正的透射电镜,而且这一数字还在迅速增加。其中做Liquid cell TEM相关研究的课题组也有不少,并取得了不少重量级研究成果,鼓掌~~~~目前国内从事Liquid cell TEM研究的课题组主要有:浙江大学张泽院士、厦门大学廖洪刚教授、北京工业大学隋曼龄教授、上海交通大学邬剑波研究员、华东理工大学陈新教授,等。当然,还有弱弱的小编~(如有遗漏,恕小编才疏学浅)。 /p p   那么最后一个问题来了,想做in-situ Liquid cell TEM研究去哪里找芯片呢?目前Liquid cell芯片和液体样品杆已经部分商业化,如Hummingbird 和Protochip等,但其售价比较昂贵,适合土豪课题组。很多课题组仍然在使用自制液体芯片,或与其他国内微纳加工公司合作。 /p p   小编只是抛砖引玉,为大家做一下简单介绍一下,如有兴趣,可以先参阅Frances M. Ross, Honggang Liao, Xin Chen三位的综述文章。没错,其中有两位是中国人,而且目前在国内任职,小编是如此骄傲~~~ /p
  • 日本电子推出分辨率达63pm的透射电镜JEM-ARM300F
    日前,JEOL宣布推出新型原子分辨率电镜JEM-ARM300F。   透射电镜一直以来是材料研发当中进行微观结构分析的重要工具。然而,随着纳米级或原子水平的先进材料的研发,针对这类材料的合成研究越来越需要高分辨率的成像和分析技术。   为了满足这种需求,日本电子一直聚焦于推出带有球差校正器的透射电镜技术来超越目前的分辨率极限。在2009年,日本电子推出了JEM-ARM200F,200kV的透射电镜,采用了球差校正技术,分辨率达到了80pm(STEM成像),这是首台达到如此高的分辨率的商品化电镜。为达到原子分辨率水平,JEM-ARM200F整合各种功能来确保高度稳定的性能。目前,已有超过100台ARM200F安装在世界各地,许多研究人员对于电镜原子水平的成像和分析非常熟悉。   同时,随着像差校正的广泛应用,用户对于透射电镜又涌现出各种各样新的需求,除了高分辨率,还有高分析灵敏度、原位分析、灵活的加速电压控制,和像差校正的易操作性。   因而,JEOL研发了JEM-ARM300F,可以说是JEM-ARM200F的升级版,300kV的原子分辨率透射电镜,采用日本电子自己的像差校正技术。JEM-ARM300F的又被称作&ldquo GRAND ARM&rdquo ,分辨率可达63pm(STEM分辨率)。GRAND ARM可以根据用户的需求用于超高分辨率成像,或高灵敏度的分析应用,以及原位分析。   该仪器主要的目标用户是研究机构或半导体制造商。(编译:秦丽娟)
  • 【视频分享】听专家们讲透射电镜技术与应用
    p style=" text-align: justify text-indent: 2em " 为了满足仪器信息网用户对透射电镜技术的知识需求,解决学习及工作中的问题,本文特整理了仪器信息网的络讲堂栏目中透射电镜技术相关会议报告,专家们讲解精准专业,欢迎感兴趣的用户保存下载观看学习。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 400px height: 150px " src=" https://img1.17img.cn/17img/images/202002/uepic/e342cb75-6565-489e-9754-020ade60ea3d.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 400" height=" 150" border=" 0" vspace=" 0" / /p table border=" 1" cellspacing=" 0" style=" border: none" tbody tr class=" firstRow" td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 宋体 font-size: 14px" 报告题目 /span /strong strong /strong /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 宋体 font-size: 14px" 报告专家 /span /strong strong /strong /p /td /tr tr td width=" 326" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 微纳尺度的高温和环境力学原位 span style=" font-family:Calibri" TEM /span span style=" font-family:宋体" 测试 /span /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 解德刚 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 西安交通大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 透射电子显微镜技术在纳米材料表征中的典型应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 毛晶 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 天津大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 聚焦离子束技术在纳米材料表征中的应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 彭开武 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 国家纳米科学中心 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 半导体纳米材料原子尺度结构性能关系的透射电子显微学研究 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 李露颖 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 华中科技大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 纳米材料的原子尺度表征及其动态结构演变 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 王建波 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 武汉大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 原位透射电镜研究进展:从纳米操纵到量子调控 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 白雪冬 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 中科院物理研究所 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 原位器件电子显微学 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" & nbsp & nbsp span style=" font-family:宋体" 孙立涛 /span /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 东南大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 原位透射电镜在能源存储材料中的应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 谷猛 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 南方科技大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 扫描透射电镜技术在热电材料研究中的应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 王玉梅 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 中科院物理所 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr style=" height:42px" td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 镍基单晶高温合金形变机制的电子显微学研究 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 杜奎 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 中国科学院金属研究所 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 结合透射电子显微镜与第一性原理计算探索二维材料的缺陷动态演变行为 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 林君浩 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 南方科技大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 先进电子显微学技术在电池材料研究中的应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 闫鹏飞 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 北京工业大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 铝合金中析出相结构演变与溶质原子界面偏聚原子尺度研究 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 贾志宏 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 重庆大学 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 透射电镜制样技术在病毒形态鉴定中的应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 宋敬东 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 中国疾病预防控制中心病毒病预防控制所 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr tr td width=" 335" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 植物材料的透射电镜制样方法的优化和高压冷冻技术开发及应用 /span /p /td td width=" 252" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" 张辉 /span span style=" font-family:宋体 font-size:14px" ( /span span style=" font-family:宋体 font-size:14px" 中国科学院植物研究所 /span span style=" font-family:宋体 font-size:14px" ) /span /p /td /tr /tbody /table p style=" text-align: center " strong 西安交通大学材料学院副教授解德刚 /strong /p p style=" text-align: center " strong 报告题目《微纳尺度的高温和环境力学原位TEM测试》 /strong strong /strong /p p 过去几十年间,原位透射电镜技术和定量纳米力学的结合能将材料晶格缺陷的实时演化与变形应力应变曲线直接一一对应,为人类打开了认识传统材料变形机制以及微纳尺度材料新行为的大门。以前的研究多在真空和常温下进行,然而随着技术的进步,纳米力学研究已经可以在一些气氛环境以及高温条件下进行。解德刚副教授在报告中介绍了最新的技术进展,以及解德刚副教授研究单位由此技术取得的最新研究成果。 a href=" https://www.instrument.com.cn/webinar/video_109333.html" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong (报告视频链接) /strong /span /a /p p style=" text-align: center " strong 天津大学材料学院测试中心副主任毛晶 /strong /p p style=" text-align: center " strong 报告题目《透射电子显微镜技术在纳米材料表征中的典型应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 透射电子显微镜的成像及电子衍射功能可以把纳米材料的微观形貌与结构信息联系起来;增加附件后还可以进行微区成分、价态 (能谱仪EDS、特征能量损失谱EELS)和扫描透射成像分析(STEM)等。毛晶老师在报告中介绍了透射电子显微镜在纳米材料研究中的几个典型应用:从简单的形貌成分表征到未知析出相结构分析、纳米级界面上的元素价态分析及材料表面原子结构分析等。 a href=" https://www.instrument.com.cn/webinar/video_109338.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " strong 国家纳米科学中心高级工程师彭开武 /strong /p p style=" text-align: center " strong 报告题目《聚焦离子束技术在纳米材料表征中的应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 聚焦离子束(Focused Ion Beam,FIB)是将离子源产生的离子束加速,聚焦后作用于样品表面的技术,可应用于纳米材料的力学、电学、热学、光学元素、结构、晶向等信息,也可用于三维原子探针、扫描探针显微镜的探针制备和修饰。彭开武老师在报告中对聚焦离子束技术以及其应用做了详细的介绍。 a href=" https://www.instrument.com.cn/webinar/video_109340.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " strong 华中科技大学武汉光电国家研究中心副教授李露颖 /strong /p p style=" text-align: center " strong 报告题目《半导体纳米材料原子尺度结构性能关系的透射电子显微学研究》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 李露颖老师在报告中介绍了在半导体和器件电子显微学领域的相关工作。利用电子全息技术第一次获取了纳米尺度单个Ge量子点及单根Ge/Si核壳结构纳米线电荷分布情况的直接实验证据,结合利用电子全息及相关表征技术,从实验角度获得ZnSe纳米线多型体同质异构结对电荷进行裁剪的信息及InAs纳米棒中多型体原子尺度的自发极化强度及其受界面应力影响,为相关光电器件物理性质的调控提供了坚实的结构基础。 a href=" https://www.instrument.com.cn/webinar/video_105627.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong (报告视频链接) /strong /span /a /p p style=" text-align: center " strong 武汉大学物理科学与技术学院教授 strong style=" text-align: center white-space: normal " 王建波 /strong /strong /p p style=" text-align: center " strong 报告题目《纳米材料的原子尺度表征及其动态结构演变》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 王建波老师主要介绍了用电子束对材料在应力场、温度场或电场作用下的动态结构演变进行实时表征和调控:(1)应力场作用下Au纳米线塑性和赝弹性形变,CuO纳米线滞弹性行为;(2)Fe/Fe3O4氧化还原反应以及ZnO纳米线的生长;(3)电场作用下CuO电极材料的Na离子嵌入与脱嵌;(4)电子束辐照对材料结构进行原子尺度调控。 span style=" color: rgb(0, 112, 192) " strong a href=" https://www.instrument.com.cn/webinar/video_105556.html" target=" _self" (报告视频链接) /a /strong /span /p p style=" text-align: center " strong 中科院物理研究所研究员白雪冬 /strong /p p style=" text-align: center " strong 报告题目《原位透射电镜研究进展:从纳米操纵到量子调控》 /strong /p p style=" text-align: justify text-indent: 2em " 原位透射电镜实验方法是研究材料性质-结构关系及其调控与动态变化过程的先进手段。多年来我们通过开发原位透射电镜技术,开展从纳米操纵到量子调控的研究工作,在原子尺度观测和理解低维结构与性质。白雪冬老师在报告中介绍了利用自主研制的原位透射电镜中的扫描探针装置,在纳米操纵和纳米尺度下光电力耦合与物性调控研究的结果、以及复杂氧化物氧空位序和铁电畴调控研究的最新进展。 a href=" https://www.instrument.com.cn/webinar/video_105554.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " & nbsp strong & nbsp 东南大学教授孙立涛 /strong /p p style=" text-align: center " strong 报告题目《原位器件电子显微学》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 随着电子信息产业的快速发展,核心元器件的特征加工尺寸已走向亚10nm。在10纳米以下,材料的表面效应对其性能的影响将显著增强。在这种情况下,材料还能否像块体材料那样稳定?如此小尺度下如何精准表征和检测这种材料的稳定性和可能的新物性?新型纳米材料是否可派上用场?孙立涛老师在报告中讲了以亚10nm材料为研究对象,借助自主搭建的可实现原子分辨的原位-多场加载研究系统,探索亚10nm材料的表面效应的精准表征、调控与可能的器件应用,阐明全面开展10纳米以下材料应用基础研究方面的重要性及对下一代纳电子器件研究的重要意义和深远影响等。 a href=" https://www.instrument.com.cn/webinar/video_105553.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " strong 南方科技大学材料科学与工程系副教授谷猛 /strong /p p style=" text-align: center " strong 报告题目《原位透射电镜在能源存储材料中的应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 谷猛老师在报告中集中介绍了原位透射电镜在传统电池和固态电池中发挥的作用。应用三维EDS技术可以清楚的标定镍元素在材料中表面和界面的集聚,通过结合DFT计算,可以知道这个材料的失效机理,相转变过程。最后,通过对合成条件的反馈和修改,可以合成出没有镍元素集聚的正极材料,从而从根本上解决材料的电压衰减和电量衰减。 a href=" https://www.instrument.com.cn/webinar/video_105552.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " strong 中科院物理所副研究员王玉梅 /strong /p p style=" text-align: center " strong 报告题目《扫描透射电镜技术在热电材料研究中的应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 扫描透射电子显微术为目前最为流行和广泛使用的一种材料评价手段。在热电材料中,缺陷至关重要。不同类型的缺陷可以作为声子散射中心散射不同频段的声子,有效降低晶格热导率。王玉梅老师在报告中主要介绍利用扫描透射电子显微术在原子尺度研究Zintl相化合物Ca9-yEuyZn4.7Sb9不同掺杂条件下的结构演变以及缺陷种类及结构变化,从而调控材料电、热输运性质,优化热电性能。 a href=" https://www.instrument.com.cn/webinar/video_105558.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong (报告视频链接) /strong /span /a /p p style=" text-align: center " strong 中国科学院金属研究所研究员杜奎 /strong /p p style=" text-align: center " strong 报告题目《镍基单晶高温合金形变机制的电子显微学研究》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 镍基单晶高温合金具有优异的高温力学性能,主要用于发动机的涡轮叶片。随着涡轮发动机工作温度越来越高,对高温合金的高温力学性能提出了更高的要求。本讲座主要通过透射电子显微技术、像差校正下的扫描透射电子显微技术研究了镍基单晶高温合金的低温高应力和超高温低应力下的蠕变机制。 a href=" https://www.instrument.com.cn/webinar/video_105574.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " strong 南方科技大学副教授林君浩 /strong /p p style=" text-align: center " strong 报告题目《结合透射电子显微镜与第一性原理计算探索二维材料的缺陷动态演变行为》& nbsp & nbsp & nbsp /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。利用球差纠正透射扫描电子显微镜(STEM)中的汇聚电子束,能激发二维材料中的缺陷产生动态演变,同时在原子尺度下观察它们重构的动态过程。这种方法使我们能够实时地追踪二维材料中缺陷原子在高能电子束影响下的结构变化。林君浩老师在报告中介绍了利用上述方法在二维材料里取得的最新成果,包括二维非晶碳材料的开发与表征,二硒化钼(MoSe2)中硒空穴引起的反转晶畴的演变过程,二硒化钯(PdSe2)中层间融合的机理,以及在单层过渡金属硫族素化合物中精确雕刻只有三个原子宽度的金属纳米线的原位过程等。 a href=" https://www.instrument.com.cn/webinar/video_105572.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong (报告视频链接) /strong /span /a & nbsp span style=" font-family: 微软雅黑 color: rgb(102, 102, 102) letter-spacing: 0 font-size: 14px" & nbsp & nbsp /span /p p style=" text-align: center " strong 北京工业大学教授闫鹏飞& nbsp /strong /p p style=" text-align: center " strong 报告题目《先进电子显微学技术在电池材料研究中的应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 闫鹏飞老师在报告中介绍了多种先进的电子显微学技术在揭示层状正极材料的衰退机制发挥的重要作用;着重介绍利用透射电镜技术,从微米尺度到原子尺度来表征材料的结构和成分演变规律和驱动力;还介绍了高分辨成像技术、原子级元素成像技术、原位电镜技术和三维重构技术等在表征材料构效关系上的应用。& nbsp a href=" https://www.instrument.com.cn/webinar/video_105579.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong span style=" font-family: 微软雅黑 color: rgb(102, 102, 102) letter-spacing: 0 font-size: 14px" & nbsp /span /a /p p style=" text-align: center " strong 重庆大学教授贾志宏 /strong /p p style=" text-align: center " strong 报告题目《铝合金中析出相结构演变与溶质原子界面偏聚原子尺度研究》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 贾志宏老师在报告中介绍了利用原子分辨率的高角环形暗场扫描透射电镜(HAADF-STEM)和三维原子探针(3DAP)等显微技术表征微合金元素(Cu,Ag)对Al-Mg-Si合金中析出相演变和界面偏聚影响的研究工作。报告将展示两种微合金元素原子如何在结构和成分上参与/影响各阶段析出相形成与演变,以及在界面偏聚特征。 a href=" https://www.instrument.com.cn/webinar/video_105576.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a span style=" font-family: 微软雅黑 color: rgb(102, 102, 102) letter-spacing: 0 font-size: 14px" & nbsp & nbsp /span /p p style=" text-align: center " strong 中国疾病预防控制中心病毒病预防控制所副研究员宋敬东 /strong /p p style=" text-align: center " strong 报告题目《透射电镜制样技术在病毒形态鉴定中的应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 透射电子显微镜分辨率高,能够观察光镜无法观察到的病毒及细胞的超微结构。在病毒检测方面的优势在于:快速、简单、准确、具有同时检测多种病原的潜力。不依赖于已知的核酸序列、抗原或抗体信息。宋敬东老师在报告中对病毒的电镜检测技术做了概述。 a href=" https://www.instrument.com.cn/webinar/video_105581.html" target=" _self" strong span style=" color: rgb(0, 112, 192) " (报告视频链接) /span /strong /a /p p style=" text-align: center " strong 中国科学院植物研究所研究员张辉 /strong /p p style=" text-align: center " strong 报告视频链接《植物材料的透射电镜制样方法的优化和高压冷冻技术开发及应用》 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " strong /strong 张辉研究员作为高级技术支撑人才在植物分子生理重点实验室工作,专注于作物和资源植物的显微成像和色质联用(植化分析)大型仪器硬件和实验方法应用方法开发。在报告中介绍了如何根据对植物材料的透射电镜制样和运用高压冷冻技术制样进行了较全面的试验条件比较,找出较适合植物材料的样品制备条件。 strong span style=" color: rgb(0, 112, 192) " a href=" https://www.instrument.com.cn/webinar/video_105586.html" target=" _self" (报告视频链接) /a /span /strong /p p style=" text-align: justify text-indent: 2em " strong 拓展学习: a href=" https://www.instrument.com.cn/news/20200211/521704.shtml" target=" _self" span style=" color: rgb(0, 112, 192) " 【视频分享】听专家们讲扫描电镜技术与应用 /span /a /strong /p
  • 赛默飞透射电镜助力超导理论研究
    2023年2月22日,清华大学朱静院士团队联合复旦大学车仁超教授和北京大学李源副教授在《自然》杂志上发表了题为” Topological spin texture in the pseudogap phase of a high-Tc superconductor” [1] 的文章。该研究工作采用赛默飞透射电子显微镜(TEM)首次在赝能隙态YBa2Cu3O6.5材料中发现了拓扑磁涡旋结构的存在。该拓扑磁涡旋结构的发现在实空间微观尺度上给赝能隙态下的时间反演对称性破缺提供了的直接图像证据,并且发现该拓扑磁涡旋结构在电荷密度波态时被破坏,进入到超导态时又重新出现,这一发现对揭示高温超导的微观机理具有重大的意义,而先进的透射电子显微镜在这一发现上更是功不可没。朱静院士,车仁超教授等人深耕于超导材料研究领域,洛伦兹低温原位透射电镜研究领域,电子显微学研究领域多年,取得了一系列重要研究成果。在本研究中,研究团队利用复旦大学电子显微镜实验室新安装的Spectra 300透射电子显微镜开展低温洛伦兹样品测试,获得了此次重大发现。2021年,赛默飞上海纳米港(Shanghai NanoPort, Thermo Fisher Scientific)有幸参与其中部分实验工作,在创建冷冻实验环境和原位数据采集方面积极地配合支持。本文将主要介绍两种电子显微学技术——洛伦兹透射电镜(LTEM)和积分差分相位衬度(iDPC)在该工作中起到的关键作用。洛伦兹透射电镜(LTEM)正常TEM光路下,物镜处于开启状态,样品在物镜上下极靴中间处于~2T的强磁场中,样品本征的磁结构会被物镜的强磁场破坏。为了在无磁环境下观察样品本征的磁结构,赛默飞场发射透射电镜Talos和球差校正透射电镜Spectra都可以通过关闭物镜电流使样品处于零磁场环境,再由位于物镜下极靴内部的洛伦兹磁透镜实现对样品微观本征磁结构的观察。LTEM成像模式主要有两种:Fresnel成像模式和Foucault成像模式。Fresnel成像模式是通过改变图像的离焦量实现对磁畴或畴壁的观察。其图像主要特点是欠焦和过焦条件下磁畴畴壁的衬度是相反的,而正焦图像则没有磁衬度。Foucault成像是通过遮挡或者保留后焦面上与磁畴相关的衍射信号来实现(类似于暗场像), 适用于观测不同磁化取向的磁畴。图1a-c分别为该文章中赝能隙态YBa2Cu3O6.5样品的正焦、过焦以及欠焦下的Fresnel图像,离焦量为±1.08 mm。其反转的衬度特点,切实证明了该样品中存在拓扑学特征的畴结构。此外,赛默飞透射电镜上的洛伦兹功能不仅可以实现无磁环境,还可以很方便地通过改变物镜电流来改变磁场,用于原位研究磁结构随磁场强度的变化。在本研究中,作者通过改变物镜电流对样品施加外磁场影响,拓扑学特征消失,进一步证明了该效应是由磁学特性引起的。作者通过使用强度传递方程(Transport of Intensity Equation, TIE)的相位重构技术[2],对LTEM图像进行数据处理得到拓扑磁涡旋结构的磁场方向和相对强度分布(图1d-e, i-l)。图1m-n是由LTEM结果推测出来的两种可能的磁涡旋结构示意图。该文章中LTEM实验分别在赛默飞Spectra300,Themis和Titan机台进行了重复验证,均观察到拓扑磁涡旋结构。图1 (a-c)LTEM Fresnel模式下赝能隙态YBa2Cu3O6.5样品的正焦、过焦、欠焦图像(离焦量为±1.08 mm),样品处于300 K,零磁场环境,标尺为500 nm;(d-e)为通过TIE算法得到的磁场和磁场强度图像;(f-j)为红色方框对应的剪裁放大图像;(k-l)为单个磁涡旋结构的磁场和磁场强度图;(m-n)为两种可能的拓扑磁涡旋结构示意图[1]除了常规的LTEM成像外,赛默飞球差校正透射电镜Spectra系列可以通过物镜球差校正器对LTEM光轴进行像差校正。像差校正洛伦兹模式下可以得到优于1nm的信息分辨率,从而帮助科研工作者观察到更小的磁结构。积分差分相位衬度(iDPC)球差校正透射电镜的超高空间分辨率提供了关于拓扑自旋结构的出现与局域晶体结构之间关系的更多信息。铜基超导材料中氧原子的掺杂或缺失对材料性能具有重要的影响,直接观察到氧原子的占位对深入揭示材料微观结构与性能之间的关系具有重大的意义。然而,广泛使用的扫描透射电镜(STEM)的高角环形暗场(HAADF)图像,因其主要接收高角卢瑟福散射信号,导致轻重元素无法同时成像,C、N、O等轻原子无法观察到。STEM环形明场(ABF)像虽然能观察到轻元素,但ABF图像无法直接解读,而且存在对样品厚度要求高、图像信噪比不佳等问题。为了解决以上问题,赛默飞提出并发展了积分差分相位衬度(iDPC)技术。iDPC这一全新STEM成像模式的出现,大大提高了透射电子显微镜捕获原子的能力。iDPC技术具有能实现轻重原子同时成像,能实现低电子剂量,高分辨和高信噪比成像,图像衬度易解读等优点[3]。目前,iDPC技术已成为材料表征领域技术热点,在表征轻元素占位、二维材料、电子束敏感材料、超导体等领域具有重要的应用。iDPC成像技术现已完全集成在赛默飞球差校正电镜Spectra和场发射电镜Talos上,能实现iDPC图像的在线采集和显示。图2 (a) YBa2Cu3O6.0, (b) YBa2Cu3O6.5和(c) YBa2Cu3O6.9的原子分辨率iDPC图像[1]图2为YBa2Cu3O6.0、YBa2Cu3O6.5和YBa2Cu3O6.9的高分辨iDPC图像,可以清楚的观察到氧原子的位置,随着氧掺杂含量的不同,Cu-O链上的氧占位逐渐增加。值得注意的是赝能隙态YBa2Cu3O6.5的Cu-O链上出现了氧富集和氧缺失的有序排列。作者认为这种氧的有序排列有利于拓扑磁涡旋结构沿c轴自由排列,是观察磁涡旋结构的最佳区域。作者认为现阶段不能完全排除氧填充链激发磁性的可能。赛默飞将致力于相关电子显微学技术的研发与应用,为材料的电、磁学性能研究提供更强大的助力。作者:刘建参考文献[1] Zechao Wang, Ke Pei, Liting Yang, Chendi Yang, Guanyu Chen, Xuebing Zhao, Chao Wang, Zhengwang Liu, Yuan Li, Renchao Che & Jing Zhu. Topological spin texture in the pseudogap phase of a high-Tc superconductor. Nature (2023). https://doi.org/10.1038/s41586-023-05731-3[2] M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu. On the transport of intensity technique for phase retrieval. Ultramicroscopy 102 (2004) 37–49.[3] Ivan Lazi&cacute , Eric G.T. Bosch and Sorin Lazar. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265-280 (2016).
  • 天美生物透射电镜学术交流会成功举办
    “生物透射电镜的应用与研究”学术交流会议在京成功举办   北京纳米科学大型仪器区域中心“生物透射电镜的应用与研究”学术交流会议于2012年11月23日在国家纳米科学中心召开。   本次会议由北京纳米科学大型仪器区域中心联合天美(中国)科学仪器有限公司共同举办。会议旨在促进区域中心各所之间的学术交流与区域中心开放设备应用水平的提高,为不同学科间的交叉与交流提供桥梁。参会人员包括国家纳米科学中心、中科院物理所、中科院化学所、中科院高能所、中科学理化所、中科院过程所、中科院电工所等单位的老师和学生近百人。     学术交流会议现场国家纳米科学中心熊玉峰老师在做报告   国家纳米科学中心熊玉峰老师首先对国家纳米科学中心的生物成像平台进行了简要介绍,对平台所购进的系列仪器设备及其主要用途进行了概括说明。之后,会议特别邀请了北京市神经外科研究所孙异临教授与大家分享生物透射电镜样品的制备方法和经验,详尽丰富的讲座赢得了与会者的强烈响应。资深电镜专家中科院生物物理所徐伟研究员应邀出席本次会议,并为大家作了题为“衬度成像在生物技术上的应用”的主题报告,从理论角度解析生物电镜的成像因素。天美(中国)科学仪器有限公司张龙改工程师对日立新一代全数字化透射电镜HT7700作了简单介绍,这款是市场上同类产品中的最新型号,设计采用高灵敏度的荧光屏CCD取代传统的荧光屏,将TEM操作统一于显示器 可在同一台电镜上实现高反差、高分辨两种观察模式,适合观察生物医学、纳米材料、软材料等多领域的样品。领先的设计理念和大集成一体化功能,更加简便地操作,是HT7700的最大特点。     北京市神经外科研究所孙异临教授     中科院生物物理所徐伟老师     天美公司应用工程师张龙改   天美公司特邀请日立全球应用中心工程师仲野靖孝先生,为大家在仪器现场演示日立透射电镜HT7700的操作与应用。 与会者对透射电镜HT7700进行了参观和做样测试,仲野先生对大家提出的问题进行了详尽的解答。与会者对HT7700独特的荧光屏CCD设计表现出浓厚的兴趣,快速准确的自动拼图功能,给各位老师和同学留下了深刻的印象,与会者对仪器的性能给予了很高的评价。     仲野靖孝先生在现场为用户做演示   公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。   更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • FEI发布Talos 透射电镜新品
    Talos先进科技集于一身 Talos™ 是新一代 TEM 产品,致力于让用户迅速访问二维和三维数据,从而专注于研究发现。Talos 的配置适合开展材料研究和生命科学研究,是一款融合了众多创新技术的多功能系统,能够在未来数年里满足您的研究需求。Talos 的材料科学应用Talos 可以在多个维度开展快速、精确、量化的材料表征分析,而且配备了全新的软件功能,能够改善成像效果和易用性。Talos 将出众的高分辨率 S/TEM 和 TEM 成像与行业领先的 EDS 性能(包括独一无二的 EDS 断层扫描技术)融为一体,能够以二维图像和三维容积的形式提供结构信息。创新的新软件拓宽了可以分析的材料范围,同时全新的 Ceta 16M 摄像头可迅速从大视场切换到原子级别。全新的压电工作台可确保实现无漂移成像和精确导航。而且,Talos 还预留了配件接口,可以配备特定于应用的原位样本支架以开展动态实验。 创新点:为帮助研究人员在低束流条件下更快速地获得各类型样品(包括电子束敏感材料)的二维和三维化学信息,我们在Talos F200i扫描透射电镜(S/TEM)中加装了一对对称设计的100 mm2 Racetrack能谱仪(双X射线)。这一更新突破了使用非对称EDS难以获得有效定量数据的瓶颈,并能让科研工作者以最快的方式在(亚)纳米尺度对材料进行表征。 Talos 透射电镜
  • “几家欢乐几家愁”-论TESCAN发布独创版的透射电镜TENSOR
    “千呼万唤始出来”,TESCAN2022年11月8号“犹抱琵琶半遮面”,但业界已经感受到“高手出招”的犀利,在“剑锋”下“瑟瑟发抖”。“Vratislav Koštál, Chief Product Officer at TESCAN: “We’ve listened to our customers and delivered what they’ve asked for – a more accessible TEM solution that is high-performing and productive for mainstream use.” 所以,TENSOR的推出是源自对客户需求的调研、定位和转化,是一款在常规应用上“平易近人”的,但又是“身怀绝技”的,态度上“吃苦耐劳”的“主流”机型。1990年,即使是在Tesla公司倒闭、科学仪器研究所减员的情况下,捷克Brno的电子显微镜时代也并未就此结束;相反,市面上却出现了三家新的电镜公司,公司的员工都来自Tesla和捷克科学仪器研究所。TESCAN接管了Tesla的扫描电镜部门;并很快的,从最初的六个人发展到近百倍的规模;另一支约20余人,也成立了一家公司叫Delmi,并开始生产型号叫Morgagni的常规透射电镜;随后,Delmi被飞利浦电子光学部收购,后又被FEI公司收购,直到2016年被赛默飞收购,一路风尘才最终尘埃落定;1990年同年,Kolarik及其同事成立了Delong Instruments公司,他们制造的是加速电压为5kV的小型透射电镜;2014年后,Delong开始制造加速电压为25kV的小型透射电镜,并供货给很多公司和机构。从2000年在Brno举办的EUREM,到2014年在捷克布拉格举办的ICEM,与会代表都曾发言说:世界上大约30%的电镜在捷克Brno生产;Brno因此也获得了“电镜谷”的称号。“For crystallographers, the TENSOR STEM helps to determine the crystallographic structure of small, sub-micron natural or synthetic particles that are too small to be characterised using micro-XRD techniques.” 时间过了超过半个世纪了,TESCAN的TENSOR一如既往,充分尊重了透射电镜利用电子选择性微区衍射对晶体结构的强大分析能力,又能够接力XRD的通量优势完成更小分工的显微分析,贯彻了TESCAN对实验室显微成像和分析workflow的深刻理解。“Applications within the semiconductor lab include multimodal nano-characterisation of thin films for R&D and failure analysis of logic, memory, and storage devices and advanced packaging.” 半导体实验室仍是“众矢之的”,TENSOR显然没有“甘居人下”-光刻显影量测、逻辑闪存芯片、存储设备、以及先进封装的缺陷检测,一个不落,解决“多模态纳米级别表征”的需求清晰明了。值此TENSOR发布之际,笔者也不由得想起和TESCAN同属于捷克电子光学三支之一的Delong Instrument: 世界上最小型的低加速电压透射电镜厂家;小型透射电镜的成功设计和搭建,是捷克电子显微镜发展的成就。早在1951年,建立小型透射电镜的想法,就已经起源于捷克理论和实验电工学研究所;这项工作启动于两年后的1953年的Delong;其目的是利用不需要特殊处理的材料,制造尽可能简单结构的透射电镜;这种电镜对生产的要求不会太高,因此,工程师能够设计出可靠性更高的部件;另一方面,小型设计为用户提供最大化的操作可能性。一小队年轻的Delong工程师在1954年完成了第一个原型机,从图中的横截面图可以看出:台式透射电镜具有相对较高的配置-其照明系统仅由一个使用Steigerwald(1949)设计的“远距聚焦”的电子枪组成;因此,它提供给研究对象相对较窄的电流密度范围和照明角度。从图中的横截面图还可以看出:Delong BS242的成像系统由四个电磁透镜:物镜、中间透镜、衍射透镜和投影透镜组成,这种设计不仅允许了较宽的放大范围,而且可以完成电子束选区衍射;真空系统由位于镜筒后方的旋转油泵和扩散油泵组成,通过空气对流冷却;在扩散泵上方安装了一个简单的阀门系统,只有在更换相机35毫米胶片时,显微镜才会放气;样品的更换通过杆式气闸操作;因此,物镜配有平坦的上极靴,以便于将样品放置在离物镜足够距离的位置上;杆式气闸由两部分组成;样品支架的部件被插入XY工作台,使得样品在垂直于光轴的方向上能够移动;另一部分与第一部分拧在一起时,能在样品杆插入真空中时保护样品;样品杆拧松开之后,样品室就密封了;这个简单的原理被证明很成功,并且多年来一直在使用。杆式气锁的构造也采用了同样的原理,这有助于将样品自动降低到上极靴的孔中;轴向像散由位于真空外部的四个线圈组成的像散器补偿消除;因此,它们很容易在没有任何真空馈通的情况下转动;三透镜投影系统,由插入磁路的机械中心极靴组成;电子光学系统由三个可从外部居中的光阑组成:限制照明面积的光阑、物镜光阑和用于选区衍射的光阑;图像观察室和胶片照相机室,通过车削和铣削制成;显微镜的镜筒安装在一个平台之上,平台两侧配有用于样品位移和聚焦的操作旋钮;为了实现电子加速,Delong设计了60kV的油绝缘高频电源,它的大小正好可以放在平台的镜筒旁边;最初用于激励透镜线圈的蓄能器,很快在1955年被安装在桌下旋转泵上的电子稳定器取代了;显微镜的分辨率最初是25Å,后来甚至达到15Å。“With the launch of TENSOR, TESCAN is the go-to company for turnkey ‘medium-voltage’, Schottky FEG, analytical 4D-STEM solutions,” said Jaroslav Klíma, Chief Executive Officer of TESCAN ORSAY Holding (TOH a.s.). “TESCAN understands the challenges of integrating not only STEM, but 4D-STEM capabilities particularly, onto legacy TEM columns. This extensive knowledge was leveraged into the design, from the ground up, whereby scanning of the electron beam is synchronised with diffraction imaging using a hybrid-pixel direct electron detector, electron beam precession, EDS acquisition, beam blanking, and near real-time analysis and processing of 4D-STEM data.” 超过半个世纪之后的今天,TESCAN这台TENSOR大概率是200kV的热场发射枪,“混合”像素电子直读相机,TESCAN推出的“一体式整合式”的,直接输出贴近“原位”的四维STEM数据的分析平台;这让我们一下子都有“文盲”的感觉。业界朋友推荐了一个网站:https://www.superstem.org/ , 应该能够帮助我们恶补一下什么叫做4D-STEM,还有为什么透射电镜不好好地就叫TEM,而直接叫了STEM。“JK Weiss, TEM Applications R&D Manager and General Manager of TESCAN Tempe, adds, “It is not just the hardware that sets this system apart from every other TEM currently available on the market, but rather, it’s the integration of the hardware and software for a totally revolutionised new user experience that does not require months of Ph.D. or post-doc training or hours of column adjustments between different analysis modes.” TESCAN的这段承诺掷地有声:上手操作都很容易,软硬一体化,革命性的用户体验,有别于市场上任何现有TEM。这又使笔者想起,同属一脉的Delong小型透射电镜的特性,就是结构简单,因此操作简便;一名受过普通技术培训的操作员就能够进行安装和拆卸,维护工程师可以很容易地了解电镜所有部件的功能;很容易地证明物镜光阑对对比度的影响,从而说明亮场和暗场模式下的对比度和成像原理;很容易地通过操作衍射透镜在晶格处证实电子衍射,并用选区光阑让衍射图像对应研究对象的部分光学图像。这种简单的设备就像光学显微镜一样,在简单维护的情况下,也能可靠地工作多年,这无疑是这一派系的TEM的优点。我们熟悉的现代透射电镜设计的初衷是为了达到电子光学的理论分辨率;但如果没有维护,我们很难将这样复杂的设备保持在最佳性能水平。TENSOR这类新生代STEM的出现,许诺将会展示用户如何用最小的努力,可靠地实现有保证的分辨率;在这里,我们又不得不说,超过半个世纪后的今天,TESCAN对电镜极简化使用的情怀犹在。五十年代的Delong也很快发现,TEM领域缺少一个简单的装置,与简化的SEM相对应,在不影响设计原则,即结构简单、操作简单、价格低廉的情况下,将两种设备结合在一起的成为紧要的需求,Delong就是这样成为了STEM的先驱;TENSOR这类新生代扫描透射电镜完美地致敬了捷克电镜这一脉重要的分支。同时我们也不难看出,TENSOR这次的WORKHORSE定位决定了它不会带CEOS或是NION的球差矫正器了,同时上单色器的概率也应该很小;那么会有能量过滤器吗?ZEISS的OMEGA流派,还是GATAN的ENFINA路数?这个可能这次我们也想多了。“TESCAN TENSOR is the next example of innovation by TESCAN, following the company’s launch of the world’s first focused ion beam/scanning electron microscope (FIB/SEM) and Plasma FIB/SEM, time-of-flight secondary ion mass spectrometry (ToF-SIMS) applications on FIB/SEM platforms, Dynamic-CT and Spectral-CT.”回顾TESCAN精准的研发定位,从第一台RISE,到第一台电镜一体化TOF-SIMS,再到第一台pFIB,还有最近的两款显微CT产品,我们不得不再一次佩服TESCAN的BD团队的“行业嗅觉”。随着赛默飞在“冷冻电镜”上赚得“钵满盆满”,已是高端“结构生物学”餐桌上的“必点”菜目;在半导体离线破坏式检测领域,又凭借在pFIB上的“后来居上”,搭档“老骥伏枥”的Metrios,稳居榜首;TENSOR的出现,撕下了赛默飞“沾沾自喜”的遮羞布,似乎让业界清晰地看到了赛默飞的短板-材料分析TEM;TENSOR的出现,又让业界“久旱逢甘雨”。“For materials scientists and semiconductor R&D and FA engineers, the TENSOR 4D-STEM provides multimodal, high contrast, high-resolution 2D & 3D characterisation of functional (engineered) materials at the nanoscale.” 不出所料,材料科学显然是TENSOR的重点照顾对象。“几家欢乐几家愁”,进口电镜五大家中,赛默飞可以暂时“熟视无睹”,“倚老卖老”,假装“不愁”;两家日系的也是家底深厚,“树大根深”,也不像欧美上市公司有业绩压力,可以“不愁”;最后一家ZEISS却是完全“眼不见心不愁”,因为在这家的产品线上,早已“赫然”没有了透射电镜-这个电镜企业的“看家法宝”,电子光学“技术下放”的源头;这家德企有着颇为“瞩目”的TEM根基,加上一路并购“DSM”,“Cambridge Instrument”,“LEO”,最后都改姓“ZEISS”小兰标,不能不说是“根骨清奇”;“Orange Column”的用户仍然对其津津乐道;然而,对Omega能量过滤器的执着,既成就了它对TEM的最高水平的呈现,也直接成了其在2008年全球经济危机中的黯然隐退的导火索;“欲练神功,必先自宫”的极左思维模式,ZEISS不仅将标配了场发射源和能量过滤器的200kV顶配透射电镜“下架”,而且“一不做二不休”,将120kV Libra,以及刚收购一年有余的乌克兰Selmi公司的100kV TEM,整条产线同时“自戕”;拿着如此级别的“家当”,却是如此“败家”,“弃珍宝之如敝履”,可谓令人“瞠目结舌”;西欧的“百年老店”自废武功,东欧的“世家子弟”TESCAN却一心一意,凭着捷克硕果仅存的三支之一的电镜纯正“火种”,从钨灯丝扫描电镜起步,“见龙在田”,一步留下一个脚印,终于祭出了全新一代的TEM,且直接冠名发布为STEM,“亢龙有悔”,完成了Tesla电镜的华丽“回归”,相信下一个发布会是“飞龙在天”,“励志”所有电镜研制团队。电镜是一种集成了光、机、真空、电、软、算、系、数项基础和先进学科及技术的综合学科科学,及显微成像和分析类仪器设备,电镜的精度及可靠性来自于对上述学科基础知识的牢固掌握,及对产品化的深刻理解和实行;近五年来,国产电镜百家争鸣,其中不乏拥有多项自主专利的实干厂家;笔者综合评价,国产替代的突破点主要集中在“光”,即电子光学,而在其余多项分支多为直接采购,或堆砌模仿,或生硬整合;国产替代虽然已经在电镜的核心技术-电子光学上突破重围,但其多项配套技术发展的不平衡性,在加上来自于各种材料、各项技术和各类人才的缺口,导致电镜这只需要多块木板才能拼就成功的“木桶”,数块木板长短参差不齐;所有公差的集合,直接导致了国产电镜来自于系统整合集成,积累沉淀在工程产品化的差距;这项差距相比起进口欧美日厂商,尤其巨大。所以,电镜的“重灾区”已经不再是“电子枪和镜筒”,而更多地集中在了精密机械、高真空及超高真空、高速高稳定性电路设计制造,及各个模组子系统之间的有效有机整合。笔者认为,比起进口主流,国产电镜的性能差距具体表现为两方面:一是仪器关键精度的出厂重复性很差,难以控制和把握;电子光学仿真软件完成光路设计之后,电子枪和电子光学镜筒即进入选料及加工阶段,精密加工主要集中在电子透镜特别是物镜的极靴的生产上,然后再进入部件组装、机械调试及电子调试等各阶段;而在这些阶段累计的问题,最终表现为实测电子束分辨率和设计精度之间的差距,单台模组在不同时间段指标性能表现不一致的差距,还有多台电子光学关键模组及整机实测指标之间的差距,等等;二是电镜研制多学科发展,交叉但又不融合;表现为光、机、电子系统联合运行匹配问题频出,并与真空,软件、算法等子系统互为交叉影响,仪器整体使用感受不顺畅,小毛病多,不明问题多,导致机器磨合及解决问题时间比正常运行时间多等等,不能符合科研及产业对普适类工具稳定性表现的要求。相对于半导体产业的电子束量测设备,如CD-SEM,普适型扫描电镜使用了对长期使用、高密度使用整体稳定性要求相对较低的可用标准原材料;就像Delong选择了小型透射电镜的细分赛道那样,如果要达到极限性能,复杂的TEM是关乎材料、技术和生产的非常复杂的装置;如果我们接受比极限分辨率低的指标,要求也会相应减少很多;Delong台式透射电镜的材料成本和生产时间较低,因此卖价也不高;仍以Delong为例,20世纪50年代初,台式透射电镜的构建就证实这条路线是非常成功的;因为,一种结构简单、操作方便、价格低廉的设备满足了许多实验室的基本需求,也并没有让大多数追求极限分辨率显微镜的用户对高端电镜产品失去兴趣。关于国产电镜,还有一个更有趣的方面,使得国产电镜难以在正常赛道上与进口抗衡:就是进口电镜简单廉价的生产成本和低价格。很明显,这是由于欧美日电镜厂商早已消化完毕前期研发的高额投入和成本,而电子光学模组的创新和迭代也相对缓慢,再加上西方完整齐备的电镜产业供应链支撑,种种优势,使得国产电镜步履维艰,任重而道远;相信国家,还有投资界已经听到了国产仪器人的呼声,这也是为什么近五年来国产高端仪器能够蓬勃发展的原因。话说至此,笔者还是相当“清醒”的,我们当前“念念有词”的国产电镜,只限于电子显微镜的“弟弟”-扫描电镜,成像类工具的“大哥”级别的存在,仍然是透射电镜;我们现在之所以能够自我研制扫描电镜了,是相关材料,技术火种和它们的载体-行业人才“因势利导”、“水涨船高”、“水到渠成”的结果;所以,国产透射电镜,包括FIB双束电镜的亮相,会更多的是随着时间的推移能够“浮出水面”的。书归正传,就这次TENSOR的高调发布,完全可以肯定的是:从一路扫描至发布透射的扩张,这次TESCAN的功力提升不是一点点,这是一个质变和飞跃;从做好扫描到向上做好透射,是要看TESCAN在年轻的TESLA时候有没有练过“童子功”的;TESCAN的市场、产品、应用、乃至销售和售后团队都会水涨船高,从“散仙”飞升“晋神”;ZEISS的“自宫”只要“挥刀”就行,TESCAN的“飞升”需要经年累月,甚至“三生三世”的修炼;所以,从整体建制需要基建“配套”的角度看,这次TENSOR的推出也不会是“拔苗助长”式的,TESCAN迈过了“小升初”,“中高考”,现在正在“本硕连读”之阶段,一路走来“精彩”归“精彩”,现在正是“吃劲”的关头;祝TESCAN能够凭借TENSOR,完成“复兴”的起步;更希望TESCAN可以凭借TENSOR,自创新的“赛道”,不仅能够稳居“四绝”之一,更能引领;就像他们的愿景说的那样:“An analytical 4D-STEM that is as easy to use as TESCAN SEMs, with all the efficiency and economic benefits of a results driven Electron Microscope.” 透射电镜能像扫描电镜一样易用,高效,经济,以能出高质量结果为最终导向。愿TESCAN这次“出击”能够站稳脚跟,期待看到他们下一次的惊艳。(完)
  • 武汉大学科研公共服务条件平台透射电镜顺利通过验收
    平台透射电镜顺利通过验收11月19日上午,科研公共服务条件平台组织召开设备技术验收会议,对200kV场发射透射电子显微镜JEM-F200、200kV六硼化镧透射电子显微镜JEM-2100Plus以及相关附件纳米等离子清洗仪、氩离子抛光仪、透射电镜原位力电测量系统进行了技术验收。来自于武汉理工大学、华中科技大学以及我校的5位专家组成了验收评审专家组,武汉大学实验室与设备管理处副处长吴红波主持验收会,经过会议专家推举,由吴劲松教授任专家组组长。受疫情防控影响,验收会采取了线上线下相结合的方式。吴红波代表学校对参加会议的各位领导、专家表示热烈欢迎。王建波对项目的整体情况做了简要介绍。日本电子严雪部长、上海微纳衡潘总经理、泽优科技许智总经理先后致辞,纷纷表示非常珍惜和武汉大学的合作机会,将一如既往地为武汉大学的科研发展、人才培养提供支持,同时对售后服务进行了承诺。会上,验收专家组依次听取了厂家工程师和平台李雷博士分别对安装调试和技术指标达标情况的报告、使用情况的报告,审阅了技术服务协议、性能指标等材料。听取报告后,验收组专家就主机的实验室环境、标样、超级能谱等问题,配件的抛光面积、耗时、电脉冲以及耗材费用等问题进行了质询。质询环节后,验收组专家们实地考察了两台透射电镜以及配件的运行情况,李雷老师认真解答了专家提出的问题。经过报告、质询和讨论,验收专家组一致认为,两台透射电镜以及配件符合合同规定;设备运行正常,各项技术性能指标达到采购要求;经过培训,平台机组人员掌握操作规程及方法。与会专家一致同意通过验收。Core Facility of Wuhan University撰稿:仲 秋拍摄:仲 秋审核:王建波
  • 聚焦这5个领域,看透“球差校正透射电镜”那些事儿!
    球差校正透射电镜(Corrected Transmission Electron Microscopy, CETEM)是一种高级的电子显微镜技术,它通过校正光学球差,显著提高了图像分辨率,广泛应用于材料、物理学、化学、生物学、地球科学等多个研究领域。材料领域,常用于观察和分析纳米材料和先进材料的微观结构,研究晶体缺陷、界面、相变等;物理学领域,可用于观察低维材料如石墨烯、纳米管等,研究量子点、纳米线等纳米结构的电子性质;化学领域,可分析催化剂的表面结构和活性位,观察化学反应过程和机理;生物学领域,可用于观察细胞器和病毒的高分辨率结构;地球科学领域,常用于分析矿物和岩石的微观结构。那么,国内球差校正透射电镜技术进展如何?2023-2029年间,该技术在国内的应用和研究正在逐步扩大,中国双球差校正透射电镜市场预计将经历一定的增长。目前,国内多所高校和研究机构已经拥有了球差校正透射电镜技术。2024年,清华大学、浙江大学、中国科学院宁波材料技术与工程研究所、南方科技大学、杭州大学等机构已相继合办或主办了多场相关的主题学术技术交流会,探讨了球差校正透射电镜技术发展现状。3i讲堂作为科学仪器行业的百家讲坛,致力于以信息化促进行业发展,将各类领域新技术、新应用、新方法以专家在线报告的方式分享给广大用户。基于此,为了进一步助力球差校正电镜技术的发展,仪器信息网3i讲堂,将于10月16日独家直播“2024赛默飞球差校正透射电镜技术研讨会”,在此,热忱邀请各位资深透射电镜用户参加此次盛会。点击报名:https://www.instrument.com.cn/webinar/meetings/thermo241016/时间主题嘉宾08:50--09:00领导致辞09:00--09:30解决材料科学难题的先进三维与定量电镜技术陈江华 海南大学09:30--10:10电子显微学在铁电材料与器件中的应用田鹤 浙江大学10:10--14:00茶歇14:00--14:40显微学新技术与地学新时代李金华 中科院地质与地球物理研究所14:40--15:20储能材料失效机理研究黄建宇 燕山大学 湘潭大学15:20--16:00高熵热电材料的结构与性能关联性何佳清 南方科技大学16:00--16:20茶歇16:20--16:50Achieving Sub-Picosecond Pulsed Electron Beams without a Femtosecond LaserEric Van Cappellen Thermo Fisher Scientific16:50--17:20一种析出强化汽车铝合金的原子分辨电子显微学和谱学研究赖玉香 海南大学17:20--17:30总结支持
  • 日立高新推出200kV透射电镜新品
    p   2015年7月21日,日立高新宣布推出200kV场发射 a title=" " href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" strong 透射电子显微镜 /strong /a span style=" COLOR: rgb(84,141,212)" /span HF5000,HF5000集合了日立高新的透射电镜及扫描透射电镜技术,达到了亚埃级的空间分辨率(0.1 nm或更低),球差校正器为其标准配置。将于2015年10月正式启动销售。 /p p   从纳米材料、电子器件的科学研究,到企业研发及质量控制,用户对于电子显微镜的空间分辨率及元素分析能力的需求都在提升。这反过来也促进了对于电子显微镜像差校正和高灵敏度分析的需求。 /p p   为了响应这方面的需求,日立高新开发了200kV及300kV透射电镜专用的STEM球差校正器和大立体角EDX。根据用户的反馈,日立高新将这两种技术整合到了200kV的透射电镜平台上,推出了HF5000场发射透射电镜,同时实现了亚埃级的高分辨率成像和高灵敏度分析。 /p p style=" TEXT-ALIGN: center" img title=" 23.jpg" src=" http://img1.17img.cn/17img/images/201507/insimg/a29bbaca-f26c-47cf-aceb-83c7b04e8ec7.jpg" / /p p style=" TEXT-ALIGN: center" HF5000透射电镜 br/ /p p   HF5000继承了日立高新HD-2700扫描透射电子显微镜的技术特点,如它的内部球差校正器,自动像差校正功能,原子分辨率的二次电子像,并综合了日立高新HF系列透射电镜的技术。 /p p   另外,HF5000采用了日立高新经过考验而被认可的冷场发射电子枪技术,并且它的镜筒和样品台经过了重新的设计,从而显著提升了仪器的性能和稳定性。 /p p & nbsp & nbsp & nbsp & nbsp strong 主要技术参数 /strong br/ /p p style=" TEXT-ALIGN: center" img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201507/insimg/2bdb33e9-e1c4-4a12-880a-83b462498079.jpg" / /p
  • FEI推出3款透射电镜新产品
    2013年8月1日,FEI宣布推出三款专门满足特殊的应用和行业需求的透射电镜(TEM)新品。这三款新产品将为半导体制造和科研提供高效率和有效的特定应用程序。它们是专门用于先进的半导体制造业设的Metrios&trade TEM,为材料和生命科学研究提供高速成像分析的Talos&trade TEM ,以及提供原子量级材料特性研究Titan&trade Themis&trade TEM。   &ldquo 加上这三个新产品,在过去一年中,我们已经推出了6款TEM新产品,这是前所未有的&rdquo 。FEI公司执行副总裁兼首席营运官Benjamin Loh说道。&ldquo 所有6款新产品都是为专门的应用工作流程而设计制造,它们将为科研和工业细分市场的用户提供了信息,如:材料科学,化学,生命科学,半导体制造等领域。我们的目标是完全改变TEM的世界,从而让我们的客户能够改变他们的世界。&rdquo   Metrios&trade TEM系统,致力于为需要开发和控制晶片制造工艺的半导体制造商提供快速,精确的测量。透射电镜基本操作和测量程序广泛的自动化,最大限度地减少对操作人员培训的要求。其先进的自动化计量提供比手工操作更高的精度。Metrios&trade TEM的设计,相比其他电镜,将为客户提供更好的分析通量和较低的成本。   Talos TEM结合高分辨率,高通量的TEM快速成像,以及精确定量的能量色散X-射线(EDX)分析,提供先进的分析性能。新的TEM采用了FEI目前亮度最高的电子源和最新的EDX检测技术,可实现对低浓度和轻元素的高效分析,并拥有FEI独家的3D EDS X射线断层成像技术。在较低的加速电压下,允许使用能量较低的电子束,以减少对样品的损伤。Talos平台是完全数字化的,允许远程操作,并且它可以增加用于特定应用程序的检测器或动态实验的样品架。Talos平台自动化程度高并易于使用,非常适合于个人研究室以及多人操作的实验室。   Titan Themis TEM增强了FEI在原子级成像分析方面的领导地位。研究人员使用高分辨率像差校正TEM来研究大尺寸材料的物理性质以及原子尺度之间的组成和结构的关系。Titan Themis平台可直接测量物理属性,如磁场,纳米尺度,以及下降到原子尺度时的电场。从样品定位到最终数据采集整个流程均实现了自动化,提高结果的重复性和再现性,从而使用户以更少的时间和精力获取更有信心的结论。(编译:秦丽娟)
  • iCEM 2017特邀报告:原位透射电镜技术及其科研应用
    p style=" text-align: center " strong 第三届电镜网络会议(iCEM 2017)特邀报告 /strong /p p style=" text-align: center " strong 原位透射电镜技术及其科研应用 /strong /p p style=" text-align: center " strong img width=" 200" height=" 303" title=" 白雪冬.jpg" style=" width: 200px height: 303px " src=" http://img1.17img.cn/17img/images/201705/insimg/6e191a5d-b4ae-4b6d-8e61-45392eefc2ba.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong & nbsp /p p style=" text-align: center " strong 白雪冬 研究员 /strong /p p style=" text-align: center " strong 中科院物理所 /strong /p p   strong  报告摘要: /strong /p p   原位透射电镜实验方法是研究材料性质-结构关系及其动态变化过程的先进手段。近些年来我们开展原位透射电镜技术的开发与纳米操纵和物性研究工作,在原子尺度观测和理解低维结构的物理和电化学性质。 /p p   本报告将介绍利用自主研制原位透射电镜中的扫描探针装置,在纳米操纵和纳米尺度下光电力耦合与物性调控、离子(包括氧空位、银离子、锂离子)电迁移过程的原位实时观察,以及有关的电致阻变存储器机理和锂离子电池材料锂化机制等方面的研究进展。 /p p    strong 报告人简介: /strong /p p   白雪冬,中科院物理所研究员,博士生导师,国家杰出青年基金获得者,973项目首席科学家。在原位透射电镜物理/化学观测表征方面做出了系列工作。在国际会议上做邀请报告50余次,在Nature及其子刊/PRL/JACS等杂志上合作发表论文150余篇,累计被引用7000多次。2008年获得北京市科技一等奖,2011年获得国家自然科学二等奖,2014年入选科技部中青年科技创新领军人才,2015年获得中国物理学会胡刚复奖,2016年入选国家万人计划领军人才。 /p p    strong 报告时间:2017年6月21日上午 /strong /p p   strong  立即免费报名: a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target=" _blank" http://www.instrument.com.cn/webinar/meetings/iCEM2017/ /a /strong /p p style=" text-align: center " br/ /p p style=" text-align: center " & nbsp a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target=" _self" img title=" 点击免费报名参会.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/c9793b9d-a3ec-4cb2-a453-330b3d0cbf03.jpg" / /a /p
  • 一文看懂透射电子显微镜TEM
    p   透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 /p p   strong  1 背景知识 /strong /p p   在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。 /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height=" 316" width=" 521" / /p /center p style=" text-align: center " strong 电子束与样品之间的相互作用图 /strong /p p & nbsp & nbsp & nbsp 来源:《Characterization Techniques of Nanomaterials》[书] /p p   透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。 /p p    strong 2 TEM系统组件 /strong /p p   TEM系统由以下几部分组成: /p p   电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。 /p p   聚光镜:将电子束聚集得到平行光源。 /p p   样品杆:装载需观察的样品。 /p p   物镜:聚焦成像,一次放大。 /p p   中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。 /p p   投影镜:三次放大。 /p p   荧光屏:将电子信号转化为可见光,供操作者观察。 /p p   CCD相机:电荷耦合元件,将光学影像转化为数字信号。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height=" 359" width=" 358" / /center p style=" text-align: center " strong 透射电镜基本构造示意图 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 3 原 理 /strong /p p   透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height=" 333" width=" 422" / /center p style=" text-align: center " strong 电镜和光镜光路图及电镜物镜成像原理 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 4 样品制备 /strong /p p   由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。 /p p   试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。 /p p   制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height=" 296" width=" 406" / /center p style=" text-align: center " strong 超细颗粒制备方法示意图 /strong /p p & nbsp & nbsp & nbsp 来源:公开资料 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height=" 325" width=" 404" / br/ strong 材料薄膜制备过程示意图 /strong /center p   来源:公开资料 /p p   strong  5 图像类别 /strong /p p    strong (1)明暗场衬度图像 /strong /p p   明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 /p p   暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height=" 306" width=" 237" / br/ strong 明暗场光路示意图 /strong /center center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height=" 318" width=" 294" / br/ strong 硅内部位错明暗场图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (2)高分辨TEM(HRTEM)图像 /strong /p p   HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height=" 312" width=" 213" / /center p style=" text-align: center " strong HRTEM光路示意图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height=" 234" width=" 321" / br/ strong 硅纳米线的HRTEM图像 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (3)电子衍射图像 /strong /p p   选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。 /p p   会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。 /p p   微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br/ /p p    /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height=" 296" width=" 227" / /p p strong 电子衍射光路示意图 /strong /p /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height=" 174" width=" 173" / /center p style=" text-align: center " strong 单晶氧化锌电子衍射图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height=" 174" width=" 175" / /center p style=" text-align: center " strong strong 无定形氮化硅电子衍射图 /strong /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height=" 174" width=" 170" / br/ strong 锆镍铜合金电子衍射图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong 6 设备厂家 /strong /p p   世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。 /p p    strong 7 疑难解答 /strong /p p    strong TEM和SEM的区别: /strong /p p   当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。 /p p   SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。 /p p    strong 简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理: /strong /p p   单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。 /p p   多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。 /p p   非晶的衍射花样为一个圆斑。 /p p   strong  什么是衍射衬度?它与质厚衬度有什么区别? /strong /p p   晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。 /p p    strong 8 参考书籍 /strong /p p   《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /p p   《电子衍射分析方法》 黄孝瑛著 /p p   《透射电子显微学进展》 叶恒强,王元明主编 /p p   《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /p p   《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。 /p p   来源:中国科学院科普文章《透射电子显微镜基本知识介绍》 /p
  • 南京理工大学3200.00万元采购透射电镜,扫描电镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 双球差校正透射电子显微镜采购项目采购需求征求意见公告 江苏省-南京市-鼓楼区 状态:预告 更新时间: 2023-10-13 招标文件: 附件1 附件2 双球差校正透射电子显微镜采购项目采购需求征求意见公告 发布日期: 2023-10-13 双球差校正透射电子显微镜采购项目采购需求征求意见公告 一、采购项目内容 根据《政府采购需求管理办法》等规定,江苏易采招标代理有限公司受南京理工大学委托对“双球差校正透射电子显微镜”面向社会公开对采购需求进行调查,现就需求调查工作有关事项公告如下: (一)项目名称:双球差校正透射电子显微镜采购项目 (二)需求调查的征集期限:2023年10月13日至2023年10月20日 (三)预算金额:3200万元(人民币) (四)采购项目概况: 采购内容:双球差校正透射电子显微镜 数量:1套 项目概况:本次拟采购的双球差校正透射电子显微镜主要用于微纳米材料、催化剂、C纳米管、MOF、高分子材料等材料的形貌、晶格、缺陷或界面原子结构的表征;给出材料的化学成分及价态信息、轻重原子分布、电子结构、缺陷、解晶体结构等。 合同履行期限:自合同签订生效之日起560天内内交货。 (五)意向反馈: 1.供应商对采购项目有参与意向或对采购需求有合理化建议的,请在需求调查的征集期限内进行实名反馈。填写意见建议反馈表(详见附件2),发送至指定邮箱(jsyc08@qq.com)。供应商提出的意见建议应当详细具体、理由充分、实事求是,并提供相关证明材料,不得排斥其他潜在供应商。匿名、未在需求调查的征集期限内提交等不符合要求的,不予受理。 2.本次公开的相关内容仅作为供应商了解初步采购安排的参考,采购项目具体情况以最终发布的采购公告和采购文件为准。 二、开标时间:/ 三、其它补充事宜 供应商提出的意见建议,将作为我校完善需求的必要参考,是否采纳均不影响供应商参与本项目后续采购活动,我校也不作书面回复。 感谢所有积极参与本次需求预研论证的供应商! 四、预算金额:3200万元(人民币) 五、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称:南京理工大学 地 址:南京市孝陵卫200号 联系人:王老师 联系方式:025-84303870 2.采购代理机构信息 名称:江苏易采招标代理有限公司 地址:南京市鼓楼区中山北路28号江苏商厦11楼 联系人:韩婷婷 联系方式:025-83606070 六、附件 附件1:需求调查报告 附件2:项目反馈意见表 附件1-需求调查报告(1).doc 附件2-项目反馈意见表(1).docx × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:透射电镜,扫描电镜 开标时间:null 预算金额:3200.00万元 采购单位:南京理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏易采招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 双球差校正透射电子显微镜采购项目采购需求征求意见公告 江苏省-南京市-鼓楼区 状态:预告 更新时间: 2023-10-13 招标文件: 附件1 附件2 双球差校正透射电子显微镜采购项目采购需求征求意见公告 发布日期: 2023-10-13 双球差校正透射电子显微镜采购项目采购需求征求意见公告 一、采购项目内容 根据《政府采购需求管理办法》等规定,江苏易采招标代理有限公司受南京理工大学委托对“双球差校正透射电子显微镜”面向社会公开对采购需求进行调查,现就需求调查工作有关事项公告如下: (一)项目名称:双球差校正透射电子显微镜采购项目 (二)需求调查的征集期限:2023年10月13日至2023年10月20日 (三)预算金额:3200万元(人民币) (四)采购项目概况: 采购内容:双球差校正透射电子显微镜 数量:1套 项目概况:本次拟采购的双球差校正透射电子显微镜主要用于微纳米材料、催化剂、C纳米管、MOF、高分子材料等材料的形貌、晶格、缺陷或界面原子结构的表征;给出材料的化学成分及价态信息、轻重原子分布、电子结构、缺陷、解晶体结构等。 合同履行期限:自合同签订生效之日起560天内内交货。 (五)意向反馈: 1.供应商对采购项目有参与意向或对采购需求有合理化建议的,请在需求调查的征集期限内进行实名反馈。填写意见建议反馈表(详见附件2),发送至指定邮箱(jsyc08@qq.com)。供应商提出的意见建议应当详细具体、理由充分、实事求是,并提供相关证明材料,不得排斥其他潜在供应商。匿名、未在需求调查的征集期限内提交等不符合要求的,不予受理。 2.本次公开的相关内容仅作为供应商了解初步采购安排的参考,采购项目具体情况以最终发布的采购公告和采购文件为准。 二、开标时间:/ 三、其它补充事宜 供应商提出的意见建议,将作为我校完善需求的必要参考,是否采纳均不影响供应商参与本项目后续采购活动,我校也不作书面回复。 感谢所有积极参与本次需求预研论证的供应商! 四、预算金额:3200万元(人民币) 五、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称:南京理工大学 地 址:南京市孝陵卫200号 联系人:王老师 联系方式:025-84303870 2.采购代理机构信息 名称:江苏易采招标代理有限公司 地址:南京市鼓楼区中山北路28号江苏商厦11楼 联系人:韩婷婷 联系方式:025-83606070 六、附件 附件1:需求调查报告 附件2:项目反馈意见表 附件1-需求调查报告(1).doc 附件2-项目反馈意见表(1).docx
  • 透射电镜原位样品杆加热芯片设计原理解析
    透射电镜原位样品杆加热芯片设计原理解析 引言在上一篇文章《透射电镜原位样品杆加热功能 4 大特性解析》里,我们以 Wildfire 原位加热杆为例,为大家详细介绍了 DENS 样品杆加热功能在控温精准、图像稳定、高温能谱、加热均匀四个方面的具体表现。通过这篇文章,相信大家对 MEMS 芯片的优良性能有更进一步的了解。 本文将以透射电镜原位样品杆加热芯片的改变为例,与大家深入探讨芯片加热设计具体的变化细节。 01. 加热线圈的变化 1.1 线圈尺寸缩小,“鼓胀”现象得到明显抑制 图 1:新款芯片 图 2:旧款芯片 仔细观察上图中两款芯片的加热区,可以发现新款芯片的加热线圈要明显比旧款小很多。再观察下面的特写视频我们可以看到,加热线圈的形状也有明显变化。新款的是圆形螺旋,旧款的是方形螺旋。 线圈尺寸缩小后,加热功率减小,由加热所导致的“鼓胀”现象也会得到抑制。所谓“鼓胀”是指芯片受热时,支撑膜在 Z 轴方向上的突起。在透射电镜中原位观察样品时,支撑膜的突起会使得样品脱离电子束焦点,导致图像模糊,不得不重新调焦;甚至有时会漂出视野,再也找不到样品。这样一来,就会错失原位变温过程中那些瞬息即逝的实验现象。 1.2 加热时红外辐射减少 尺寸缩小、加热功率减小,所带来的另一个好处就是加热时红外辐射减少,从而对能谱分析的干扰就会降低。这意味着即便在更高温度下,依然能够进行稳定可靠的能谱分析。 图 3:使用新款芯片时,铂/钯纳米颗粒在高温下的能谱结果。 1.3 温度均匀性提升 此外,形状从方形变为圆形,优化了加热区域的温度分布情况,温度均匀性更好,可以达到 99.5% 的温度均匀度。图 4:新款芯片加热时的温度分布情况 02. 电子透明窗口的变化 2.1 电子透明窗口种类多样化 除了线圈尺寸、形状不同之外,新旧两款芯片所用来承载样品的电子透明窗口也明显不同。旧款设计中,窗口都是形状相同的长条,分布在方形螺旋之间。而在新款设计中,窗口种类则更加多样化,根据形状和位置不同可分为三类窗口,适用于不同的制样需求。 图 5:新款芯片中透明窗口分三类,可以适用于不同的样品需求。 红色窗口:圆形窗口,周围宽敞,没有遮挡,适合以各种角度放置 FIB 薄片。蓝色窗口:位于线圈最中心,加热均匀性最好,周围的金属也可以抑制荷电,适合对温度均匀性要求很高的原位实验,也适合放置易荷电的样品。绿色窗口:长条形窗口,和 α 轴垂直,在高倾角时照样可以观察样品,适合 3D 重构。 总结通过以上图文,我们为大家介绍了采用创新设计之后新款芯片的四大优势,全文小结如下:1. “鼓胀”更小,原位加热时图像更稳定,便于追踪瞬间变化过程。 2. 红外辐射更少,在 1000 ℃ 时,依旧可以进行可靠的能谱分析。 3. 优化线圈形状,抵消了温度梯度,提升了加热区域的温度均匀性。 4. 加热区有三种观察孔,分别适用于 FIB 薄片、超高均匀性受热、大倾角 3D 重构等不同需求。此外,优化后的窗口几何不仅便于薄膜沉积,还可消除滴涂时的毛细效应。这些针对不同需求的细节设计都使得制样更加便捷、高效。
  • 日立120kV透射电镜HT7700专家沙龙成功举办
    为增进中国用户对日立全新一代数字化透射电镜HT7700的了解,日前,天美(中国)科学仪器有限公司与日立高新技术公司,联合国家纳米科学中心和浙江大学生命科学研究院,分别在北京和杭州成功举办了日立120kV透射电镜HT7700专家沙龙。 6月26日,本次沙龙在北京国家纳米科学中心隆重举办,国家纳米科学中心主任王琛教授出席本次会议并致辞,对日立电镜和天美优质的售后服务进行了高度评价。28日,专家沙龙在杭州浙江大学顺利举办。中国电子显微镜学会常务理事、浙江省分析测试协会副理事长洪健教授致辞,期望透射电镜HT7700能带来更多科研成果。 国家纳米科学中心王琛教授致辞 浙江大学测试中心主任洪健教授致辞 出席本次专家沙龙的有天美(中国)科学仪器有限公司副总裁赵薇女士、电镜市场经理顾群先生、日立高新技术公司部长今田芳宪先生、武田豪先生、马玉娥女士等。 天美(中国)科学仪器有限公司副总裁赵薇女士致辞 日立高新技术公司部长今田芳宪先生正在用汉语为本次专家沙龙会议致辞 本次活动受到了电镜用户的热烈欢迎,同时得到了全国各地电镜专家的支持和热烈响应,来自北京、天津、河北、广州、武汉、哈尔滨、上海、安徽、南京、西安等地的电镜专家和用户应邀出席。大家在会议现场进行了深入的交流与讨论。 专家沙龙现场 天美(中国)科学仪器有限公司与国家纳米科学中心联合成立&ldquo 日立透射电镜HT7700示范实验室&rdquo ,揭牌仪式在会议期间隆重举行。天美(中国)科学仪器有限公司副总裁赵薇女士、日立高新技术公司部长今田芳宪先生、国家纳米科学中心生物实验室主任梁兴杰教授共同为示范实验室揭牌。 天美(中国)科学仪器有限公司副总裁赵薇女士、日立高新技术公司部长今田芳宪先生、国家纳米科学中心生物实验室副主任梁兴杰教授共同为示范实验室揭牌 专家沙龙会议期间,首先,由天美(中国)科学仪器有限公司电镜市场经理顾群先生,以PPT形式,对日立120kV全数字化透射电镜HT7700的独特设计和优越的性能进行了简要介绍。之后,河北医科大学马洪骏教授、南京农业大学贺子义教授应邀为大家讲解透射电镜及制样技术。最后,日立全球应用中心工程师仲野靖孝为大家演示HT7700的操作及功能,并和与会专家用户进行深切的交流和探讨,大家对透射电镜HT7700进行了更直观更深入的了解,对HT7700独特的荧光屏CCD设计,操作与维护相分离的设计表示认同。HT7700可以在明亮的室内进行样品观察,显著改善了使用者的操作环境。不少专家对底插相机的自动拼图功能表现出极大兴趣,快速自动拼图技术可在4分钟内完成最大为8k x 8k无缝拼接图片,对生物医学类样品的观察意义重大。 日立工程师仲野靖孝先生为用户做HT7700现场介绍与操作演示 本次专家沙龙取得了圆满成功。全数字化透射电镜HT7700的全新的设计理念赢得了在场专家用户的一致好评,同时客户对天美(中国)科学仪器有限公司一直以来热情周到的售后服务给予了高度评价和赞赏,与会专家和用户纷纷表示在本次活动中收获颇丰。天美(中国)科学仪器有限公司会继续奉行&ldquo 以质量求生存,以信誉求发展&rdquo 的营销理念,为广大用户提供最一流的电镜产品和最优质的售后服务! 与会人员合影留念
  • 院士领衔|透射电镜原位表征高端研讨会之26位专家报告集锦
    2021年6月19日-20日,“先进材料透射电镜原位表征高端研讨会——暨赛默飞-百实创-北工大显微结构与性能联合实验室成立仪式”在赛默飞中国客户体验中心召开,百余位先进材料透射电镜领域知名专家齐聚上海,共同见证了赛默飞-百实创-北工大显微结构与性能大数据联合实验室合作的启航,并一同探讨透射电镜原位技术在新进材料的研究中的最新进展。会议由中国科学院院士张泽担任会议主席,北京工业大学韩晓东教授担任组织委员会主席,由大会报告和四个主题专场报告组成(四专场主题依次为:透射电镜理论、技术与仪器发展;先进原位透射电镜表征;结构材料先进显微学表征;功能材料先进显微学表征)。大会报告张泽院士在题为“苛刻使役条件下材料性能与显微结构关系研究”的大会报告中强调,材料科学尤其材料显微学科研工作者,应重视建立材料微结构与宏观性能之间的对应关系,从而解决材料实际应用问题。张泽院士也着重介绍了先进结构材料在能源、环境、高端制造等领域的基础性、战略性低位,以及其在高温、高应力等苛刻使役条件下所面临的工程技术难题中的关键科学问题。并通过对航空发动机涡轮叶片等关键材料的微观尺度相结构调控、宏观结构稳定机理等科学问题的深入剖析,分享了如何完成从微观、介观到宏观的跨尺度研究,并把结构与性能之间的关系一一对应的详细研究过程与经验。同时也介绍了在材料性能与结构演变关系的研究过程中多场耦合条件的原位表征研究以及其在串联显微结构表征、材料性能乃至材料制备过程中的重要作用。张泽院士分享报告赛默飞电镜业务亚太区高级商务总监Marc Peeters在题为“Thermo Fisher Scientific: Contributions to Materials Research”的报告中,简要介绍了赛默飞的公司使命、整体概况及其在全球尤其中国的广阔商业布局与强大技术力量,并回顾了赛默飞世尔科技在微观表征设备尤其电子显微镜领域的研发、设计、制造的悠久历史与突出贡献:恒功率透镜、超级能谱、球差校正器、超亮电子枪、单色器、全新的探测系统、以及色差校正器等等技术的创造性推出与持续改进,极大帮助了科学家的材料研发、设计与制备等科研工作;近年,建立在超高稳定性系统上的全新自动化数据获取与智能化数据分析系统,亦将材料表征与分析、乃至新材料的开发工作推进到了一个全新的高度;而其完备的产品线及完整的表征工作流程,更是极大便利了科学家的材料科研工作。Marc随后也介绍了赛默飞强劲的研发、生产与技术支持实力,并展望了其在中国的远大发展前景。Marc Peeters 分享报告主题1:透射电镜理论、技术与仪器发展南京大学的王鹏教授深入浅出地介绍了基于高速相机4D-STEM大数据的叠层电子衍射成像技术(Ptychography)的技术原理及优势,并展望了该技术在突破硬件极限的超高分辨成像、与能量过滤器联用的5D-STEM、以及电子束敏感样品的低辐照高衬度成像乃至冷冻生物样品附带三维尺度信息的成像等等领域的最新应用。浙江大学的王江伟研究员则通过精巧设计的原位实验观察到了金属材料的单一理想界面的不同界面塑性变形的产生,进而讨论了其动力学机制及影响因素。武汉大学的郑赫副教授通过其最近在金属氧化物纳米材料的量子限域的可逆相变与点缺陷迁移方面的工作揭示了其微观力学的形变机理及广阔应用前景。赛默飞世尔的吴伟博士介绍了最新的Helios Hydra多气体离子源双束显微镜的低损伤透射电镜样品制备,及其搭载的多气体离子源切换与全新一代AutoTEM5带来的对各类不同材料的强大适应性与易用性。北京工业大学的张跃飞研究员与百实创科技的李志鹏博士分别介绍了扫描电镜及透射电镜上原位附件的最新技术进展、解决方案及相关应用。主题2:先进原位透射电镜表征重庆大学的黄天林教授通过原位加热实验系统地研究了层状纳米结构Al合金的结构演变,提出颗粒的粗化和集合,颗粒与位错界面/层状界面的联合可强化Y-junction迁移的钉扎作用,提高层状纳米结构的稳定性。北京工业大学的王立华研究员通过在原子尺度探索了纳米孪晶Pt材料的力学行为,回答了晶粒尺寸从Hall-Petch效应到反Hall-Petch效应区域的纳米晶的塑性变形机制等问题。北京航空航天大学的岳永海教授通过原位力学实验系统研究了纳米孪晶复合金刚石的强韧化机制,讨论了该材料变形过程中由孪晶增韧、相变增韧和叠层增韧等多重增韧机制协同作用。重庆大学的陈厚文教授在原子尺度研究了Mg合金中的界面结构,发现Mg合金中溶质原子孪晶界反常偏聚现象,提出化学成键能力是决定溶质原子孪晶界偏聚特征的重要因素。上海交通大学的刘攀教授通过原位变形研究了纳米多孔金的变形和断裂特征,发现表面原子扩散和体内位错滑移协同作用导致材料塑性室温,揭示了局域应变软化和孔洞粗化诱发整体脆断的变形机理。西北工业大学的马晓助理研究员通过原位加热的方法研究了高温金属材料的微观组织结构演变特征,揭示了高温结构材料服役过程中的精细微观组织结构的演变规律,为热处理制度制定,工程应用提供了理论指导。主题3:结构材料先进显微学表征浙江大学的余倩教授在题为“位错调控与金属结构性能关系”的报告中介绍了其通过现代电子显微学对合金材料的位错调控机理及应用的研究。她通过创造性的能谱“定量”技术解决了了高熵合金中元素周期性非均匀分布的表征问题,从而确定了合金元素错核靶向固溶引起的的超常强化的机理;进而应用该机理,通过主动调整相应元素,基于纳米尺度成分起伏,完成了合金的强韧化调控。来自上海大学的姜颖副教授通过题为“金属材料腐蚀行为的电子显微学研究”的报告详细介绍了合金材料中纳米析出相与微电偶腐蚀诱发点蚀行为以及微米尺度上的微电偶腐蚀的研究工作,并深入讲解了各种静态与原位的电子显微学表征手段在这一研究工作中的作用。南京理工大学的周浩副教授在题为“界面偏析诱导金属材料纳米化”的报告中,详细介绍了界面偏析的形成机理;分享了通过溶质偏析合金界面,进而诱导合金纳米化,从而调控其结构并改善性能,获得低成本高性能特种合金的经验。中南大学的刘春辉副教授在题为“铝合金薄壁件形性协同流变制造及其原理的原位电子显微学研究”的报告中,首先介绍了对合金材料位错诱导的强化相异质形核析出及强化等机理的研究,并利用高密度位错同时提高铝合金蠕变量和力学性能,实现回溶与高效高性能蠕变时效成形新工艺技术,解决了各类地空天运载装备的流变成形制造面临的成形与成性矛盾的问题;他随后分享了中南大学及机电工程学院电镜平台上各类原位工作的研究成果及心得。赛默飞世尔科技的牟新亮介绍了最新的高端球差透射电镜Spectra Ultra,及其中搭载的各项强大的技术,尤其是突破性高达4.45 sr立体角的Ultra-X能谱系统与颠覆性可灵活快速改变高压的Octagon电子光学系统;并展望了Spectra Ultra对现有表征手段的强化与对表征新维度的拓展,及其对材料科研工作的巨大帮助。专题4:功能材料先进显微学表征来自武汉理工大学的吴劲松教授在题为“热电材料 Cu2Se相变的原位电镜研究”的报告中介绍了其所在的纳微结构研究中心众多的来自赛默飞的高端电镜设备,阐述了通过掺杂和复合设计获得了 Cu2Se新的性能,借助高分辨电镜结合能谱及原位技术,发现了 Cu2Se第二相强化的机制,此项发现可以应用于阻止快离子导体中离子的流失进而提高热电材料的稳定性。上海交通大学的邬剑波教授在会议上做了题为“原位开启催化材料设计之可能”的报告,介绍了目前燃料电池所遇到的问题挑战及通过改变催化剂材料微观结构从而提高其性能和使用寿命的机理研究。同时邬老师介绍了他通过透射电镜液态样品杆获得的科研成果及对未来原位力学实验的展望。中科院物理所的张颖研究员在 “新型拓扑磁畴结构的探索”报告中主要介绍了通过透射电镜相关技术研究磁性材料的一些知识。中南大学的李凯副教授在“Al-Mg-Si合金纳米析出相在变形过程中的破碎与旋转”报告中阐述了铝合金变形的机理研究及通过透射电镜研究,发现被位错切过的纳米析出相发生碎片化的过程,并对未来使用原位力学杆的一些研究进行了展望。重庆大学的张斌博士做了 “SnSe层状化合物表面氧化行为的电子显微学研究”的主题报告,解释了通过高分辨透射电镜结合能谱研究明星热电材料SnSe化合物的氧化过程的必要性,及目前所获得的研究成果。华东师范大学的成岩副研究员在“原位电场下铪基铁电薄膜的原子尺度结构转变”主题报告中详细介绍了通过高分辨透射电镜结合原位样品样品杆解释铪基铁电薄膜极化的起源;来自北京理工大学的邵瑞文博士在“缺陷在功能材料中作用的原位透射电镜研究”报告中介绍了原位透射电镜在掺杂原子核位错观察中的应用,及其在实验中的一些经营和感受。本次会议主题报告主要邀请的为材料领域有突出表现的青年科学家,这些科学家是中国科技创新的希望,在国家科技强国的路上必将发挥重要的作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制