当前位置: 仪器信息网 > 行业主题 > >

膜显微观测系统

仪器信息网膜显微观测系统专题为您提供2024年最新膜显微观测系统价格报价、厂家品牌的相关信息, 包括膜显微观测系统参数、型号等,不管是国产,还是进口品牌的膜显微观测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合膜显微观测系统相关的耗材配件、试剂标物,还有膜显微观测系统相关的最新资讯、资料,以及膜显微观测系统相关的解决方案。

膜显微观测系统相关的论坛

  • 显微镜:探索微观世界的奇妙工具

    显微镜:探索微观世界的奇妙工具在人类探索自然的漫长历程中,显微镜无疑是一把开启微观世界大门的钥匙。它以其独特的放大能力,让我们得以窥见那些肉眼无法察觉的奇妙景象——细胞的结构、微生物的形态、甚至是分子与原子层面的奥秘。本文将深入介绍显微镜的发展历程、基本构造、工作原理以及它在科学研究、医学诊断、工业检测等多个领域中的广泛应用。https://ng1.17img.cn/bbsfiles/images/2024/09/202409190935059333_5216_6742570_3.jpeg一、显微镜的历史沿革显微镜的发明可以追溯到17世纪初,荷兰眼镜商汉斯利伯希是公认的现代显微镜之父。他通过组合两片凸透镜,制成了世界上第一台复合显微镜,虽然其放大倍数有限,但已足以让人们初窥微观世界的神秘面纱。随后,罗伯特胡克、安东尼范列文虎克等科学家对显微镜进行了不断改进,大大提高了其放大倍数和成像质量,为后来的微生物学、细胞学等学科的发展奠定了坚实基础。二、显微镜的基本构造现代显微镜的结构复杂而精密,主要由光学系统、机械系统和照明系统三大部分组成。 ? 光学系统:是显微镜的核心部分,包括物镜、目镜和镜筒等组件。物镜位于标本下方,负责将标本放大并成像;目镜则位于观察者眼睛上方,进一步放大物镜形成的图像供人眼观察。镜筒则连接物镜和目镜,确保光线能够准确传输。 ? 机械系统:用于调节显微镜的位置和角度,包括底座、支架、载物台、调节旋钮等部件。通过这些部件的精确调节,可以实现对标本的精确定位和观察。 ? 照明系统:为显微镜提供充足的光源,确保标本能够被清晰照亮。常见的照明方式有透射照明和反射照明两种,分别适用于透明和不透明标本的观察。 三、显微镜的工作原理显微镜的工作原理基于光的折射和放大原理。当光线通过物镜时,由于物镜的凸透镜特性,光线会发生折射并聚焦于一点形成实像。这个实像随后被目镜进一步放大并投射到观察者的视网膜上形成虚像。通过调节物镜和目镜的焦距以及载物台的位置,可以实现对标本不同深度和层次的观察。四、显微镜的应用领域显微镜在科学研究、医学诊断、工业检测等多个领域中发挥着不可替代的作用。 ? 科学研究:在生物学、医学、材料科学等领域中,显微镜是研究微观结构和功能的重要工具。例如,通过电子显微镜可以观察到细胞的超微结构;通过荧光显微镜可以研究生物分子的分布和相互作用。 ? 医学诊断:显微镜在病理学、微生物学等医学领域中具有广泛应用。医生可以通过显微镜观察患者的组织切片或体液涂片来诊断疾病;同时也可以通过显微镜检测细菌、病毒等微生物的存在和类型。 ? 工业检测:在半导体制造、精密机械加工等行业中,显微镜被用于检测产品的微观缺陷和表面质量。通过显微镜的高精度成像能力可以实现对产品质量的严格控制和优化生产流程。 五、结语显微镜作为探索微观世界的重要工具不仅揭示了自然界的无限奥秘也推动了科学技术的飞速发展。随着科学技术的不断进步和创新显微镜的性能和应用范围也在不断拓展和提升。未来我们有理由相信显微镜将继续在各个领域中发挥重要作用为我们揭示更多未知世界的秘密。

  • 生物显微镜:揭示生命微观世界的利器

    摘要:本文将对生物显微镜进行详细介绍,包括其原理、类型、应用领域以及未来发展趋势。生物显微镜是生命科学研究中不可或缺的工具,它让我们能够深入观察生命的微观世界,从而更好地理解生命的奥秘。一、生物显微镜的原理生物显微镜的工作原理基于光学成像技术,通过透镜组合将微小物体放大并呈现出清晰的图像。它主要由光源、物镜、目镜、载物台等部分组成。生物显微镜利用可见光或荧光等光源照射样品,通过物镜将样品放大,再经过目镜进一步放大,最后由观察者或相机捕捉到放大的图像。二、生物显微镜的类型[list=1][*]光学显微镜:利用可见光成像,适用于观察细胞结构、组织切片等样品。[*]荧光显微镜:利用荧光染料标记样品,通过激发荧光观察特定结构或分子。[*]共聚焦显微镜:通过激光扫描样品,实现三维层析成像,适用于观察厚样本。[*]超分辨显微镜:突破光学衍射极限,实现更高分辨率成像,如STED显微镜、PALM/STORM显微镜等。[/list]三、生物显微镜的应用领域[list=1][*]生命科学研究:观察细胞结构、分子定位、生物大分子互作等。[*]医学诊断:病理诊断、细胞学检查、病原微生物检测等。[*]环境科学:观察微生物、污染物等环境样品的形态和结构。[*]材料科学:观察纳米材料、复合材料等微观结构和性能。[/list]四、生物显微镜的未来发展趋势[list=1][*]高分辨率与高速成像:随着技术的不断进步,生物显微镜将实现更高的分辨率和更快的成像速度,为生命科学研究提供更多细节和动态信息。[*]多模态成像:将多种成像技术融合到一台显微镜中,如光学、荧光、拉曼等多种模态,以实现对样品的多角度、多层次观察。[*]智能化与自动化:AI和机器学习等技术的发展将推动生物显微镜的智能化和自动化进程,实现自动样品定位、图像分析等功能,提高研究效率和准确性。[*]非线性光学成像:利用非线性光学效应,如二次谐波生成、多光子激发等,实现无标记、无损伤的深层组织成像,为生物医学研究提供新的观察手段。[*]便携式与便携式显微镜:为了满足野外、临床等场景的实时观测需求,生物显微镜将朝着更小巧、便携的方向发展。[/list]总结:生物显微镜作为揭示生命微观世界的利器,在生命科学、医学、环境科学等领域发挥着重要作用。随着科技的不断进步和创新,生物显微镜的分辨率、成像速度和功能将不断提升,为探索生命奥秘提供更多可能性。在未来,我们有理由相信生物显微镜将继续为科学研究和应用领域带来更多的突破和成就。

  • 纤维增强金属层板破裂形貌观测方法

    [align=center] [/align] [font=黑体][back=yellow]引言[/back][/font] [font=宋体]纤维增强金属层板([/font][font='Times New Roman','serif']Fiber Metal Laminates[/font][font=宋体],简称[/font][font='Times New Roman','serif'] FMLs[/font][font=宋体])是一种三明治式的叠层复合材料,由金属层和连续纤维复合材料层交替叠加,并通过树脂粘结而成的新式复合材料。由于[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的结构特点,使其结合了金属和复合材料的优势,即相较于传统材料其具有卓越的比强度、比刚度、高疲劳阻力、耐腐蚀性以及良好的防火性能。这些特性使[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]在航空、航天和汽车等领域得到了广泛应用。特别是其在不同加载条件下的失效形式,更是当前研究热点。本文正是基于此,介绍了借助扫描电镜([/font][font='Times New Roman','serif']SEM[/font][font=宋体])对纤维增强金属层板各组分破裂形貌进行分析。[/font] [align=center][img=,412,237]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446145753_2390_6561489_3.jpg!w412x237.jpg[/img] [/align] [font=宋体]图[/font] 1[font=宋体]纤维增强金属层板结构示意图[/font] [align=center] [/align] [font=黑体][back=yellow]测试方法[/back][/font] [font=宋体]为更好的观测未固化[/font][font='Times New Roman','serif']GLARE[/font][font=宋体]层板各组分失效形式,本章借助捷欧路(北京)科贸有限公司所售的[/font][font='Times New Roman','serif']JSM-IT210[/font][font=宋体](钨灯丝)扫描电子显微镜对铝合金和预浸料断口进行观测。该设备最大放大倍数为[/font][font='Times New Roman','serif']300000X[/font][font=宋体],真空度为[/font][font='Times New Roman','serif']10-650Pa[/font][font=宋体]。此外,由于玻璃纤维的导电性极差,造成纤维断口表面多余电子或游离粒子的累积不能及时导走,继而造成反复出现充电、放电现象,造成图像扭曲或变形等现象。因此,本文借助[/font][font='Times New Roman','serif']JEC-3000FC[/font][font=宋体]设备对预浸料断口进行喷金处理,即在纤维断口表面溅射一个额外的导电薄层材料,从而提升纤维的导电性。[/font] [align=center][img=,354,252]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446253708_8792_6561489_3.jpg!w354x252.jpg[/img][/align] [font=宋体]图[/font] 2[font=宋体]微观观测设备[/font]: (a).JSM-IT210[font=宋体]扫描电镜[/font] (b).JEC-3000FC[font=宋体]离子溅射仪[/font] [font=黑体][back=yellow]测试结果[/back][/font] [font=宋体]下图给出了[/font][font='Times New Roman','serif']2024-T3[/font][font=宋体]铝合金、[/font][font='Times New Roman','serif']W-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-10000[/font][font=宋体]预浸料的微观断口形貌。对于铝合金来讲,断口处显示了一系列的圆形韧窝,这表明铝合金是由正应力导致的韧性失效。而对于玻璃纤维来讲,不论是[/font][font='Times New Roman','serif']WP-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-1000[/font][font=宋体]预浸料,其断口位置的纤维均呈现参差不齐的牙刷状形貌,即典型的拉伸导致的纤维脆性断裂失效形貌。综上所述,[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的各组分材料在试验中的破坏方式为正应力为主导的拉伸破坏行为[/font] [align=center][font='Times New Roman','serif'][img=,382,417]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446362290_802_6561489_3.jpg!w382x417.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif'] 3Nakajima[/font][font=宋体]试验后铝合金和预浸料断口微观照片[/font][/b][/align] [align=center] [/align]

  • 纤维增强金属层板破裂形貌观测方法

    [align=center] [/align] [font=黑体][back=yellow]引言[/back][/font] [font=宋体]纤维增强金属层板([/font][font='Times New Roman','serif']Fiber Metal Laminates[/font][font=宋体],简称[/font][font='Times New Roman','serif'] FMLs[/font][font=宋体])是一种三明治式的叠层复合材料,由金属层和连续纤维复合材料层交替叠加,并通过树脂粘结而成的新式复合材料。由于[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的结构特点,使其结合了金属和复合材料的优势,即相较于传统材料其具有卓越的比强度、比刚度、高疲劳阻力、耐腐蚀性以及良好的防火性能。这些特性使[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]在航空、航天和汽车等领域得到了广泛应用。特别是其在不同加载条件下的失效形式,更是当前研究热点。本文正是基于此,介绍了借助扫描电镜([/font][font='Times New Roman','serif']SEM[/font][font=宋体])对纤维增强金属层板各组分破裂形貌进行分析。[/font] [align=center][img=,690,988]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161356384565_5977_6561489_3.jpg!w690x988.jpg[/img][/align] [font=宋体]图[/font] 1[font=宋体]纤维增强金属层板结构示意图[/font] [align=center] [/align] [font=黑体][back=yellow]测试方法[/back][/font] [font=宋体]为更好的观测未固化[/font][font='Times New Roman','serif']GLARE[/font][font=宋体]层板各组分失效形式,本章借助捷欧路(北京)科贸有限公司所售的[/font][font='Times New Roman','serif']JSM-IT210[/font][font=宋体](钨灯丝)扫描电子显微镜对铝合金和预浸料断口进行观测。该设备最大放大倍数为[/font][font='Times New Roman','serif']300000X[/font][font=宋体],真空度为[/font][font='Times New Roman','serif']10-650Pa[/font][font=宋体]。此外,由于玻璃纤维的导电性极差,造成纤维断口表面多余电子或游离粒子的累积不能及时导走,继而造成反复出现充电、放电现象,造成图像扭曲或变形等现象。因此,本文借助[/font][font='Times New Roman','serif']JEC-3000FC[/font][font=宋体]设备对预浸料断口进行喷金处理,即在纤维断口表面溅射一个额外的导电薄层材料,从而提升纤维的导电性。[/font] [img=,355,1086]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161357550424_2345_6561489_3.jpg!w355x1086.jpg[/img] [font=宋体]图[/font] 2[font=宋体]微观观测设备[/font]: (a).JSM-IT210[font=宋体]扫描电镜[/font] (b).JEC-3000FC[font=宋体]离子溅射仪[/font] [font=黑体][back=yellow]测试结果[/back][/font] [font=宋体]下图给出了[/font][font='Times New Roman','serif']2024-T3[/font][font=宋体]铝合金、[/font][font='Times New Roman','serif']W-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-10000[/font][font=宋体]预浸料的微观断口形貌。对于铝合金来讲,断口处显示了一系列的圆形韧窝,这表明铝合金是由正应力导致的韧性失效。而对于玻璃纤维来讲,不论是[/font][font='Times New Roman','serif']WP-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-1000[/font][font=宋体]预浸料,其断口位置的纤维均呈现参差不齐的牙刷状形貌,即典型的拉伸导致的纤维脆性断裂失效形貌。综上所述,[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的各组分材料在试验中的破坏方式为正应力为主导的拉伸破坏行为[/font] [align=center][font='Times New Roman','serif'][img=,383,1086]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161356523395_3601_6561489_3.jpg!w383x1086.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif'] 3Nakajima[/font][font=宋体]试验后铝合金和预浸料断口微观照片[/font][/b][/align] [align=center] [/align]

  • 【原创】硅片检测显微镜

    光伏产业(太阳能发电产业)在太阳能电池发展了50年后,终于在2004年跨越了历史的分水岭,正式进入了起飞阶段。随着德国政府在2004 年1 月1 日公布再生能源法,将太阳能选为主要的替代能源,以实际措施普及太阳能发电(政府不但补助民间装设太阳能模块,更保证以一定费率购回电力),太阳能电池产业正式进入了需求的迅猛增长期。随着多晶硅,硅片,大阳能电池板工艺的不断发展与提高,光伏产业对硅片质量的检测要求也越来越高。由于国外的光学检测太贵,对非原材料生产厂家是一笔很大的支出,而又需要对进的硅片进行检测,针对这种情况,上海长方光学仪器厂开发了针硅片检测的系统。该系统可以对太阳能电池硅片的”金字塔” 的微观形貌分布情况,及硅片的缺陷分析. (例如:上海长方生产的硅片检测显微镜:CGM-600E) 例如: 硅片检测显微镜可以观察到肉眼难观测的位错、划痕、崩边等 还可以对硅片的杂质、残留物成分分析.杂质包括: 颗粒、有机杂质、无机杂质、金属离子、硅粉粉尘等,造成磨片后的硅片易发生变花、发蓝、发黑等现象,使磨片不合格. 是太阳能电池硅片生产过程中必不可少的检测仪器之一。CGM-600E大平台明暗场硅片检测显微镜是适用于对太阳能电池硅片的显微观察。本仪器配有大移动范围的载物台、落射照明器、长工作距离的平场消色差物镜、大视野目镜,图像清晰、衬度好,同时配有偏光装置,及其高像素的数码摄像头. 本仪器配有暗场物镜,使观察硅片时图像更加清晰,是检测太阳能电池硅片的”金字塔” 的微观形貌分布情况,及硅片的缺陷分析的理想仪器.上海长方光学仪器厂 欢迎致电:021- 68610299

  • 【原创大赛】OPTON的微观世界之 锂离子电池隔膜的显微世界

    [b]概 述[/b]在上期里,我们借助扫描电子显微镜对锂电池负极材料进行了细微结构的表征和组成元素的分析,让我们对于电子显微技术在电池负极材料中的应用有了相应的理解。本期小编继续带领大家了解扫描电子显微镜技术在电池隔膜研究中扮演的角色。在包括锂离子电池的二次电池中,隔膜是不可或缺的重要组分。其作用在于:一、隔膜本身不导电,将电池正极和负极分隔开来,防止电池出现内部短路;二、隔膜具有微观程度上的孔洞结构,利于电极液中离子的传递,保证了充电与放电过程中离子的有效迁移。[b]一、样品制备[/b]小编所选用的样品为聚丙烯(polypropylene,PP)型锂离子电池隔膜,为了了解锂离子电池隔膜的相关结构,小编决定从表面和截面两种状态下进行分析。对样品进行喷金处理后,直接固定在碳导电胶上从而进行平面样品的观测,截面样品的制备同样借助了 Gatan 的氩离子抛光仪(PS:具体制备方法,请查看上期内容,容小编偷个懒)。[b]二、锂离子电池隔膜表面的 SEM 分析[/b]利用ZEISS扫描电子显微镜观察锂离子电池隔膜的表面如图1,与隔膜宏观上光滑的表面不同,放大后可以发现,隔膜表面存在着大量的孔洞结构。将样品进一步放大可以发现,隔膜表面的孔洞孔径介于100至200纳米,且由表面延伸至隔膜内部。[align=center][img]http://img1.17img.cn/17img/images/201706/uepic/aa2d2090-48cf-487c-a28e-c8d9d2c9ee00.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/703c7b92-1727-46f4-ad5d-8c5ef8cb6e9e.jpg[/img][/align][align=center]图1. 锂离子电池隔膜表面的SEM图像[/align][align=center][/align][b]三、锂离子电池隔膜截面的 SEM 分析[/b]锂离子电池隔膜的多孔程度直接影响着电解液的扩散速率,对电池的性能有很大的影响,因此分析隔膜内部的孔洞结构具有重要意义。图2为隔膜的截面扫描图像。由图像可知,采用 Gatan氩离子抛光仪抛光处理过后的表面平整光滑,其相对于普通剪切处理得到的截面更易获得理想的图像。隔膜内部的孔洞相互贯通,并且由隔膜表面延伸至内部。由放大图像可知,隔膜的孔洞是由数十纳米的纤维形成的。[align=center][img]http://img1.17img.cn/17img/images/201706/uepic/1039c11d-ee5d-44a5-9f79-2bd3720c2da3.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/29d75f72-acd6-49f7-b98d-27c8ea7df56c.jpg[/img][/align][align=center]图2. 锂离子电池隔膜截面的SEM图像[/align][b]结 论[/b]通过扫描电镜对隔膜细微结构的分析,可知锂离子电池隔膜的内部存在着大量的无序孔洞结构,孔洞的尺寸在100至200纳米之间。二次电池发展至今,大量新型电池涌现,对于电池隔膜的需求也变得多样,对于功能性隔膜的报道不断发表。具有强大功能和普适性的扫描电子显微镜作为一种直观的、有效的表征手段,将在新型材料的探究中将扮演重要的角色。

  • 解决显微镜被观测物体反光的办法

    被观测物体反光通常会出现在工业显微镜的使用上,一般来说,金属工件都会出现反光的问题。比较常见的是金属表面,焊点,显微镜观察的时候没有光,看不清楚,有光线,反光的现象马上就出现,这个问题很头疼,其实像这样的问题可以很好的解决,那就是运用显微镜上的偏振片,推荐的产品是单筒显微镜+CCD+环型光源+偏振片,通过减弱光线的锐度减少反光,同样也可以调整光照的角度和亮度来调整反光的角度。不同产品的反光解决方法是不一样的,比如金属表面,我们可以使用偏振片,焊点我们可以使用不同的光源也就是更换光照角度,还有就是使用同轴光,等等的方法。

  • 免维护气象观测系统规格型号

    免维护气象观测系统规格型号

    免维护气象观测系统规格型号气象观测系统可以实时探测气温、湿度、气压、风速、风向、降雨量、紫外线、辐射等气象信息,可以通过网络实时观测气象数据。以下是气象观测系统的工作原理、硬件基本配置、观测的主要地面气象要素和技术特点。[img=气象观测系统,500,500]https://ng1.17img.cn/bbsfiles/images/2022/03/202203310906248443_5631_4136176_3.jpg!w690x690.jpg[/img]随着气象监测技术的不断进步,气象观测系统已广泛应用到各类型气象台站和各种气象科研场景。气象观测系统通过气象观测,为天气预报、气象观测、气候分析和科学研究提供重要依据。根据气象观测项目的不同,气象观测可分为地面气象观测、高空探测和专业气象观测三类。气象观测系统对地面气象的观测比人工观测所获取的气象数据更加便捷,气象要素观测的代表性、准确性和及时性都有所提高,减轻了气象测报的工作量,更好得反映出大气近地面层的真实状况。[img=气象观测系统,500,500]https://ng1.17img.cn/bbsfiles/images/2022/03/202203310905204949_2091_4136176_3.jpg!w690x690.jpg[/img]气象观测系统的各项仪器在使用过程中容易受空气中的灰尘覆盖,从面影响观测数据的准确性,因此气象观测系统室内外各项仪器必须定期清洁。如清除温湿度表的外表灰尘,清洁温湿度感应器的头部保护滤膜,防比灰尘堵塞金属网孔,清除蒸发传感器金属网上的水垢和赃物,用湿布擦洗百叶箱,一星期更换一次湿球纱布,擦拭室内外计算机、户外显示器、自动采集器等设备以确保气象观测系统观测的准确度。气象观测系统的各项感应器,各种电缆设于观测场的室内外,观测场的环境变化会自接影响仪器的灵敏性,所以要注意维护自动观测站场地的环境。

  • 有机透明薄膜的观测问题

    我要观察的是厚度约为数十微米的PE透明薄膜(表面附有一个微米左右厚度的硅层)的表面情况。我用的是Zeiss EVo-18电镜,在喷金与不喷的情况下都无法得到清晰的图像,甚至无法看到任何围观结构。请问这类薄膜在制样、观测参数的设置中需要注意什么才能得到清晰图像?

  • 国产光学显微镜龙头企业入局电镜赛道:台式电镜产品正推向市场

    2月8日,有投资者在互动平台向麦克奥迪(SZ300341)提问:“你好,请问贵公司有生产电子显微镜产品吗?”[color=#0070c0][b]麦克奥迪表示,公司目前有台式电镜产品正逐步推向市场。[/b][/color]据麦克奥迪MOTIC全系列显微镜的河南省总代理消息显示,[size=18px][b]“[/b][/size]麦克奥迪(Motic)发布了最新研发的台式扫描电镜(Scanning Electron Microscope,简称SEM),这一突破性的技术为科研工作者和工业界带来了更高效、更精准的微观观测解决方案。这款新型台式扫描电镜采用了先进的电子光学技术和图像处理算法,实现了高分辨率和高灵敏度的观测。相较于传统的扫描电镜,新款台式扫描电镜具有更高的稳定性和耐用性,能够满足长时间连续观测的需求。麦克奥迪的台式扫描电镜在设计上充分考虑了用户体验,其简洁直观的操作界面和智能化的功能设置使得用户能够快速上手。此外,该电镜还支持多种样品台,适用于各种不同类型的样品观测。该产品的推出对于科研和工业领域具有重要意义。在生命科学领域,研究人员可以利用台式扫描电镜观察细胞和组织的细微结构,深入了解生命过程的奥秘。在医学领域,医生可以利用该设备进行病理诊断和药物研发,提高疾病诊断的准确性和治疗的有效性。在材料科学和工程领域,研究人员可以利用台式扫描电镜观察材料的微观结构和性能,为新材料的研发和应用提供有力支持。麦克奥迪的台式扫描电镜以其卓越的性能和广泛的应用前景,将为科研和工业界带来更多的创新和突破。我们期待这款产品能够在未来的科学研究、工业生产和科技进步中发挥更大的作用。[size=18px][b]”[/b][/size][align=center][img=company_pic.jpg]https://img1.17img.cn/17img/images/202402/uepic/d276a930-c505-4c89-99af-d1c1ec906276.jpg[/img][/align]记者从麦克奥迪官网(MOTIC)获悉,麦克奥迪实业集团有限公司始创于1983年,目前系北京亦庄投资控股有限公司混改所有制企业、深证交易所创业板上市公司麦克奥迪(厦门)电气股份有限公司100%全资控股的企业集团。主要从事光学显微镜的研发、生产和销售,主要产品以数码显微镜、显微图像集成系统和自动显微镜为代表。三大类型产品包含近百个型号,主要包括MOTIC、SWIFT、NATIONAL、CLASSICA等品牌。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【转帖】光学显微镜原理应用及维修

    一、 光学显微镜的发展历史  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展做出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。  目前全世界最主要的显微镜厂家主要有:蔡司、徕卡、奥林巴斯、尼康。国内厂家主要有:麦克奥迪、江南、重庆光电、奥特光电等。二、 显微镜的基本光学原理(一) 折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二) 透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称”焦点”,通过交点并垂直光轴的平面,称”焦平面”。焦点有两个,在物方空间的焦点,称”物方焦点”,该处的焦平面,称”物方焦平面”;反之,在像方空间的焦点,称”像方焦点”,该处的焦平面,称”像方焦平面”。  光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三) 凸透镜的五种成像规律1. 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;2. 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;4. 当物体位于透镜物方焦点上时,则像方不能成像;5. 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。三、 光学显微镜的成像(几何成像)原理  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’。为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率。  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率 ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节。  在观测视角小于1’的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。(一)放大镜的成像原理  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y’的虚像A’B’。放大镜的放大率Γ=250/f’式中250--明视距离,单位为mmf’—放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 。。。。。。。。。。。。。。 [URL=http://www.microscopeline.com/art.asp?id=252&did=56]...........[/URL]资料来源[URL=http://www.microscopeline.com]显微在线[/URL]

  • 【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    http://ng1.17img.cn/bbsfiles/images/2011/03/201103062216_281178_2193245_3.jpg英研制分辨率最高光学显微镜 可观测50纳米物体  英国曼彻斯特大学科学家近期研制出了世界上分辨率最高的光学显微镜,能够观测50纳米大小的物体。这是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。  他们的成果发表在最新一期的《通信与自然》杂志上。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。(注:1微米等于1000纳米)  这项成果的核心是利用物体发散出的一种逐渐消失的“隐失波”。顾名思义,“隐失波”是一种逐步消失的光波,但很重要的是,它不受限于光的衍射极限,所以如果我们能捕捉住这种光,就很有希望观测到比传统成像办法高清许多的图像。曼彻斯特大学科研人员在“透明微米球透镜”的帮助下,收集到“失波”并把它转到传统显微镜,这样科学家用肉眼就可看到通常需要其它间接方法才能观测到的细微之处,譬如通过原子力显微镜或扫描电子显微镜观测。  曼彻斯特大学激光加工研究中心的李琳教授认为,这项技术在生物学研究方面的应用前景广阔,特别是对细胞、细菌甚至是病毒的研究。  李琳教授表示:“目前应用于生物学研究领域的显微镜技术特别费时,举个例子,如果我们用荧光显微镜进行观测,需要花两天时间准备一个观测所需的样品,而这些准备好的样品只有10%到20%有用。因此,直接观察细胞技术的引进将能带来潜在的收益。”

  • 分享:原子力显微镜及在膜科学研究中的应用

    摘 要 随着科学技术的进步,新型的观测仪器的出现为研究提供了先进的手段。本文关注于原子力显微镜,其基本的探测原理及在膜科学技术中的应用,由于原子力显微镜具有空前的高分辨率,为其在膜的表面形态与结构等的观测方面开启了一扇新的大门。关键词 原子力显微镜;膜科学与技术;应用

  • 【光学】想了解显微镜必读篇----基础知识!

    一、 光学显微镜的发展历史  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。  目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。二、 显微镜的基本光学原理(一) 折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二) 透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。   当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面"。   光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三) 凸透镜的五种成象规律1. 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象; 2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;4. 当物体位于透镜物方焦点上时,则象方不能成象;5. 当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。三、 光学显微镜的成象(几何成象)原理  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。  在观测视角小于1'的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。

  • 手持数码显微镜有哪些特点

    手持数码显微镜有哪些特点?手持式数码显微镜也叫便携式数码显微镜,顾名思义是一种小巧便携的微型显微镜产品,显微镜可以将显微镜看到的实物图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。手持式显微镜深受消费者的喜爱,它的轻巧便捷是其它显微镜无法超越的,相对于传统光学显微镜它可以提供完美的解决方案让检测工作现场化,高效化。那么,手持数码显微镜有哪些特点?第一、体积小,便于携带,特别适合移动检测、现场检测,大小重量只有普通光学显微镜的1/10,突破传统显微镜使用空间的局限性。第二、观测物体可以将显微放大的图像直接显示在屏幕上,便于观察,而且可以实时拍照、录像,记录检测数据,极大的提高了检测效率。第三、在显微图像软件处理上,可以根据使用需求实现画面反色、黑白、倒置、对比等画面调节功能,同时还可以对显微图像进行数据测量(长度、角度、直径等),最高精度达0.001mm。第四、手持式显微镜可以连接多种显示设备(电视、电脑、投影),便于多人同时分享、讨论,数码教学等。第五、提供多种供电选择,电脑USB供电、干电池供电、锂电池供电,真正实现随时随地,现场检测!第六、根据观察物体及使用环境的的不同,可以提供多种光源(荧光、红外等),最大限度满足使用需求!文章转载于网络更多文章资讯:奥林巴斯显微镜(http://www.microimaging.com.cn/)

  • 从芝麻粒和头发丝来说扫描电子显微镜

    扫描电子显微镜是纳米材料科学研究中重要的仪器设备,实现对微观材料和粒子的结构和形貌观测。但是此类设备对于普通大众来说难以接触和了解,因此本作品通过生活中的小芝麻和细发丝为测试样品,结合国产仪器,展示扫

  • 【转帖】2009世界显微摄影大赛前十作品:微观世界的奇迹(图)

    【转帖】2009世界显微摄影大赛前十作品:微观世界的奇迹(图)

    国际在线专稿:据美国《国家地理》杂志10月8日报道,2009年2009世界显微摄影大赛获奖名单现已揭晓,数码技术和新微观技术的应用,让微观爱好者和科学家看到最难以置信的美丽和奇迹。以下是获得该大奖的前十名图片:  1.植物生殖器官[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175055_2961690_3.jpg[/img]  这是一张被显微镜放大了20倍的雄株芥末类植物的生殖器官,摘走了2009年尼康微观世界摄影大赛的桂冠。拟南芥是第一种完成全部基因组序列测定的高等植物,也是最常用于科学研究的植物,但这种植物此前却从未展示过艺术美感。2.续断菊花茎[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175056_2961690_3.jpg[/img]  这是一张续断菊花茎部的横截面图片,续断菊是乡间最常见的一种黄色野花。摄影师格雷德冈瑟说:“续断菊毛状物的红帽与绿白相间花茎之间的强烈对比,令我感到战栗。”这张图片是在被放大150倍拍摄的,显示出自然界的神奇。3.光刻胶[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175057_2961690_3.jpg[/img]  光刻胶是工业生产中常用的感光材料。在200倍显微镜下,看起来非常美丽,就像太阳用其庞大热能温暖着地球。4.卵巢螺旋[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175058_2961690_3.jpg[/img]  这是一个发育中的卵子,在琵琶鱼的卵巢中做螺旋式移动。摄影师在卵巢壁上加了颜色,看起来特别明显。这幅图既有其艺术美感,又具有科学价值,可以证明卵巢和卵子的结构。5.可爱的海星[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910100959_175059_2961690_3.jpg[/img]  这幅图是一只饥饿的小海星正张开嘴,用透明的管状肢体抓住微生物吃。这张图片是在放大40倍情况下拍摄的,小海星刚刚进入青年期。颜色对比和管状肢体的动感是这幅图入选的主要因素。6.鱼鳞[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175060_2961690_3.jpg[/img]  在参加以色列兽医协会实践时,兽医哈维萨尔法拍摄到了一条七彩神仙鱼的鱼鳞。这幅图是在20倍显微镜下拍摄的,可以看到鱼鳞的美丽结构和颜色。7.香毛簇[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175061_2961690_3.jpg[/img]  放大了450倍的头发,就像长发绺飘扬。这种结构被称为香毛簇,人类肉眼看不见。8.彩色纤维[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175062_2961690_3.jpg[/img]  这是在200倍显微镜下的彩色棉花纤维,不仅可以看到其大小、形状,还能检验出棉花的质量。9.美丽岩石[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175063_2961690_3.jpg[/img]  意大利帕多瓦大学地质学者伯纳多凯撒晃动滤光器、瞄准镜以及不断变换方向,才拍摄到这张辉长岩的微观图片。这些岩石没有特别的科学意义,但里面有很多微小的橄榄石,看起来非常美丽。10.藻类共存[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101000_175064_2961690_3.jpg[/img]  在这张硅藻和红藻的照片中,有机体与健康生态系统之间的联系被以微观形式表现出来,各种生命形态需要互相依赖才能生存。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 求购在位观测金相显微镜

    实验室想添置一套在做实验时能随时观测表面裂纹的在位观测系统,并且镜头离观测表面距离得保证能在1mm以上 要不没法装 不知道谁有这方面的信息可以给小弟推荐一下 不胜感激http://simg.instrument.com.cn/bbs/images/default/em09506.gif

  • 萤光显微镜介绍

    在萤光显微镜上,必须在标本的照明光中,选择出特定波长的激发光,以产生萤光,然后必须在激发光和萤光混合的光线中,单把萤光分离出来以供观察。因此,在选择特定波长中,滤光镜系统,成为极其重要的角色。    萤光显微镜原理:    光源:光源辐射出各种波长的光(以紫外至红外)。    (B) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。    (C) 萤光标本:一般用萤光色素染色。    (D) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。 以紫外线为光源,使被照射的物体发出荧光的显微镜。电子显微镜是在1931年在德国柏林由克诺尔和哈罗斯卡首先装配完成的。这种显微镜用高速电子束代替光束。由于电子流的波长比光波短得多,所以电子显微镜的放大倍数可达80万倍,分辨的最小极限达0.2纳米。1963年开始使用的扫描电子显微镜更可使人看到物体表面的微小结构。    显微镜被用来放大微小物体的图像。一般应用于对生物、医药、微观粒子等观测。   利用微微动载物台之移动,配全目镜之十字座标线,作长度量测。   利用旋转载物台与目镜下端之游标微分角度盘,配全合目镜之址字座标线,作角度量测,令待测角一端对准十字线与之重合,然后再让另一端也重合。   利用标准检测螺纹的节距、节径、外径、牙角及牙形等尺寸或外形。   检验金相表面的晶粒状况。   检验工件加工表面的情况。   (6)检测微小工件的尺寸或轮廓是否与标准片相符。

  • 【原创大赛】材料显微分析技术简介——第一篇 神奇的二次电子

    【原创大赛】材料显微分析技术简介——第一篇 神奇的二次电子

    材料显微分析工作不仅限于通过显微镜等设备对材料的微观形貌进行拍摄,还包括了对所拍摄到的微观图像进行分析。对这些数据的分析工作要求我们一定要考虑到:对样品自身背景、取样方法、制样工艺、拍摄条件以及接收信号种类对测试结果的影响。对电镜原理及分析技术的理解不仅可以让我们得到漂亮美观的显微图像数据,可以帮助我们挖掘到很多关于材料本身的信息。我们知道扫描电镜对样品的微观信息进行分析,有各种个样的成分信息。比如背散射电子、二次电子、背散射电子衍射花样、阴极荧光、特征X射线、韧致辐射X射线等等。[align=center][img=,690,329]http://ng1.17img.cn/bbsfiles/images/2017/07/201707310824_01_1735_3.jpg[/img][/align][align=center]图1、 不同二次电子的特征及产生机理示意图[/align]拿二次电子衬度形貌的分析来举例如图1所示,二次电子在扫描电子显微镜中主要分三大类:第一类是一次二次电子SE1,主要是由入射电子与样品极表面(几纳米的深度)相互作用而产生的,它的产率受入射电子束方向与样品表面夹角的影响,因此体现的是样品的形貌衬度;第二类是二次二次电子SE2,主要是由入射电子束在材料机体内发生弹射后又从电子束进入材料的入射点周围及附近弹出时,与材料表面相互作用而引起的,它的产率受材料主体成分及材料晶体取向的影响,因此体现的是材料成分信息及材料晶体取向信息(一般情况下SE1信号在材料的观测中为主要衬度,只有在SE1衬度极弱的条件下,SE2信号的衬度才可以被我们观察到);第三类是三次二次电子SE3,主要是由电镜样品舱内或物镜极靴或样品台与弹射出样品的背散射电子作用而产生的,它一般是作为噪音来被二次电子探测器接收到的,这类信号越多,电镜拍摄到的图像衬度越差。[align=left][b]SE2二次电子的应用[/b][/align]我们都知道一般SE1二次电子用来观测图像的形貌衬度,而把SE2或SE3当做噪音来看待,但是随着制样工艺及电镜表征技术的发展,SE2二次电子信号也可以被我们用来分析材料的微观结构信息,如下图粉末颗粒截面:[align=center][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2017/07/201707310824_02_1735_3.jpg[/img][/align][align=center]图2 电极材料截面形貌观测[/align][align=center][/align][align=left]我们可以观测,当通过氩离子束抛光把样品表面抛的绝对平的时候,SE1的形貌衬度在图中样品的平面部位的衬度就很弱,因此反应晶体取向衬度的SE2信号就被我们观察到了,图像中颗粒截面的这种亮暗不同是由不同 取向的晶粒造成的,通过它我们可以很直观的看到样品的晶粒度(亮暗区域的大小)、晶体取向差(亮暗灰度绝对值)。对我们研究新材料的性能及合成工艺有很大的帮助。[/align][align=center][/align]

  • 【资料】显微镜分析系统在炭黑检测中的应用

    用显微图像分析法测定聚烯烃管材、管件和混配料中颜料或炭黑分散度(符合GB/T 18251-2000国家标准)·········l 显微分析系统及试验方法介绍:一.实验方法1.从管材、管件或粒料上取少量样品压在载玻片之间并加热制备试样,也可以使用切片机切片制备试样。2.依次将六个试样放在显微镜下,经过摄像采集设备在计算机上显示图像,通过软件的操作计算机自动给出测定粒子和粒团的尺寸及试样等级确定表(国家标准)。注:分散的尺寸等级由六个试样等级的平均值来确定。二.配置介绍:1. 三目显微镜2. 高清晰JVC摄像头3. 高性能图像采集卡4. 显微分析软件显微分析系统BM19A-UV实物图片 实验主要仪器:a) 显微镜: 三目XSP-BM19A显微镜,带有校准的正交移动标尺,能够测量出粒子和粒团的尺寸;b) 软件系统:计算机硬件设备一套,观测粒子或粒团的尺寸分布及外观分布的显微分析软件UV一套;c) 载玻片:厚度约1mm的载玻片,小刀,弹簧夹;d) 切片机:能够切出规定厚度的薄片;e) 加热设备:烘箱、热板等,可在150℃~210℃之间的控制温度下操作;f) 图像采集设备:JVC摄像头TK-C1021EC、三目显微镜摄像接口MCL 、显微镜图像采集卡SLG-V110。试样制备:本标准规定了两种试样制备方法:压片法和切片法。制备好的试样应厚度均匀,用于测定颜料分散的试样厚度至少为60μm,用于测定炭黑分散的试样厚度为25μm±10μm。压片方法:用小刀沿产品的不同轴线在不同部位切取六个试样。测定颜料分散时,每个试样质量大于0.6mg;测定炭黑分散时,每个试样质量为0.25mg±0.05mg。把六个样品放在一个或几个干净的载玻片上,使每一试样与相邻的试样或载玻片边缘近似等距排放,用另一干净的载玻片盖住。可以使用金属材料或其他材料制成

  • 自动气象观测系统校园气象站六要素

    自动气象观测系统校园气象站六要素

    自动气象观测系统校园气象站六要素自动气象观测系统可以自动检测多个气象要素而无需人工干预,自动定期生成气象数据,并将检测到的数据传输到电脑平台,起到便利了解环境状况的好处。自动气象观测系统由多种气象要素传感器,微机气象数据采集设备,电源系统,辐射防护罩,全天候保护箱,气象观测支架,通讯模块等组成。可以应用在多种场景环境中,例如输变电线路,光伏发电站,智慧灯杆,环保生态园区,水利水文,森林景区,交通道路,校园科普和农业。结合应用场景的现状,自动气象观测系统可以搭配适合的气象要素传感器,例如风速,风向,降雨量,温度,空气湿度,光度,土壤温度,土壤湿度,蒸发和大气压力。[img=自动气象观测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206200911032538_6416_4136176_3.jpg!w690x690.jpg[/img]自动气象观测系统形状可以分为一体化自动气象观测系统和分体式自动气象观测系统两大类。可以通过外形结构清楚的做出辨别。一体化自动气象观测系统通过集成多种气象传感器在结构内,具有简洁美观,维护方便的特点,能够应用在大多数的气象监测环境中。分体式自动气象观测系统则是在气象支架上分别安装气象传感器,整体结构显得与现场环境不协调,使用寿命也比较短。绿光新能源具备大量的一体化自动气象观测系统和分体式自动气象观测系统应用案例,可以提供专业的自动气象观测系统安装维护建议,准确监测环境气象变化数据。[img=自动气象观测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206200911389691_5499_4136176_3.jpg!w690x690.jpg[/img]

  • 【原创大赛之】“聚焦微观世界、展现微观风采”显微镜照片征集活动开始啦!!!

    一滴水折射整个世界  显微玻片方寸之间更有无限缤纷  显微镜是我们工作的战友,生活的伙伴……  透过显微镜的世界究竟会多么绚烂多姿,赶快记录下来这份方寸之间的精彩吧~~  为了促进各版友间技术交流与合作,推动显微镜实验的发展,用艺术思想与科学方法展现微观世界,特在第三届原创大赛同期在显微镜板块举办以“聚焦微观世界、展现微观风采”为主题显微摄影大赛活动。希望从事显微学的工作者、爱好者及在校学生积极参加。  活动时间:2010年11月12日-12月31日  参赛方法   在相应版面中以主题帖形式发表,标题中注明:【第三届原创聚焦微观】即可参赛  参赛要求  1. 作品必须为显微镜(主要包括光学显微镜、透射电镜、扫描电镜、扫描探针显微镜、共聚焦显微镜)拍摄的图像,所用设备的品牌不限。  2. 参赛作品须为参赛选手本人亲自拍摄。不得使用他人作品参赛。  3. 如参赛作品为多名作者,须在提交作品时注明。  4. 参赛作品黑白、彩色不限,彩色尤佳。  5. 为了促进同行技术交流,提交作品时请注明参赛作品的制作描述,例如:样品类型,制作方法,仪器型号;拍摄参数,拍摄过程中的心得等,字数不少于500字。  7. 参赛作品图片大小允许最大为:,允许的格式为:。  评选标准  1. 科学性:样品有独特性、创新性,图片表露信息的丰富性。  2. 艺术性:图像的美观和视觉效果,构图和造型,尺度和比例等。  3. 技术性:样品制备的难度及获取图像的难度,成像质量和成像技术及后期处理方法等。  活动奖励:  1.参赛作品可与其他第三届原创大赛作品一同享受原创大赛所有奖励措施,可以每月参加原创评奖,同时只要参赛者均可参加原创大乐透抽奖,每篇原创作品可获得一次抽奖机会哦~~~  2.活动结束后将将评出【最佳艺术奖】、【创新科学奖】、【技术大亨】三项奖项各一名,更有神秘奖品奖励哦~~~快和自己的显微镜伙伴一同去探索、发现着美丽的微观世界吧~~

  • OPTON的微观世界|第3期 揭开“财富”之谜 ——显微技术在钞票防伪中的应用

    OPTON的微观世界|第3期 揭开“财富”之谜 ——显微技术在钞票防伪中的应用

    前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_01_3001042_3.jpg新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。1. 2009版100元美刀的制样及观察范围http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_02_3001042_3.jpg2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。2. 微观形貌结构对比http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_03_3001042_3.jpg蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。3. 高倍形貌-元素分析http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_04_3001042_3.jpg有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:http://ng1.17img.cn/bbsfiles/images/2017/02/201702211620_01_3001042_3.jpg微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。三、后记http://ng1.17img.cn/bbsfiles/images/2017/02/201702211620_02_3001042_3.jpg蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等······极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。

  • 金相显微镜分析材料显微组织应注意的若干特性

    分析材料显微组织应注意的若干特性 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。 1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等; 2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等; 3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征; 4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要; 5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点; 6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制