异丙烯基苯并咪唑酮标

仪器信息网异丙烯基苯并咪唑酮标专题为您提供2024年最新异丙烯基苯并咪唑酮标价格报价、厂家品牌的相关信息, 包括异丙烯基苯并咪唑酮标参数、型号等,不管是国产,还是进口品牌的异丙烯基苯并咪唑酮标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异丙烯基苯并咪唑酮标相关的耗材配件、试剂标物,还有异丙烯基苯并咪唑酮标相关的最新资讯、资料,以及异丙烯基苯并咪唑酮标相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

异丙烯基苯并咪唑酮标相关的资料

异丙烯基苯并咪唑酮标相关的论坛

  • 【资料】液相色谱串联质谱法测定饲料中8种苯并咪唑类药物

    【资料】液相色谱串联质谱法测定饲料中8种苯并咪唑类药物

    液相色谱串联质谱法测定饲料中8种苯并咪唑类药物摘 要 建立了同时测定饲料中8种苯并咪唑类药物(噻苯咪唑、丙硫咪唑、硫苯咪唑、苯硫氧咪唑、氟苯咪唑、甲苯咪唑、丙氧苯唑和三氯苯唑)的液相色谱串联质谱分析方法。饲料样品直接用酸化乙腈提取,提取液用甲酸溶液稀释后直接进行分析。分析时采用XBridgeTM C18色谱柱,以甲酸溶液-乙腈体系进行梯度洗脱,MRM方式测定,基质外标法定量。苯并咪唑类药物在0.02~10 mg L-1浓度范围内呈良好的线性,线性相关系数均大于0.990,苯并咪唑类药物在饲料样品中最低检测限为2.1~63.0μg/kg。饲料中苯并咪唑类药物在0.50~200 mg/L范围内的回收率为84.0%~104%之间,相对标准偏差(RSD)均小于10%。 关键词 苯并咪唑类药物;液相色谱串联质谱法;饲料 苯并咪唑类药物(benzimidazoles, BMZs)属于广谱、高效、低毒抗蠕虫药,由于对胃肠线虫具有很强的驱杀作用,至今仍在广泛使用。但由于BMZs在实验动物和靶动物显示致畸和致突变作用,目前使用的BMZs多数是食品残留中重要的监控对象,且BMZs在体内转化的代谢产物仍具有毒理作用,所以我国以及联合国粮农组织、欧盟、美国、日本等国家和组织都将苯并咪唑类药物列入限制使用的兽药药物,并制订出各种苯并咪唑类药物在不同动物体内(肌肉、组织、奶等)的最高残留限量。饲料安全直接关系到动物性食品的安全,考虑到苯并咪唑类药物经常被添加到饲料中使用,故很有必要进行饲料中苯并咪唑类药物的分析研究。 目前对于动物组织中苯并咪唑类药物的分析方法较多,而饲料中苯并咪唑类药物分析方法国内未见发表,国外也较少,涉及的种类也较少,最多的仅有5种药物。动物组织和饲料中BMZs分析涉及的主要分析手段有:酶联免疫吸附法( ELISA) 、气相色谱-质谱法(GC-MS)、高效液相色谱法(HPLC)及高效液相色谱串联质谱法(HPLC-MS/MS),高效毛细管电泳法(HPCE)。考虑到苯并咪唑类药物在我国使用情况,本研究选择了8种常用苯并咪唑类药物,考虑到LC-MS/MS法灵敏度高的特点,样品酸化乙腈提取后直接稀释后进行液相色谱串联质谱分析。1 材料与方法1.1 仪器与试剂 Waters 2695 Quattro MicroTM API高效液相色谱串联质谱仪(美国Waters公司),配置电喷雾离子源;固相萃取仪(美国Supelco 公司);Sigma离心机。噻苯咪唑和丙硫咪唑标准品(Accustandard 公司);硫苯咪唑、苯硫氧咪唑、氟苯咪唑、甲苯咪唑、丙氧苯唑和三氯苯唑标准品(Dr. Ehrenstorfer)。乙腈、二甲亚砜和甲酸为色谱纯(Fisher公司)。1.2 仪器条件 XBridgeTM C18色谱柱(150 mm×2.1 mm,内径3.5 μm);流动相A为0.1%甲酸溶液,B相为乙腈,梯度洗脱条件:B相在1.0 min内从15%线性增加到25%,再在2.5 min内线性增加到95%,保持3.5 min,然后在0.1 min内降至15%,保持4.9 min;流速:0.3 mL/min;进样量:10 µL;柱温:30℃。 质谱条件:ESI源正离子模式电离;多反应监测(MRM);毛细管电压:3.0 KV;萃取锥孔电压:20 V;RF透镜电压:0.5 V;离子源温度:110 ℃;脱溶剂气温度:350 ℃;锥孔气流速:50 L/h;脱溶剂气流速:600 L/h;倍增器电压:650 V;二级碰撞气:氩气;其它条件详见表1。http://ng1.17img.cn/bbsfiles/images/2010/11/201011301506_262957_1759541_3.jpg1.3 样品处理 称取2g试样(精确到0.01g)于50 mL离心管中,加入20 mL0.5 %甲酸乙腈,涡旋1 min,然后超声提取10 min,以5000 r/min的速度离心5 min后吸取1.0 mL上清液于5 mL刻度试管中,加入3 mL0.1 %甲酸溶液于试管中,混匀后过0.22 μm滤膜,进行液相色谱串联质谱分析。1.4 线性实验 准确称取各10.0 mg BMZs标准品于相应的10mL容量瓶中,噻苯咪唑、甲苯咪唑、丙氧苯唑和丙硫咪唑用二甲亚砜溶解并定容至刻度,其余4种BMZs用甲醇:二甲亚砜(2:3 v/v)溶解并定容至刻度,即得均为1000 mg/L标准储备液。分别吸取1.0 mL各标准储备液于同一10mL容量瓶中,用甲醇稀释至刻度,即得100 mg/L的混合标准工作液。分别准确移取苯并咪唑类药物混合标准中间液适量,配制浓度为0.2.、0.8、2.0、10.0、40.0和100.0 mg/L的系列标准溶液,吸取0.1 mL于5 mL刻度试管中,再吸取空白试料提取液0.9 mL于该5 mL刻度试管中,加入3 mL0.1%甲酸溶液后混匀过膜,进行上机测定,以定量离子对峰面积为纵坐标,标准溶液浓度为横坐标,绘制基质校准标准曲线。2 结果与分析2.1 液相色谱质谱分析 苯并咪唑类药物色谱分析时,通常采用反相分离体系,主要有三类流动相体系:离子增强体系,pH2~3,一般使用乙腈-磷酸或磷酸盐体系;离子抑制流动相体系,pH5~7;离子对流动相体系,离子增强流动相中加入阴离子对试剂。对于多组分苯并咪唑类药物液相色谱质谱分析时,通常采用离子增强体系进行梯度洗脱,如0.1%甲酸溶液-乙腈体系,因为该体系和纯水-乙腈体系相比色谱峰的拖尾现象得到了明显改善。 苯并咪唑类药物属弱碱性物质,中等极性,在酸性条件下很容易质子化,于是本方法选择ESI+进行分析。以乙腈/0.1%甲酸溶液(3:7,v/v)为溶解液,用蠕动泵(20μL/min)对苯并咪唑类药物的质谱条件进行优化。经过优化的条件为:毛细管电压:3.0KV;离子源温度:110℃;脱溶剂气温度:350℃;锥孔气流速:50L/h;脱溶剂气流速:600L/h。其它条件详见表1。2.2 提取净化方法的选择和优化 [font=宋体

异丙烯基苯并咪唑酮标相关的方案

  • 化妆品中苯基苯并咪唑磺酸的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • 化妆品中苯基苯并咪唑磺酸等15种防晒剂的测定
    本文建立了 化妆品中 苯基苯并咪唑磺酸等 15种防晒剂 测定的 HPLC方法。参照 化妆品 安全技术规范( 2015版) 中的色谱条件 并 对梯度进行优化 ,采用色谱柱 ShimNex CS C18 对 苯基苯并咪唑磺酸等 15种防晒剂 进行 分析 结果显示各组分峰形和重现性良好,分离度 均 大于 1.5 满足检测 要求。 此方法可 为苯基苯并咪唑磺酸等 15种防晒剂 的测定 提供参考。
  • 岛津:聚苯并咪唑基质子交换膜的显微红外分析
    由原位混合和共混两种方法制得磺化聚醚醚酮(SPEEK)和聚苯并咪唑(PBI)共混膜。用FTIR显微红外分析共混膜中两种聚合物的混合状态,分析结果表明用原位混合方法制得的膜形成了盐结构,而用共混方法并未得到此结构,并通过改变一系列光阑尺寸、大小进行分析,得到PBI与SPEEK在共混膜中的分布状况。

异丙烯基苯并咪唑酮标相关的资讯

  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之六:氘代咪唑与苯并咪唑类抗菌药物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技陆续推出了五期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的咪唑与苯并咪唑类抗菌药物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。部分咪唑与苯并咪唑类抗菌药物:了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 集美大学陈全胜教授团队食品顶刊综述: 基于纳米材料的光学传感器检测食品中苯并咪唑类杀菌剂的研究进展
    Introduction苯并咪唑类杀菌剂(BZD)是一类含有苯并咪唑环的内吸性杀菌剂。最常用的BZDs有苯菌灵、多菌灵(CBZ)、甲基硫菌灵(TPM)、噻菌灵(TBZ)、麦穗宁(FBZ)等。在现代农学中,BZDs广泛用于预防水果、蔬菜和其他作物的真菌病害,用于采前和采后处理;此外,它们还被用作广谱的驱虫药物,用于预防和治疗食源性动物体内寄生虫。因此,许多国家和国际权威机构都实施了严格的监管。 最近,基于纳米材料的光学技术,如比色、荧光和SERS技术,通过开发分析纳米技术在农药检测中的潜力,已经成为基于色谱技术一种替代方法。本文综述了近六年来基于纳米技术的光学传感器在水、食品和农产品中BDZ残留检测方面的研究进展。本研究特别强调了比色、荧光、SERS及其集成系统,为当前BZDs的检测现状提供了广泛的覆盖面。基于纳米材料的光学方法用于检测BDZ杀菌剂的示意图如图1所示。 图1 用各种光学方法检测BDZ的不同纳米材料及其综合方法的示意图 基于纳米材料的信号增强策略纳米材料在研究领域被广泛用于促进传感器的修饰。纳米材料由于其独特的性质,如表面修饰,生物相容性,表面等离子体共振,消光系数,催化活性等,可以提高不同传感器的检测效率。一般来说,信号增强的效果主要是因为来自大表面积的强吸附显示出优异的特异性,以及纳米材料的高电子转移速率,从而提高了不同传感器的传感效率。 基于纳米材料的光学传感器迄今为止,已经利用基于纳米材料的光学传感器构建了不同的BDZ传感技术。光学传感器在BDZ的现场检测方面具有很大的潜力和广泛的用途。图2是BDZ在基于纳米材料的光学传感器,特别是比色荧光和SERS及其集成系统的所有已发表论文的总结。图2 柱状图为基于纳米材料的比色(A)、荧光(B)和SERS(C)传感器检测BDZ杀菌剂的发展和发表论文情况比色传感器基于纳米材料的比色传感器因其对包括重金属、农药、真菌毒素、有毒细菌、生物标志物等在内的许多分析物的灵敏和选择性响应而受到了极大的关注。表面等离子体共振(SPR)是纳米材料的一个重要特征,由于纳米材料的聚集或分散,与分析物相互作用后,在可见光区域显示出明亮的颜色变化,并与分析物产生明显的线性或非线性关系。通常,有两种策略可用于制备基于比色的传感器:I)催化或结构变化引起的颜色变化;II)纳米粒子的形态转变或聚集。比色传感器中比色响应的方案如图3所示。表1是基于纳米材料的比色传感器检测食品中BDZ的研究结果。图3 比色传感器的比色响应表1 基于纳米材料的BDZ比色传感器荧光传感器荧光传感器的基本原理是荧光团或纳米粒子产生的光的发射,从激发态返回到基态。表2是基于纳米材料的荧光传感器检测食品中BDZ的研究结果。表2 基于纳米材料的BDZ荧光传感器基于非辐射能量转移的荧光传感器在检测食品和农产品中的有毒化学物质和致病菌方面引起了人们极大的研究兴趣。FRET是一种非辐射距离依赖的能量转移现象,作为一种独特、可靠、灵敏的分析技术被广泛应用于检测各种分析物。碳量子点或碳点是一种新型的发光碳纳米材料,可用于荧光分析法中的定量分析。如图4A所示,Wang课题组基于氮掺杂碳量子点和金纳米簇之间的FRET,通过两个线性响应开发了CBZ的"turnon"比率型荧光传感器,LOD分别为0.83和37.25 μmol/L。相反,考虑到上转换纳米颗粒的优势,有研究开发了一种上转换-二氧化锰发光共振能量转移生物传感器用于UCNPs对CBZ的灵敏检测,如图4B所示。图4 N-GQDs/AuNCs作为CBZ比率荧光开启传感器的示意图(A) CBZ荧光纳米传感器示意图(B) SERS传感器近年来,随着纳米技术的发展,获得了不同形态的纳米结构,它们被用作SERS活性基底,用于无标记和/或靶敏感检测各种分析物,包括农药残留水平。为了提高基于SERS的农药检测的准确度和精密度,研究人员不断致力于开发新型SERS基底、新型检测策略、原位检测系统等。表3总结了SERS技术在BDZ类杀菌剂检测和定量方面的研究进展。表3 BDZ用纳米材料SERS传感器 SERS活性基底的选择SERS活性基底的选择对SERS检测至关重要。为了制备用于BDZ的最佳SERS传感器,需要考虑三个关键点:i)SERS活性底物的拉曼信号增强能力,ii)SERS有源底物的均匀性和稳定性,iii)BDZ对SERS活性基质的亲和力。 SERS光谱的密度泛函理论(DFT)模拟在SERS信号中可以得到分子固有的拉曼信号,这可以通过DFT得到潜在的证实。理论拉曼信号借助高斯程序进行DFT分析,并给出合理的解释。然而,实验测得的拉曼和SERS信号与理论信号存在一定的差异,这可能与农药或基底的分子结构及其相互作用有关。因此,需要更多的研究来了解它们在实验上存在差异的确切原因。化学计量学对SERS传感器的影响化学计量学的关键优势在于能够从低质量的仪器数据中获得合理的检测结果,所得数据具有信号重叠性强、噪声水平高、分辨率低等特点。这种方法常应用于从光学(即比色、荧光、SERS等)、色谱、电化学和其他各种技术中获得的信号的定性和定量处理。有研究将竞争性自适应重加权采样-极限学习机(CARS-ELM)作为非线性化学计量学方法与SERS相结合,实现了苹果中TBZ浓度的快速测定;该方法在TBZ浓度为1、5、10 mg/L的蓄意污染苹果样品中的回收率为83.02%~93.54%;此外,通过PCA在P=0.05水平上的判别图确定了LOD(0.001 mg/L),如图5A所示。图5 利用SERS耦合CARS-ELM确定TBZ的方法示意图(A);SERS传感双杀菌剂界面自组装核壳二维Au@Ag纳米点阵列的制备示意图(B);便携式拉曼分析仪微滴捕获带(C);Ag-Au-IP6-Mil-101 (Fe)的制备示意图及TBZ的SERS测定(D)磁性纳米粒子(MNPs)对SERS传感器的影响磁性纳米粒子与贵金属纳米材料的结合在农药的SERS检测中开辟了新的途径,这归因于以下几个优点:MNPs的有序排列和良好调节的热点提供了完美的增强因子;磁性纳米粒子的磁性允许目标化合物从复杂基质中有效分离和富集;磁性纳米粒子的磁性赋予了SERS纳米复合基底可重复使用性;最后,磁性纳米粒子的生物相容性允许生物识别分子固定在其表面,提高了其对目标分子的特异性生物识别能力和与基质的分离能力。利用贵金属单、双金属SERS基底对BDZ进行无标记检测近年来,利用SERS技术实现痕量分子的无标记检测已成为原位应用的研究热点。如图5B所示,利用金核银壳纳米颗粒设计了一种二维纳米点阵列SERS基底,用于梨、苹果和橙汁中TBZ的可靠和可重复性测定,LOD为0.051 × 10-6。 基于氧化石墨烯(GO)的SERS传感器GO是一种单层碳材料,通过π-π堆积作用或静电作用对芳香分子具有突出的吸附能力;此外,由于电荷转移效应,它提高了拉曼信号,从而支持SERS检测。 硅基SERS传感器根据已发表的多篇文献,金属化硅由于具有大的表面积体积比可用于表面修饰、减少纳米材料之间的相互作用、独特的光学性质和易于制备等优点,已成为制备SERS基底的重要元素。基于聚二甲基硅氧烷(PDMS)的SERS传感器PDMS是柔性基底中备受研究者关注的一种聚合物凝胶,因其具有透明性、良好的拉伸强度、黏结性、无毒性和化学稳定性等优点。此外,它具有较低的拉曼截面,对拉曼信号的影响较小。 基于纸张和胶带的SERS传感器纤维素基纸模板具有三维结构、便携性、柔韧性、多孔性、非均相形貌、极小的SERS信号干扰等优点,是硅或玻璃晶片和多孔氧化铝模板的实际替代品。特别是,它可以通过毛细管作用吸收液体,使目标分析物在传感器纳米材料表面黏附和富集基于金属有机框架的SERS传感器。如图5C所示,通过在导电碳带上沉积Au纳米枝晶,生成了用于TBZSERS检测的创新型POCT装置"微液滴捕获带";作为一个自主的"微容器"用于吸附分析物。基于金属有机框架(MOFs)的SERS传感器MOFs的多孔结构是通过π-π相互作用、氢键或静电作用形成的,它们提供了一个大的比表面积来支持和稳定金属纳米结构,从而获得一种新型的SERS基底。将Au/Ag纳米结构固定到MOFs中作为一种高效的SERS基底近年来受到了广泛的关注。如图5D所示,开发了一种基于MOFs的SERS传感器(Ag-Au-IP6-Mil-101(Fe))检测果汁样品中的TBZ。 基于分子印迹聚合物(MIPs)的SERS传感器考虑到生物识别元件的局限性,MIP作为一种人工识别元件,具有与目标分子亲和力高、化学和机械稳定性好、价格低廉等优点,在检测、催化和固相萃取等领域具有广阔的应用前景;它通过具有酸性或碱性基团的单体聚合,在目标分子存在的情况下形成三维空腔,可以通过互补的形状、大小和官能团选择性地与目标分子结合。基于其他材料的SERS传感器受仿生材料的启发,将植物叶片组装到AuNPs上,产生电磁辐射热点,用于水中CBZ和TBZ的检测。有研究报道了一种用于检测水果样品中TBZ的模板生长磷烯基Au/Ag纳米复合材料SERS基底。另有研究报道了合成的聚氨酯胶束/纳米银簇用于不同果蔬表面TBZ的原位检测。集成传感器近年来,集成不同的技术来提高检测的选择性、准确性和精密度受到了广泛的关注。利用碳化钛MXene/Au-Ag纳米壳开发了一种双功能智能CBZ检测方法,如图6所示。通过电化学和SERS方法,该传感器在茶叶和大米中分别可以检测到低至0.002和0.01 μmol/L的CBZ(表4)。图6 Ti2C MXene/Au-Ag纳米杂化物用于CBZ的电化学和SERS检测表4 基于纳米材料的BDZ集成传感器Conclusion and Perspectives本文综述了基于纳米材料的检测策略,以实现对实际样品中BDZ的高效溯源。尽管这些基于纳米材料的光学及其集成传感器与传统方法相比具有一定的便利性,但在实际样品的检测中仍然存在一些挑战。在本研究中提到的BDZ中,苯菌灵和FBZ还没有被检测到。由于纳米材料与目标分析物结合的活性位点是有限的,因此关注简便和低成本的样品前处理过程是很重要的。也可以集中在芯片、纸张或带状传感器上,用于BDZ的现场检测,这将更有效地用于工业应用。——————————————————————————————————————— 陈全胜:集美大学海洋食品与生物工程学院教授,博士生导师,主要从事食品质量安全快速无损检测与智能化加工装备研发。近年来先后主持国家部省级项目20余项,出版学术英文学术著作1部,中文学术著作3部,以第一/通讯作者发表SCI论文150余篇(其中,IF10论文10余篇,ESI高被引论文15篇,ESI热点论文4篇),论文累计SCI他引6000余次,个人H指数43;累计授权发明专利50余件(含国际专利4件),成果先后获国家技术发明奖二等奖、江苏省科学技术奖一等奖和教育部自然科学奖二等奖等;先后获国家高层次人才、科技部中青年科技创新领军人才、中国高被引学者、ProSPER.Net-Scopus Young Scientist Award、中国青年科学之星和江苏省333中青年科技创新领军人才等国内外奖励和荣誉。为进一步促进动物源食品质量安全的发展,更好的保障人类身体健康和提高生活品质,仪器信息网于2023年11月15-17日举办“动物源性食品质量安全检测技术”主题网络研讨会。陈全胜老师也将在此次网络会中带来精彩报告!点击图片,免费参会
  • 欧盟拟放宽多种作物中咪唑菌酮最大残留限量
    2014年3月31日,据欧洲食品安全局(EFSA)消息,欧洲食品安全局就修订大蒜等多种作物中咪唑菌酮(Fenamidone)的最大残留限量(MRL)发布了意见。   据了解,依据欧盟委员会(EC)No 396/2005法规第6章的规定,法国收到一家公司要求修订大蒜等多种作物中咪唑菌酮的申请。为协调咪唑菌酮的最大残留限量(MRL),法国建议对其残留限量进行修订。   依据欧盟委员会(EC)No 396/2005法规第8章的规定,法国起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。检验检疫部门提醒相关生产企业,一是生产过程中科学适量施打咪唑菌酮 二是重视对产品的抽检工作,确保相关残留符合欧盟标准 三是关注口岸相关法规标准变化,及时调整生产工艺,避免通报和退货风险。

异丙烯基苯并咪唑酮标相关的仪器

  • 咪唑CAS NO:288-32-4咪唑产品性质:咪唑为白色棱形或片状结晶,易溶于水、醇中,微溶于苯, 难溶于石油醚有毒,对皮肤、粘膜有刺激性和腐蚀性。外 观白色棱形结晶体或片状含 量≥99.0%(GC)水 份≤0.5%用 途:咪唑是一种重要的精细化工原料,主要用于医药和农药的合成以及环氧树脂固化剂,可作为铜的防锈剂,也用作脲醛树脂固化剂、摄影药物、粘合剂、涂料、橡胶硫化剂、防静电剂等的原料及有机合成中间体,还广泛地用于水果的防腐剂。包 装:500kg/袋,25kg/桶或袋。运输贮存:本品应贮存在通风、干燥的库房内,不得与有毒物品混存, 在运输中应轻装轻卸,防止内包装破裂,本品极易吸潮。
    留言咨询
  • 咪唑乙醇咪唑乙醇中文别名: 咪唑缩合物;咪唑乙醇;α-(2,4-二氯苯基)-咪唑-1-乙醇。英文名称: Alpha-(2,4-Dichlorophenyl)-1H-imidazole-1-ethanolCAS 号: 24155-42-8分子式: C11H10Cl2N2O分子量: 257.11含量:99%物化性质: 类白色至粉红色结晶体。不溶于水,溶于乙醇等有机溶剂。咪唑乙醇产品用途: 咪唑乙醇是益康唑、硝酸咪康唑的中间体, 咪唑乙醇用于抗真菌药物和水果保鲜剂等咪唑类抗真菌药物的中间体。包装规格: 25kg/桶。
    留言咨询
  • 2-乙基咪唑产品名称:2-乙基咪唑英文名称:2-Ethylimidazole中文别名 2-乙基-1H-咪唑 CAS NO:1072-62-4分子式C5H8N2分子量96.13040外观白色至微黄色结晶含量99.0%用 途:2-乙基咪唑主要用于仪器、仪表、各种电器部件、化工机械、车辆和 工业方面的粘接、包封、涂压和层压以及用于环氧树脂中温固化剂,参考用量2-5phr。 固化条件70-85℃/3h。包 装:25公斤纸板桶(35×50)内衬双层塑料袋。运输贮存:应贮于阴凉、干燥、通风处。在运输中应轻装轻卸,防止内包装破裂。
    留言咨询

异丙烯基苯并咪唑酮标相关的耗材

  • Bond Elut Diol苯并咪唑杀菌剂检测净化小柱
    Bond Elut Diol(2OH). 提供极性和非极性模式. 与样品具有强氢键作用. 保留能力与未键合硅胶相似Bond Elut Diol 与未键合的硅胶类似,易与分析物发生强的氢键作用。2OH 也可以用作非极性模式,因为其官能团的烃基空间结构提供的非极性性能足以保留疏水型化合物。Bond Elut Diol 列在分析苯并咪唑杀菌剂(DIN 14333-1 方法)的SPE 设备列表中。
  • 绿百草科技专业提供分析苯并咪唑杀菌剂的色谱柱Kromasil C18
    绿百草科技专业提供分析苯并咪唑杀菌剂的色谱柱Kromasil C18,货号为100-5-C18 4.0 × 150 关键词:Kromasil C18色谱柱,100-5-C18 4.0 × 150,苯并咪唑杀菌剂,绿百草科技 绿百草科技专业提供Kromasil C18色谱柱。货号为100-5-C18 4.0 × 150的Kromasil C18色谱柱可用来分析苯并咪唑杀菌剂。流动相为甲醇/水=50/50;检测温度是55℃。绿百草科技可提供详细的操作条件和谱图。 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息: www.greenherbs.com.cn
  • Bond Elut Diol(2OH)分析苯并咪唑杀菌剂净化小柱
    Bond Elut Diol(2OH). 提供极性和非极性模式. 与样品具有强氢键作用. 保留能力与未键合硅胶相似Bond Elut Diol 与未键合的硅胶类似,易与分析物发生强的氢键作用。2OH 也可以用作非极性模式,因为其官能团的烃基空间结构提供的非极性性能足以保留疏水型化合物。Bond Elut Diol 列在分析苯并咪唑杀菌剂(DIN 14333-1 方法)的SPE 设备列表中。

异丙烯基苯并咪唑酮标相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制