当前位置: 仪器信息网 > 行业主题 > >

流动相过滤装置

仪器信息网流动相过滤装置专题为您提供2024年最新流动相过滤装置价格报价、厂家品牌的相关信息, 包括流动相过滤装置参数、型号等,不管是国产,还是进口品牌的流动相过滤装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流动相过滤装置相关的耗材配件、试剂标物,还有流动相过滤装置相关的最新资讯、资料,以及流动相过滤装置相关的解决方案。

流动相过滤装置相关的资讯

  • 鬼峰捕集流动相吸滤头
    你遇到过鬼峰吗?↓它常常神出鬼没… … ↓↓上蹿下跳… … ↓HPLC反相分析中,出现鬼峰总是一件让人头疼的问题。鬼峰会干扰微量成分的定性和定量,影响数据可信度。该怎么办呢?这道题我会答!岛津集团研发的Ghost Trap DS/DS-HP鬼峰捕集小柱,可以高效捕集流动相中的杂质,清除鬼峰,大大缩短方法验证和微量、痕量物质分析的时间。但… 研究鬼峰捕集,岛津永远在路上!岛津又出新品!GLC Suction Filter 2HPLC鬼峰捕集流动相吸滤头GLC Suction Filter 2属于液相系统最上游的耗材,可有效捕集流动相中的杂质。相比于其他鬼峰捕集产品,具有易安装、易更换的优势。↓吸滤头内部采用球状活性炭填充产品特点● 去除液相系统最上游的杂质● 不额外增加系统死体积● 适用于LC/MS系统● 无须改变工作SOP,轻松置入● 水/乙腈即可平衡,无须丙酮洗脱● 不易混入空气为评估GLC Suction Filter 2 去除流动相鬼峰的效果,在不同比例的乙腈+水(1/9, 5/5, 9/1)流动相体系下进行实验。在三个体系中,该产品均展现了良好的杂质去除效果,同时也降低了TIC的噪音水平。【安装方法】1、准备物品:GLC Suction Filter 2(本产品)烧杯乙腈(推荐使用HPLC级别以上的乙腈)超声波清洗机2、浸泡活化初次使用时,请使用乙腈进行活化。每个吸滤头需要使用50mL(使其完全没入)的乙腈进行浸泡。3、超声脱气在15-40℃之间超声脱气5分钟。4、插入管线取出浸泡好的吸滤头将管线插入吸滤头中约5-10mm的深度Tips:匹配的流动相管线外径为3mm请佩戴丁腈手套,持白色树脂部分,勿触碰本吸滤头不锈钢烧结部分请勿使用蛮力强行插管,避免管线弯折05、开泵冲洗放入水中,开泵冲洗。06、活化先用水以流速0.2mL/min通液16小时以内,进行活化。然后用乙腈以同样的方法进行活化。07、冲洗与溶液交换活化结束后放入流动相中,进行冲洗和溶液交换,准备完毕。【注意事项】1、如果流动相中混入了空气,请使用超声波和减压装置进行脱气。2、使用一定时间后,吸滤头可能会逐渐被污染,如下图所示。被污染的吸滤头可能会发生堵塞,导致管线内混入空气。此时,可以先尝试反向洗脱,将杂质冲出。★反向洗脱无法恢复活性炭的吸附作用。如果发现产品的杂质捕集效果变差,可能是产品使用寿命到达极限,请及时更换。★建议更换时间:每60L流动相或每年更换一次注意事项:*本产品不包括管线。*匹配的流动相管线外径为3mm 。*使用前请严格按照说明书进行活化,否则有可能会有溶出引起的基线噪声。*流动相使用离子对试剂时,离子对试剂有可能被捕集,影响到峰型和保留时间。*请理解不是所有的杂质都可以被清除。*如发现杂质捕集效果变差,可能是产品达到使用极限 ,请及时更换。建议更换时间为每通过60L流动相或每1年更换。
  • 关于HPLC的流动相,十个你不知道的坑
    br/ p strong 加入有机溶剂之后测量移动相酸碱度 /strong /p p br/ /p p 校准pH计,得到水溶液的正确pH回读值——您要验证的缓冲液是含水的。如果你用有机添加剂测量pH值,得到的pH值会与添加有机溶剂之前的值不同。 /p p br/ /p p 然而,最重要的一点是要保持一致。如果你总是在加入有机溶剂之后测量pH值,那么务必保证在使用的方法中陈述你的步骤,这样的话其他人就会按照统一方式进行。这种方式并不保证百分百准确,但是至少可以保持方法的前后统一。这也许会比得到精准的pH值更加重要。 /p p & nbsp /p p /p p strong 没有使用缓冲液 /strong /p p br/ /p p 缓冲剂的作用就是用来控制Ph值并阻止其发生变化。很多其他方法会改变流动相的Ph值,会引起停留时间、峰形以及峰值响应的漂移。 /p p 甲酸、TFA等不是缓冲剂。 /p p & nbsp /p p /p p strong 没有在正常酸碱度范围内使用缓冲液 /strong /p p br/ /p p 每个缓冲盐有2个pH单位范围宽度,在这个范围内可以提供稳定性最佳的pH值。窗口之外的缓冲盐不具备有效的抗pH值变化能力。要么在正确的范围内使用缓冲剂,要么选择一种缓冲剂可以涵盖你所需要的pH值。 /p p & nbsp /p p /p p strong 向有机溶液中加缓冲液 /strong /p p br/ /p p 将缓冲溶液与有机相混合,会极有可能引起缓冲液沉淀。在很多情况下,即使沉淀现象已经发生了,但仍很难被发现。记住,一定要将有机溶液加入到水相当中,这可以很好的降低缓冲液沉淀的几率。 /p p & nbsp /p p /p p strong 从0%用泵混合浓度梯度 /strong /p p br/ /p p 现在使用的泵可以有效的混合流动相并实现在线脱气,但并不是使用你的方法的任何人都会配有高质量的泵。将A和B混合到一个单独的溶液中,在100%线上运行。 /p p br/ /p p 比如说通过用50ml水混合制备有机950ml起始混合物。这样做的好处就是可以减少HPLC之间的可变性,减少系统中产生气泡和沉淀的可能性。值得注意的是泵混合液的比例是95:5并不代表瓶体的预混合保留时间也为95:5。 /p p & nbsp /p p /p p strong 不要使用正确的改性酸或改性碱改变缓冲液 /strong /p p br/ /p p 只能使用形成你使用的缓冲盐的酸或碱。比如磷酸钠缓冲液应仅用磷酸或氢氧化钠调节。 /p p & nbsp /p p /p p 没有在方法中阐述有关缓冲液的全部信息,比如说在1000ml的水中加入5g磷酸钠 /p p br/ /p p 缓冲剂的类型决定了能够缓冲的Ph范围。所需的浓度决定了缓冲强度。5克或无水磷酸钠和5克一水合物磷酸一钠具有不同的缓冲强度。 /p p & nbsp /p p /p p strong 还没先检查就开始添加有机溶液 /strong /p p br/ /p p 如果上一个方法中基线B中使用过的是缓冲液,而你的方法中,基线B使用的是有机溶液,好在你可以沉淀泵管和泵头中的缓冲剂。 /p p & nbsp /p p /p p strong 支起瓶体清空最后一滴 /strong /p p br/ /p p 很有可能你没有足够的流动相完成整个操作,最后样品会冒烟的。除了可能存在烧干泵系统和柱子的可能性之外,流动相也会蒸发的一干二净,瓶体顶部的流动相会发生变化。 /p p & nbsp /p p /p p strong 利用超声脱气的流动相 /strong /p p br/ /p p 最重要的一点就是确保所有的缓冲盐已经溶解,但是这是一种效果最差的脱气方式,并且它会很快让流动相升温,从而引起有机成分蒸发掉。为了省去之后不必要的麻烦,请用五分钟时间使用真空过滤你的流动相。 /p
  • 岛津司小令大讲堂丨第二期 流动相中产生气泡所引起的问题
    《流动相脱气》特辑第一期《岛津配合防疫,开启线上学习司小令大讲堂!》为大家介绍了流动相中溶解空气引起的问题和形成气泡的机理,今天我们将讨论流动相中产生气泡所引起的问题。 第二期流动相中产生气泡所引起的问题。 1.流动相容器产生气泡的影响流动相容器中产生气泡主要是由于空气在流动相中超饱和,其原因如下: (1) 温度升高:贮存室与实验室之间的温差或早晨与中午之间的温差都可能使流动相温度升高。 (2) 吸热反应搅拌不足:某些溶剂混合时吸收热量,使温度降低,此时如不充分搅拌,随着混合溶剂温度上升至室温,同样会造成气体的过饱和而产生气泡。 当这些气泡通过吸液过滤器和管道进入泵头以后,导致泵的工作异常。首先,在进液口,随着吸液冲程泵头的压力降低,导致气泡膨胀(见图1)。此时泵吸进的溶剂由于气泡占取一定的空间而降低;其次,在排液冲程时压力增加,气泡又变小,从而使流动相的流量降低。更有甚者,由于气泡的产生和经过的途径、方式都是不规则的,因此不仅影响了流动相流量的准确度,而且影响流量的精度。是否有此种现象产生,可通过泵排液压力的监测加以确认(图2)。 当此种现象发生后,无论是保留时间或峰面积都不可能重现(图3),分析的可靠性也就无从谈起。图1 泵头进气泡的示意图 图2 排液压力波形的变化 图3 由于流量不规则形成的各种色谱 2.泵中形成气泡使液流波动即使溶剂在容器中,空气并未达到饱和的程度,但溶液进泵以前还有可能产生气泡。 (1) 低压混合梯度:如图4所示,图中虚线圈的部位其压力略低于大气压,因此溶剂在此混合更易产生气泡。低压梯度时,混合室多装在泵后(高压侧)但实际混合过程在低压侧便开始了,故低压梯度较之混合发生在泵后的高压梯度,更易产生气泡。 (2) 吸液过滤器的堵塞:当吸液过滤器有部分堵塞时,吸液的阻力增大,过滤器内的压力降低,容易形成气泡。吸液过滤器经常清洗,保养,否则易被尘土颗粒等堵塞,有时操作不当也易形成堵塞,例如,在使用缓冲溶液后未进行彻底的清洗,接着就使用盐类溶解度不大的有机溶剂,此时极易造成过滤器孔堵塞。堵塞不严重时,溶剂通过脱气即可。但最好要定时清洗。图4 低压梯度洗脱图5 吸液过滤器的清洗图6 吸液过滤器的清洗 3.柱中气泡形成和累积引起流动相绕流色谱柱中的压力一般较高,气体溶解度增大,一般在柱中不易产生气泡。然而,在接近柱的出口处,压力相对较低,此外由于柱箱升温,柱处于较高的温度,气泡也有可能在此形成,另一种可能性是从泵中排出的气泡经过色谱柱时滞留柱中。 一但气泡在柱中形成或滞留,如图7所示使流动相液流不稳并产生绕流。 口径较大的色谱柱,一但形成或滞留有气泡后就很难排除。因此,在HPLC实际应用中,HPLC柱的出口端向上,入口端向下,利用浮力尽可能使气泡不停留在柱中。图7 由于柱中的气泡导致绕流 4.泵中形成气泡使液流波动当柱箱或检测器池处于较高温度时,检测器池中易产生气泡。因为液流通过检测器时,温度升高而此处的压力反而较小。即使检测器池并未加温,但某些场合下也可能有气泡产生。例如高压梯度时,溶剂混合使气体过饱和,但在前一段流路中,由于压力较大气泡并未析出,一但到了压力接近大压的池中,气泡便会乘隙而出。 如果气泡形成于检测器池中,则将引起如图8所示的尖峰状、锯齿状的基线噪声,甚至于完全无法测定。这种情况下,分析者很难区别究竟哪些是色谱峰,哪些是尖峰状噪声,也无法正确地定义基线的位置,故无法正确地计算出峰面积。 图8 由于气泡形成和累积于柱中引起的噪声 在第三点和第四点的场合,如果使用的UV或电导检测器,由于这些检测器能经受较大的压力(约30Kg/cm2)故可在检测器的出口处加一个反压管,使检测器池和柱内的压力适当提高,防止气泡产生。一般反压管使用长2m左右,内径为0.3mm的不锈钢阻尼管。此时对1ml/min的水或甲醇将分别产生2或1Kg/cm2的反压。当然反压的大小与许多因素有关。如果阻尼管内的内径一定,液流是层流的话:(反压)μ(溶剂粘度)(流量)(阻尼管长) 制备色谱的流量较大,因此阻尼管应较短,内径较大(0.8mm)。另一方面,如果是半微量色谱,流量一般在0.1ml/min左右,上述反压阻尼管将不足以产生所需的压力,此时管径应较细(例如0.2mm),长度可增加至6m左右。 然而,对一些不能承受压力的检测器而言(见表1),则必须事先脱气而不能采用阻尼反压管的方法。 表1.检测器能承受的压力*电磁阀能承受的压力,池能经受7Kg/cm2**采用Ag/Agcl参比电极 至此,我们讨论了在流路中形成气泡所产生的问题。温度升高,压力降低和溶剂混合是形成气泡的主要原因,图9绘出了系统中温度和压力变化的概况,据此可以估计,在您所使用的系统中,哪些部位容易产生问题。 图9 HPLC系统中压力和温度的相对关系 下期预告溶解于溶剂中的空气会对不同检测器造成哪些严重的影响敬请期待!
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(三)——流动相在线除盐技术
    药物中的杂质是指除药物化学体以外的任何成分,是反映药品质量和安全性的重要指标。在制药工业中,关于药物杂质的研究主要是聚焦在使用液相色谱对其进行分离、鉴别和定量上。ICH规定当药物中的杂质含量大于0.1%时,应进行定性。传统的方法是先将杂质进行分离制备,得到纯品后再通过NMR、IR及MS等仪器进行结构鉴别。此方法,一是周期长;二是分离制备成本高;三是一些含量较少且不稳定的杂质难于制备。而近年发展迅速的LC-MS联用技术,根据杂质的来源,产生条件,推测药物中可能含有的杂质,并结合药物母核的质谱裂解规律和杂质的产生原理推断杂质的结构,可以很好地解决这些缺点,已成为杂质研究的一种新理念,且该技术已被广泛应用于药物发现、开发、制造以及质量控制等各个阶段。 LC-MS联用技术中,液相色谱分离是进行质谱结构鉴别的基础,然而现有的很多液相色谱分离方法为改善分离或检测经常会使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液或离子对试剂),这显然与质谱的ESI(APCI)-MS不兼容。因此当采用LC-MS联用技术时,必须将流动相转换为适合于ESI(APCI)-MS的挥发性流动相。而摸索新的适合于LC-MS联用技术的流动相体系往往很难对杂质进行有效分离,且又耗时费力。赛默飞UltiMate 3000双三元液相色谱(DGLC)可实现在线去除流动相中的非挥发性缓冲盐,让您无需改变现有的分析方法就可轻松使用LC-MS联用技术对药物杂质进行更深入的研究。 仪器系统连接 双三元梯度泵的右泵保持原来的分析流动相条件不变,各杂质成分在一维分析柱中实现分离,通过2位置六通阀将已被常规检测器检测的目标杂质峰储存至loop环中;左泵采用与MS兼容的挥发性流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,利用质谱上固有的六通阀,将流动相中的非挥发性盐除去,再调整左泵流动相比例将目标待测物洗脱至MS中,通过子离子扫描等方式,得到杂质的裂解碎片,结合物质的裂解规律,对药物中的杂质进行逐一鉴别。系统流路连接见图1.。 图1 系统流路连接示意图 最适合质谱前端使用的在线脱盐技术应用 阿莫西林(Amoxicillin),是一种最常用的青霉素类广谱&beta -内酰胺类抗生素,在2010版《药典》二部中,有关物质分析采用HPLC-UV法,流动相为0.05mol/L磷酸二氢钾溶液(用2mol/L氢氧化钾溶液调节pH值至5.0) 和乙腈,梯度洗脱。样品溶液在经过碱破坏后,其分离谱图见图2.。采用双三元液相色谱的在线脱盐技术,在一维色谱保持原有分析条件并经过UV检测后,可将其中的未知杂质成分(包括降解产物)切换并储存至loop环中;二维色谱分离系统采用与MS兼容的流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,在线去除一维流动相中的磷酸二氢钾等非挥发性缓冲盐后,利用MS进行多级碎片离子扫描,结合&beta -内酰胺类抗生素的裂解规律,推断未知杂质成分的结构。整个过程在密闭系统内自动并连续地完成,而且可对其中的多个杂质同时进行结构鉴别。 图2 阿莫西林碱破坏后的样品分离谱图(UV 230nm) 图3 4号杂质TIC谱图(上图为负离子模式,下图为正离子模式) 图4 4号杂质特征离子谱图 (左图为负离子模式[M-H]-=338.1,右图为正离子模式[M+H]+=340.1,初步推断杂质分子量=339.1) 头孢地尼(cefdinir) 也属&beta -内酰胺类抗生素,用于对头孢地尼敏感的葡萄球菌属、链球菌属等菌株所引起的感染。原标准分析方法中使用了0.25%四甲基氢氧化铵溶液(用磷酸调节pH=5.5)+0.1mol/L乙二胺四醋酸二钠溶液的非挥发性流动相,样品经过热破坏后分离谱图见图5. 在不改变原流动相条件的情况下,采用DGLC的流动相在线除盐技术,使用LC-MS联用技术对原料药中的杂质(包括降解杂质)成功进行了定性研究。且该方法可以将杂质逐一进行分析,结合已知文献,共鉴别了其中的6种杂质。 图5 样品经过热破坏后一维分离谱图(UV254 nm) 图6 其中15号杂质的特征离子谱图 (左图为负离子模式[M-H]-=367.9,右图为正离子模式[M+H]+=369.6,初步推断杂质分子量368.8) 药典中收载的关于杂质的分析方法很多都含有非挥发性盐类。赛默飞UltiMate 3000双三元液相色谱(DGLC)采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,可以将流动相中的非挥发性缓冲盐在线去除。当您需要使用LC-MS联用技术对杂质进行进一步的深入研究时,赛默飞UltiMate 3000双三元液相色谱(DGLC)的流动相在线除盐技术,可让您永远不再为流动相中的非挥发性缓冲盐而烦恼。且该系统可同时实现在线富集、在线浓缩、在线净化等,可谓是最适合质谱使用的液相色谱仪。 参考文献 1、采用二维柱切换液质联用法对流动相进行在线除盐分析阿莫西林中有关物质 2、采用二维柱切换液质联用流动相在线除盐分析头孢地尼中有关物质 3、双三元液相色谱应用文集 赛默飞创新技术应用系列之双三元液相色谱DGLC集锦 (一)二维及全二维液相色谱分离技术应用 (二)在线固相萃取技术 (三)流动相在线除盐技术 (四)在线柱后衍生和反梯度补偿技术 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 业内首个经过认证的专用于LCMS(液相色谱-质谱)的针头过滤器上市
    PALL MS Acrodisc针头式过滤器专用于LCMS(液相色谱-质谱)的样品和流动相过滤。有效的保护仪器的稳定运行和延长色谱柱的使用寿命   MS Acrodisc 针头过滤器的特性:(0.2um, 25mm)   经过认证的专用于 LCMS的针头式过滤器   LCMS-(液相色谱-质谱) 认证 –在LCMS应用中,使用MS Acrodisc针头过滤器能最低限度的减少过滤器本底对您结果的影响。这是首个被认证的适用于LCMS的低溶出物的过滤器。   低离子的影响– 避免了重复的测试. MS Acrodisc针头过滤器 不会产生会影响会LCMS电离过程的溶出物(LCMS最核心的技术就是电离过程)。   具保护性的包装设计 – 更经济和有效的避免了下游程序的污染. MS Acrodisc针头过滤器是五个单独的包装,当使用其中一个包装的时候,其他的包装是密封的,保证了没有额外的交叉污染。   优越的化学耐受性 – 可以使用其过滤您所有的LCMS 样品. 亲水的PTFE膜(WWPTFE) 能适用于极性和一般的水溶液,当其与基乙烯的外壳搭配后,提供了杰出的化学兼容性。   低蛋白吸附 – 能得到精确的一致的结果. Acrodisc MS 针头式过滤器将蛋白吸附降到最低。   颗粒截留能力– 使用Acrodisc MS能保护您的设备和柱子不受颗粒的堵塞, 保证您的LCMS设备性能保持一致同时延长你的柱子的使用寿命。   精确源于专业   PALL一直致力于给您的仪器提供最专业的保护:   UHPLC认证的针头过滤器, 专用于UHPLC样品和流动相的过滤   自动化认证的过滤器,专用于自动化工作站、溶出度测试仪自动进样   离子色谱(IC)认证的针头过滤器,专用于IC离子色谱   粘性或多颗粒样品,PSF针头式过滤器
  • 实验技巧 | 挥发性或粘度高的试剂,流动相配置需注意
    流动相是高效液相检测中非常重要的一个环节,其操作的合规性和准确性直接影响到实验结果的准确性和有效性。在日常检测中,我们经常会遇到流动相含有挥发性试剂(如三氟乙酸(TFA)、三乙胺、浓氨等)的情况;也会遇到含粘度较高的组分(如磷酸等)。这些组分在流动相配置时,其添加方法需要特别注意,以免因试剂挥发或放液不完全而影响实验结果。三乙胺是液相流动相中常用的一种组分,起到调节pH,屏蔽固定相上的硅羟基从而修饰峰形,改善峰拖尾等作用。同时它也是一种挥发性试剂,如按常规方法,在液面以上放液,就会出现因三乙胺挥发导致的流动相配置不准确的情况,因此在添加三乙胺等挥发性试剂时,建议选用量入式移液管,伸至液面以下再放液。示例某项目,流动相为:15mmol/L磷酸二氢钾溶液(含0.06%三乙胺和0.14%磷酸)流动相配置一:常规配置方法,三乙胺在液面以上放液,配置流动相。通过以上两图对比可发现,不同的流动相配置操作,会导致出峰时间的明显变化。结论配置流动相时,要按不同试剂的特性选择合适的配制方法,不能一概而论。1)对于挥发性试剂,如三乙胺,二乙胺,三氟乙酸,七氟丁酸等,添加时,为避免挥发导致浓度差异,配置时将移液管插入到液面以下再放液。2)对于粘稠试剂,如磷酸,量取时要尽量慢,吸取完毕后用纸巾擦拭管口周围,避免试剂附着在管口,影响添加试剂的浓度。添加时,要注意放缓放液速度,以避免因放液过快,部分试剂还附着在移液管壁没有流下,导致流动相的浓度差异。
  • 密理博专为超高压液相色谱推出样品制备装置
    超高压液相色谱(ultra-high pressure liquid chromatography, UHPLC)是近年来兴起的一种新分析方法,较传统高效液相(HPLC)具有更高的分辨率。为了充分发挥UHPLC的高分辨率优势,分析前样品、流动相和缓冲液的预处理工作就更为重要。 密理博为能充分表现UHPLC的优越性能,专为其设计和生产了多种针头式过滤器、过滤膜和支架等一系列产品。这些产品可以将样品对柱子的堵塞程度降到最低,并且样品结合率低、损耗小,所以可以最大程度的优化UHPLC结果。实验室超纯水系统同样可以用于流动相制备,标准品、空白对照和样品的制备。 一套完整的UHPLC样品处理产品包括: Millex针头式过滤器:该种滤器可以将噪音信号降到最小并保持基线稳定,而且具有很好的化学兼容性和较小的滞留体积,所以是一种使用方便的用于UHPLC样品澄清和去除小颗粒物质的预处理方法。 Millipore Express PES微孔滤膜:Millipore Express Plus膜是第一款不对称PES膜,用于实验室超高通量的筛选。由于材质为聚醚砜(polyethersulfone,PES),所以可以用于添加剂、缓冲液和其他水溶性溶剂的高通量筛选。Millipore Express Plus膜产品包括直径从25mm至47mm不等的滤膜(滤膜孔径0.22µ m),Steritop真空过滤器和针头滤器装置。 Milli-Q Advantage A10和Q-POD取水器:该纯水器可以方便的获得高质量的超纯水,产水主机结构小巧紧凑,可以放置于凳子上或长凳下方,而Q-POD取水器可以置于您取水方便的地方。多达3个取水器可以连接在同一台产水主机上,放在实验室的不同地方。 MultiScreen Solvinert板:这些板专为药物研发应用设计,可以进行完整的药物分析。Solvinert板具有较深的小孔和标准的体积,而且可以选择化学疏水性膜或亲水性PTFE膜。经实验证明,该系列产品具有低样品结合率、低样品损耗和高复性率。 密理博生命科学部提供革新的研发工具、技术服务和生物试剂,让您从事的生命科学研究和药物研发工作更加完美出色。自从2006年收购Chemicon、Upstate和Linco品牌后,产品线迅速拓宽,使密理博成为当今市场上产品种类最齐全的策略性供应商。 了解密理博更多针对UHPLC应用的灭菌和超滤产品信息,请登陆密理博全球官方网站:www.millipore.com,或拨打密理博中国客服热线:800-820-0865。
  • 我国首套生物安全实验室高效空气过滤器装置研制成功
    由军事医学科学院卫生装备研究所牵头承担,中国疾病预防控制中心、中国合格评定认可中心、天津大学等单位参与研究的国家科技重大专项课题“高等级病原微生物实验室污染空气排放处置设备的研发与应用”日前通过结题评估,标志着我国已经拥有完全知识产权的生物实验室高效空气过滤器装置,并有望从根本上改变此类装备完全依赖进口的局面。   高效空气过滤技术是生物安全防护特别是高等级生物安全实验室建设的关键技术设备。由于被西方发达国家垄断,我国高等级生物安全实验室建设长期受制于进口依赖和限制。为了打破这一局面,国家科技重大专项办公室于2009年启动实施了“高等级病原微生物实验室污染空气排放处置设备的研发与应用”项目。领衔承担该课题的军事医学科学院卫生装备研究所祁建城研究员率领课题组成员奋力攻关,先后攻克高效空气过滤器现场全效率检漏、扫描检漏、气体消毒等关键技术难题,成功研制了高效空气过滤器单元、高效空气过滤器扫描检漏装置及软件、气体循环消毒装置和电动生物型密闭阀。经国家建筑工程质量监督检测中心检测,高效空气过滤器单元、电动生物型密闭阀的技术性能指标,达到国际同类产品先进水平。   评估结论认为,系列高效空气过滤装备的研制成功,满足了国家重大传染性疾病预防控制对高等级病原微生物实验室建设的具体需求,有效解决了国内已建或在建高等级生物安全实验室污染空气排放处置设备中的技术难题,为国家病原体检测技术平台、实验动物技术平台和实验室生物安全保障技术平台建设提供了有力的装备技术支撑。
  • 业内首个经过认证的专用于LCMS的针头过滤器上市
    PALL MS Acrodisc针头式过滤器专用于LCMS(液相色谱-质谱)的样品和流动相过滤。有效的保护仪器的稳定运行和延长色谱柱的使用寿命   MS Acrodisc 针头过滤器的特性:(0.2um, 25mm)   经过认证的专用于LCMS的针头式过滤器   ●LCMS-(液相色谱-质谱) 认证–在LCMS应用中,使用MS Acrodisc针头过滤器能最低限度的减少过滤器本底对您结果的影响。这是首个被认证的适用于LCMS的低溶出物的过滤器。   ●低离子的影响– 避免了重复的测试. MS Acrodisc针头过滤器不会产生会影响会LCMS电离过程的溶出物(LCMS最核心的技术就是电离过程)。.   ●具保护性的包装设计– 更经济和有效的避免了下游程序的污染. MS Acrodisc针头过滤器是五个单独的包装,当使用其中一个包装的时候,其他的包装是密封的,保证了没有额外的交叉污染。   ●优越的化学耐受性– 可以使用其过滤您所有的LCMS 样品. 亲水的PTFE膜(WWPTFE)能适用于极性和一般的水溶液,当其与基乙烯的外壳搭配后,提供了杰出的化学兼容性。   ●低蛋白吸附– 能得到精确的一致的结果. Acrodisc MS 针头式过滤器将蛋白吸附降到最低。   ●颗粒截留能力– 使用Acrodisc MS能保护您的设备和柱子不受颗粒的堵塞, 保证您的LCMS设备性能保持一致同时延长你的柱子的使用寿命。   精准源于专业   PALL一直致力于给您的仪器提供最专业的保护:   UHPLC认证的针头过滤器,专用于UHPLC样品和流动相的过滤   自动化认证的过滤器,专用于自动化工作站、溶出度测试仪自动进样   离子色谱(IC)认证的针头过滤器,专用于IC离子色谱   粘性或多颗粒样品,PSF针头式过滤器   GHP: 万能的过滤所有样品
  • 预防实验隐患——连接式废液收集装置
    “连接式” 废液收集装置在我们日常实验过程中,难免会遇到实验遗留下来的废液的处理难题,这就需要废液处理装置来进行残液的存放处理。接下来给大家介绍月旭科技的连接式安全收集装置。连接式废液收集装置主要是针对液体相关的仪器的废液处理,利用废液管将仪器和废液装置的废液桶相连接,进行安全存放。如果说你正在用液相色谱仪或其他液相仪器进样,实验结束后,那么这时我们就需要借助废液管连接到废液桶上进行集中存放处理。“接下来再具体说下废液收集装置的重要性:1.如果流出的废液随意存放,气密性的不良好会导致室内充满溶剂气味,造成环境的污染,从而影响实验人员的身体健康。2.如果把瓶口完全封死,仅通过一个废液管将仪器的流动相流入废液桶,阻断空气的流通,当废液桶内部废液收集到一定程度时,里面废液存在挥发就会导致内部压力过大,造成废液无法注入容器,甚至导致回流。3.还有就是废液盖上的孔要与废液管规格相对应,如果密封性较差,同样也会使得废液的挥发物流出,造成环境污染。想必实验室安全工作对于每个企业都是至关重要的,一个健康安全的工作环境同样也是能有效降低职工健康隐患。而月旭的连接式废液收集装置主要也是针对上面三个问题进行解决。从图片上可以看到,我们公司的连接式废液收集装置是由废液桶、废液盖、过滤器、指示器、过滤器、快速接头以及二次收集容器组成。废液桶,主要规格有5L/10/20L,当然需要其他规格,我们公司也是可以提供定制的。过滤器,其作用主要是针对废液的挥发物进行的过滤,同样也是为了防止废液桶内部压力过大,保证内外压力平衡。我们公司过滤器主要分两种:标准型过滤器、高效性过滤器。无论是标准还是高效过滤器都可以相互更换使用。各类型套装的货号●标准型10L(00839-31001)、20L(00839-30001)包含:认证HDPE废液容器一个、内外盖各一个、液相连接头一套、过滤器快速接头一套、液位指示器一个、无机或有机标准过滤器一个、防泄漏防倾倒二次容器。●高效性型10L(00839-31002)、20L(00839-30002)包含:认证HDPE废液容器一个、内外盖各一个、液相连接头一套、过滤器快速接头一套、液位指示器一个、无机或有机高效过滤器一个、防泄漏防倾倒二次容器。●智能型10L(00839-31003)、20L(00839-30003)包含:认证HDPE废液容器一个、内外盖各一个、液相连接头一套、过滤器快速接头一套、无机或有机高效过滤器一个、安全声光液位报警器一个、防泄漏防倾倒二次容器。当然,如果说客户不想使用我们的废液桶,要使用自己的,我们也是可以针对客户的废液桶进行废液盖的定制。
  • 基于表面增强拉曼光谱的便携式双层过滤装置对多种水源性病原体同时测定
    文献分享-基于表面增强拉曼光谱的便携式双层过滤装置对多种水源性病原体同时测定一、研究背景近些年来,由感染食源性致病菌所引发的重大安全事件时有发生,不断报道的食品中致病菌的残留问题使得人们对食品中致病菌的检测越发关注,各类致病菌的检测方法也层出不穷。该研究设计了一款带有SERS-Tag作为拉曼信号报告装置的便携式双层过滤设备可以快速识别、分离、浓缩和鉴定湖水中大肠杆菌0157:H7、金黄色葡萄球菌和单核细胞增生李斯特菌等多种水生病原体。每个SERS-Tag(与抗体结合的AuTag @ Ag)均由Au @ Ag纳米颗粒作为拉曼增强底物,吸附的拉曼报告染料(CVa, R6G和MB)产生特征性SERS信号以及特异性的抗体针对目标细菌。该过滤装置对注射器进行了一定的改造,使得其具有上孔过滤膜(孔径为30μm)(拦截膜)和下层过滤膜(孔径为200 nm(浓缩膜)。使用时推动受污染的湖水样品流通过双层过滤设备。在此过程中,沙粒,浮游生物和植物叶片等大物体被截留膜截留,而三种目标病原体可以被浓缩膜捕获并浓缩。从便携式设备上卸下浓缩膜后,通过上海如海光电便携式拉曼光谱仪可以同时对多个目标病原体进行测试。实验方法本文采用上海如海光电生产的SEED3000便携式拉曼光谱仪进行数据采集,通过上海如海光电提供的预处理算法进行光谱预处理。研究内容3.1 研究拉曼光谱和拉曼增强效应要检测多个目标,必须选择一组没有光谱间干扰的拉曼报告分子。由图4.2可知,AuCVa@Ag、AuR6G@Ag、AuMB@Ag信号强度分别比CVa、R6G、MB强的多,表明SERS-Tag具有强大的拉曼增强效果。3.2 浓缩膜的SEM表征为了验证浓缩膜的富集能力,在图4.4中通过SEM对湖水处理前后的浓缩膜进行了表征。在图4.4D中可以看到,许多小型SERS-TagCVa通过抗原抗体识别紧密紧密地分布在大肠杆菌0157:H7的表面上。该表征是有力证据证明该过滤装置可用于分离和浓缩目标病原体。3.3对单种细菌的测定性能调查经过以上研究和表征,我们首先用三种目标病原菌中的一种来测试过滤装置的细菌检测能力。测试结果表明,随着湖水中细菌浓度的增大,被吸附在浓缩上的细菌也越来越多,呈现明显的线性关系,结果如图4.6所示。随着大肠杆菌0157:H7浓度增加,在特征拉曼峰586cm-1、1501cm-1和1614cm-1处,定量检测1×101至1×106cfu的大肠杆菌0157:H7、金黄色葡萄球菌和单核细胞增生李斯特菌呈现较好线性关系,R2分别为0.9929、0.9942、0.9854,表明可以将被污染湖水与空白样品区分开来的最低浓度为1×101 cfu/mL,这足以检测实际生活时水中的水生细菌。3.4 对三种细菌的测定性能调查使用三种细菌共同污染了湖水样品,对污染后样品测试结果如图4.8所示,我们发现仍然可以检测到对应于三种目标细菌的特征性SERS峰。通过跟踪586cm-1、 1501cm-1和1613cm-1处的峰值强度,拉曼响应与已知的三种细菌的浓度成正比,表4.4中推导的细菌浓度与已知浓度的加标浓度进行比较得出的回收率也在可接受的范围内。同时也使用经典的基于MNPs的方法进行对比验证,电泳结果也验证了大肠杆菌0157:H7 (101 bp),金黄色葡萄球菌(132 by)和单增李斯特氏菌(261 by)的PCR扩增,证明拉曼信号确实是由结合的纳米颗粒产生的在三种细菌的表面上。表明该设备可以耐受湖水环境,并同时进行多种水生病原体检测的SERS解码测定。文献来源SEED3000便携式拉曼光谱仪SEED3000广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。结构简单,快速检测,可满足实验室、野外以及工业现场等多种实验场景。预留USB和串口通信, 方便多功能系统集成。SEED3000便携式拉曼光谱仪是一款高性价比的785nm小型拉曼光谱仪;结构简单,快速检测,可满足实验室、野外以及工业现场等多种实验场景。预留USB和串口通信, 方便多功能系统集成。便携式拉曼光谱仪广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。产品特点◆ 高度集成,应用灵活,轻巧便捷,方便携带;◆ 可适配光谱范围在200cm-1~3000cm-1 ◆ 高稳定性,光谱响应稳定性2% @2hrs ◆ 高分辨率,分辨率最佳可达4 cm-1。
  • 除菌过滤指南解读(二):过滤器供应商管理注意要点
    跟着刘老师一起解读指南(二)对过滤器供应商进行管理时要注意哪些要素?“ 《指南》提到“药品生产企业在选择除菌过滤器供应商时,应审核供应商提供的验证文件和质量证书,确保选择的过滤器是除菌级过滤器。药品生产企业应将除菌过滤器厂家作为供应商进行管理,例如进行文件审计或工厂现场审计、质量协议和产品变更控制协议的签订等。”那么对过滤器供应商进行管理为什么如此重要?在管理时需要注意哪些要素呢?”药品生产企业为了控制生产风险,会对供应商进行风险评估,根据评估的结果来决定供应商的管理策略。除菌过滤是生产工艺中的重要环节,因此对除菌过滤器的供应商进行科学合理的管理是保障药品生产质量和安全的重要环节。接下来我们从三个方面介绍对过滤器供应商进行管理时的重点考虑要素。1.过滤器供应商管理总述药品生产企业对除菌过滤器供应商的管理通常会进行文件审计、工厂现场审计、质量协议和产品变更控制协议和签订等。文件审计可以包括质量管理系统ISO证书、工厂质量管理的自我评估文件、除菌过滤器的验证指南、除菌过滤器的质量证书等文件的评估。工厂现场审计可以包括工厂质量管理系统、生产验证、仓储管理和供应商管理等内容。质量协议签订保障了使用者的权利,明确了供应商的质量职责。质量协议的范围可以包括产品的生产过程控制、变更控制、质量记录、质量证书、产品投诉和召回处理流程、产品保修/责任范围等。产品变更控制协议的签订,可以及时获取供应商的产品变更信息,评估变更带来的风险以及采取相应的措施。变更通知协议中可以约定变更通知的时间,变更的范围。2.除菌过滤器生产过程介绍除菌过滤膜的生产是整个过滤器装置生产中的重要环节。最常见的过滤膜生产是采用浸没铸造工艺,也有一些膜采用热致相分离工艺和膜拉伸工艺。下面是浸没铸造工艺的介绍。除菌过滤膜是通过浸没铸造方式将高分子聚合物铺在薄膜上。高分子聚合物铸模液需要进行混合、脱气和过滤,去除颗粒和气泡。然后通过精确控制的凹槽铺展到浇铸滚筒上的薄膜表面。薄膜通过滚筒的滚动进入浸没液的池中,使浇铸液中的有机溶剂扩散出去。聚合物则经过成核、生长和聚集形成的孔径结构。对于复合结构的膜,通常是两种铸模液先后铺入薄膜上形成复合结构的膜。形成的膜随后将被清洗去除残留的有机溶剂,并且进行表面化学修饰。其中浇铸液的成分、浸没液成分、浇铸的厚度、浇铸的速度、浸入池的温度和流速等是整个铸模生产过程的关键控制参数。图: 聚合物膜的铸造流程除菌过滤膜准备后,将进入过滤器装置的生产。根据不同的滤芯形式和尺寸,对膜进行切割和折叠,然后将过滤器的各个配件用热熔和或者有机溶剂熔和的方式进行组装。组装后的除菌过滤器用水冲洗润湿后进行完整性测试,测试通过的过滤器将被烘干、贴标签和包装。在生产过程中,每根过滤器的信息将会被记录用于追溯。对于无菌包装的除菌过滤器将会被送往进行辐照。辐照的剂量是经过验证的,通常是25-40KGy。辐照后的无菌过滤器要达到10^-6的无菌保证水平(SAL)。出厂前检验过滤器生产商必须进行相关的验证并结合批次放行之前的质量检验来保证除菌过滤器的性能。除菌过滤器的包装里通常都附带质量证书来保证每个放行的过滤器的生产、检测和放行都遵循验证中得到的参数标准。药品生产企业应该审核供应商提供的验证指南和质量证书来确保选择的过滤器就是除菌过滤器。同时了解各个检测项目,选择高质量的除菌过滤器提高除菌过滤的保障。另外一方面药品生产企业在使用除菌过滤器时不要超过过滤器验证的条件。除菌过滤器的质量标准和验证项目通常包含生产质量标准、动物来源申明、微生物截留测试、完整性测试、USP生物安全测试(毒性测试和内毒素测试)、流速测试、水压测试、多次灭菌测试、洁净度测试(可提取物测试、颗粒释放测试和纤维脱落测试)等。其中过滤器的批次放行检验通常是抽样检验,检验项目可能包括:细菌截留测试、USP细菌内毒素测试、完整性测试、水压测试、流速测试和可提取物测试。3.过滤器生产主要缺陷和影响除菌过滤器是除菌过滤无菌保证的关键,它的生产工艺和过程直接决定它的细菌截留性能和完整性。药品生产企业通过了解供应商的潜在生产缺陷,做好使用前物料质量检测工作,避免带来生产过程中的损失。滤膜生产过程中的很多因素都会影响到膜孔径结构的形成,从而影响膜的细菌截留能力。比如滤膜铸造时温度和湿度的控制、浇铸薄膜层的拉伸速度、浸没液的流动速度等,这些参数都需要研究并且精确控制。如果这些参数在生产过程中,有微小波动,都会导致膜的孔径和厚度不均匀,甚至孔径变大。由于膜的细菌截留检测是抽样检测,这些波动引起的膜的质量问题可能将不会被检测发现,导致无菌产品出现污染。这些参数的控制问题也会引起不同批次间膜的差异,并在过滤时表现不稳定。除菌过滤器生产中,也有可能存在缺陷导致过滤器完整性测试失败。如膜在折叠过程中可能会出现折叠处开裂,而导致膜不完整。膜和过滤器后盖热熔时,高的热熔温度可能会导致膜的边缘出现质量问题。另外过滤器各个组件热熔时,粘合接缝处可能会有微细孔道或者气泡,导致过滤器不完整。如果生产商不对过滤器进行完整性测试,就有可能导致现场使用前就存在完整性测试失败。除菌过滤器生产中原料的控制和环境的控制都会影响过滤器的质量。如膜生产或者过滤器装置生产中用到的水质如果没有良好控制,可能会影响过滤器的性能。例如过滤器内毒素检测失败的一个常见原因就是生产过程中的水质问题。而过滤器生产环境洁净度如颗粒、粉尘以及不同原料的交叉污染如果不能有效控制,也都会影响到过滤器成品的洁净度,并对产品料液造成污染。
  • 国内低档香烟过滤嘴中含大量致癌物引热议
    近日,一篇题为《大家快戒烟吧!内部消息绝对可靠》的网帖在各大论坛和网络社区流传。该帖称,一位在烟草生产行业的朋友透露了一个“被隐瞒了十年的秘密”为了降低生产成本,国内烟草行业在制造低档香烟时,用“聚丙烯”(一种塑料原料)替代通常用的“醋酸纤维”。网帖称,聚丙烯本身无毒,但一些肉眼看不见的细碎纤维丝一旦被人吸入,将永久留在肺部,对人体造成伤害。另外,聚丙烯过滤嘴中需要用到大量粘合剂、稀释剂,这些胶体中含大量的“苯”、“芳香烃类”等致癌物。   聚丙烯做过滤嘴并非秘密   其实,这篇网帖的内容并不新鲜,香烟过滤嘴含剧毒的说法早在2009年就曾在网络现身,只是近日又再次得到传播,引发新一轮的关注。   帖中表示,国内烟草行业为降低成本,更改了低档烟和部分中档烟过滤嘴材料,用聚丙烯替代醋酸纤维,而这是烟草行业“隐瞒十年的秘密”。   事实上,通过网络搜索即可发现,1992年,国家烟草专卖局下发《关于综合治理沿用聚丙烯滤嘴材料和滤棒生产的通知》,称:“烟用聚丙烯滤嘴材料从1988年研制成功并投入生产以来,在短短的几年里,取得了十分可喜的进展。不仅缓解了烟用滤材的供需矛盾,而且为烟草行业降低嘴烟生产成本、减少外汇支出创造了有利的条件。”   当时,世界香烟过滤嘴生产的主要原料即为醋酸纤维,但是醋酸纤维产量有限 根据1990年发表的一篇题为《香烟过滤嘴用聚丙烯丝束生产技术》的论文介绍,我国当时香烟滤嘴所用纤维也为醋酸纤维,且全部依赖进口。但是国际市场醋酸纤维紧俏,而且价格昂贵,无法扩大货源供应,“促使国内许多厂家开发研究以聚丙烯纤维代替醋酸纤维用于香烟滤嘴”。   该文称,用聚丙烯纤维代替醋酸纤维的不只是我国。美国的Hercules公司建成了香烟过滤嘴用聚丙烯丝束工厂 捷克斯洛伐克采用当时联邦德国的设备建成并投产香烟过滤嘴用聚丙烯丝束装置。   看来,香烟过滤嘴材料使用聚丙烯并非什么“隐瞒十年的秘密”,而是公开的事实,甚至曾经是一项广为推广的新技术。   聚丙烯本身对人体无害   针对网帖传言,笔者联系烟草公司的专业人士进行询问,但是没有得到回应。   一位在烟草公司工作的内部员工向笔者证实,目前中国绝大多数的香烟过滤嘴使用材料为醋酸纤维,只有少量的低档烟还在使用聚丙烯丝束。   那么聚丙烯丝束有没有毒呢?国际食品包装协会常务副会长兼秘书长董金狮此前在接受媒体采访时表示,聚丙烯本身对人体无害,现在使用的快餐盒和塑料杯等都是用聚丙烯制作的 只要用的是食品级聚丙烯,从用材角度来说是安全的。   随后,笔者在国家烟草专卖局的网站上看到,1996年,国家烟草专卖局印发《烟用聚丙烯加胶滤棒生产安全管理暂行规定》,对有机溶剂型胶粘剂性能要求、生产安全、管理和安全生产操作规程做出明确规定,并明确指出胶粘剂必须无毒,未经认定的胶粘剂产品,各企业一律不得采购使用 2005年,国家烟草专卖局关于印发《国家烟草专卖局开展打击违法生产经营烟用聚丙烯丝束(滤嘴棒)行为的工作方案》的通知中指出,要规范烟用聚丙烯丝束(滤嘴棒)生产(加工)企业的经营行为。   这一系列的规定和通知都说明,国家并没有禁止聚丙烯过滤嘴的生产。   不过,过滤嘴是否存毒,似乎并不是广大烟民关心的问题。   笔者在烟档和小卖部随机采访了几名选购香烟的顾客,大多数人表示没有听说过这件事情。有数年烟龄的周先生认为,自己只买大品牌香烟或者进口烟,应该问题不大 即使香烟过滤嘴真的存在问题,他也无法因此就戒掉烟瘾。   过滤嘴本身才是秘密?   至于真正隐瞒的“秘密”,一些控烟人士认为,恰恰是过滤嘴本身。   中国疾病预防控制中心控烟办公室李强博士接受笔者采访时表示,“通过过滤嘴降低卷烟的健康危害是烟草公司的一个谎言”。   李强称,由于尼古丁的成瘾性,吸烟者往往通过一些补偿行为,比如增加吸烟量,增加每支卷烟吸入次数,增加吸入深度,来增加尼古丁摄入,这就使得使用过滤嘴后,有害物质的摄入没有减少。   “国外研究发现,上世纪卷烟由非过滤嘴卷烟转变为过滤嘴卷烟后,肺癌的发病率没有下降,这从另外一个角度证实过滤嘴无法降低卷烟的健康危害。”李强表示,烟草公司对于过滤嘴可以降低危害的宣传,会误导消费者减少对健康的担忧,阻碍吸烟者戒烟的努力。   “最近网上关于香烟过滤嘴的传言很多,我也在关注相关的信息。”新探健康发展研究中心副主任吴宜群研究员告诉笔者,烟草过滤嘴传言之所以会出现,与烟草业和普通民众信息的极大不对称有关。普通消费者并不清楚香烟内究竟有些什么东西,更不清楚这些东西混合在一起可能会有什么危害。   吴宜群认为,烟草业应公布烟草中添加剂、色素、粘合剂等各种中草药的成分,并明示公众这些东西燃烧后生成的新化合物是什么,又有哪些有害成分。在吴宜群的个人微博上,她也呼吁烟草业技术部门针对传言予以回应,对消费者的健康负责。
  • 全球实验室真空过滤设备的领导品牌洛科仪器亮相CHINA LAB
    全球实验室真空过滤设备的领导品牌洛科仪器亮相CHINA LAB-访洛科仪器股份有限公司产品经理洪国展 3月31日在CHINA LAB 2016的展会现场,洛科仪器股份有限公司展出Lafil 100 可携式废液抽吸系统、直接抽水式真空过滤装置WaterVac100、300ml磁性漏斗、500ml磁性漏斗等产品。公司的产品经理洪国展接受本网专访,并着重介绍了此次展会带来的两款明星产品,他指出产品的优势特点将是以后占领市场最好的武器。 《Lafil 100 可携式废液抽吸系统》 真空抽化纯滤装置Lafil 100 可携式废液抽吸系统的特点是体积很小,搭配抽吸的设备,在细胞培养的时候做废液的抽取,也可以更换漏斗,借由搭配这样的过滤设备连接过滤装置之后,可以直接过滤。双功能设计,废液抽吸、真空过滤一机两用,独特的双功能设计,能用以抽吸培养皿、微孔盘等培养液或离心完后之上层液的装置;也可搭配抛弃式漏斗或可重复使用之过滤漏斗,用以纯化组织培养液或缓冲液。 《WaterVac100系列真空纯化过滤装置》 此外洛科独特设计的的组合,水质及微生物检测方面会用到的设备真空纯化过滤装置WaterVac100系列,创造客户使用的新模式,特点是可以直接抽水,适用于更换各式各样的过滤座,搭配各式各样的过滤漏斗。这一种是借由硅胶塞的方式去连接塑胶漏斗,也可以更换成一次性的漏斗。或搭配洛科独特设计的新的MF系列磁式漏斗,借由磁力的方式进行连接,可以直接利用磁铁的方式做结合。洪经理说:&ldquo 这也是我们的专利设计,非常方便,操作非常简单,设置内键,直接按开关之后就可以直接过滤。我认为这在未来销售上是一个非常好的武器。&rdquo 洪经理表示目前面临的市场竞争压力还是很大,但是由于洛科产品的创新以及专利的研发,因此在整体的销售上以及市场占有率方面信心十足。公司的研发团队每年必须有一个新的产品推出,并且也非常重视新产品在专利上的取得,重视利用专利优势来巩固创新上的特点,这能避免其他厂家进行模仿。 关于洛科 洛科仪器专业于研发,制造,行销实验室真空过滤、加热控制等产品。主要用于食品、水质、微生物检验、分生实验及各种物质纯化。除了工厂荣获ISO9001-2000 肯定外,主要产品也通过欧盟CE或北美CSA认证,近年来也陆续获得多项专利,品质优良外销全球五十多国家。
  • 【知识分享】液相色谱要么堵要么漏?原因是这个!
    使用液相色谱仪的小伙伴肯定会遇到漏气和漏液的状况,流动相是造成液相色谱各种问题的最主要源头。液相色谱最常见的故障一是堵,二是漏。今天就这两部分分别展开讨论(流动相以甲醇为例,色谱柱以C18为例) 。首先,为何会堵?“堵”的表现现象就是柱压异常升高,直接原因就是流路不畅。堵塞的主要位置就是在色谱柱的前端,最主要原因就是流动相里有杂质,杂质的主要来源就是细菌。1纯水中的细菌污染首先我们要认识到,一般的国产甲醇其实不需要额外过滤处理,直接使用没有问题。即使是有些固态微粒杂质,也能在液相流路系统最前端的过滤头上排除,真正容易引起问题的,是水中的细菌。新制备的纯水在室内放置几天就会长菌,而这些细菌虽然肉眼不可见,却足以堵塞柱填料颗粒的空隙,造成柱子很快报废。这就是在配制流动相时造成的细菌污染的原因,解决它的方法很简单,就是确保水的可靠性。解决办法:(1)最理想的方式当然是购买实验室专用纯水机,既方便又可靠,质量也放心。唯一的缺点就是价格不菲。(2)成箱购买市售品牌纯净水,如500ml的怡宝或娃哈哈,这些水的质量足以应付液相色谱的要求。先随机抽取一瓶做一下细菌平板实验,待菌落数合格方可使用。这样每次只要单独开一瓶即可,也很方便。每次成本2元左右。这里特别指出一个细节:在绝大多数书本上,凡谈到配制流动相都会谈到最后一个过滤的步骤。但是从我们长期使用的实际效果来说,只要能保证水的质量,这一步完全可以也应当去除。水有保证,可以不过滤?(1)流动相过滤在理论上有好处,但是实际操作时由于不可能做到专瓶专用,反而容易造成的交叉污染,对于配比复杂的流动相影响更大。(2)流动相过滤在经济成本上不划算。买一套过滤装置要6000多元,且过滤器公认是比较容易损坏的设备。最主要是过滤片的成本太高,一片就要几十元。按一般液相柱的正常使用寿命计算,过滤片的成本会远远高于色谱柱的成本。2流动相的细菌污染流动相刚开始不长菌,在使用时却产生了细菌污染。这主要是在使用多元液相色谱仪时的一种不良使用习惯造成的。举最简单的例子:50%的甲醇水流动相,有两种使用方式。一种方式是在上机前就配好混合在一起,另一种方式是在流路A放纯甲醇,流路B放纯水。从单纯实验效果来说,后一种有明显的优点:首先是简单,不需要实验者另外计算配比混合,其次就是比例准确,能得到保留时间重复性极好的实验效果。但是,它有一个致命的缺陷,就是纯水在流动相瓶中几天时间就会长细菌(很多情况下不仅仅用纯水作流动相,而是用缓冲盐溶液,本身就是优质肥料,细菌长得更迅速),一旦有细菌柱子就坏得很快。所以这种方式要求操作人员每次实验都要用新制备的纯水,更要求在每次实验后把水相换掉,换成甲醇冲洗干净,这一点在实际工作中很多人意识不强,就是意识到了但多次使用中总有一两次会遗漏,但是往往这一两次就足以产生致命的影响。因为液相色谱柱的堵塞是不可逆的。所以,宁可牺牲小小的保留时间的重复性,也不要用纯水溶液作为流动相。从实际实验效果来说,我建议用10%的甲醇水代替水溶液(以前做过不同比例甲醇水的细菌总数实验,在5%就基本可以抑菌,在10%及以上就可以完全杀菌了),这样可以有效排除长细菌的隐患,既可作流动相,也可冲柱。就算是在配制流动相时会计算得麻烦一些,但是一次麻烦,终身受益。3不适当操作(1)在更换零件时选择的型号有误,接口不是很匹配,在拧紧的时候产生变形而使得管路堵塞。(2)样品处理液净化得不干净,长期会在六通阀和柱之间造成阻塞不畅。(3)在使用手动六通阀时,有些人可能由于手劲小的原因,转动的不到位,于是造成流路形成死堵,压力快速升高超过警戒值。1
  • 高效液相色谱日常维护要点-脱气
    大家好,高效液相色谱和其它常规分析仪器一样,为了能让高效液相色谱更好的工作、在实验的时候得到可靠的数据,首先你要保养好它,使它处于一个健康的待机状态,这样你使用它进行检测分析时就可以比较顺利地获得理想结果。而且良好规范的操作习惯还可以延长仪器使用寿命。在日常使用维护中最重要的主要有三点:脱气、过滤和冲洗。这三点属于最常规操作要求,同时也是检测分析中必不可少的流程。小编会分三期为大家讲解,今天先带大家了解下脱气的具体原因和脱气的具体方法。脱气流动相里存在气泡是HPLC系统操作过程中常见的问题、气泡会造成泵输出的问题,也能造成检测器的输出结果中出现假的色谐峰。大多数的气泡问题可以在使用流动相之前以脱气的方法来消除。下面就是小编简单总结了脱气的主要目的:1、防止由溶解(在液体中的)气体量的变动引起的检测不稳程度 。2、提高保留时间和色谱峰面积的重现性。3、防止气泡引起尖峰。4、使基线稳定,提高信噪比。5、防止由气泡的产生引起的故障,示差折射率检测器:使折射率变化UV检测器(200nm以下):溶解氧气有吸收,荧光检测器:溶解氧气有消光作用。6、减少死体积。7、防止填料氧化。脱气要求只要空气在流动相里保持溶解,气泡问题就很少会出现。原则上讲人工配备的等度洗脱流动相般不需要脱气就可以在实验中使用,但是被气体饱和的溶液也只需要非常小的压力下降就能脱气。比如当流动相通过溶剂人口的在线过滤器,或者当流动相进人压力相对低的检测器溶液池时。因为这个原因和为了能使一般的HPLC操作具有可靠性,我们强烈建议用于反相色谱的所有溶剂都必须经过脱气。脱气对于正相HPLC来说不会产生很多问题,所以使用正相色谱时脱气是可选的。需要除去的溶解在流动相里的气体量根据HPLC泵的设计不同而不同,一些泵能够承受大量溶解在流动相里的气体而另外些泵则需要彻底脱气才能达到可靠的操作效果。常用的脱气方法1.抽真空脱气法:此法可使用真空泵,降压至0.05~0.07MPa即可除去溶解的气体,用真空脱气10-15分钟可以除去60%-70%溶解在流动相的气体。但是由于真空脱气会使混合溶剂组成发生变化,从而影响到实验的重现性,因此多用于单溶剂体系的简单分析。2.氦气喷洗脱气法:氦气喷洗是除去流动相里的气体最有效的技术,主要是利用氦气在液体中溶解度比空气低的特性,在0.1MPa压力下,以约60mL/min流速通入流动相储液容器中10~15min,可以很有效地从流动相中排除溶解的空气,能排除接近80%-90%溶解的气体。采用一个高效分布式喷射流装置,一体积的氦气可从流动相中将等体积的几乎全部气体排除。3.在线脱气法:在线脱气主要优点是操作简单,低故障,并非常有效。4.加热回流法:此法的脱气效果较好。但是还是有一些不足,那就是在操作时要特别注意冷凝塔的冷却效率,否则溶剂会丢失,混合流动相的比例会有变化。5.超声波脱气法:实验室最普遍的脱气方法,主要操作就是将欲脱气的流动相置于超声波清洗器中,用超声波震荡时间不宜过长,避免温度升高导致易挥发性成分的丢失,一般在5min之内。但是相对于其他脱气方法,优点是容易操作,时间短。不足之处则是此法的脱气效果相对较差。到此需要脱气的具体原因和脱气的具体方法,在这里就差不多介绍完了。下期小编将继续带领大家去具体了解高效液相色谱日常维护要点-过滤。
  • 新品发布:Radleys过滤反应釜,让您的反应和过滤设备合二为一
    英国Radleys公司于2022年4月16日正式发布其全新的Reactor Ready系列过滤反应釜,我司合臣科技(上海)有限公司作为Radleys的中国区授权代理商,同步在国内开展新产品的发布工作。Reactor Ready过滤反应釜将您的夹套玻璃反应釜和过滤装置合二为一,用于进行反应和样品分离,非常适合结晶、反应后处理和产品分离。进行温度控制、搅拌和过滤您可以升级您现有的Reactor Ready反应釜以兼容过滤釜体或新购置一台过滤反应釜。 过滤釜体采用全夹套设计,以实现精确的温度控制 过滤釜体类型:1L 和2L 过滤组件可实现有效的固液分离,同时将残留量降低 独特的过滤器支撑板将底座与釜体对齐,无需工具即可组装在同一釜体中合成和过滤我们独特的夹套过滤釜体允许在合成和过滤过程中对整个釜体内容物进行精确的温度控制。全夹套玻璃过滤釜体用于精确温度控制过滤的全夹套玻璃过滤釜体产品特性精密设计的硼硅酸盐玻璃釜体采用夹套设计,一直延伸到过滤板,可精确控制整个釜体内容物的温度。上部DN100 抛光平盖法兰与 FEP 包裹的 O 形圈和 PTFE 环相结合,在釜体和釜盖之间提供防泄露密封。釜体内壁垂直设计,便于无阻碍地进行过滤,配有DN150 底部法兰,可轻松接触滤饼。过滤组件可实现高效的固液分离可重复使用的过滤膜有多种孔隙率和材料可供选择。带有可拆卸夹子的滤板便于在过滤后收集产品并重新组装过滤部件。滤板组件Reactor Ready过滤板组件可实现高效过滤和轻松的固体回收。创新的垫圈和O 形圈密封设计降低了泄漏的风险。宽底法兰和可转动的过滤器支撑板使得滤饼取出和系统的重新组装变得非常方便。 玻璃底部放料阀易于拆卸以进行清洁。采用15 mm底部放料出口设计,便于轻松放料。零死角设计可减少反应过程中过滤介质下方的材料损失。螺纹出口便于连接到收集容器和真空泵以进行负压抽滤。过滤膜所有滤膜套装都包括 6 种预先切割好尺寸的滤膜,您还可以根据自己的尺寸切割滤膜材料。滤板和垫圈可选PTFE 或 PEEK材质。PTFE(-30 至 +120℃)具有出色的化学相容性。 PEEK(-30 至 +180 ℃)提供更宽的温度范围和良好的化学相容性。 烧结玻璃膜支架防止过滤介质在过滤过程中损坏。铝制滤板杯在过滤过程中保持滤板刚度,以确保滤板和釜体法兰的紧密密封。垫片 O 形圈套装包括硅胶(-30 至 +180℃)和氟橡胶(-20 至 +180℃)。 便于使用的过滤组件1. 铝制滤板杯让您可以选择 PTFE 或 PEEK 滤板,具有更广泛的溶剂和温度兼容性。2.可拆卸的 15mm口径玻璃底部出口便于清洁。3. 烧结玻璃膜支架防止过滤介质在过滤过程中损坏。4. 预切过滤膜有多种材料和孔隙度可供选择。5. 套装包括硅胶(-30 至 +180℃)和氟橡胶(-20 至 +180℃)。6. 垫圈(可提供 PTFE 或 PEEK)与 O 形圈结合,以确保有效密封。7. 可转动的过滤器支撑板使得过滤器与釜体便于对齐,即使在夹子解锁时也能支撑滤板和滤饼。8. 过滤器夹设计让过滤组件能够轻松地夹在釜体下法兰上。9.釜体和过滤组件更换无需工具,可在几分钟内完成。 Reactor Ready过滤釜体釜架系统套装这个釜架套装包括您开始使用所需常规配件,每个釜架套装包括:釜架组件五口玻璃釜盖 滤板套装滤板套装包括开始过滤所需的常规配件,只需选择具体的材料类型(PTFE或PEEK)即可,每个滤板套装包括:PTFE 或 PEEK 滤板PTFE 或 PEEK 滤板垫圈铝制滤板杯滤板 O 型圈(氟橡胶和硅胶)烧结玻璃膜支撑盘玻璃底部出料口和底阀滤膜评估套装(6种膜)过滤釜体套装 这些釜体套装包括您开始使用所需的釜体和配件,每个套装中包含的Pt100 温度探针和涡轮搅拌桨与釜体尺寸相匹配,每个釜体套装包括:过滤釜体PTFE涡轮型搅拌桨Pt100 PTFE温度探针及其适配器
  • 三聚氰胺HPLC检测方法之固相萃取(SPE)法
    1. 依据:GB/T 22388&mdash 2008 2. 原理:试样用三氯乙酸溶液-乙腈提取,经阳离子交换固相萃取柱净化后,用高效液相色谱测定,外标法定量。 3. 试剂与材料:除非另有说明,所有试剂均为分析纯,水为GB/T 6682规定的一级水。 3.1甲醇:色谱纯; 3.2乙腈:色谱纯; 3.3氨水:含量为25%~28%; 3.4三氯乙酸; 3.5柠檬酸。 3.6辛烷磺酸钠:色谱纯; 3.7甲醇水溶液:准确量取50 mL 甲醇和50 mL 水,混匀后备用; 3.8三氯乙酸溶液(1%):准确称取10 g 三氯乙酸于1 L 容量瓶中,用水溶解并定容至刻度,混匀后备用; 3.9氨化甲醇溶液(5%):准确量取5 mL 氨水和95 mL 甲醇,混匀后备用; 3.10离子对试剂缓冲液:准确称取2.10 g 柠檬酸和2.16 g 辛烷磺酸钠,加入约980 mL 水溶解,调节pH 至3.0 后,定容至1L 备用。 3.11三聚氰胺标准品:CAS 108-78-01,纯度大于99.0%; 3.12三聚氰胺标准储备液:准确称取100 mg(精确到0.1 mg)三聚氰胺标准品于100 mL 容量瓶中,用甲醇水溶液(3.7)溶解并定容至刻度,配制成浓度为1 mg/mL 的标准储备液,于4℃避光保存。 3.13 阳离子交换固相萃取柱:混合型阳离子交换固相萃取柱,基质为苯磺酸化的聚苯乙烯-二乙烯基苯高聚物,60 mg,3 mL,或相当者。 3.14 定性滤纸。 3.15 微孔滤膜:0.2 &mu m,有机相。 3.16 氮气:纯度大于等于99.999% 4. 仪器和设备 4.1 高效液相色谱(HPLC)仪:配有紫外检测器或二极管阵列检测器。 4.2 分析天平:感量为0.00001 g和0.01 g。 4.3 离心机:转速不低于10000 r/min。 4.4 天津恒奥超声波提取器。HS,HU系列 4.5 天津恒奥固相萃取装置。HSE-12D 4.6 天津恒奥氮吹仪。HGC,HSC系列 4.7 天津恒奥涡旋振荡器。HMS-350 4.8 天津恒奥真空泵。HPD-25 4.9 天津恒奥精密气体稳流调节阀。 4.10 具塞塑料离心管:50 mL。 5. 样品处理 5.1 提取 称取(液态奶、奶粉、酸奶、冰淇淋和奶糖等)2 g(精确至0.01 g)试样于50 mL具塞塑料离心管中,加入15 mL三氯乙酸溶液(3.8)和5 mL乙腈,超声提取10 min,再振荡提取10 min后,以不低于10000 r/min离心30 min。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容至25 mL,移取5 mL滤液,加入5 mL水混匀后做待净化液。 注:若样品中脂肪含量较高,可以用三氯乙酸溶液饱和的正己烷液-液分配除脂后再用SPE柱净化。 5.2 活化 依次用3 mL 甲醇、5 mL 水活化(3.13)阳离子交换固相萃取柱。旋转固相萃取装置前的精密气体稳流调节阀使洗液流速不超过1 mL/min 5.3 上样 将5.1中的待净化液转移至固相萃取柱(5.2)中。 5.4 淋洗 依次用3 mL水和3 mL甲醇洗涤,抽至近干后, 5.5 洗脱 用6 mL氨化甲醇溶液(3.9)洗脱,用试管收集洗脱液。整个固相萃取过程流速不超过1 mL/min。5.6 浓缩 洗脱液于50℃下用氮气吹干,残留物(相当于0.4 g样品)用1 mL流动相定容,涡旋混合1 min,过微孔滤膜后,供HPLC测定。 6. 高效液相色谱测定 HPLC 参考条件 a) 色谱柱:C8柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者; C18柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者。 b) 流动相:C8柱,离子对试剂缓冲液(3.2.10)-乙腈(85+15,体积比),混匀。 C18柱,离子对试剂缓冲液(3.2.10)-乙腈(90+10,体积比),混匀。 c) 流速:1.0 mL/min。 d) 柱温:40℃。 e) 波长:240 nm。 f) 进样量:20 &mu L。 7. 分析 用GB/T 22388&mdash 2008标准检测方法分析,使用天津恒奥的设备测得样品的回收率结果如下: 添加水平(mg/Kg) 回收率 空白 2 116% 4 108% 6 92% 8 96% 由上表可以看出:使用天津恒奥设备处理样品,不仅可以提高分析样品的速度而且还可以得到满意的回收率。
  • 3D打印微型旋转过滤器,可重复用于芯片实验室的微粒过滤
    来自中科大、合肥工业大学和日本RIKEN高级光子学中心的研究人员制造了一种磁驱动旋转微过滤器,可用于过滤微流体设备内的颗粒。他们通过创造一种磁性材料制成了微小的转动过滤器,这种材料可以与一种称为双光子聚合的非常精确的3D打印技术一起使用。作为利用便携性、安全性和效率优势的微型实验室平台,片上实验室系统已广泛应用于各个领域。近年来,得益于飞秒激光微纳制造技术的不断进步,用于三维(3D)高精度加工、微光学、微流体等多种功能微元件和微机械可以通过简单的程序集成到微芯片中,实现分子检测、细胞操作、催化反应等应用。常见的功能性微芯片之一是微分选装置,对分离颗粒和富集特殊细胞具有重要意义,并已成功应用于单细胞分析、药物筛选、血细胞分离等。目前的微流控分选方法可分为主动分选和被动分选。前者需要使用外部设备或外力,操作复杂,需要昂贵的设备。同时,后者在集成无源微器件的微流控芯片中实现了无外力的细胞或颗粒分选。微米级微孔过滤器是一种传统的被动分选装置,可以根据孔径大小对颗粒或细胞进行分选。由于过滤器中的孔的数量和形状不能在分选过程中动态改变,因此无法灵活地按需分选不同的颗粒或细胞,从而限制了微芯片的使用。因此,开发一种可以自由切换过滤、通过、选择性过滤等过滤模式的多功能过滤器,可以使应用多样化。在该研究中,来自中科大、合肥工业大学和日本RIKEN高级光子学中心的研究人员使用飞秒激光双光子聚合在微流控芯片中制造了磁性旋转微过滤器。研究人员首先合成了磁性纳米颗粒,将其混合在光刻胶中以制备磁性光刻胶。为了聚合制备的磁性光刻胶,优化了激光功率密度、脉冲数和扫描间隔等不同工艺参数。然后在载玻片上制作旋转微过滤器,并测试其磁驱动性能。最后,将旋转微过滤器集成到微流控芯片中。在恒定磁场下证明了微流控芯片内部过滤器对“过滤”和“通过”模式的磁响应。过滤性能是用在酒精溶液中含有直径为 2.5 和 8.0 µm 的聚苯乙烯 (PS) 球体的悬浮液来测试的,显示完全过滤了 8.0 µm 的颗粒。设想这种磁驱动旋转微过滤器可以在血细胞分选、微粒纯化和循环肿瘤细胞分离方面提供广泛的应用。▲图1. 磁驱动旋转微过滤器的制造过程和磁性颗粒的表征。(a) 具有可切换模式功能的磁驱动旋转微过滤器的制造过程示意图。(b) [Math Processing Error] 纳米粒子的 XRD 图。(c) 小熊猫的 SEM 图像。EDX 映射图像说明来自印刷的小熊猫的 (d) 覆盖层、(e) 碳和 (f) 铁。比例尺:5 µm。他们使用双光子聚合创建了新的过滤器,它使用聚焦的飞秒激光束来固化或聚合一种称为光刻胶的液体光敏材料。由于双光子吸收,聚合可以以非常精确的方式完成,从而能够制造微米级的复杂结构。图2. 双光子示意图为了制造微过滤器,研究人员合成了磁性纳米粒子并将它们与光刻胶混合。制造旋转式微过滤器要求它们优化用于聚合的激光功率密度、脉冲数和扫描间隔。在载玻片上测试其磁驱动特性后,他们将微过滤器集成到微流体装置中。多种过滤模式为了过滤较大的颗粒,应用垂直于微通道的磁场。过滤过程完成后,可以通过施加平行于微通道的磁场释放大颗粒,这将使微过滤器旋转 90°。然后可以根据需要重复过滤过程。研究人员使用混合在酒精溶液中的直径为 8.0 和 2.5 微米的聚苯乙烯颗粒验证了过滤器的过滤性能。“很明显,小于孔径的颗粒很容易通过微过滤器,而较大的颗粒则被过滤掉,”中国科学技术大学的张晨初说。“在通过模式下,过滤器捕获的任何较大颗粒都会被流体冲走,从而防止过滤器堵塞并允许重复使用微过滤器。”▲图3. 磁力旋转微滤器的参数优化与设计。(a) 不同激光功率密度下最小脉冲数的聚合窗口。(b) 磁旋转微过滤器的示意图。【数学加工误差】为外径,【数学加工误差】为轴套内径。盖玻片上的磁性旋转微过滤器 (c) 和通道中的 (d) 的 SEM 图像。所有比例尺:10 µm。▲图4. 制造的微过滤器的磁驱动旋转。(a) 在平面上操纵磁旋转微过滤器的示意图。(b) 通过施加不同方向的均匀磁场,在平坦表面上的液体环境中操作磁旋转微过滤器的演示。(c) 磁性操纵通道中旋转微过滤器的示意图。(d) 和 (e) 在充满乙醇的微通道中展示磁性旋转微过滤器的旋转以切换模式。该研究得到了中国国家自然科学基金、中国国家重点研发项目、中国博士后科学基金和中央大学基础研究基金的支持,相关成果发表在光学学会杂志Optics Letters上。
  • LC使用篇—“治未病”
    导 言中医自古以来就有“上医治未病”的说法,即采取相应的措施,防止疾病的发生发展。而仪器故障的最佳解决方案就是预防故障的发生。在仪器使用过程中注意某些细节可以极大地降低仪器的故障率,使实验平稳进行。今天就来说说LC使用过程中的一些注意事项。流动相选择使用不符合要求的流动相或者未进行过滤时,可能会导致系统污染和管路堵塞。需要使用HPLC或以上级别的有机溶剂,水需要使用纯化水或二次蒸馏水。流动相需要使用0.45μm孔径或更小孔径的滤膜过滤,特别是使用缓冲盐时必须过滤。滤膜有各种不同的材质,千万不能选错。水相的流动相容易长菌,一般使用1-3天就需要更换。流动相更换可以互溶的流动相可以直接更换。不可互溶的流动相,需要选择一种可与两者互溶的中间流动相进行过渡,再更换为新的流动相。更换含盐流动相和有机相时需要用水过渡,以防止盐结晶析出,进而堵塞管路或者磨损单向阀、柱塞杆密封圈、高压阀等部位。LPGE系统排气LPGE 系统中各个流路使用同一个泵头,当流动相中既有纯有机相又有含盐流动相时,两者连续排气,可能有盐结晶析出。中间需要用纯水(或者水和低比例有机相的混合溶液)过渡。如果流动相中的盐含量不高时,也可以使用先排有机相再排含盐流动相的顺序进行排气。水相流路冲洗如果某个流路固定使用水相,即使每天更换新的流动相,也会有细菌在管壁上生长。为了防止大量菌膜附着在管路内壁上,还需要定期使用有机相浓度在50%以上的流动相进行冲洗除菌。柱塞杆清洗从上图的泵头结构可以看出,瓶子里的清洗液是用来清洗和润滑柱塞杆,主要为了延长密封圈的寿命。如无柱塞清洗液,在使用含盐流动相时,柱塞杆会暴露在空气中,附着在柱塞杆上的缓冲盐会随溶剂挥发而析出,对密封圈产生磨损,柱塞清洗液的作用是将附着在柱塞杆上的缓冲盐清洗下来,延长密封圈的使用寿命。柱塞杆清洗一般有两种方式,手动清洗或自动清洗,清洗液用10%异丙醇水溶液。对于手动清洗,一般在实验完成后用注射器缓慢注入清洗液10-20mL(如果盐浓度较高需要1-2小时清洗一次)。注意:仪器在运行过程中,也是可以手动打清洗液的。对于自动清洗装置,建议每周更换一次清洗液,如果是超高效液相或者流动相的盐浓度较高,则需提高更换频率。色谱柱保存实验结束后,色谱柱需要按照柱子说明书的要求进行清洗保存,否则会缩短色谱柱的使用时间。以C18柱为例:要先用10%甲醇水溶液冲色谱柱30min,再用纯甲醇(或者90%甲醇)冲洗20min。如果较长时间不用还要把色谱柱拆下,封堵两端后存放。流路系统保存当仪器停止使用时,如果水相的流动相长期保存在流路中,细菌就会在管道中肆意生长。需要及时更换为有机相或者有机相浓度在50%以上的流动相(四元低压比例阀建议保存在50%甲醇水溶液中)。仪器除尘仪器长期使用后由于实验室环境等因素会使仪器中积聚很多灰尘,容易引起静电,在一定湿度下甚至会导电。如不及时清理,电路板损坏的风险会急剧上升。实验室环境与仪器的正常运行是紧密相关的,保持实验室环境清洁能够让仪器更加平稳运行,让实验分析更加顺利。如果发现仪器有很多灰尘,可以用吹风机对仪器内部进行除尘。如操作有困难请联系岛津工程师,我们有维护保养业务可以保您仪器清洁如新,保养完成还会提供三个月基础保修。资深液相工程师余晓维
  • 新疆理化所在空气过滤材料的设计及优化研究中获进展
    燃气轮机是高效清洁的能源转换装置,被誉为工业装备制造业“皇冠上的明珠”。燃气轮机通过将干燥洁净的空气与燃油混合以产生能量,其进气过滤系统的主要功能是保护燃气轮机免受空气中颗粒物的污染,以保证燃气轮机发电机组安全可靠运行。纤维类材料具有比表面积大、孔径分布可控、体积蓬松、价格低廉等特点,是空气过滤领域的主流产品。针对复杂环境下的空气过滤需求,玄武岩纤维因优异稳定性,成为新型高效空气过滤材料。然而,由于纤维材料内部微观结构的复杂性以及过滤参数(颗粒直径分布、气流速度等)耦合作用,过滤效率和压降存在“trade-off”权衡关系,对过滤材料的设计和优化带来了挑战。   近期,中国科学院新疆理化技术研究所提出了一种基于计算流体力学(CFD)模拟与响应曲面法(RSM)相结合的纤维过滤过程预测与优化方法,对纤维过滤过程进行了可视化研究。该工作通过数字重构纤维过滤材料的三维微尺度模型,以CFD-DPM模型预测纤维介质的过滤性能,追踪粒子在滤材中的运动轨迹和特征流场,分析拦截、碰撞和布朗运动耦合过滤机理对粒子捕获的影响规律。进一步,该研究通过建立过滤性能与过滤参数之间的映射关系,结合RSM实现对过滤参数的多目标优化。RSM分析发现,过滤参数对过滤效率的影响存在耦合效应,利用过滤原理与Stk数和Pe数变化详细解释了其耦合效应。而压降随固体体积分数和气流速度的增大而增大,但不受颗粒直径的影响。综上,本研究通过CFD模拟与RSM优化相结合,阐明过滤参数之间的相互作用关系,这为高效筛选过滤材料和滤材设计与优化开辟了新途径。   近日,相关研究成果近日发表在《化学工程科学》(Chemical Engineering Science)上。新疆理化所为该工作的第一完成单位。研究工作得到新疆维吾尔自治区自然科学基金和新疆天山英才-科技创新领军人才项目等的支持。基于CFD-RSM方法的纤维过滤介质设计及优化流程
  • RephiLe发布升级版预过滤新品
    近期,RephiLe新款预过滤产品正式开始销售,取代旧款二联或三联预过滤装置。之前使用旧款产品的用户,如果需要产品升级,也可以联系RephiLe相关销售人员订购。 传统的预过滤装置采用滤筒式结构,在数个串联的滤筒中分别安装PP棉芯,活性炭滤芯和抗结垢柱,以去除自来水中的颗粒物杂质及一些氧化性物质,保证纯水系统的正常工作。RephiLe的升级版预过滤新品,结构更为紧凑,使用新的设计理念,采用高效高能的预过滤介质,通过快插式接口安装,在使用便捷性,安全性,经济性,使用寿命等方面都有大幅提高。同时,占地面积小,节省空间。 该产品可以作为市场上纯水品牌的预处理系统,也可以与一些对水质有要求的实验室设备配套使用,如洗瓶机,制冰机,旋转蒸发仪、水浴锅等。 新品与传统产品比较一览表: 关于 RephiLe: RephiLe 是一家提供水纯化和实验室分离纯化产品的专业制造商和供应商,在实验室纯水及过滤领域具有深厚的技术背景。 RephiLe 根据自己的研发成果,以创新为驱动,以服务为导向,逐步建立了自己的产品品牌,拥有自主知识产权并获得多项专利。国际化运作的管理理念,完善、可靠的质量监测和保障体系,使 RephiLe 的产品可靠,一进入市场就受到广大用户的认可和青睐,在国内同类产品中处于高端领先的技术和质量水平。 RephiLe 已与国内外多家技术领先的机构有多层次的合作,产品销往欧美 80 多个国家。 更多 RephiLe 产品信息,请登陆 :RephiLe 官网 官方微博:RephiLe 微博 官方博客:RephiLe 博客
  • 无菌药物生产中如何使用过滤器?《除菌过滤技术及应用指南》(征求意见稿)发布
    p   为指导和规范除菌过滤技术在无菌药品生产中的应用,结合近年来在药品生产企业GMP认证检查和跟踪检查中发现除菌过滤的缺陷情况,食品药品审核查验中心组织专家起草了《除菌过滤技术及应用指南》(征求意见稿),现向社会公开征求意见,请于2017年5月31日前将意见和建议反馈至食品药品审核查验中心。 /p p & nbsp 其中,关于在无菌药品生产过程中应如何使用“除菌过滤器或系统”,仪器信息网编辑将内容整理如下: /p p    strong span style=" color: rgb(112, 48, 160) " 6. 除菌过滤器、系统的使用 /span /strong /p p    strong span style=" color: rgb(0, 112, 192) " 6.1 使用 /span /strong /p p   过滤器安放位置应便于其安装、拆卸、检测等操作。过滤器与支撑过滤器的设备、地面、墙面等连接应牢固可靠。过滤器各部件间应接合紧密,密封良好,能够耐受生产操作压力,且无泄漏、变形。滤芯、滤膜安装前应确认其规格、型号、外观符合要求。组装过程中,应尽量避免污染。应按照滤器的使用说明进行安装。如果现场有多种规格滤器时,应有第二人对滤器信息进行复核确认,复核应有记录。 /p p   为了减少滤器产生的颗粒及其他异物影响产品,可对安装好的除菌过滤系统进行必要的预冲洗。应结合供应商提供的方法进行冲洗。冲洗方法应经过验证。在正常操作时,冲洗量应不低于验证的最低冲洗量。冲洗后应采用适当方法排除冲洗液。 /p p   除菌过滤系统需进行密闭性确认。过滤器上游系统密闭性可通过压力保持和在线完整性测试等方式确认。过滤器下游密闭性可通过压力保持进行确认,相关参数应经过验证。 /p p   为保证除菌过滤的有效性,应对影响除菌过滤效果的关键参数进行监控和记录。监控项目应包括除菌过滤温度、时间、压力、上下游压差等 系统的灭菌参数、无菌接收容器的灭菌参数 以及过滤器完整性测试结果等。 /p p   除了过程参数,还应对滤器的关键信息进行记录(如:货号、批号和序列号,或其他唯一识别号),以利追溯。 /p p   应制定企业的培训计划,除菌过滤器的相关培训应纳入年度培训计划中。培训内容包括理论知识及操作技能。理论知识培训包括滤器生产商提供的使用说明、工作原理、相关参数及滤芯、过滤系统相关验证要求 操作技能培训包括相关滤芯使用的标准操作规程,如完整性测试培训、清洗灭菌、干燥、保存等操作培训、产品除菌过滤参数培训、系统密闭性测试培训等。应对人员进行理论和实际操作考核,考核合格后上岗。当系统或参数发生变更,相关的标准操作规程内容修订后,应对人员进行再培训。 /p p   除菌过滤工艺过程发生偏差时,应进行深入的调查,以找到根本原因并采取纠偏措施。对发生偏差的产品应进行风险评估。 /p p    strong span style=" color: rgb(0, 112, 192) " 6.2 灭菌 /span /strong /p p   使用前,除菌过滤过滤器必须经过灭菌处理(如在线或离线蒸汽灭菌,辐射灭菌等)。在线蒸汽灭菌的设计及操作过程应重点考虑滤芯可耐受的最高压力及温度。灭菌开始前应从滤器及管道设备中排出系统内的非冷凝气体和冷凝水。灭菌过程中,过滤系统内部最冷点应达到设定的灭菌温度。在整个灭菌过程中, 滤芯上下游压差不能超过滤芯可承受的最大压差及温度。灭菌完成后,可引入除菌的空气或其他适合气体来对系统进行降温。降温时应维持一定的正向压力以保持系统的无菌状态。 /p p   使用灭菌釜进行灭菌时, 通常应采用脉动真空灭菌方法。灭菌过程应保证滤器能被蒸汽穿透,从而对过滤器进行彻底灭菌。不论采用滤芯加不锈钢套筒还是囊式滤器的形式,滤器的进口端和出口端都应能透过蒸汽。应参考滤器生产商提供的灭菌参数进行灭菌。温度过高可能导致过滤器上的高分子聚合物材质性质不稳定,并可能影响滤器的物理完整性或增高可提取物水平。 /p p   除菌过滤中可能会用到滤器、一次性袋子、软管等装置,这些物品可采用辐射灭菌的方式进行灭菌。已被辐射灭菌过的过滤器、袋子及软管等,由于累积剂量效应的缘故,通常不应被多次灭菌。如果再加以蒸汽灭菌,则可能增加可提取物水平,并有可能破坏过滤器完整性。 /p p   罐体呼吸器采用在线蒸汽进行灭菌时,可采用反向进蒸汽的方式,即蒸汽直接引入罐体,然后从呼吸器滤芯下游穿过滤芯,从上游排出。但应监控滤芯灭菌时的反向压差。此压差应保持在滤芯可耐受压差范围之内。反向灭菌时建议使用带有翅片的滤芯,不建议采用直插式滤芯。 /p p    strong span style=" color: rgb(0, 112, 192) " 6.3 完整性测试 /span /strong /p p   除菌过滤器使用后,必须采用适当的方法立即对其完整性进行测试并记录。除菌过滤器使用前,应当进行风险评估来确定是否进行完整性测试,并确定在灭菌前还是灭菌后进行。当进行灭菌后-使用前完整性测试时,需要采取措施保证过滤器下游的无菌性。常用的完整性测试方法有起泡点试验、扩散流/前进流试验或压力保持试验。 /p p   进入A级和B级洁净区的消毒剂,应经除菌过滤或采用其他适当方法除菌。如果使用过滤方法除菌,应评估消毒剂与所选择滤器材质之间的化学兼容性。滤器使用后需进行完整性测试。 /p p   用于直接接触无菌药液或无菌设备表面的气体的过滤器,必须在每批(阶段性生产)生产结束后对其进行完整性测试。对于其他的应用,可以根据风险评估的结果,制定完整性测试的频率。气体过滤器的完整性测试,可以使用低表面张力的液体润湿,进行泡点或者扩散流/前进流的测试 也可以使用水侵入法测试。水侵入法可作为优先选择。 /p p   对于冗余过滤,使用后应先对主过滤器进行完整性测试,如果主过滤器完整性测试通过,则冗余过滤器不需要进行完整性测试 如果主过滤器完整性测试失败,则需要对冗余过滤器进行完整性测试。冗余过滤器完整性测试结果可作为产品放行的依据。除菌过滤器使用前,应通过风险评估的方式确定测试哪一级过滤器或者两级过滤器都要进行检测,并确定在过滤器灭菌前还是灭菌后进行。灭菌后的检测,应考虑确保两级过滤器之间的无菌性。 /p p   可根据工艺需要和实际条件,决定采用在线完整性测试或者离线完整性测试。但应注意,完整性测试是检测整个过滤系统的完整性,而非仅针对过滤器本身。在线测试能更好的保证上下游连接的完整性。当无法满足在线测试条件时,可选择进行离线完整性测试。此时应将过滤器保持在套筒中整体拆卸,并直接进行测试,不应将滤芯从不锈钢套筒拆卸单独测试。 /p p   考虑到完整性测试结果的客观性以及数据可靠性,应尽可能在关键使用点使用自动化完整性测试仪。自动化完整性测试仪应在使用前,进行安装确认、运行确认和性能确认。应建立该设备使用、清洁、维护和维修的操作规程,以及定期的预防性维护计划(其中应当包含设备的定期校验要求)。 /p p   对于标准介质(水或者某些醇类)润湿的除菌过滤器完整性测试,其参数的设定应以过滤器生产厂家提供的参数为标准,且该参数必须经过过滤器生产厂家验证,证明其与细菌截留结果相关联。通常该参数可在过滤器的质量证书上获得。 /p p   如果实际工艺中,需要用非标准介质(通常为实际产品)润湿,进行除菌过滤器完整性测试,则完整性测试限值,如产品起泡点或者产品扩散流标准,必须通过实际产品作为润湿介质进行的验证获得。 /p p   应建立完整性测试的标准操作程序,包括测试方法、测试参数的设定、润湿液体的性质和温度、润湿的操作流程(压力、时间和流速)、测试的气体、数据的记录要求等内容。 /p p   对完整性测试结果的判定,不应该直接看“通过/不通过”,应该对测试结果的具体数值或者自动完整性测试仪报告中的过程数据进行完整记录并审核。 /p p   如果完整性测试失败,需记录并进行调查。可考虑的影响因素有:润湿不充分、产品残留、过滤器安装不正确、系统泄漏、不正确的过滤器、自动化程序设置错误和测试设备问题等。再测试时,应根据分析结果采取以下措施,如加强润湿条件、加强清洗条件、用低表面张力液体如醇类进行润湿,重新正确安装过滤器,检测系统密闭性、核对过滤器的型号是否正确、检查自动化程序设置和检查设备等。再测试的过程和结果都应当有完备的文件记录。 /p p    strong span style=" color: rgb(0, 112, 192) " 6.4重复使用 /span /strong /p p   液体除菌过滤器在设计和制造时,一般只考虑了在单一批次中的使用情况,或者在连续生产周期内使用的情形。同一规格和型号的除菌过滤器使用时限一般不得超过一个工作日。但是在实际工作中,有时过滤器被使用在多批次、同一产品的生产工艺中。一般认为“液体除菌级过滤器的重复使用”可以定义为:用于同一液体产品的多批次过滤。以下情况都属于液体过滤器重复使用情况: /p p   (1) 批次间进行冲洗 /p p   (2) 批次间冲洗和灭菌 /p p   (3) 批次间冲洗、清洗和灭菌 /p p   在充分了解产品和工艺风险的基础上,采用风险评估的方式,对能否反复使用过滤器进行评价。风险因素包括 重复使用带来的过滤器过早堵塞、过滤器完整性缺陷、可提取物的增加、细菌的穿透、过滤器组件老化引起的性能改变、清洗方法对产品内各组分清洗的适用性、产品存在的残留(或组分经灭菌后的衍生物)对下一批次产品质量风险的影响等。 /p p    strong span style=" color: rgb(0, 112, 192) " 6.5 气体过滤器特殊考虑因素 /span /strong /p p   由于滤膜的疏水性,气体过滤器可使气体自由通过。但由于系统或环境温度变化而产生的冷凝水则可能会导致气体过滤不畅,严重时会导致系统或滤器损坏。如有必要,应在过滤管线上的合理位置安装冷凝水排放装置。对于罐体呼吸用过滤器,应根据实际风险决定是否安装加热套,以保证气体顺利通过滤芯。 /p p    strong span style=" color: rgb(0, 112, 192) " 6.6 一次性过滤系统 /span /strong /p p   因为一次性过滤系统预灭菌的特殊性,在拆包装时需要确认:外包装是否完好 产品仍在有效期内 包装上具有预灭菌标签且能判断是否已经过预灭菌处理 以及组件正确性 是否破损、明显的异源物质等。 /p p   安装时需注意不能破坏系统下游的无菌性,鼓励采用无菌连接器以降低风险。 /p p   在决定一次性过滤系统使用前是否进行完整性测试时,应基于以下因素进行风险评估(但不局限于以下因素): /p p   ? 评估过滤器完整性失败的影响,包括将非无菌产品引入无菌区域的可能性 /p p   ? 评估额外增加的组件和操作引入污染的风险 /p p   ? 检测到潜在破损的可能性 /p p   ? 进行使用前-灭菌后完整性测试时,破坏过滤器下游无菌的可能性 /p p   ? 评估工艺介质阻塞过滤器的可能性(颗粒物或微生物负荷) /p p   ? 润湿液体是否会稀释产品或影响产品质量属性 /p p   ? 额外增加的时间对于时间敏感型工艺的影响 /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201612/ueattachment/e2c4c851-b2b9-4bb1-8fda-68400f3f36ef.docx" 《除菌过滤技术及应用指南》(征求意见稿).docx /a /p p br/ /p p br/ /p
  • 高效液相色谱仪的日常维护与保养
    p 一、 流动相的要求 br/ & nbsp /p p & nbsp 液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下特点: /p p 1 纯度 流动相必须用HPLC级的试剂,使用前过滤除去其中的颗粒性杂质和其他物质(使用0.45um或更细的膜过滤)。溶剂所含杂质在柱上积累,会影响色谱柱的使用寿命。 /p p 2 溶解度 样品的溶解度要适宜如果溶解度,如果溶解度欠佳样品会在柱头沉淀,不但影响纯化分离,还会缩短柱子的使用寿命。 /p p 3 粘度要低(应& lt 2cp) 高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。 /p p 4 样品易于回收。应选用挥发性溶剂。 /p p 5 流动相 & nbsp PH 采用反相色谱法分离弱酸(3≤pKa≤7)或弱碱(7≤pKa≤8)样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。对于弱酸,流动相的pH值越小,组分的k值越大,当pH值远远小于弱酸的pKa值时,弱酸主要以分子形式存在 对弱碱,情况相反。分析弱酸样品时,通常在流动相中加入少量弱酸,常用50mmol/L磷酸盐缓冲液和1%醋酸溶液 分析弱碱样品时,通常在流动相中加入少量弱碱,常用50mmol/L磷酸盐缓冲液和30mmol/L三乙胺溶液。 br/ & nbsp /p p 二、色谱泵的使用与维护 br/ & nbsp /p p & nbsp 液相色谱泵的使用和维护注意事项 & nbsp 为了延长泵的使用寿命和维持其输液的稳定性,必须按照下列注意事项进行操作: & nbsp /p p 1 防止任何固体微粒进入泵体,因为尘埃或其它任何杂质微粒都会磨损柱塞、密封环、缸体和单向阀,因此应预先除去流动相中的任何固体微粒。流动相最好在玻璃容器内蒸馏,而常用的方法是滤过,可采用Millipore滤膜(0.2µ m或0.45µ m)等滤器。泵的入口都应连接砂滤棒(或片)。输液泵的滤器应经常清洗或更换。 & nbsp & nbsp /p p 2 泵工作时要留心防止溶剂瓶内的流动相被用完,否则空泵运转也会磨损柱塞、缸体或密封环,最终产生漏液。 & nbsp & nbsp /p p 3 输液泵的工作压力决不要超过规定的最高压力,否则会使高压密封环变形,产生漏液。 br/ & nbsp /p p 三、色谱柱的使用与维护 br/ & nbsp /p p & nbsp 在日常分离分析工作中,色谱柱的正确使用和维护十分重要,色谱柱使用是否得当,直接影响色谱柱的寿命,在色谱操作过程中,需要注意下列问题,以维护色谱柱。& nbsp /p p 1 柱子在装卸、更换时,动作要轻,接头拧紧要适度。必须防止较强的机械振动,以免柱床产生空隙。 /p p 2 如果仪器用来做常规分析,样品种类有限,但分析次数多,则不妨为每一类常规分析配置一根专用柱,这样有助于延长柱子的寿命。& nbsp /p p 3 避免压力和温度的急剧变化及任何机械震动。温度的突然变化或者使色谱柱从高处掉下都会影响柱内的填充状况 柱压的突然升高或降低也会冲动柱内填料,因此在调节流速时应该缓慢进行,在阀进样时阀的转动不能过缓。& nbsp /p p 4 应逐渐改变溶剂的组成,特别是反相色谱中,不应直接从有机溶剂改变为全部是水,反之亦然。& nbsp /p p 5 如使用柱温控制装置时,应注意在通人流动相后才能升温。 /p p 6 一般说来色谱柱不能反冲,只有生产者指明该柱可以反冲时,才可以反冲除去留在柱头的杂质。否则反冲会迅速降低柱效。& nbsp /p p 7 选择使用适宜的流动相,以避免固定相被破坏。有时可以在进样器前面连接一个预柱,分析柱是键合硅胶时,预柱为硅胶,可使流动相在进入分析柱之前预先被硅胶“饱和”,避免分析柱中的硅胶基质被溶解。& nbsp /p p 8 避免将基质复杂的样品尤其是生物样品直接注人柱内,需要对样品进行预处理或者在进样器和色谱柱之间连接一个保护柱。保护柱一般是填有相似固定相的短柱。保护柱可以而且应该经常更换。& nbsp /p p 9 经常用强溶剂冲洗色谱柱,清除保留在柱内的杂质。在进行清洗时,对流路系统中流动相的置换应以相混溶的溶剂逐渐过渡,每种流动相的体积应是柱体积的20倍左右,即常规分析需要50-75mL。& nbsp /p p 10 保存色谱柱时应将柱内充满乙腈或甲醇,柱接头要拧紧,防止溶剂挥发干燥。绝对禁止将缓冲溶液留在柱内静置过夜或更长时间。& nbsp /p p 11 色谱柱使用过程中,如果压力升高,一种可能是烧结滤片被堵塞,这时应更换滤片或将其取出进行清洗 另一种可能是大分子进人柱内,使柱头被污染 如果柱效降低或色谱峰变形,则可能柱头出现塌陷,死体积增大。 & nbsp br/ 12 在完成分离分析工作之后,不应立即停机,需及时对色谱分析系统进行冲洗,一般0.5h以上,以除去色谱柱内的杂质。 /p p br/ /p
  • 赫西发布过滤离心机TD5-1新品
    产品名称:过滤离心机TD5-1最大容量:8-10L/min 最大转速(r/min):4000产品品牌:HEREXI计量单位:台 产品重量:35Kg湖南赫西仪器装备有限公司是一家集研发、生产、销售、维修实验室仪器设备为一体的专业高新科技公司。目前产品已形成高速冷冻、超大容量冷冻、低速冷冻、低速离心机和Herexi 3HRI系列智能离心机六大系列四十多个品种。产品广泛用于军工、科研院所、高等院校、中心血站、医院、生物制品、制药、生化检验、农业科学、环保和石化等生产科研领域。我司以“质量是生命、诚信是根本、服务为一流、信誉为第一”的服务宗旨,以发展中国科学仪器装备赶超世界先进水平为奋斗目标。离心过滤机是广泛适用于化工、制药、冶金、先矿、制盐、轻工、造纸、食品、生物工程、石油化工、纺织和环保工程等部门的新型的实验室常规设备。过滤离心机TD5-1八大特点:集洗涤、甩干脱水、浓缩、过滤几大功能;TFT真彩大屏触摸液晶,智能化控制,简单方便地操作,解摸面板,同时显示设定参数和运行参数;速度、时间随机设置,满足各阶段要求;过滤离心机,设有减振装置,自动平衡,噪音低;机电一体化静间门锁。解决了压力过滤,真空过滤效率低的问题;过滤离心机,全不锈钢窗口,抗腐蚀性强;外形美观,重量轻,效率高;干燥程度达90%以上。过滤离心机TD5-1技术参数:最高速度:4000r/min最大相对离心力:2200×g最大分离量:1000ml定时范围:0~99小时59分钟电源:AC220V 50HZ 10A噪音:≤65dB重量:35kg外形尺寸:500×440×330mm创新点:过滤离心机,滚筒是穿孔的并且插入有过滤器,例如滤布、金属丝网或筛子,悬浮液从内部到外部流过过滤器和滚筒,以这种方式,可以将固体材料过滤掉。
  • 液相色谱不是堵就是漏,怎么解决?
    p style=" text-indent: 2em " 使用液相色谱仪的小伙伴肯定会遇到漏气和漏液的状况,流动相是造成液相色谱各种问题的最主要源头。液相色谱最常见的故障一是堵,二是漏。今天就这两部分别展开讨论(流动相以甲醇为例,色谱柱以C18为例) 。 /p p   span style=" color: rgb(192, 0, 0) " strong   span style=" color: rgb(12, 12, 12) " 首先,为何会堵? /span /strong /span /p p style=" text-indent: 2em " “堵”的表现现象就是柱压异常升高,直接原因就是流路不畅。堵塞的主要位置就是在色谱柱的前端,最主要原因就是流动相里有杂质,杂质的主要来源就是细菌。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/d94e7fbd-9c1e-4cac-a7ef-d05afe223114.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center " / /p p    strong span style=" color: rgb(0, 112, 192) " 1& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 纯水中的细菌污染 /span /strong /p p   首先我们要认识到,一般的国产甲醇其实不需要额外过滤处理,直接使用没有问题。即使是有些固态微粒杂质,也能在液相流路系统最前端的过滤头上排除,真正容易引起问题的,是水中的细菌。新制备的纯水在室内放置几天就会长菌,而这些细菌虽然肉眼不可见,却足以堵塞柱填料颗粒的空隙,造成柱子很快报废。这就是在配制流动相时造成的细菌污染的原因,解决它的方法很简单,就是确保水的可靠性。 /p p   解决办法: /p p   (1)最理想的方式当然是购买实验室专用纯水机,既方便又可靠,质量也放心。唯一的缺点就是价格不菲。 /p p   (2)成箱购买市售品牌纯净水,如500ml的怡宝或娃哈哈,这些水的质量足以应付液相色谱的要求。先随机抽取一瓶做一下细菌平板实验,待菌落数合格方可使用。这样每次只要单独开一瓶即可,也很方便。每次成本2元左右。这里特别指出一个细节:在绝大多数书本上,凡谈到配制流动相都会谈到最后一个过滤的步骤。但是从我们长期使用的实际效果来说,只要能保证水的质量,这一步完全可以也应当去除。 /p p   水有保证,可以不过滤? /p p   (1)流动相过滤在理论上有好处,但是实际操作时由于不可能做到专瓶专用,反而容易造成的交叉污染,对于配比复杂的流动相影响更大。 /p p   (2)流动相过滤在经济成本上不划算。买一套过滤装置要6000多元,且过滤器公认是比较容易损坏的设备。最主要是过滤片的成本太高,一片就要几十元。按一般液相柱的正常使用寿命计算,过滤片的成本会远远高于色谱柱的成本上升。 /p p    strong span style=" color: rgb(0, 112, 192) " 2& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 流动相的细菌污染 /span /strong /p p   流动相刚开始不长菌,在使用时却产生了细菌污染。这主要是在使用多元液相色谱仪时的一种不良使用习惯造成的。举最简单的例子:50%的甲醇水流动相,有两种使用方式。一种方式是在上机前就配好混合在一起,另一种方式是在流路A放纯甲醇,流路B放纯水。从单纯实验效果来说,后一种有明显的优点:首先是简单,不需要实验者另个计算配比混合,其次就是比例准确,能得到保留时间重复性极好实验效果。 /p p   但是,它有一个致命的缺陷,就是纯水在流动相瓶中几天时间就会长细菌(很多情况下不仅仅用纯水作流动相,而是用缓冲盐溶液,本身就是优质肥料,细菌长得更迅速),一旦有细菌柱子就坏得很快。所以这种方式要求操作人员每次实验都要用新制备的纯水,更要求在每次实验后把水相换掉,换成甲醇冲洗干净,这一点在实际工作中很多人意识不强,就是意识到了但多次使用中总有一两次会遗漏,但是往往这一两次就足以产生致命的影响。因为液相色谱柱的堵塞是不可逆的。 /p p   所以,宁可牺牲小小的保留时间的重复性,也不要用纯水溶液作为流动相。从实际实验效果来说,我建议用10%的甲醇水代替水溶液(以前我做过不同比例甲醇水的细菌总数实验,在5%就基本可以抑菌,在10%及以上就可以完全杀菌了),这样可以有效排除长细菌的隐患,既可作流动相,也可冲柱。就算是在配制流动相时会计算得麻烦一些,但是一次麻烦,终身受益。 /p p    strong span style=" color: rgb(0, 112, 192) " 3& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 不适当操作 /span /strong /p p   (1)在更换零件时选择的型号有误,接口不是很匹配,在拧紧的时候产生变形而使得管路堵塞。 /p p   (2)样品处理液净化得不干净,长期会在六通阀和柱之间形阻塞不畅。 /p p   (3)在使用用手动六通阀时,有些人可能由于手劲小的原因,转动的不到位,于是造成流路形成死堵,压力快速升高超过警戒值。 /p p   (4)在使用金属管路作出废液管时,应当注意最好废液瓶中先放一些水,并把废液管的出口端结晶成块并造成堵塞。这种情况不常见,但却的确发生过。 /p p   查堵的方法 /p p   在发生“堵”的现象后,就需要找出原因,主要是什么位置发生了“堵”。 /p p   注意,绝大多数情况下,整个系统只会有一个地方发生堵塞。查堵的方法是从尾向前逆向分段拆开,仔细观察压力数值,如果某一个部件(柱子除外)装上和拆下时的压力差别很大,可发展变化判断。至于柱的堵塞,可以通过换同样规格的柱的压力是否一致来判断。 /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/46ebc40a-78ec-483b-b5a4-ab7ed4cc72f4.jpg" title=" 2.jpg" alt=" 2.jpg" style=" text-align: center " / /p p    strong span style=" color: rgb(12, 12, 12) " “漏” 分两种:漏液和漏气。 /span /strong /p p    strong span style=" color: rgb(12, 12, 12) " 漏液 /span /strong ,液相色谱仪从流动相瓶到废液瓶之间的流路是一个全封闭体系,内部压力很高,但外部却能保证一滴不漏。如果某个部件发生漏液,那就是故障所在。漏液的原因分两种: /p p   strong span style=" color: rgb(0, 112, 192) "  1& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 接触硬件不当 /span /strong /p p   在更换零件如流路管或换柱时,换的接头接口不匹配,造成漏液。要注意不同公司的柱子接头很多是不同的,甚至同一家公司在不同时期生产的液相柱接头也有很大区别。当然选项用PEEK接头是一较好是一个较好的解决方法,不仅通用性好,而且靠手拧就能保证不漏液。即使是接口本身是匹配的,但是如果操作不当也会漏液,一种不当就是力度把握不好,拧得太紧或太松 /p p   另一种不当就是致命的错误:滑丝,这往往是动手能力不太强,螺丝钉很少拧的工作者犯的错误,滑丝的后果不仅是漏液那么简单,常造成重要部件的报废。解决这个问题只能靠恶补基本功来实验,那就是拧螺丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 2& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 使用仪器不当 /span /strong /p p   只要互相有10%比例就不会出现这个问题。另一原因是在用缓冲液盐溶液(不论甲醇含量有多少)作流动相时,实验结束后没有换甲醇水冲洗,使得微渗的流动相干燥形成晶体造成。不过,输送泵漏液并不是非得马上修不可,冲洗干净并在以后的使用中多加小心一般都可以正常使用。检测器漏液是个很麻烦的事,一般都是吸收池的问题,更换的费用相当高。但是并不是说一定要马上更换,还可以从实际实验效果看能否凑合使用。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/132decbe-0449-4949-9ecc-0d581d304950.jpg" title=" 3.jpg" alt=" 3.jpg" style=" text-align: center " / /p p    strong span style=" color: rgb(12, 12, 12) " 漏气 /span /strong ,漏液是从内部向外漏,而漏气则是外部了的气体进入液相色谱仪的流路内部形成气泡。下面按流路的方向逐个部件分析产生气泡的原因和相应解决方法。 /p p    span style=" color: rgb(0, 112, 192) " strong 1& nbsp /strong /span strong style=" color: rgb(0, 112, 192) " 过滤头 /strong /p p   做油液时,在流路管中有不规则但持续的小气泡产生,这时考虑的是流动相有没有脱气(需要特别提醒即使是有了真空脱气机也是要先超声脱气的,起码可以减少脱气机的工作压力并提高工作效率),如果已脱气,则要注意过滤头的污染也会造成这种现象。处理方法比较简单,拧下过滤头在稀硝酸中浸泡,超声半小时,洗净后装回去即可。 /p p    span style=" color: rgb(0, 112, 192) " strong 2& nbsp /strong /span strong style=" color: rgb(0, 112, 192) " 透明流路管 /strong /p p   指的是在过滤头和输送泵之间的那一段管路。这一个部分往往不是有点气泡,而经常是整个管中全是空气而操作人员却浑然不知,以致输送泵工作了半天才发现流动相瓶里的液体一点也没少。这也是我们常说的液相色谱仪至少一周要开机一次的原因(我们做液相一定要有“微渗”的概论)。如果长时间不用,这一段管路的液体会彻底干掉,而充满空气的管路和充满液体的管路不仔细看是分辨不出来的。这种情况对于输送泵很危险,因为泵从设计来说是输送液体而不是输送气体,内部的液体对于活塞来说起到了机油的作用,如果活塞杆还残存了一些缓冲盐,则极易拉伤,造成不可逆转的影响。 /p p   对于这种情况,要突出“预防为主”如:液相色谱使用人员要相对固定和稳定,工作中合理搭配资源,每台机一周至少一次实验,如长期不用起码每周要冲流动相2小时。养成良好的工作习惯很重要。 /p p   如果流路管中真漏气了怎么办? /p p   我的建议是用外力使管路中充满液体。 /p p   具体如下: /p p   1、找到流路管进入输送泵的接头。 /p p   2、拧下来。 /p p   3、用一干净洗耳球的尖端对准管路的平整切口。 /p p   4、吸液体,看液面从流动相瓶里上升,至离洗耳球5cm左右时停止该动作。 /p p   5、快速把接头拧回输送泵上(这个过程可能会有少许流动相外泄,这是正常现象)。 /p p   6、开机,打开排液阀门,启动输送泵。 /p p   7、等排液管中流出的溶液没有气泡时,再关闭排液阀,仪器正常工作。 /p p    strong span style=" color: rgb(0, 112, 192) " 3& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 输送泵和柱子 /span /strong /p p   这些部分进了气泡一般不怕,冲掉就行。 /p p    strong span style=" color: rgb(0, 112, 192) " 4& nbsp /span /strong strong span style=" color: rgb(0, 112, 192) " 检测器 /span /strong /p p   应该说,整个流路中只要有一个气泡都会在检测器上得到强烈的信号反映,检测器内部的气泡一般都能被冲走,但也有很难冲掉的残留气泡的情况。如果检测器内有残留气泡,会有特别明显的表现形式,就是在走基线时会时不时间隔出现直上直下信号很大的信号峰。这时先看普通流量能否冲走,如果冲不走,那唯一的办法就是拆柱,把检测器直接连接到输送泵的出口,加大几部流量冲洗,则肯定能冲走气泡。 /p p   根据接头处、泵、进样阀、色谱柱、检测器等常见故障的解决方法,特整理下表,便于大家收藏记忆。 /p p   液相色谱的漏液及处理方法: /p p   1、接头处漏液 /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/2f90579c-b1e7-4362-8cf8-aee6854782e7.jpg" title=" 4.png" alt=" 4.png" style=" text-align: center " / /p p   2、泵漏液 /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/8004e3f4-b880-4bf0-9f65-79776dcfe396.jpg" title=" 5.png" alt=" 5.png" style=" text-align: center " / /p p   3、进样阀漏液 /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/d377b46c-cbc9-4055-847a-8865b2ec50fa.jpg" title=" 6.png" alt=" 6.png" style=" text-align: center " / /p p   4、色谱柱漏液 br/ /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/e43dcfd5-d495-4a74-85b9-7c0271a46031.jpg" title=" 7.png" alt=" 7.png" style=" text-align: center " / /p p   5、检测器漏液 /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/cd47993c-2c0e-4fee-b4fc-8cb26c6271b0.jpg" title=" 8.png" alt=" 8.png" style=" text-align: center " / /p
  • 阳屹沃尔奇发布口罩颗粒物过滤效率测试仪新品
    设备名称:口罩颗粒物过滤速率测试仪 设备型号:YY8130 设备标准:GB/T 19083-2010、YY/T 0469-2011、GB/T 32610-2016、GB 2626-2019等一、产品图片二、符合标准: GB/T 19083-2010 医用防护口罩技术要求 5.4过滤效率 YY/T 0469-2011 医用外科口罩 5.6.2颗粒过滤效率 GB/T 32610-2016 日常防护型口罩技术规范 附录A 过滤效率测试方法 GB 2626-2019 呼吸防护 自吸过滤式防颗粒物呼吸器 6.3过滤效率 GB 19082-2009 医用一次性防护服技术要求 5.7过滤效率 EN 1822-3:2012 EN 149-2001 EN 14683:2005 IEST-RP-CC021.1 NIOSH 42 CFR Part 84等三、产品参数:1、测试流量范围:0L/min~100L/min,精度2%2、气流通过的截面积为100cm23、阻力测试量程:0~250Pa,精度可达3Pa4、过滤效率测试范围:0~99.999%,分辨率0.001%5、测试粒径:0.3um6、气溶胶:氯化钠 7、发雾尘源: NaC18、测试时间:阻力单独测试5s,效率和阻力同时测试为 70s9、结构组成:进口气溶胶发生器,进口流量检测装置,进口颗粒物计数器 10、试样数量:1路11、电源:220V,50Hz,1KW12、外形尺寸:(800mm×700mm×1450mm)(长×宽×高)13、重量:约120Kg四、设备特点:1、 双粒子计数器 ,滤前、滤后同时检测(可选光度计法测量)2、0.3um, 0.5um, 1.0um, 2.5um, 5.0um, 10.0um粒径粒子过滤效率显示;3、配有7英寸触摸屏,检测结果直接显示于界面,用户可选择直接打印、导出或者保存;4、效率检测:采用进口品牌高精度尘埃粒子计数器,或光计度法粒子尝试计检测上下游粒子浓度,保证采样的准确,稳定;5、流量检测:系统测试流量主要由外部提供干燥洁净的压缩空气。内部有安装稳压稳流装置,保证检测流量的稳定性,并采用自动控制系统简单、快捷、稳定。6、阻力检测:滤材的阻力压差将通过其上下游测试仓的静压环来获取,并采用高精度进口品牌压差变送器,保证压差准确性及稳定性;7、操作简单:用户只需将试样放置于夹具中,按下按钮,调节测试流量后系统就会通过控制器自动测试阻力和效率,整个过程简单,快速、高效 五、随机配件:油雾发生器流量计压力传感器粒子计数器控制按钮触摸屏显示打印机紧急关闭/开启按钮真空泵流量控制阀和开/关开关创新点:1、 双粒子计数器 ,滤前、滤后同时检测(可选光度计法测量) 2、0.3um, 0.5um, 1.0um, 2.5um, 5.0um, 10.0um粒径粒子过滤效率显示; 3、配有7英寸触摸屏,检测结果直接显示于界面,用户可选择直接打印、导出或者保存; 4、效率检测:采用进口品牌高精度尘埃粒子计数器,或光计度法粒子尝试计检测上下游粒子浓度,保证采样的准确,稳定; 5、流量检测:系统测试流量主要由外部提供干燥洁净的压缩空气。内部有安装稳压稳流装置,保证检测流量的稳定性,并采用自动控制系统简单、快捷、稳定。 6、阻力检测:滤材的阻力压差将通过其上下游测试仓的静压环来获取,并采用高精度进口品牌压差变送器,保证压差准确性及稳定性; 7、操作简单:用户只需将试样放置于夹具中,按下按钮,调节测试流量后系统就会通过控制器自动测试阻力和效率,整个过程简单,快速、高效 口罩颗粒物过滤效率测试仪
  • 切向流过滤工艺主要可以从哪些方面进行优化?
    切向流技术(Tangential Flow Filtration, TFF),又称错流过滤(Cross-Flow Filtration,CFF)料液以一定的流速在膜表面循环,小于膜孔径的物质可以透过膜到透过端,而大于膜孔径的物质会被膜截留,从而实现不同物质的分级分离。相比于死端过滤,切向流过滤再循环料液流经膜表面,液体形成的“冲刷作用”冲洗整个膜表面,降低了膜孔堵塞及膜污染的风险,形成长时间稳定的膜过滤生产能力。 通过对切向流工艺中的操作参数及各种变量进行优化,可以有效提高过滤效率,同时降低物料成本,在达到产品质量要求的同时实现收率的最大化。一、膜的优化1、膜孔径选择通常用截留分子量(MWCO: molecular weight cutoff)表征孔径大小,但不同结构的分子,即使分子量相同,其分子粒径也有较大的差异。不同厂家使用的标定物质也会不同,因此实际使用时,截留率也会有一定的差异。希望目标物质透过膜孔,一般选择膜截留分子量为目标物质分子量的5-10倍或以上;希望目标物质充分截留,一般选择膜截留分子量为目标分子量的1/3-1/5。2、膜材质膜材质是切向流过滤工艺中的关键点,不同材质的过滤膜从化学性质、溶析出性质、机械强度、蛋白吸附等方面有较大差异。用户需要根据料液的性质、缓冲体系的要求等选择合适材质的过滤膜。3、膜面积膜面积决定了单次过滤工艺中所能处理的料液的量,所需膜面积的可以按照以下公式大致计算:膜面积=料液透过体积/(膜通量*工艺时间)例如对200L某料液进行10倍浓缩,要求超滤工艺在2小时内完成,假设使用的超滤膜对该料液的稳定通量为50LMH(升每平米每小时),则需要的膜面积计算为:浓缩料液透过体积=200L-200L/10=180L膜面积=180L/(50LMH*2)=1.8m2二、TMP优化TMP(Transmembrane Pressure)跨膜压,物质跨膜所需的驱动力,是工艺放大的基本和必要参数。在工艺起始阶段,增加TMP,可线性增加滤液通量,但随着凝胶极化层的形成,其对过滤的阻力会抵消TMP的作用。所以,优化的TMP取值应为凝胶层完全形成前的拐点最高值。简易TMP优化方法1、确定一个合适的切向流速;2、切向流速稳定后设定一个较小的TMP值;3、在设定的TMP值下稳定运行5-10min 4、记录下此TMP下通量(LMH) 5、调整TMP值,每次增加1-2psi,重复步骤3、4;6、对不同TMP及运行的通量进行分析,即可找出比较合适的TMP。三、切向流速切向流过滤工艺中的切向流流速(进料速度)主要作用是减少凝胶层的形成,降低透过的阻力,提高通量。增加切向流速度将增加膜剪切力并通常会提高过滤速度,但是对于剪切力敏感的料液,过高的流速带来的高剪切力会对样品造成破坏。高切向流速的好处,一方面能在相同TMP下获得相对更高的通量,另一方面能够有效降低凝胶层的形成。但是高切向流速也存在诸多不足,为得到高流速需要配置更大的泵及管路,这样就会使系统的滞留体积增加,也增加了固件的成本。另外,膜的通量达到最佳值时,即时进一步提高切向流速度,通量也不会有明显增加。Challenge Dream切向流过滤系统Challenge Dream系列是基于切向流过滤技术开发的一套全自动、集成化的过滤系统,搭载成器智造自主开发的Challenge Navigator流程控制软件,满足用户对切向流工艺的研发、中试、生产的需求。智能化、自动化系统预设多种自动化处理模式,浓缩、洗滤、冲洗等工艺方法,一键调用新增TMP优化程序,challenge Dream可以根据您的需求,在对新过滤膜不了解的情况下可以自动运行计算出最佳的TMP可用于研发及生产,灵活多用Challenge Dream系列切向流系统产品线完善,能够稳定的支持从工艺研发至中试放大及小规模商业化生产的所有需求数据电子化,稳定可靠优秀易用的Challenge Navigator软件提供智能化的操作界面和符合21 CFR Part 11的数据管理系统,保证了工艺的稳定和可重复性,参照商业化生产设备的自动化操作方式以及程序架构,为生产工艺的缩小或放大提供了极大便
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制