半乳糖苷酶来源于大肠杆

仪器信息网半乳糖苷酶来源于大肠杆专题为您提供2024年最新半乳糖苷酶来源于大肠杆价格报价、厂家品牌的相关信息, 包括半乳糖苷酶来源于大肠杆参数、型号等,不管是国产,还是进口品牌的半乳糖苷酶来源于大肠杆您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半乳糖苷酶来源于大肠杆相关的耗材配件、试剂标物,还有半乳糖苷酶来源于大肠杆相关的最新资讯、资料,以及半乳糖苷酶来源于大肠杆相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

半乳糖苷酶来源于大肠杆相关的资料

半乳糖苷酶来源于大肠杆相关的论坛

  • 国家卫生计生委关于批准β-半乳糖苷酶为食品添加剂新品种等的公告(2015年 第1号)

    国家卫生计生委关于批准β-半乳糖苷酶为食品添加剂新品种等的公告(2015年 第1号)

    根据《中华人民共和国食品安全法》和《食品添加剂新品种管理办法》,经审核,现批准β-半乳糖苷酶为食品添加剂新品种;6-甲基辛醛为食品用香料新品种;氧化亚氮、阿拉伯胶、红曲黄色素、抗坏血酸(维生素C)、迷迭香提取物、二甲基二碳酸盐(又名维果灵)、硫酸铝钾(又名钾明矾)/硫酸铝铵(又名铵明矾)、磷酸、焦磷酸钠、六偏磷酸钠、迷迭香提取物(超临界二氧化碳萃取法)等11种食品添加剂扩大使用范围、用量。    特此公告。    国家卫生计生委   2015年1月23日http://ng1.17img.cn/bbsfiles/images/2015/01/201501301539_533609_1060664_3.png

  • 大肠杆菌指示菌的方法学定义

    总大肠菌群(Total Coliforms) 大肠菌群系指一群在37℃培养24h能发酵乳糖、产酸产气、需氧和兼性厌氧的革兰氏阴性无芽孢杆菌。该菌群主要来源于人畜粪便,具有指标菌的一般特征故以此作为粪便污染指标评价饮水的卫生质量。耐热大肠菌群(Thermotolerant Coliforms) ,原名:粪大肠菌群(Fecal Coliforms ) 用提高培养温度的方法将自然环境中的大肠菌群与粪便中的大肠菌群区分开,在44.5℃仍能生长的大肠菌群,称为粪大肠菌群。是水体受人畜粪便污染的比较直接指标。大肠埃希氏菌(大肠杆菌,E.Coli.) 大肠埃希氏菌是指能产生β-半乳糖苷酶(β-D-galactosidase)分解ONPG(Ortho-nitrophenyl-β-D-galactopyranoside)使培养液呈黄色,能产生β-葡萄糖醛酸酶(β-glucuronidase)分解MUG(4-methyl-umbelliferyl-β-D-glucuronide)使培养液在波长366nm紫外光下产生荧光的细菌。大肠埃希氏菌是粪大肠菌群的组成部分,是水体受人畜粪便污染的最直接指标,水中含有大肠埃希氏菌提示有粪便污染。

  • 【求助】关于β-葡糖醛酸糖苷酶?

    本人对酶这种物质不甚了解http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif,特求助各位大侠?http://simg.instrument.com.cn/bbs/images/brow/em09511.gif应用搜索引擎没有找到β-葡糖醛酸糖苷酶,想知道这种酶是否还有别的名字?目前有β-葡糖苷酶(cas:9001-22-3),是否同一种酶?

半乳糖苷酶来源于大肠杆相关的方案

半乳糖苷酶来源于大肠杆相关的资讯

  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • Oxoid推出快速确认食品中大肠杆菌方法
    Thermo Fisher Scientific(赛默飞世尔)旗下全球知名的微生物培养与诊断产品Oxoid最新推出了优化的BrillianceTM大肠杆菌/大肠菌群选择性显色培养基,不仅能够对食品和水样中的大肠杆菌与大肠群菌快速分离、区分和计数,而且能够快速对大肠杆菌进行确认鉴定。 大肠杆菌和大肠菌群直接或间接来自人与温血动物的肠道,它们在食品中的出现预示某些肠道病原菌的存在,因此在国内外的检测标准中大肠杆菌和大肠菌群的数量都是评价食品卫生质量的重要指标之一。Oxoid的BrillianceTM大肠杆菌/大肠菌群选择性显色培养基中的显色剂用来检测大肠杆菌的ß -葡萄糖苷酸酶活性和大肠菌群的ß -半乳糖苷酶活性(包括大肠杆菌),因此平板上紫色的大肠杆菌菌落与粉色的大肠菌群菌落非常清晰地区分开来,可以快速、方便地对食品和水样中的这两种菌群进行分离、区分和计数。   现在,Oxoid对这款培养基的蛋白胨成分进行了优化,初步鉴定的紫色大肠杆菌菌落可以在平板上直接通过吲哚试验确认。向平板加入Kovac’s溶液,紫色的大肠杆菌菌落立刻呈现明显的樱桃红色,即确认为阳性的大肠杆菌,而无需额外的确认实验。   对于食品微生物常规检测项目,Oxiod还有其它的显色培养基:BrillianceTM沙门氏菌显色培养基,BrillianceTM李斯特菌显色培养基、BrillianceTM阪崎肠杆菌显色培养基、BrillianceTM蜡样芽孢杆菌显色培养基等。同时,Oxoid还在不断的研究开发新的产品,努力为食品行业微生物检测提供更简便、更快速的解决方案。   关于Oxoid   Oxoid 是 Thermo Fisher Scientific 旗下的知名微生物产品品牌,其产品涵盖整个微生物科学领域,为临床检验、工业生产领域和基础学术研究的微生物诊断提供优质的解决方案。Oxoid最初起源于欧洲,其历史可以追溯到十九世纪微生物科学开始的年代。Oxoid总部位于英国Basingstoke,并在全球设有多家生产厂,如加拿大、德国、澳大利亚等等。2006年Oxoid在中国北京设立了一条新的微生物制成培养基生产线,它的运营使中国的微生物工作者在微生物培养基产品上可以与世界标准接轨,并大幅度减少了微生物实验室操作的工作量,有效地提高了微生物实验室检验的标准化程度。2006年Oxoid正式成为全球科学服务领域的领导者Thermo Fisher Scientific旗下的品牌之一,与另一微生物品牌Remel组成微生物产品部,资源整合优化后,为全球的微生物工作者提供更全面的产品与更专业的服务!欲了解更多信息,请浏览网站:www.oxoid.com。
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.

半乳糖苷酶来源于大肠杆相关的仪器

  • 一、产品介绍酶-底物法:耐热大肠菌群和总大肠菌群分别在44.5℃和36.5℃环境下生长可以利用乳糖发酵产酸产气,当中就包括β-D-半乳糖苷酶 (E.C.3.2.1.23)。β-D-半乳糖苷酶可水解不同的底物生成有色物质。本系统采用的培养基能够与该种特定酶生成有色化合物,进行连续的分光光 度测定,依据待测水样色度变化并与水中的大肠菌群数成一定关系,建立相关数学模型即可得出大肠菌群浓度。参考标准:《生活饮用水标准检测方法 微生物指标》(GBJ/T 5750.12-2006)《水质 粪大肠菌群的测定》(HJ/T 347-2007)应用范围:饮用水水源地地表水水质自动监测站污水处理厂出水口等 二、产品参数? 检测参数:总大肠菌群、耐热(粪)大肠菌群和大肠埃希氏菌? 检测方法:酶-底物方法? 采样体积:100mL? 检测时间:小于12小时 ? 测量范围: 1个/100ml –1.0×109个/ 100 ml? 检 出 限: 1个/100ml? 培养温度: 44.5℃±1℃(耐热(粪)大肠菌群和大肠埃希氏菌)36.5℃±1℃(总大肠菌群)? 零点校正:每次测量前? 试 剂:培养液 次氯酸钠? 管路清洗:每次测量前后? 管路消毒:每次测量前后? 报警信号:温度报警、仪器故障报警等? 通讯接口:RS232/RS485? 电 源:220VAC 50Hz? 功 耗:200W? 环 境:防潮、防尘、温度10-30℃? 外形尺寸:420mm×520mm×1500mm(长×宽×高)? 重量:60kg三、产品特点? 操作简单,满足无人值守在线连续监测,可远程上传检测数据结果。 ? 测试采集水样体积达到100mL,可实现1个/100mL的低检出。? 与实验室方法的比对相对误差应小于35%。? 现场测试输出结果,解决水样采集和运输过程中微生物特性易变化的问题,保证数据结果的准确性。? 可根据实际检测水样的特点,使用便携式校准模块(依据国标方法)进行现场校正。减小由于实验室菌株和环境中菌株的差异导致的检测误差。? 内置浊度修正功能,可以减小微生物培养过程浊度增加对检测结果的影响。? 测试水样浓度范围宽,避免全阳性结果出现。? 自动管路消毒和清洗,排除水样交叉干扰。? 配备微机通讯结构,具备与厂家DCS和当地环保政府部门等联网功能。
    留言咨询
  • Quetest粪大肠菌群检测系统帮助排水单位、环境检测系统完成水质检测整体解决方案*现有超过150家单位选择Colimax产品检测水中粪(耐热)大肠菌群。介绍1.Colimax粪大肠菌群酶底物法检测试剂产品描述:能够精确检出100ml样品中1个粪大肠菌群。可检测饮用水、地表水、污水、工业废水等。产品货号:100-2654-01 100个/盒2.Denfender Sealer Max 程控定量封口机产品技术参数:l 适用范围:用于水样中的嗜肺军团菌、绿脓假单胞菌群、肠球菌、总大肠菌群和粪大肠菌群、大肠埃希菌、菌落总数的快速检测l 可野外携带、应急、定量检测l 可靠性:符合GB5750-2006国标方法,与Colimax配合使用检测粪大肠菌群l 认证: ISO9001、ISO14001、CE、CBl 方便性:4.3个大液晶显示屏,可显示加热程度、休眠状态、错误代码l 全自动计数程控功能,全自动休眠模式l 快捷性:无需无菌室,18-24小时检测出无需确认的准确结果.可便携及野外应急使用l 稳定性:智能化的程序,全自动显示错误提示代码,便于客户自行维护l 预热时间≤2分钟,10秒完成封口,可连续不间断工作24小时l 重量 <11公斤,可便携野外使用l 尺寸:34cm高 x 41cm宽 x 36cm长原理Colimax试剂使用粪大肠菌群的特定特征来鉴定该菌群,采用ONPG,作为它们的指示剂;粪大肠菌群自身的β-半乳糖苷酶可以代谢ONPG,使含有粪大肠菌群的水样品,从无色变为黄色。而大多数非大肠菌群没有β-半乳糖苷酶。因此,它们无法代谢ONPG,测试不会检测到它们;然而,一些非大肠菌群含有这些酶。因此,Colimax使用选择性补充剂来抑制这些细菌的生长。相比较传统方法,酶底物法可以极大简化您的实验室流程,并提高实验准确度。优势操作简单手工时间少于1分钟24小时内可得出粪大肠菌群的结果独立包装,一次性使用耗材,避免环节污染经济比Colimax Pro试剂更具性价比降低污水处理、排水公司的日常的检测成本更适合只监测水中粪大肠菌群污染指标的用户应用检测地表水、废水、地下水或其他水环境监测单位、排水系统,第三方检测与程控定量封口机,97孔定量盘配套使用于定量检测 环境标准:水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定 酶底物法(HJ 1001-2018)团体标准:污泥 粪大肠菌群的测定 酶底物法(T/GXAS 523—2023)城镇标准:城镇污水水质标准检测方法(CJ/T 51=2018)操作步骤配置水中DST技术大肠菌群检测系统内含:lColimax试剂 20个l97孔定量盘 10个/包l无菌取样瓶(含硫代硫酸钠) 20个l97孔阳性比色盘 1个lSealer Max程控定量封口机 1台Colimax更准确的定量检测粪大肠菌群的解决方案!!
    留言咨询
  • BACTcontrol在线大肠杆菌分析仪 荷兰microLAN一、应用领域1、地表水:河流、湖泊、水库2、饮用水:取水:水源地制水:过程监测供水:管网监测3、废水:污水厂消毒后排口监测中水回用监测4、生活及生产用水:泳池瓶装饮料厂、奶制品和食品厂、制药厂、电子厂 二、技术特性1、水样浊度对测量无影响2、全自动监测细菌在水中生长过程3、突发污染事故快速应急监测(1-4小时)4、通过数据存储装置向控制系统发送数据5、趋势分析6、易维护、低费用7、独立系统,可移动测量 三、测量原理BACTcontrol用于监测水中粪大肠菌群和总大肠菌群,在线监测基于特定的酶制反应,使菌群发出可见的荧光,通过测量荧光强度检测菌群数量。β?-葡萄糖醛酸酶指示粪大肠菌群β?-半乳糖苷酶指示总大肠菌群 四、技术参数检测参数总大肠菌群、粪大肠菌群、总菌群数、大肠球菌检测方法酶制荧光法测量周期1-4小时防护等级IP54(IP65可选)尺寸(高*宽*深)450*450*260mm箱体材质铝样品压力最 大0.05bar样品温度10-35℃样品流速3L/h样品连接4mm内径每天最多可测量6次环境温度15-30℃功耗45W,220V-50Hz,1个可编程的取样泵自动清洗清洗周期可选清洗溶液<0.05%的活性次氯酸钠,防止结垢,可无人维护下运行数周可选配置Modem卡槽可选UMTS、ISDN或模拟第2路样品和额外清洗装置输入:4-20mA空调(环境温度高于30℃)
    留言咨询

半乳糖苷酶来源于大肠杆相关的耗材

  • 大肠杆菌大肠菌群测试片(ECC)
    大肠杆菌大肠菌群测试片(ECC)使用说明方法编号:50211 原理及适用范围:大肠杆菌( Escherichia coli )和大肠菌群(Coliform)都是存在于温血动物肠道和粪便的细菌,是条件性致病菌,主要造成水体污染,也可能引起食物中毒的发生。大肠杆菌大肠菌群测试片(E.coli / Coliform Count Plate)是一种预先制备好的一次性培养基产品,可以同时检测大肠杆菌和大肠菌群,含有大肠菌选择性培养基、冷水可溶性的吸水凝胶和半乳糖苷酶(GAL)和葡萄糖醛酸酶(GUD)指示剂。大肠杆菌显蓝色,其他大肠菌群显红色,蓝点加上红点为总的大肠菌群数。本产品适合于食品及原料中大肠菌群的计数,如消毒牛乳、冷饮和调味品等样品的检测,也可用于表面的卫生检测。2 操作方法2.1 样品处理:取样品 25 mL(g)放入含有225 mL灭菌生理盐水的取样罐或均质杯内,制成1:10的样品匀液,用1mL灭菌吸管吸取1:10稀释液1mL,注入含有9mL灭菌生理盐水的试管内,振摇后成为1:100的稀释液。2.2 接种:一般食品选1~2个稀释度进行检测,含菌量少的液体样品(如饮用纯水和矿泉水等)可直接吸取原液进行检测。将大肠杆菌大肠菌群测试片(BE203)置于平坦实验台面,揭开上层膜,用无菌吸管吸取1mL样品匀液慢慢均匀地滴加到纸片上,然后再将上层膜缓慢盖下,静置5 min使培养基凝固,最后用手轻轻地压一下,每个稀释度接种两片。2.3 培养: 将测试片叠在一起放回原自封袋中,透明面朝上水平置于恒温培养箱内,堆叠片数不超过12片。培养温度为36℃±1℃,培养15~24h。3 结果判读: 培养后大肠杆菌显蓝色,其他大肠菌群显红色,蓝点加上红点为总的大肠菌群数。选择有阳性菌落的最高稀释度的测试片进行计数,然后乘以稀释倍数即为样品中每毫升(克)含有大肠菌群数。4 附加说明4.1我国的食品卫生标准大多都以大肠菌群( Coliform )作为检测指标,而欧盟等许多国家则以大肠杆菌(E.coli)作为检测对象,因此,本产品对于出口食品和国际航空配餐等企业具有更广泛的应用前景。4.2 如果样品的酸碱度pH 7.0以下时,应先用灭过菌的碱性溶液(如1mol/LNaOH)调节到pH7.0-~8.0。4.3大肠杆菌大肠菌群测试片对纯菌的检测灵敏度可达0.15 cfu/mL。 4.4一般食品对于大肠菌群的要求都比较严格,如果测试片上有成片的红点,或者中央没有红点,但边缘有很多红点,一定是已经严重超标,建议按多不可计来报告。
  • 大肠埃希氏菌和耐热大肠菌群测试片
    大肠埃希氏菌耐热大肠菌群测试片使用说明方法编号:CDC-5025 1.适用范围:适用于各种水样中大肠埃希氏菌和耐热大肠菌群的快速检验2.方法原理:耐热大肠菌群(thermotoletant coliform bacteria)是总大肠菌群的一部分.将培养温度提高到44~45℃,在此条件下仍能生长和发酵乳糖的菌群被称为耐热大肠菌群。它们由埃希氏菌属以及克雷伯菌属、肠杆菌属和柠檬酸杆菌属中的一些菌种组成。其中大肠埃希氏菌(E.coli) 是最准确和专一的粪便污染指示菌。与总大肠菌群相比,耐热大肠菌群在水体中的检出,说明水体更为不清洁,存在肠道致病菌和食物中毒菌的可能性更大。大肠埃希氏菌耐热大肠菌群测试片运用酶底物技术,含有大肠埃希氏菌特有葡萄糖醛酸酶(glucuronidase)的显色底物(XGLUC/blue),以及耐热大肠菌群半乳糖苷酶(galactosidase)的显色底物(SalmonGal/red), 经过44.5℃培养后,大肠埃希氏菌显紫蓝色,红色或紫蓝色菌斑都属耐热大肠菌群。3 操作方法3.1对于大肠菌群检验显示阳性的纸片或产酸产气的发酵管,用接种环挑取菌液,转入2-3mL无菌水中混匀,用灭菌吸管吸取1mL慢慢均匀地滴加到大肠埃希氏菌耐热大肠菌群测试片上,然后放下上层膜,静置5 min使培养基凝固,最后用手轻轻地压一下。3.2将接种好的纸片平放于培养箱中,44.5℃培养15~24h观察结果。4 结果判读: 测试片上出现红色或紫蓝色菌斑都是耐热大肠菌群阳性,其中紫蓝色为大肠埃希氏菌阳性。没有红色或紫蓝色斑点为阴性结果。
  • 奎泰斯特 Colimax 酶底物法检测试剂 其他环境监测仪配件
    标准支持GB575-2006《生活饮用水标准检验方法》HJ1001-2018《水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定 酶底物法》准确性Colimax试剂可精确检出100ml水样中单个活性大肠菌群、耐热大肠菌群、大肠埃希氏菌,假阳性低Colimax试剂能抑制超过150万个杂菌生长通过颜色判读结果,减少主观判断影响效率手工操作时间少于1分钟培养时间24个小时可同时检测大肠菌群、大肠埃希氏菌定性/定量科学依据:科学依据:根据《GB5750-2006生活饮用水》与《HJ1001-2018 环境水质》所述:酶底物法采用 ONP(邻硝基苯)和 MU(四甲基伞形酮) 两种颜色指示剂,这两种试剂分别可以被大肠菌群的β-半乳糖苷酶和大肠杆菌的 β-葡糖醛酸酶 分解代谢。当大肠菌群在酶底物检测试剂中生长时,其使用 β-半乳糖苷酶 分解代谢 ONPG,并使大肠菌群从无色变为黄色。大肠杆菌使用β-葡糖醛酸酶分解代谢 MUG 时,能够发出荧光。

半乳糖苷酶来源于大肠杆相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制