盐酸螺普利一水合物标准品

仪器信息网盐酸螺普利一水合物标准品专题为您提供2024年最新盐酸螺普利一水合物标准品价格报价、厂家品牌的相关信息, 包括盐酸螺普利一水合物标准品参数、型号等,不管是国产,还是进口品牌的盐酸螺普利一水合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合盐酸螺普利一水合物标准品相关的耗材配件、试剂标物,还有盐酸螺普利一水合物标准品相关的最新资讯、资料,以及盐酸螺普利一水合物标准品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

盐酸螺普利一水合物标准品相关的资料

盐酸螺普利一水合物标准品相关的论坛

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 【金秋计划】白藜芦醇-盐酸巴马汀共晶水合物的制备、晶体结构及溶解性研究

    植物源性多酚由于具有预防和治疗多种疾病的特性,在制药、化工和食品工业等领域引起广泛关注[1-2]。白藜芦醇(resveratrol,图1)是一种天然多酚,存在于葡萄皮、蔓越莓、可可等植物中,具有抗氧化、抗炎、保护心脏和抗癌等生物活性[3-4]。此外,白藜芦醇对阿尔茨海默病、帕金森病和癫痫等神经系统疾病也有神经保护作用[5-6]。该化合物在自然界中以反式和顺式2种异构体的形式存在,但反式异构体更丰富,生物活性更高[7]。然而,白藜芦醇较低的水溶性、生物利用度限制了其在人体中的吸收和生物利用有效性[8]。 药物共晶是活性药物成分和共晶形成物按一定化学计量比在非共价键相互作用下自组装而成的固体结晶材料[9-10],共晶中存在的氢键或其他非共价作用,会改变原药物晶体的结构,通过降低晶格能、提高溶剂的亲和力,从而改善药物在共晶中的溶解度[11]。因此,药物共晶技术成为解决药物生物利用度低的新途径、新领域。通过药物共晶技术提高药物生物利用度是今后药物开发新的研究方向。近年来,白藜芦醇共晶和多晶型用于提高其溶解度和生物利用度已有报道,如氨基苯甲酰胺[12]、异烟肼与烟酰胺[13]、乙烯基二吡啶[14]等共晶。不同共晶之间白藜芦醇的构象和分子堆积是灵活的,且白藜芦醇共晶的物理化学性质与其晶体堆积模式密切相关。基于共晶策略优势,利用高水溶性生物活性药物增强白藜芦醇的溶解度和生物利用度,同时有助于发挥2种药物在抗炎、抗病毒功效等方面协同作用,如白藜芦醇-金刚烷胺盐酸盐共晶[15]。 盐酸巴马汀(palmatine chloride,PCl,图1)又名黄藤素,是一类典型的异喹啉生物碱,主要存在于黄柏、黄连、三棵针、南天竹等天然中草药植物中[16-17]。PCl易溶于热水,具有抗菌、抗炎、抗病毒与抗肿瘤等药用价值,在临床上常用于治疗妇科炎症、菌痢、肠炎、呼吸道和泌尿道感染以及眼结膜炎等症状[16,18-19]。PCl结构中含有1个季铵盐阳离子与氯离子(Cl?),其中Cl?是一类潜在的氢键受体,不仅空间位阻小,还具有良好的空间适应性和几何延展性,可以同时接纳多个氢键给体,与氨基、羧基、羟基等官能团可形成较强的电荷辅助氢键[20-21],利用含Cl?的PCl作为共晶形成物为药物共晶开发提供了新的思路。本课题组前期系统研究了PCl作为共形成物与外消旋橙皮素的药物共晶多晶型,2种共晶均存在O-HCl?氢键相互作用,对温度、湿度和光表现出很高的稳定性,共晶的形成降低了盐酸巴马汀的溶解度,提高了橙皮素的溶解度。同时,在纯水中实现了盐酸巴马汀的缓释和增强橙皮素的释放[22]。本实验基于Cl?与羟基之间易形成O-HCl?氢键作用,研究了白藜芦醇与PCl的共结晶。采用溶剂悬浮法成功制备了一种新的白藜芦醇-盐酸巴马汀共晶水合物(RES-2PClH2O),利用单晶X射线衍射、粉末X射线衍射和傅里叶红外光谱对其结构进行表征,并利用差示扫描量热、动态水蒸汽吸附、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析等对共晶水合物的稳定性、溶解度及溶出速率等进行了考察。 图片 1 仪器与材料 Smart Lab SE型粉末X射线衍射仪,日本理学公司;Super Nova CCD型单晶X射线衍射仪,美国安捷伦科技有限公司;DSC 214 Nevio型差示扫描量热仪、TG 209 F3型热重分析仪,德国耐驰仪器制造有限公司;Intrinsic Plus型动态水蒸汽吸附仪,英国Surface Measurement Systems公司;LC-20AD型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],日本岛津仪器有限公司;Nicolet iS 50型衰减全反射傅里叶红外光谱仪,美国赛默飞世尔科技公司;LHH-150SD型综合药品稳定性试验箱,上海一恒科学仪器有限公司;RC806ADK型溶出度测试仪,天津市天大天发科技有限公司;SHH-100GD-2型药品强光照射试验箱,重庆市永生实验仪器厂。 盐酸巴马汀三水合物(PCl3H2O)、白藜芦醇,质量分数均为97%,购自大连美仑生物技术有限公司;甲醇为色谱纯,购自上海泰坦科技股份有限公司;磷酸为色谱纯,购自上海阿拉丁试剂有限公司。其他试剂均为分析纯,购自国药集团药业股份有限公司。 2 方法与结果 2.1 样品的制备 2.1.1 白藜芦醇-盐酸巴马汀单晶的制备 取白藜芦醇(22.8 mg,0.1 mmol)与PCl3H2O(44.2 mg,0.1 mmol)混合均匀后加入20 mL甲醇溶液,加热搅拌至完全溶解后滤过。将溶液放于避光环境下缓慢蒸发,2~3 d后有橘红色块状晶体析出,即为白藜芦醇-盐酸巴马汀单晶。 2.1.2 RES-2PClH2O共晶水合物的制备 取白藜芦醇(114.0 mg,0.5 mmol)与盐酸巴马汀三水合物(442.0 mg,1 mmol)混合均匀后加入10 mL的甲醇溶液,在室温条件下密封搅拌48 h后滤过。将固体放于自然条件下干燥即可得到RES-2PClH2O共晶水合物。 2.2 固态表征 2.2.1 单晶X射线衍射(single crystal X-ray diffraction,SC-XRD) 利用Super Nova CCD单晶衍射仪测试待测样品,在100 K条件下收集晶体参数,入射光束为Cu-Kα射线(λ=0.154 184 nm),利用CrysAlisPro程序进行经验吸收校正[23]。采用SHELX程序对晶体结构进行直接法求解,通过全矩阵最小二乘方法对F2进行精修[24-25]。非氢原子在无约束位移参数下进行各向异性细化,氢原子则放置在合适的几何位置上。单晶结构解析表明,RES-2PClH2O为单斜晶系,P21/c空间群,在晶体结构中含有2个PCl分子、1个白藜芦醇分子与1个水分子。如图2所示,白藜芦醇结构中的3个酚羟基均参与了氢键的形成,其中2个酚羟基与2个Cl?形成O-HCl?氢键作用,而另1个酚羟基则与水分子形成O-HO氢键作用。水分子又同时与2个Cl?形成O-HCl?氢键作用。白藜芦醇分子、水分子与Cl?间通过上述的多种氢键作用相连接,形成了一维链状结构。形成的链与链间通过不同白藜芦醇分子间的C-HO作用相连接,进而形成二维层状结构(图3)。在分子间弱作用力下,层与层之进而形成堆积结构(图4)。RES-2PClH2O共晶水合物的晶体学数据见表1,共晶水合物中氢键的参数见表2。 图片 图片 图片 图片 2.2.2 粉末X射线衍射(powder X-ray diffraction,PXRD) 将待测样粉末均匀铺满样品槽后开始测量。入射光束为Cu-Kα射线,工作电压为40 kV,工作电流为15 mA,2θ范围取5°~45°,步长0.02°。如图5所示,RES-2PClH2O的PXRD谱图与白藜芦醇、PCl3H2O 2种原料药均不同,在10.6°、13.1°、14.0°、14.5°、16.2°、21.5°、26.7°、28.2°等处出现新的特征峰,且图谱中并未显现PCl3H2O在9.7°、17.8°等处的特征峰,表明所制备的产物形成了新的晶相。此外,RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 图片 2.2.3 衰减全反射傅里叶变换红外光谱(attenuated total reflection fourier transform infrared spectroscopy,ATR-FTIR) 将待测样均匀铺于iD7 ATR附件上,扫描次数为32,分辨率为4 cm?1,波长范围为550~4 000 cm?1。如图6所示,RES-2PClH2O与PCl3H2O的图谱中均存在有水分子的伸缩振动峰,与单晶结构中存在的水分子相对应。在PCl3H2O中,水分子的伸缩振动峰为3 602~3 227 cm?1,而共晶水合物中水分子的伸缩振动峰为3 292 cm?1。在形成强分子间氢键时,-OH伸缩振动峰会发生红移(100~693 cm?1)[26-27]。白藜芦醇中-OH的伸缩振动峰在3 200 cm?1左右,而共晶水合物中-OH的伸缩振动峰显著红移至在3 002 cm?1,表明白藜芦醇和PCl3H2O分子间具有较强的氢键相互作用。同时,在形成共晶水合物后,白藜芦醇中-OH的弯曲振动峰从1 145 cm?1偏移至1 170 cm?1,归因于白藜芦醇上的-OH同PCl、水分子间均存在较强的氢键作用。 图片 2.2.4 差示扫描量热/热重分析(differential scanning calorimetry/thermal gravity analysis,DSC/ TGA) 称取适量白藜芦醇、PCl3H2O、RES- 2PClH2O分别放于铝制坩埚中,密封、扎孔后进行DSC测试。以同样的空坩埚作为参比,将其放置于仪器中预热、平衡至读数稳定后,将待测样品放于空坩埚中进行TGA测试,温度范围为30~300 ℃,升温速率10 K/min,通氮气作为保护气,体积流量为40 mL/min。如图7-a所示,白藜芦醇在268.1 ℃处有1个吸热熔融峰,PCl3H2O在204.2 ℃处出现吸热熔融峰。RES-2PClH2O在136℃附近存在1个宽的脱水吸热峰,在230.5 ℃附近存在熔融吸热峰。共晶水合物的熔点介于2个原料药之间,是不同于原料药的新晶型。由TGA图谱(图7-b)可知,白藜芦醇在30~150 ℃没有明显质量变化,PCl3H2O在105 ℃失重比为11.3%。相较于2原料药,RES-2PClH2O在136 ℃附近的失重比为2.8%,与其理论的失水质量比(2.8%)一致,进一步证实共晶水合物结构中存在1个水分子。 图片 2.3 物理稳定性研究 2.3.1 稳定性分析 根据《中国药典》2020年版药物稳定性试验,评价温度、湿度、光照等环境参数对所制备共晶水合物物理稳定性的影响。将RES- 2PClH2O分别储存于烘箱、湿稳定性箱及光稳定箱中,放置10 d后取出进行PXRD表征。如图8所示,在60 ℃,90%相对湿度(RH),或4 500 lx条件下储存10 d后,RES-2PClH2O的PXRD图谱保持不变,说明所制备共晶水合物在恶劣的储存条件下未发生晶型的变化,具有物理稳定性。 图片 2.3.2 动态水蒸汽吸附(dynamic vapor sorption,DVS)分析 称取适量待测样品置于动态水蒸气吸附仪中,设定温度为25 ℃,在体积流量为200 mL/min氮气下测量,模式选择为0~95%~0相对湿度吸附、脱附水蒸汽全循环,步长5%,平衡标准为粉体质量变化(dm/dt)≤0.002%/min。如图9-a所示,PCl3H2O吸湿量随着相对湿度增加而逐步增大。相比于PCl3H2O,白藜芦醇、RES-2PClH2O吸湿量基本不变,说明白藜芦醇可有效减少PCl3H2O吸湿量。根据局部放大图(图9-b),在95%相对湿度下,RES-2PClH2O共晶水合物吸湿量仅为0.16%,吸湿性极低。此外,共晶水合物的吸附与脱附曲线基本重合,表明在吸附过程中仅存在物理吸附水,共晶水合物未发生任何固态变化,具有良好的吸湿稳定性。 图片 2.4 体外溶出度研究 2.4.1 色谱条件 白藜芦醇、PCl的色谱分析采用Kristl等建立的方法[28]及《中国药典》2020年版一部黄藤素含量测定,并进行适当修改。色谱柱为中谱蓝XR-C18柱(150 mm×4.6 mm,5 μm),采用双波长模式,白藜芦醇的吸收波长306 nm,PCl的吸收波长345 nm,体积流量1 mL/min,进样量5 μL,柱温30 ℃,流动相为甲醇-0.2%磷酸水溶液(50∶50),洗脱方式为等度洗脱。 2.4.2 对照品储备液的制备 精密量取250 mg白藜芦醇置于50 mL量瓶中,甲醇定容,摇匀即得5 mg/mL白藜芦醇对照品储备液,同法制备5 mg/mL PCl3H2O对照品储备液。 2.4.3 线性关系考察 采用甲醇将“2.4.2”项下对照储备液分别稀释成5、10、20、50、100、200、500 μg/mL系列对照品溶液,按照“2.4.1”项下色谱条件测定各质量浓度(C)的峰面积(A)。方法学结果表明,PCl的线性回归方程为A=23 744 C+22 055,R2=1.000 0,结果表明PCl在10~500 μg/mL线性关系良好。白藜芦醇的线性回归方程为A=42 114 C?161.8,r=1.000 0,结果表明白藜芦醇在5~100 μg/mL线性关系良好。 2.4.4 供试品溶液的制备 精密量取5 mg RES-2PClH2O至50 mL量瓶中,甲醇定容,摇匀即得RES-2PClH2O供试品溶液。 2.4.5 专属性考察 取稀释后的对照品溶液、供试品溶液,分别按上述色谱条件进样,结果见图10,供试品溶液中白藜芦醇与PCl出峰时间与对照品溶液一致,分离度大于1.5,峰形良好,表明该色谱条件适用性良好。 图片 2.4.6 平衡溶解度实验 选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为缓冲介质[15,29],称取过量待测样品加入少量介质溶液,得到过饱和溶液。37 ℃振荡48 h,取上层液0.45 μm滤膜滤过,纯水稀释后利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]测量其质量浓度,得到待测样品的饱和平衡溶解度,平行样为3组。实验结束后,收集未溶解的残留固体,室温干燥后进行PXRD表征。结果如表3所示,在纯水中,白藜芦醇的溶解度为(55.100±0.669)μg/mL,PCl3H2O的溶解度(24.130±0.670)mg/mL。与之相比较,白藜芦醇、PCl3H2O在pH 4.5缓冲液中的溶解度基本不变。值得注意的是,共晶水合物中白藜芦醇溶解度在2种介质中均显著提高,尤其在pH 4.5缓冲液中,共晶水合物中白藜芦醇溶解度提高约10倍。而共晶水合物中PCl溶解度在2种介质中均显著降低,在pH 4.5缓冲液中,溶解度降低到(1.760±0.015)mg/mL。上述结果均表明通过白藜芦醇与PCl形成共晶策略极大提高了白藜芦醇溶解度,同时降低了PCl溶解度。此外,溶解度测定后将未溶解的固体残渣收集后进行PXRD表征,图谱结果表明2种介质处理后的残渣与RES-2PClH2O的PXRD图谱基本吻合(图11),未发现明显的相变。 图片 图片 2.4.7 溶出速率评估 实验在RC806ADK溶出测试仪上进行,采用小杯桨法,桨转速为75 r/min,温度为37 ℃。选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为溶出介质,溶出介质体积为250 mL。精密称取100 mg的RES-2PClH2O粉末,86.5 mg的PCl3H2O粉末以及22.3 mg的白藜芦醇粉末,待介质温度稳定后往介质投料。设置不同时间点进行取样,每次取样1 mL后随即补充1 mL缓冲液。所有样品溶液均过0.45 μm膜后,使用HPLC测量其质量浓度,平行样为3组。如图12-a可知,在2种介质中,白藜芦醇原料药释放缓慢,4 h后最大累积释放仅约45%;形成共晶水合物后,RES-2PClH2O中白藜芦醇在纯水与pH 4.5缓冲液中的溶出行为基本一致,溶出速率均增加,溶出释放量较白藜芦醇原料药显著提高,在1 h附近达到最大值,分别为82.26%与83.43%。与白藜芦醇溶出不同的是,PCl3H2O在2种介质中5 min内几乎完全溶解,共晶水合物中PCl的溶出速率较PCl3H2O有效减缓,1 h后达到最大累积释放量(图12-b)。 图片 综合上述溶出结果表明,相比于白藜芦醇原料药,通过与PCl3H2O形成共晶水合物,可有效促进白藜芦醇的溶出、同时延缓PCl的释放。 3 讨论 将水溶性较高的药物与难溶性药物形成药物-药物共晶,有利于平衡两者的溶解度[11]。利用水溶性较好的PCl[(24.13±0.67)mg/mL]与难溶性白藜芦醇[(55.100±0.669)μg/mL]通过分子间相互作用形成共晶,有望优化两者溶解度和溶出速率。本研究采用溶剂悬浮法成功制备了新的RES- 2PClH2O共晶水合物。RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 DSC测试结果显示,RES-2PClH2O的熔点介于2个原料药之间,进一步证实该共晶水合物是不同于原料药的新晶型。通过单晶结构分析,该共晶水合物存在O-HCl?氢键作用且含有水分子。白藜芦醇上的2个羟基与2个Cl?形成O-HCl?氢键,而水分子通过O-HO与O-HCl?的氢键作用分别与白藜芦醇、PCl相连并形成一维链状结构。链与链间又通过C-HO作用形成二维层状结构,层与层之间通过分子间弱作用力进而形成堆积结构。 TGA表征结果显示,RES-2PClH2O实际失水质量与理论失水质量相一致,进一步证实该共晶水合物结构中存在1个水分子。ATR-FTIR显示,RES-2PClH2O中,水分子伸缩振动峰和白藜芦醇的-OH伸缩振动峰、弯曲振动峰均发生了明显偏移,表明白藜芦醇中的-OH与PCl、水分子间均存在较强的氢键作用,2原料药间发生了相互作用。 药物稳定性测试证实,RES-2PClH2O在高温、高湿或强光照射等恶劣条件下长期储存具有较好的物理稳定性,与非吸湿性白藜芦醇共结晶后,PCl的抗湿稳定性得到显著提高。为研究PCl对白藜芦醇溶解度影响,评估了共晶水合物在纯水与醋酸/醋酸钠缓冲液介质中的平衡溶解度,并与原料药溶解度对比分析。结果显示,可溶性PCl与不溶性白藜芦醇共结晶同时影响了2种药物的溶解性能。在所制备的共晶水合物中,白藜芦醇溶解度明显提高、PCl溶解度显著降低。 为探究RES-2PClH2O共晶水合物形成后白藜芦醇、PCl溶出速率变化,对比在纯水与pH 4.5缓冲液2种介质中共晶水合物与原料药的溶出速率。溶出结果表明PCl作为白藜芦醇共晶形成的共形成物,显著促进白藜芦醇的释放同时延缓PCl的释放。本研究阐明了PCl作为白藜芦醇药物共晶形成物的可行性,为利用共结晶技术开发白藜芦醇药物共晶提供新的借鉴。

  • 请问测甲醛用的酚试剂到底是3-甲基-2-苯并噻唑酮腙盐酸盐还是其水合物

    98.0%(HPLC)(T) 分子式(M.F.) / 分子量(M.W.) C8H9N3S·HCl / 215.70 CAS编码 4338-98-1 相关CAS编码 149022-15-1,38894-11-0 第一个是别名 (英文)MBTH Hydrochloride Hydrate 别名 (英文)Sawicki's Reagent Hydrate 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐水合物 中文别名3-甲基-2-苯并噻唑啉腙盐酸盐水合物 第二个是别名 (英文)MBTH Hydrochloride 别名 (英文)Sawicki's Reagent 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐 中文别名MBTH盐酸盐 中文别名Sawicki's试剂

盐酸螺普利一水合物标准品相关的方案

盐酸螺普利一水合物标准品相关的资讯

  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。

盐酸螺普利一水合物标准品相关的仪器

  • 中文名称:7-[(3-氯-6-甲基-5,5-二氧代二苯并[1,2]硫氮杂卓-11-基)氨基]庚酸半硫酸盐一水合物中文别名:噻奈普汀半硫酸盐一水合物;噻唑平-11-基氨基庚酸半硫酸盐一水合物英文名称:7-[(3-chloro-6-methyl-5,5-dioxo-diphenzo[1,2]thiazepine- 11-)amino]heptanoic acid hemisulfate monohydrate;Tianeptine Semisulfate Monohydrate;(Thiazepin-11-ylAmino)Heptanoic Acid Semisulfate MonohydrateCAS号:1224690-84-9分子式:C42H56Cl2N4O14S3分子量:1008.01344含量:99.5%外观:白色结晶粉末包装: 1公斤每袋
    留言咨询
  • 岩征仪器水合物动力学装置可非标扩展恒压加料,冷凝回流/收集,在线取样过滤和可非标增加进气或进液阀(1~2 只)等。水合物动力学装置适用于混合气体水合物生成/分解动力学分析以及添加化学试剂的气体水合物动力学分析实验研究。能够根据实验需要,进行自动进液以配置不同浓度的水合物反应液,并进行不同压力条件下水合物的生成动力学反应。设计参数:开合方式KF 快拧密封方式O 型圈自紧密封换热方式电加热加热功率500~1500W (注 1)设计温度250℃使用温度50~200℃控温精度±1℃ (无强放热吸热情况下)设计压力150bar爆破压力125bar使用压力≤100bar (注 2)标准材质316L (注 3)搅拌速度150~1500r/min(注 4)操作系统YZ-MRCTR注 1不同容积加热功率不同注 2使用负压时应特殊说明,另装负压表和更换负压传感器注 3有哈氏合金,蒙乃尔合金,锆材,因科镍,钛材等特殊材质可订制注 4磁耦搅拌 150~1000r/min,标配三叶推进式桨叶配置清单:序号品 名数量单位备注1反应釜1台2控制器1套3气相阀1只预装4液相阀1只预装5磁耦搅拌器1套磁耦搅拌预装6温度传感器1根预装7压力传感器1只预装8安全爆破装置1套预装9压力表1只预装10探底管1根预装11悬浮搅拌杆1根jin限磁子搅拌12悬浮搅拌子2只13内胆1只14进气管1根氮气/氢气15液相出料管1根
    留言咨询
  • 水合物摇摆槽 400-860-5168转0811
    应用: 动态水合抑制剂分析 水合物阻蚀剂影响分析 水合物抑制剂浓度选择 质量控制 德国RC5型水合物摇摆槽(Rocking Cell)是PSL公司公司最新推出的用于可燃冰检测的利器。它可以分析天然气水合过程中的水合物动态水合抑制剂和水合物阻蚀剂效果。   水合物摇摆槽的测试原理是基于其配置的稳固的冷却倾斜台,以及由压力的测试槽。当倾斜的时候,在腔体里面的一个小球会在腔体长度的位置来回振动,这种振动会加速液体和气体之间的混合作用。小球的运动为摇摆槽提供了强大的剪切力和紊乱,因而,我们可以创建一个类似管道传输的模拟环境。 测试中,腔体装满了测试液体和某种抑制剂,然后根据设定的温度进行冷却,然后,我可以再摇摆槽内分别的通入不同压力的气体,最高为200 bar (2,900 psi).   水合物摇摆槽5个可以轴向活动的摇摆槽同时被放置在封闭的冷却槽里面,只有这个轴才测试的时候会稍微翘起来,这样带来的好处是只有测试的摇摆槽是可以活动的,而不是冷却槽。这个系统可以最多扩充为10个测试槽,测试腔体是用磁力固定的,因此,当清洗或者填充样品的时候都很方便。 一个完整的实验由3个步骤组成: 1. 流动条件:测试槽可以用给定的频率和角度摇摆,其间,他们被给予一定的温度。这个过程可以由直接冷却或者由设定温度程序带来。 2. 关闭:测试槽保持一个给定的位置(最大可以调节至40o),并被加热或者冷却到给定温度。 3. 重启流动条件:摇摆槽又以一个可调频率、可调角度振动开始倾斜,分别的达到指定温度。   然气水合分析专用摇摆槽在整个测试过程中,温度以及压力情况都会被记录下来。这样,你可以用不同的压力情况来监测水合形成过程,PSL公司软件WinRC可以自动记录和分析数据,还可以设定不同测试条件以及不同的测试时间来完成高度自动化的测试。   软件可以观察的参数有: 温度、振动频率、摇摆角度、实验持续时间、实验暂停时间、实验暂停时腔体的各种参数等。 高达30天以上的持续实验都可以进行。而摇摆槽是用不锈钢构成来实现现实的环境 技术参数: 1. 5-10个摇摆槽可以任意选择。 2. 振动频率:1-20Min-1 3. 振动角度:1-45o 4. 压力范围:最高200 bar (2,900 psi) 5. 温度范围:-10 ° C ... +60 ° C 6. 测试槽体积:40.13 cm3 7. 测试槽材质:不锈钢 8. 数据采集:1-30s 9. 冷却液:水-乙二醇 10.电源:220v,2900w
    留言咨询

盐酸螺普利一水合物标准品相关的耗材

  • 1,10-菲啉一水合物 GR ACS
    1,10-菲啉一水合物 GR ACS
  • 1,10-菲啉一水合物 GR ACS 1.07225.0010 unit
    1,10-菲啉一水合物 GR ACS
  • 柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物)
    柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物) 12ml离心管,50根/包 适用于萃取 ~10g 食品/农产品样品。使用柠檬酸盐将提取液缓冲到 pH 5.0 - 5.5。在该 pH 值下,大部分酸和碱不稳定性农药均能保持稳定。使用碳酸氢钠进一步稳定酸不稳定性农药。 分散固相萃取(DSPE),通常被称为&ldquo QuEChERS&rdquo ,方法快速,简便,廉价,有效,耐用,安全,是一个新兴的样品制备技术,该方法使用散装固相萃取吸附剂提取和净化食品、农产品等样品用于农药残留分析,由于其操作简便正日趋普及。 使用QuEChERS方法,首先将食品和农产品样品加入到提取管中,提取管中装有 预先精确称量的高含量盐(如氯化钠和硫酸镁)和缓冲试剂(如柠檬酸盐),盐和缓冲试剂可以促进两相分离和稳定住遇酸碱容易变化的农药,然后在提取管中加入水溶性溶剂(如乙腈)进行提取。将提取管进行震荡和离心后取出部分有机相层加到分散SPE(dSPE)净化管中做进一步处理。分散SPE(dSPE)净化管不同于传统的SPE小柱,它是将精确称量好的SPE填料如Supelclean PSA,ENVI-Carb,Discovery DSC-18和Supel&trade QuE Z-Sep混合在一起的离心管,在净化管中加入提取液,样品在提取液和散装SPE填料之间进行分配或吸附,从而实现对基质样品的净化。这种方法简便快速。净化后的样品经过震荡离心后,上清液可直接或经过简单处理后进入到下一步分析中。 Supelco除了提供一系列预装好填料的分散SPE提取管和净化管用于欧盟EN 15662和美国AOCO2007.01方法,还可以根据用户定制不同规格的分散SPE产品

盐酸螺普利一水合物标准品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制