千金子二萜醇二乙酰苯甲酰

仪器信息网千金子二萜醇二乙酰苯甲酰专题为您提供2024年最新千金子二萜醇二乙酰苯甲酰价格报价、厂家品牌的相关信息, 包括千金子二萜醇二乙酰苯甲酰参数、型号等,不管是国产,还是进口品牌的千金子二萜醇二乙酰苯甲酰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合千金子二萜醇二乙酰苯甲酰相关的耗材配件、试剂标物,还有千金子二萜醇二乙酰苯甲酰相关的最新资讯、资料,以及千金子二萜醇二乙酰苯甲酰相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

千金子二萜醇二乙酰苯甲酰相关的资料

千金子二萜醇二乙酰苯甲酰相关的论坛

  • 【实验】有机实验之乙酰二茂铁的合成

    乙酰二茂铁的合成目的原理实验目的 1 通过乙酰二茂铁的制备,了解用Friendel-Crafts酰基化反应制备非苯芳酮的原理和方法。2 学习柱色谱分离提纯产品和薄层色谱跟踪反应进程的原理和操作方法。实验原理 二茂铁又名双环戊二烯基铁,是由2个环戊二烯负离子和一个二价铁离子键合而成。一般认为,以乙酸酐为酰化剂,三氟化硼,氢氟酸,磷酸为催化剂,主要生成一元取代物;如用无水三氯化铝为催化剂,酰氯或酸酐为酰化剂,当酰化剂与二茂铁的摩尔比为2∶1时,反应产物以1,1′-二元取代物为主。二茂铁及其衍生物的分离最好是用层析法。本实验用柱色谱分离提纯产品,可用薄层色谱法跟踪反应进程,柱色谱和薄层色谱均属于吸附色谱,柱色谱分离提纯是根据二茂铁,乙酰二茂铁和1,1′-二乙酰基二茂铁对活性氧化铝吸附能力的差异而进行分离提纯。用薄层色谱跟踪反应进程,根据二茂铁和乙酰二茂铁的斑点大小可以了解乙酰化反应的进程。仪器药品 5ml圆底烧瓶,克莱森接头,干燥管,电磁加热搅拌器,30cm色谱柱(自制),30×100mm载玻片,离心试管50ml烧杯,玻璃钉漏斗,吸滤瓶,锥形瓶,氮气袋,250ml烧杯二茂铁,乙酸酐,85%H3PO4,25%NaOH,二氯甲烷,棉花,洗净的砂,Ⅲ级活性氧化铝,己烷,醇,硅胶,0.5%羚甲基纤维素,干燥氮气。过程步骤 一、乙酰二茂铁的制备称取100mg(0.54mmol)二茂铁,放入5ml圆底烧瓶中,加入2.0ml醋酸酐。装上带有干燥管的克莱森接头。水浴温热并搅拌使二茂铁溶解。移去水浴,打开塞子迅速加入3ml 85% H3PO4,使反应液变成深红色,室温下搅拌1.5h,在反应期间定期用毛细管在液面上吸取2滴左右反应液放入具塞小试管中,假如10滴二氯甲烷,所得溶液用薄层色谱法展开,以了解反应进程。当二茂铁的斑点很浅时,表示反应基本完成。将反应液滴入盛有1g碎冰5ml烧杯中,滴加25%NaOH中和恰至碱性,得到大量桔黄色沉淀。充分冷却后抽滤,1ml冷水分几次洗涤沉淀,抽干,干燥后称重约110~120mg。二、乙酰基二茂铁的柱色谱法分离(1)干法装柱将粗产品溶于0.5ml二氯甲烷加入300mgⅢ级活性氧化铝,振荡均匀得浆状物。在通风橱中,在干燥氮气下除去溶剂至恒重,得到松散的颗粒状物,精确称取1/2用作柱色谱分离。将自制的1.5×30cm色谱柱洗净,干燥,柱底铺一层玻璃棉或脱脂棉,再铺一层约5~8mm厚的砂,填平。称取5gⅢ级活性的中性氧化铝(60~80目),通过漏斗将氧化铝装入柱管内,轻敲柱管,使之填均匀。将精确称得含有1/2产品重的氧化铝装入柱内,顶部盖一层约5mm厚的砂子,使氧化铝顶端和砂子上层保持水平。(2)洗脱用己烷作洗脱剂从柱顶加入,缓慢滴入己烷逐渐展开得到黄色、橙色分离的色谱带。黄色的二茂铁带首先从柱下流出,用己称重的锥形瓶收集洗脱溶液。当黄色谱带完全洗脱下来时,改用体积比为1∶1的二氯甲烷己烷混合物洗脱,同时橙色带往下移动,逐渐改变溶剂的比例到体积比9∶1二氯甲烷己烷混合溶剂时,则将橙色色谱带完全洗脱下来,用另一只已称重的锥形瓶收集洗脱液。最后改用体积比为9∶1二氯甲烷甲醇洗脱时,可以看到很淡的,很少量的,棕色色带向下移动,将该洗脱液另行收集。(3)收集产品在通风橱内,各组分洗脱液分别在水浴上蒸馏,回收溶剂。浓缩后的溶液放置冷却析出结晶,将产品放在盛有石蜡片的干燥器内至恒重。可回收到未反应的二茂铁20~22mg;得到乙酰二茂铁80~90mg 1,1′-二乙酰基二茂铁少于2mg。分别测定熔点。注意事项1.二茂铁需经升华或用石油醚(30~60℃)重结晶纯化。2.仪器应是充分干燥的。3.乙酸酐是临用前经重新蒸馏的。4.吸附剂的活性与其含水量的关,含水量越低,活性越高。氧化铝放入高温炉中(300~400℃)烘3h得无水物即Ⅰ级氧化铝。Ⅲ级氧化铝可用Ⅰ级活性氧化铝加入重量的6%的水而得到。如所用氧化铝活性过强会使产品不易洗脱,浪费较多的溶剂。5.这里是考虑到柱色谱的容器。一般粗产品重75mg以上都仅取1/2作柱色谱分离。6.二茂铁易升华,故测熔点时要封管。熔点的文献值:二茂铁为173℃,乙酰二茂铁为85℃,1,1ˊ-乙酰基二茂铁为130℃。分析思考1. 二茂铁乙酰化反应的机理怎样?2. 怎样利用薄层层析判断乙酰化反应的进程?3. 乙酰二茂铁在石油醚和乙醚中溶解度哪个更大?为什么?4. 柱层析分离二茂铁衍生物时,如何选择展开的溶剂? [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52002_1632583_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52003_1632583_3.gif[/img]

千金子二萜醇二乙酰苯甲酰相关的方案

千金子二萜醇二乙酰苯甲酰相关的资讯

  • NanoTemper热点解析 | 颠覆传统!基于PROTAC技术的“靶向降解组学”鉴定中药成分靶点
    背景介绍蛋白降解靶向嵌合体(PROTAC)技术是目前小分子药物研发领域最火热的技术之一。它颠覆了传统药物化学中“占位驱动 (occupancy driven)”的开发理念,借助内源性的泛素蛋白酶体系统有效地特异性降解致病蛋白,尤其是“不可成药(undruggable)”靶点。如此优秀的技术,不但让国内外众多制药巨头和Biotech公司趋之若鹜,更为科学家们打开了新世界的大门。中国科学院司龙龙课题组刚刚在Nature子刊发表了基于PROTAC技术的流感疫苗[1]doi: 10.1038/s41587-022-01381-4,沈阳药科大学陈丽霞和李华团队又创造性地将这项技术引入到了中药研究领域,在Acta Pharmaceutica Sinica B(APSB)发表了题为“PROTAC Technology as a Novel Tool to Identify the Target of Lathyrane Diterpenoids”的研究论文 [2] doi: 10.1016/j.apsb.2022.07.007。中药活性成分和其作用靶点的鉴定均在中药研发领域具有重要的科学意义和实用价值。尤其是靶点鉴定,它是理解中药机制和下游药物开发的基础和关键。但由于中药“多靶点、多成分”的作用模式,以及与靶点蛋白瞬时、弱亲和力的相互作用,导致中药的靶点鉴定存在巨大挑战,亟需研究的思路创新和技术创新。PROTAC技术中的蛋白降解剂是一种含有两个活性端的小分子化合物,一个活性端可与靶蛋白结合而另一个活性端结合E3连接酶;两个活性端通过linker相连接。鉴于PROTAC分子往往无需很强的亲和力即可有效地特异性降解靶蛋白,沈阳药科大学的研究团队大胆猜想该技术可用于鉴定中药成分及天然产物的作用靶点。研究人员将PROTAC技术与定量蛋白组学、微量热泳动(MST)分子互作检测技术相结合,从被降解的差异蛋白中找到中药靶点,并通过下游的一系列分子、生物化学和动物实验得到了功能验证。该流程被研究团队称为“靶向降解组学”,可以为中药成分的靶点鉴定提供新的解决方案。实验解读沈阳药科大学陈丽霞和李华团队在前期研究中从中药千金子中获得了一系列千金烷二萜类化合物,其中ZCY-001化合物具有最强的抗炎活性,并且具有低毒性。研究人员将该化合物的核心骨架Lathyrol(即千金子二萜醇)与沙利度胺 (E3连接酶CRBN配体) 通过PEG linker相连,得到了PROTAC分子ZCY-PROTAC。使用该PROTAC分子对细胞进行处理后提取蛋白,并使用TMT串联质谱标签进行标记定量蛋白组学分析(图1 A)。比较蛋白组学分析发现MAFF蛋白在ZCY-PROTAC处理后发生了最为显著的降解。Western Blot结果也显示, MAFF蛋白的降解水平与ZCY-PROTAC的剂量和作用时间是正相关的(图1 B)。这些结果表明,该蛋白可能是Lathyrol等千金烷二萜类化合物的最主要靶点。图1 ZCY-PROTAC可显著降解MAFF蛋白为了验证比较蛋白组学发现的靶点蛋白,研究人员采用微量热泳动(MST)技术直接检测Lathyrol及其衍生物ZCY020与MAFF蛋白的结合能力。如下图所示,Lathyrol与MAFF的亲和力为20.90 μM,ZCY020对MAFF的亲和力也在同一水平。以上亲和力检测结果也通过表面等离子共振(SPR)、细胞热迁移分析(CETSA)以及DARTS等实验得到了验证。这些结果证实了MAFF蛋白是中药千金子成分的直接作用靶点。图2 微量热泳动技术(MST)检测中药千金子活性成分与MAFF蛋白相互作用研究人员进一步采用生化和药理学实验深入研究阐明了千金烷二萜ZCY020以MAFF为靶点蛋白, Nrf2/HO-1信号通路为作用途径发挥抗炎作用。ZCY02可以促进MAFF-Nrf2异源二聚体的形成而抑制MAFF同源二聚体,进而调节HO-1的下游表达,从而在体内外发挥抗氧化和抗炎活性。本研究创造性地将PROTAC技术应用在了中药成分靶点的鉴定上,首先以中药活性成分为基础合成出PROTAC分子探针,再通过蛋白的特异性降解来发现中药活性成分的靶点蛋白。以MST为代表的的分子互作检测技术在靶点验证中发挥了重要作用,可直接定量分析中药活性成分与靶点蛋白的亲和力。作者将这一系列技术手段整合为一套可行的中药成分靶点鉴定新方法,可以有力地补充甚至替代现有技术。关于Monolith新一代分子互作检测仪德国NanoTemper公司自2010年推出第一款基于微量热泳动技术的Monolith分子互作仪。随着工业用户的增多且对高通量检测的需求越来越迫切,NanoTemper公司于2014年推出了自动化的检测仪器Monolith NT.Automated。基于用户的反馈,在2020年对该产品线进行了全面升级,推出了全新的Monolith系列仪器。(点击图片,查看更多详情)产品特点:仅需微量样品,即可直接在溶液中测定分子间结合。无需固定,不受检测样品种类的限制。检测速度快、测量范围广 (Kd : 从pM到mM)。仪器操作简单,无需繁琐的清洗维护。参考文献[1] Si L, Shen Q, Li J, et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat Biotechnol. 2022 Jul 4. [2] Wu Y, Yang Y, Wang W, et al. PROTAC Technology as a Novel Tool to Identify the Target of Lathyrane Diterpenoids. Acta Pharmaceutica Sinica B. 2022 Jul 16.
  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 【瑞士步琦】利用SFC系统纯化利多卡因与乙酰氨基酚
    步琦SFC系统纯化利多卡因与乙酰氨基酚SFC应用”1简介药物是一种由化学或生物来源制成的产品,用于人类或动物的医疗治疗,这些药物往往以化学合成的形式来生产。化学合成是一种通常伴随着杂质存在的过程,因为产率很少是 100%。这些杂质可能会对最终产品的疗效、安全性和质量产生重大影响。因此,对药物进行纯化以确保合成化合物的纯度和完整性是至关重要的,药物的纯化可以通过色谱法等多种方法进行。最近,超临界流体色谱(SFC)已经作为一种替代反相液相色谱(RP-HPLC)的方法出现。SFC 使用超临界二氧化碳作为流动相的一部分,这是一种清洁且环保的溶剂,很容易从最终产品中去除。此外,SFC 结合了气相色谱和液相色谱的优点,在提供高分辨率的同时也能以更快的速度分离样品。在 SFC 的方法开发过程中,最大的难点在于没有一种通用的固定相。因此需要在不同的固定相上进行筛选,以确定要分离的样品的最佳选择性。CO2 的低极性溶剂特性允许在色谱柱筛选时同时考虑非极性和强极性的固定相。在确定最佳固定相后,就可以进一步放大到制备规格。在本次应用中,我们会例举利多卡因和乙酰氨基酚的合成案例,利用 SFC 系统来高效去除合成过程中的杂质,获取高纯度目标化合物。在这一过程中,需要先进行合适色谱柱的筛选,再放大至制备色谱的规格。2设备BUCHI Sepmatix 8x SFC 8通道平行色谱系统BUCHI Sepiatec SFC-50 超临界制备色谱系统BUCHI PrepPure 硅胶,5um,250×4.6mm BUCHI PrepPure 二醇基,5um,250×4.6mm BUCHI PrepPure 氨基,5um,250×4.6mm BUCHI PrepPure 2-EP,5um,250×4.6mm HILIC柱,5um,250×4.6mm (Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×4.6mm BUCHI PrepPure CBD,5um,250×4.6mm 氰基柱,5um,250×10mm ,(Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×10mm BUCHI PrepPure 氨基,5um,250×10mm3化学品与样品化学品:二氧化碳 (99.9%)甲醇 (≥99%)甲醇溶液中2M的氨溶液甲酸(99%)去离子水为了安全处理,请注意所有相应的MSDS!样品:乙酰氨基酚合成产物利多卡因合成产物4程序设定BUCHI Sepmatix 8x SFC平行色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×4.6mm流速:3mL/min(每根色谱柱)检测:DAD 紫外扫描 200 nm - 600 nm流动相条件:0&minus 0.5min5%B0.5 – 8.0 min5 – 50 % B8.0 – 9.4 min50 % B9.4 – 9.5 min50 – 5 % B9.5 – 10 min5 % B筛选过程完全自动运行,流速设置为 3mL/min 每通道,使用流控单元,平衡每一根色谱柱。样品自动注入(V = 5 μL),并开始平行筛选(运行时间 =10min)。背压调节器设置为 150 bar,柱子加热至 32℃,可按需往改性剂中加入添加剂改善峰型。BUCHI Sepiatec SFC-50超临界制备色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×10mm流动相条件:等度运行条件检测:紫外所有 10mm ID 色谱柱都在预设流速下平衡 3 分钟,使用自动进样器上样,并开始运行。背压调节器设置为 150 bar,柱子加热至 40℃,可按需往改性剂中加入添加剂改善峰型。5结果5.1 乙酰氨基酚乙酰氨基酚(下称 AA),也常被称为对乙酰氨基酚,是一种镇痛剂、解热剂和手性药物。它属于非阿片类镇痛剂这一类。在化学上,它可以通过对氨基苯酚(下称 AP)与乙酸酐的反应来合成,在此过程中发生 N-乙酰化(见图1)。为了确定乙酰氨基酚合成产物的最佳纯化分离固定相,首先进行了柱筛选(见图1)。▲ 图 1:顶部:乙酰氨基酚合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI和CBD;运行时间 = 10分钟。图1显示,二醇基和 2-EP 相并未表现出分离度,硅胶相、CBD 相、氰基相和氨基相未显示出理想的分离度,因为它们无法实现基线分离。HILIC 和 PEI 相具有良好的选择性和分辨率,且分辨率始终远高于 1.5(见表1)。1.5 的分辨率意味着可以很好地分离 2 个峰。表1 还显示了洗脱顺序,氰基相显示出相反的洗脱趋势,对氨基苯酚先洗脱,然后是对乙酰氨基酚。筛选结果表明,反应并非百分之百完全,因为产物中仍含有大量对氨基苯酚。▲ 表1:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序选择 PEI 相色谱柱放大至制备规格,因为它具有最高的分辨率(见图2)。根据筛选时的色谱图,我们可以确定 AA 和 AP 在甲醇为 35&minus 40% 之间洗脱。图2(顶部)显示了在 40% 甲醇等度条件下,在10 x 250mm 的PEI 色谱柱上对 AA 进行纯化的情况,结果显示 AA 和 AP 可以非常良好地分离。因此在相同的条件下,可以实施一个堆叠注射方法,用于自动纯化并收集 AA (见图2,底部)。▲ 图2:单次注射(顶部)和堆叠注射(底部)用于AA的纯化;运行条件:流速=30 mL/min, 甲醇= 40 %,温度 = 40 ℃,压力BPR = 150 bar,注射 = 250 µ L,UV波长 = 254 nm;堆叠注射条件:注射次数 = 10,堆叠时间 = 1.8 min,Fractions = 1(基于时间的)。5.2 利多卡因利多卡因(下称 L),化学名为 2-二乙基氨基 -N-(2,6-二甲基苯)乙酰胺,是一种用作局部麻醉剂和抗心律失常药物的药物,它作为钠通道阻断剂起作用。利多卡因可以通过两步合成过程生产(见图3)。第一步中,2,6-二甲基苯胺(下称 X)的氨基组团被酰化 。第二步中,中间产物(下称 IP)通过与二甲胺的亲核取代反应转化为利多卡因。因此,需要进行两步纯化过程。色谱柱筛选的结果如图3所示,筛选过程中,在改性剂甲醇中始终添加 20 毫摩尔氨水作为碱性添加剂。▲ 图 3:顶部:利多卡因合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选IP与利多卡因结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI 和 CBD;运行时间 = 10分钟。从结果来看,所有色谱柱都可用于中间体 IP 的第一步纯化分离,因为都具有基线分离的效果。其中氨基相具有最高的分辨率,且在甲醇比例较低时就能出峰(见图3)。对于第二步利多卡因的纯化,氰基和CBD相无法实现基线分离,而氨基再次表现出最佳的分离度(见表2)。在洗脱顺序上,第一步中间体的纯化出峰顺序都是先 X 再 IP,而第二步的利多卡因的纯化除了硅胶相之外都是先 L 再 IP(见表2)。▲ 表2:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序最终选择 10 x 250mm 的氨基色谱柱进行制备纯化,因为它的分辨率总是最高的(见表2)。氨基柱筛选结果显示,X 和 IP 出峰时的甲醇比例约为 10 - 19%,L 和 IP 出峰时的甲醇比例约为 11 - 19%。图 4 a) 显示的是甲醇比例为 16% 等度条件下的 IP 的单次纯化分离图谱,图 4 b) 显示的是甲醇比例为 20% 等度条件下的 L 的单次纯化分离图谱。在相同的条件下,可以进行叠层进样分离,分别自动纯化 IP 和 L,并进行馏分收集(见图 4 c) 和 d))。▲ 图4:中间体 IP 的单次进样(a)和叠加进样(c);运行条件:流速 = 20 mL/min,改性剂 = 甲醇 + 20 mM 氨水,改性剂 % = 16 %,温度 = 40 °C,压力 BPR = 150 bar,进样量 = 170 μL,紫外波长 = 254 nm;叠加进样条件:进样次数 = 15,叠加时间 = 0. 75 min, Fractions = 1 (基于时间) 利多卡因L的单次进样 (b) 和叠加进样 (d) 运行条件:流速 =20 mL/min, 改性剂 = 甲醇 + 20mM 氨水, 改性剂 % = 20 %, 温度 = 40 °C 和压力 BPR = 150 bar, 进样 = 170 μL, 紫外波长 = 254 nm 叠加进样条件:进样次数 = 20, 叠加时间 = 0.65 min, Fractions = 1 (基于时间)。6结论在进行有机合成后,由于副反应或转化率未达到 100%,通常仍会存在杂质,这些杂质必须去除,尤其是在药品生产中。在药物合成研发领域,时间与效率至关重要。BUCHI 的 SFC 色谱解决方案为研发人员提供了强大的工具,通过 Sepmatix 8x SFC 色谱柱筛选系统与 Sepiatec SFC-50 制备色谱系统相结合,可快速筛选出合适的色谱柱并线性放大至制备规格。SFC-50 的叠层进样功能,不仅能实现无人值守自动分离,还可显著提高分离效率,从而加快药物合成研发的速度。7参考文献Medikamente & Medizinprodukte (admin.ch) (Status 23.11.2023).https://doi.org/10.1016/j.chroma.2011.09.029https://doi.org/10.1016/j.chroma.2012.06.029https://doi.org/10.1016/j.chroma.2005.03.073https://doi.org/10.1016/j.jpba.2007.08.013.PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Th. Eicher und H. J. Roth Synthese, Gewinnung und Charakterisierung von Arzneistoffen, Georg Thieme Verlag, Stuttgart (1986).The synthesis of Lidocaine (University of San Diego).Winterfeld, K. – Praktikum der organisch-prä parativen Pharmazeutischen Chemie, 6. Auflage, Steinkopff Verl., Darmstadt (1965).Axel Kleemann, Jürgen Engel, Bernd Kutscher und Dietmar Reichert: Pharmaceutical Substances, 4. Auflage, Georg Thieme Verlag, Stuttgart (2000).

千金子二萜醇二乙酰苯甲酰相关的仪器

  • 过氧乙酰基硝酸脂PAN:是光化学烟雾产生危害的重要二次污染物。PAN没有天然源,只有人为源,其前体物是大气中氮氧化物和乙醛。在光的参与下,乙醛与OH自由基通过O2生成过氧乙酰基,再与NO2反应而得,因此,大气中测得 PAN即可作为发生光化学烟雾的依据。  PAN不仅是造成光化学烟雾中刺激眼的主要有害物,还是植物的毒剂,造成皮肤癌 的可能致变剂。由于它在雨水中解离成硝酸根和有机物,而参与降水的酸化。
    留言咨询
  • AQ4BW1 移动实验室水质毒性分析仪 近年来环保、卫生疾控以及自来水行业对水质检测需求日益增强,赛默飞世尔科技为您提供AQ4700 水质综合毒性分析仪,一种简单、快速的生物毒性检测方法。可广泛应用于环境污染、紧急事故、安检、常规检测及分析研究等目的毒性分析。 该系统利用发光细菌进行生物毒性检测,与传统的鱼类、藻类、水蚤等生物检测系统相比,发光细菌法操作简便、快速、灵敏、可检测多种样品的综合生物毒性。此方法符合国际标准ISO11348 的规定,测试结果准确可靠。功能特点ISO 测试模式、基本测试模式、RLU 测试模式(该模式可进行ATP 检测)对各类重金属、有机物等化学试剂响应灵敏附加重要水质参数检测能力,为毒性检测提供全面解决方案仪器轻便小巧,配有便携箱,可适应野外操作市场与应用各级环境监测部门和疾病预防控制中心作为应急监测项目对污水处理中的进出水、食品加工用水、地表水、沉淀物毒性的检测药厂快速检测抗菌素科研高校进行生物毒性的实验研究方法简介发光细菌是一类可以自身发出蓝绿色光的细菌(与萤火虫的发光相类似),且发光强度持续、稳定,一旦遭遇到外界不利因素,如遇到有毒的物质,就会很“敏感”地反应,几乎立即影响到它的发光,通常是发光受到抑制,抑制的程度跟所受到的毒物的浓度及其毒性大小相关。发光受抑制的程度可以很方便地用光电传感器检测出来,从而推算出样品毒性大小。技术参数国家标准可检测指标污水综合排放标准(GB 8978-96)第一类污染物:总汞,总镉,总铅,总镍,六价铬;第二类污染物:总铜,总锌,总锰,总硒, 苯酚,间- 甲酚,2,4- 二氯酚,挥发酚,甲醛,苯胺类钢铁工业水污染物(GB 13456-2012)总铁,总锌,总铜,六价铬,总铬,总铅,总镍,总镉,总汞纺织染整工业水污染(GB 4287-2012)苯胺类,六价铬炼焦化学工业污染物(GB 16171-2012)挥发酚发酵类制药工业水污染物(GB 21903-2008)急性毒性(HgCl2 毒性当量),总锌化学合成类制药工业水污染物(GB 21904-2008)急性毒性(HgCl2 毒性当量),总铜,总锌,挥发酚,总汞,总镉,六价铬,总铅,总镍,苯胺类混装制剂类制药工业水污染物(GB 21908-2008)急性毒性(HgCl22 毒性当量)提取类制药工业水污染物(GB 21905-2008)急性毒性(HgCl2 毒性当量)生物工程类制药工业水污染物排放标准(GB 21907-2008)挥发酚,甲醛,乙腈,急性毒性(HgCl2 毒性当量)未计入国家排放标准物质水溶性有机溶剂乙腈,甲醇,乙醇,丙酮,乙醚,四氢呋喃,异丙醇,苯酚,二甲亚砜,乙酰丙酮,乙酸乙酯,正丁醇,甲醛,吡啶,乙酸甲酯,乙二醇,水合肼,N’N- 二甲基甲酰胺,1- 甲基-2- 吡咯烷酮,N’N- 二甲基乙酰胺重金属化合物钴离子,三价铁离子,二价锰离子,锌离子,镍离子,四价硒离子苯胺类苯胺,邻甲基苯胺,对甲基苯胺,邻硝基苯胺,对硝基苯胺苯酚类苯酚,对硝基苯酚,间硝基苯酚,邻硝基苯酚,对氯苯酚,邻氯苯酚,2,4- 二氯苯酚,对甲苯酚,间甲苯酚环境温度5℃ -40℃环境湿度10%-90%(25℃)最快检测时间5 min连续工作时间≥ 8h数据保存功能涵盖三种测量模式,每种测量模式能够存储1000组测量数据预警提示功能自动提示样品是否超标可测光谱范围320nm-1000nm测量范围0-65535 RLU仪器重量约258g(含电池)外形尺寸202×78×30(mm)电源电压干电池供电(3V)数据线接口USB 接口
    留言咨询
  • 二甲基乙酰胺,全称为N,N-二甲基乙酰胺,又称乙酰基二甲胺、乙酰二甲胺,简称DMAC或DMA,化学式:CH3C(O)N(CH3)2,由二甲胺与乙酰氯作用而制得。DMAC,是一种非质子高极性溶剂,无色透明液体,有微氨气味,溶解力很强,可溶解的物质范围很广,能与水、芳香族化合物、酯、酮、醇、醚、苯和三氯甲烷等任意混溶,具有热稳定性高、不易水解、腐蚀性低、毒性小等特点,对多种树脂,尤其是聚氨酯树脂、聚酰亚胺树脂具有良好的溶解能力,可用作耐热合成纤维、塑料薄膜、涂料、医药、丙烯腈纺丝的溶剂。二甲基乙酰胺作为一种低毒、高沸点、高极性的非质子溶剂和化工中间体,主要用于有机和医药工业中用作溶剂,塑料工业用于制造聚酰胺树脂和树胶,化纤工业用作丙烯腈纺丝溶剂,化工生产中用于制造催化剂、电解溶剂,涂料工业用于配制去漆剂以及多种结晶性的溶剂加合物和络合物,分析化学中用作化学试剂。在工业生产中,由DMAC纯溶剂按照生产工艺配置并控制在合适的浓度范围内,比如聚丙烯腈(腈纶)湿法生产过程中,作为凝固浴的DMAC浓度控制在40-65%,温度在20-30℃,此外适应绿色循环经济的要求,需要对DMAC进行回收,制备成目标浓度的待用溶液。检测DMAC溶液浓度成为生产工艺控制必不可少的步骤。以下,我们将对二甲基乙酰胺(DMAC)的浓度进行检测:实验目的:30℃下测试60%左右的DMAC溶液浓度.实验器材:ATAGO(爱拓)全自动台式数显折光仪 RX-5000i,分析天平,纯水仪,具塞试管等。 【实验步骤】1. 配置标准浓度梯度的DMAC溶液:使用分析天平分别准确称取DMAC分析纯试剂置于具塞试管,并分别加入纯水, 配置成30%,40%,50%,60%,70%的DMAC溶液备用。根据实际称量结果,修正浓度。2. 使用ATAGO(爱拓)全自动台式折光仪 RX-5000i 在30℃测试DMAC标准溶液的折射率,并记录。3. 在ATAGO(爱拓)全自动台式折光仪RX-5000i上内置DMAC标度——DMAC-T304. 使用配置的其它浓度溶液进行验证。ATAGO(爱拓)全自动折光仪——RX-5000i 测量 DMAC溶液浓度 *记录DMAC标准溶液折射率*DMAC标准溶液折射率ATAGO(爱拓)全自动台式折光仪 RX-5000i,作为一款高精度的自动折光仪,内置帕尔贴温控系统,测试快速(只需3秒),测量精度高,操作简易,无需试剂,无需样品前处理,对操作人员也无需复杂的实验技能,有助快速检测DMAC浓度.此方法同样适用于DMF(二甲基甲酰胺),DMSO(二甲基亚砜),NMP(N-甲基吡咯烷酮),NMMO(N-甲基吗啉-N-氧化物)等有机溶剂溶液的浓度检测。内置帕尔贴温控系统,无需外接水浴,达到目标温度后自动开始测量。具备智能自检功能,自动检测棱镜表面清洁度,避免由于光线强度或不同波长造成的干扰,帮助确保测量准确性。 FDA 21 CFR Part 11 数据记录软件(可选配)内置24种常用物质标度,用户自定义标度可达100组,自动保存最新记录数据不少于500条四种测量模式可供选择,满足不同测量需求。【关于 ATAGO】ATAGO(爱拓)专注折光仪超80年,每年超过20000台折光仪服务于中国客户。主要产品有:折光仪、旋光仪、糖度计、盐度计、粘度计、浓度计、pH计等等。ATAGO(爱拓)产品应用行业覆盖:食品饮料、果蔬种植、制糖行业、日用化工、生物医药、石油化工、液晶薄膜、新材料、半导体、光伏光电、汽车制造、金属机械加工、质检机构、高校科研等多种领域。更多产品咨询,敬请致电:400-860-5586,谢谢!
    留言咨询

千金子二萜醇二乙酰苯甲酰相关的耗材

  • 高效液相色谱法测定千金子中千金子甾醇的含量
    高效液相色谱法测定千金子中千金子甾醇的含量 关键词:千金子,千金子甾醇,2010年药典,二甲基十八碳硅烷键合硅胶,高效液相色谱法 2010年中国药典标准:千金子甾醇色谱条件:照高效液相色谱法(附录Ⅵ D)试验,以二甲基十八碳硅烷键合硅胶为填充剂;以正己烷-乙酸乙酯-乙腈为流动相;检测波长为275nm。理论板数按千金子甾醇峰计算应不低于3000.(药典一部P33) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 普瑞邦 100 μg/mL脱氧雪腐镰刀菌烯醇、雪腐镰刀菌烯醇、3-乙酰基脱氧雪腐镰刀菌烯醇、15-乙酰基脱氧雪
    1、产品简介产品名称:ribolab® 100 µ g/mL脱氧雪腐镰刀菌烯醇、雪腐镰刀菌烯醇、3-乙酰基脱氧雪腐镰刀菌烯醇、15-乙酰基脱氧雪腐镰刀菌烯醇/乙腈英文名称:Pribolab® Deoxynivalenol,Nivalenol,3-Acetyl Deoxynivalenol,15-Acetyl Deoxynivaleno (100 µ g/mL) in Acetonitrile产品编号:STD#3110-1 Pribolab可提供80多种真菌毒素固体/液体标准品,以满足不同检测方法(HOLC/GC/TLC)的需求,同时可根据客户需求提供更大包装。且每批次产品都经过NMR,HPLC,LC-MS/MS等不同技术验证,确保所提供的标准品的品质和纯度。2、普瑞邦产品:产品名称CAS号适用标准Pribolab® 黄曲霉毒素B1Pribolab® Aflatoxin B11162-65-8 GB 5009.22-2016 Pribolab® 黄曲霉毒素M1Pribolab® Aflatoxin M16795-23-9 GB 5009.22-2016 Pribolab® 玉米赤霉烯酮Pribolab® Zearalenone17924-92-4 GB 5009.209-2016Pribolab® 麦角胺/麦角胺碱/麦角碱Pribolab® Ergotamine113-15-5 SN/T 4524-2016Pribolab® 100 µ g/mL伏马毒素B1(Fumonisin B1)/乙腈-水Pribolab® Fumonisin B1 (100 µ g/mL) in Acetonitrile/Water116355-83-0GB 5009.240-2016Pribolab® 25 µ g/mL展青霉素/棒曲霉素(Patulin)/乙腈 Pribolab® Patulin (25 µ g/mL) in Acetonitrile149-29-1GB 5009.185-2016Pribolab® 10 µ g/mL赭曲霉毒素A(Ochratoxin A)/甲醇 Pribolab® Ochratoxin A (10 µ g/mL) in Methanol303-47-9GB 5009.96-2016Pribolab® 10 µ g/mL玉米赤霉酮(Zearalanone)/乙腈Pribolab® Zearalenone (10 µ g/mL) in Acetonitrile17924-92-4GB 5009.209-2016可提供任一浓度规格的定制服务 3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天!
  • 二乙酰肟 GR for analysis
    二乙酰肟 GR for analysis

千金子二萜醇二乙酰苯甲酰相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制