当前位置: 仪器信息网 > 行业主题 > >

精密电控平移台

仪器信息网精密电控平移台专题为您提供2024年最新精密电控平移台价格报价、厂家品牌的相关信息, 包括精密电控平移台参数、型号等,不管是国产,还是进口品牌的精密电控平移台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密电控平移台相关的耗材配件、试剂标物,还有精密电控平移台相关的最新资讯、资料,以及精密电控平移台相关的解决方案。

精密电控平移台相关的论坛

  • 精密电阻到底有多精密

    精密电阻到底有多精密

    分享一下有关精密电阻的知识何为精密电阻,一般指精度高(万分之一以上)、温漂低(10ppm以下)及长期稳定性(年变化率小于50ppm)。从品种上讲可以有金属膜电阻、线绕电阻、金属箔电阻。但从整体指标上看,金属箔电阻明显要比其它几类电阻精密得多。第一只金属箔电阻是1962年由物理学家 FelixZandman博士发明的,在随后发展的五十多年间,金属箔电阻在要求高精度、高稳定性、高可靠性的应用方面远远超越其他电阻技术,满足了各种行业的高端应用需求,如航空航天、军用装备、精密测量、医疗设备等领域。目前世界上有三家公司掌握着这种电阻的生产技术,分别是以色列的Vishay(威世精密测量集团,包括被Vishay收购的AE)、中国的山东航天正和电子有限公司(原济宁元器件三厂)、中国的北京718友晟电子有限公司(原北京718厂)。从金属箔电阻的整体技术水平上来说,威士精密测量集团占有绝对的优势。尤其是新研发的Z-Foil金属箔电阻技术,使各项技术指标又有了大幅提高,如在-55℃~+125℃温度范围内、+25℃参考温度下,Z箔电阻具有±0.2 ppm/°C 典型TCR。 下面讲一讲其作为精密电阻的一些主要技术参数n 温度系数(TCR)l ±5 ppm/oC 典型(-55 oC to +125 oC, +25 oC ref.)n 额定功率l 1W at +125 oCn 负载寿命稳定性: ±0.005 %(50ppm) at +70 oC, 5000 小时n 精度: 0.005 % (十万分之五)n 阻值范围: 0.5Ω to 1 MΩn 静电放电负荷 (ESD) 至少25, 000 Vn 无感无容设计n 上升时间: 1 ns 无振铃n 热稳定时间 1sec (常规阻值的稳态值在10ppm以内)n 电流噪声: 0.010 μV (RMS)/Volt加载电压( - 40 dB)n 热EMF: 0.05μV/oCn 电压系数: 0.1 ppm/V

  • 【原创】精密电化学加工

    我最近新引进世界上最先进的德国PEMtec的精密电化学加工设备:PEM技术是一种在震动电极的电化学下沉腐蚀技术。直流电脉冲作用在电极和工件之间。根据震动电极的几何形状工件作为阳极被电解。几乎所有复杂几何结构的金属都能被加工,如回火钢,轴承钢,合金钢。PEM开启了不能使用传统工艺加工或者使用传统加工方式不经济的领域的应用。PEM优势 * 加工过程中没有电极耗损!仅用单个电极就可以重复生产无限量的产品。 * 加工后工件上没有热应力!不影响工件现有属性。不会产生微观裂纹。延长工件的寿命。 * 不产生氧化层!工件无需后序加工。 * 高效率的加工速度,对孔腔的表面速度可达0.5mm/min。 * 电极的表面质量是可以复制。粗糙度可达Ra 0.05µ m,在连接处具有不同的光洁度。 * 加工件上没有机械应力!可以加工壁较薄的结构件。 * 不会影响工件磁极属性。PEM Technology 技术优势●使用PEM制程工具电极不会造成损耗。 ▲只要一个电极可以重覆制造完全相同的产品。●不会有热应力残留,不会产生氧化层,不须要二次加工。●低温制程,不会影响材料本质。 ▲不会影响材料本质和结构。 ▲可以延长工件寿命。●一般制程的表面粗糙度品质Ra ≤ 0,5 μm, 取决于电极制作的表面品质。●可以作镜面加工。●高效率加工制程,因材料不同加工速度为 0.1 – 0.8 mm/min。●理想的电极材料为黄铜,但是其它导电材料都是可以作为电极。例如,红铜,高品质的钢,和石墨等等‧ ‧ ‧ 。●总而言之,PEM Technology 总合了EDM和ECM的优点,减少由这两种特殊加工技术的缺点。更重要的是,使用者必须衡量传统机械加工和特殊机械加工的特点为您生产的产品作最佳的选择。PEM 精密电化学切削应用范围●依功能分类:▲电解开孔,如轮机翼冷却孔。▲电解圆割加工,如曲孔。▲电解微小孔加工。▲精微成型。▲电解切穿,如深孔或盲孔加工。▲凹部加工(cavity sinking)。▲电解成型 (shaping), 如曲面加工。▲电解复印。▲电解除屑加工,如去毛边导角‧ ‧ 。●精密电化学加工的应用主要以传统方式不易完成的加工为主,有以下几个方向:▲内齿轮加工。▲花键孔加工。▲涡轮叶片加工。▲一体成形轮叶加工。▲高消耗性模具,如锻造模, 玻璃模, 压铸模等…。▲燃料电池极板。▲精密零配件。▲精密医疗器材。▲精密齿轮。PEM在汽车工业的应用 Exhaust pipe flange排气管法兰 * 汽车排气系统的不锈钢排气管法兰片,图中可以看到毛坯,电极和成品。 * 球面凹处为准备焊接的排气管的焊缝。 * 同一个型号的发动机一年销售量需求150,000个排气管法兰片。 * 同时加工30个零件, 并在10分钟内完成。 Diesel pump 柴油泵 柴油泵上无缝隙交叉孔的加工。椭圆形交叉孔。盲孔。表面光滑有利流动。无毛刺。每年450,000个。可以同时加工48个零件燃料电池制造 汽车用燃料电池反应金属板。用印刷电路技术覆盖抗腐蚀不锈钢板,用精密电化学工艺加工,然后清除电解残余。制造出的锐角表面无毛刺。PEM加工技术还可以应用在其他传统加工难以加工的材料的地方,例如模具制造,医疗器械,锻压模具等等,详情请浏览www.renpro.com.cn

  • 【原创】精密电化学加工技术

    我公司最近新引进世界上最先进的德国PEMtech公司的精密电化学加工设备:详细资料请访问我公司网站WWW.renpro.com.cnPEM技术是一种在震动电极的电化学下沉腐蚀技术。直流电脉冲作用在电极和工件之间。根据震动电极的几何形状工件作为阳极被电解。几乎所有复杂几何结构的金属都能被加工,如回火钢,轴承钢,合金钢。PEM开启了不能使用传统工艺加工或者使用传统加工方式不经济的领域的应用。PEM优势 * 加工过程中没有电极耗损!仅用单个电极就可以重复生产无限量的产品。 * 加工后工件上没有热应力!不影响工件现有属性。不会产生微观裂纹。延长工件的寿命。 * 不产生氧化层!工件无需后序加工。 * 高效率的加工速度,对孔腔的表面速度可达0.5mm/min。 * 电极的表面质量是可以复制。粗糙度可达Ra 0.05µ m,在连接处具有不同的光洁度。 * 加工件上没有机械应力!可以加工壁较薄的结构件。 * 不会影响工件磁极属性。精密电化学加工(PEM)和传统电化学加工(ECM)的比较 传统电化学加工 精密电化学加工 通常只应用在表面抛光,去毛边和导角。改良式电化学加工技术。加工精度差。更高的精密度2 - 5 μm。定量加工距离1mm。震动电极进行切削进给 50Hz。无法作精微成型或精密加工。可变加工间距10-400 μm。因电解液使用不同,需考量环保问题。最大加工电流可达8000A。 可应用于精微成型。 能加工复杂外形,不生毛屑。 电解液无环保问题。 精密电化学加工(PEM)和放电加工(EDM)的比较 放电加工精密电化学加工工作温度 1,500 to 2,500°C (造成微小裂缝)。工作温度 20 - 50°C。 加工伴生的急热、急冷会发生加工变质层(硬化层)(需要二次加工: 表面抛光)。全无加工硬化层不会发生裂纹,无须二次加工。 电极与被加工物以某种比例损耗,可用电极低消耗的加工条件,但此条件会使其它特性劣化。电极不会损耗,可以重覆加工(阳极融解现象,工件和电极没有接触)。依电极用金属而有消耗差,加工条件因材质而变化粗加工表面粗糙度为Ra ≤ 0,5 μm。加工速度慢。细加工可达到镜面。加工成本高。平均加工速度0,1 - 0,8 mm/min,比EDM快5-10倍 加工精密度可达2 - 5 μm。 电能加工复杂外形,不生毛屑。高温制程会造成许多缺点 !低温制程有许多优点! PEM Technology 技术优势 ●使用PEM制程工具电极不会造成损耗。 ▲只要一个电极可以重覆制造完全相同的产品。●不会有热应力残留,不会产生氧化层,不须要二次加工。●低温制程,不会影响材料本质。 ▲不会影响材料本质和结构。 ▲可以延长工件寿命。●一般制程的表面粗糙度品质Ra ≤ 0,5 μm, 取决于电极制作的表面品质。●可以作镜面加工。●高效率加工制程,因材料不同加工速度为 0.1 – 0.8 mm/min。●理想的电极材料为黄铜,但是其它导电材料都是可以作为电极。例如,红铜,高品质的钢,和石墨等等‧ ‧ ‧ 。●总而言之,PEM Technology 总合了EDM和ECM的优点,减少由这两种特殊加工技术的缺点。更重要的是,使用者必须衡量传统机械加工和特殊机械加工的特点为您生产的产品作最佳的选择。 制程参数 * 电压—低电压加工精度高。 * 电解液种类—和工件材料相关。 * 电解液浓度—和工件材料相关。 * 温度—温度高电解液阻抗将降低。 * 进给速度—将决定平衡间隙的大小。 * 间隙—影响加工电流和加工精度 PEM 精密电化学切削应用范围 ●依功能分类:▲电解开孔,如轮机翼冷却孔。▲电解圆割加工,如曲孔。▲电解微小孔加工。▲精微成型。▲电解切穿,如深孔或盲孔加工。▲凹部加工(cavity sinking)。▲电解成型 (shaping), 如曲面加工。▲电解复印。▲电解除屑加工,如去毛边导角‧ ‧ 。●精密电化学加工的应用主要以传统方式不易完成的加工为主,有以下几个方向:▲内齿轮加工。▲花键孔加工。▲涡轮叶片加工。▲一体成形轮叶加工。▲高消耗性模具,如锻造模, 玻璃模, 压铸模等…。▲燃料电池极板。▲精密零配件。▲精密医疗器材。▲精密齿轮。PEM在汽车工业的应用 Exhaust pipe flange排气管法兰 * 汽车排气系统的不锈钢排气管法兰片,图中可以看到毛坯,电极和成品。 * 球面凹处为准备焊接的排气管的焊缝。 * 同一个型号的发动机一年销售量需求150,000个排气管法兰片。 * 同时加工30个零件, 并在10分钟内完成。 Diesel pump 柴油泵 柴油泵上无缝隙交叉孔的加工。椭圆形交叉孔。盲孔。表面光滑有利流动。无毛刺。每年450,000个。可以同时加工48个零件燃料电池制造 汽车用燃料电池反应金属板。用印刷电路技术覆盖抗腐蚀不锈钢板,用精密电化学工艺加工,然后清除电解残余。制造出的锐角表面无毛刺。PEM加工技术还可以应用在其他传统加工难以加工的材料的地方,例如模具制造,医疗器械,锻压模具等等,详情请浏览我公司网站www.renpro.com.cn 或者致电咨询我公司:010-87951598-20/13260432761 王春香

  • 【讨论】精密电子天平的校准很重要吗?

    使用电子天平,称量结果是我们最终的目的,那么,使用天平前不校准天平,结果往往是不准确的,当然,对于使用精度更高的精密电子天平来说,校准是获得正确结果的必然需求。随着天平的使用,时间越久,机械振动或者外部的不好的环境对天平的磨损就越多,这可能导致在较长时间内降级或退化,天平的测量结果就会变得不那么准确了,所以,想要延长精密电子天平的使用寿命并提高其称量准确性就离不开定期的天平校准和日常的测试。校准就是定量比较,观察读数与参考砝码之间的差值。由于客户对精密电子天平的使用要求比较高,经常校准则可以有效地节约成本,减少返工或者召回原厂家的情况。天平的挪动可能会导致天平测量出现差值,校准可以使在一地方测量结果与另一地方结果保持一致,从而,更确保了精密电子天平的称量结果的准确性。测量的不确定性是无法避免的,可能是来自天平本身,也可能是来自外来环境影响的因素,或者测量人员的操作等等。测量的不确定性是任何校准的不可分割的一部分。天平是合法贸易的,仍旧需要校准,当在交易或者受法律约束的应用中使用天平的时候,就要对天平进行设置验证,密封。评估测量结果,将引用许多法律规范,这些法律规范的允差非常大,则会造成材料的浪费,经常校准可以减少浪费获得更高的利润。 文章来源:http://tjdat.com/cn/NewsInfo.aspx?Id=12360

  • 从精密电子天平“搬家”谈“设备”的验证要求及措施

    1前言实验室由于扩建,一般都会做搬迁,除了大规模的换地点搬迁,也有一栋楼内的搬迁,获得认可的检测实验室将一台精密电子天平从一层精密实验室挪动到二层新建实验室,实验员考虑到设备还在校准有效期内,设备搬迁也很稳妥,安装完后就直接投入使用。这样的案例举不胜数,都被评审机构开具不符合。由此可见实验室对设备验证以及验证方式没有引起足够重视,故导致不符合的发生,就算是逃过一劫,后续工作也会存在风险。2不符合条款认可实验室主要是指CNAS认可实验室,针对前言的场景,开具了CL01中6.4.4条款不符合。即对当设备投入使用或重新投入使用前,实验室应验证其符合规定要求。下面分别对“设备”、“设备投入使用前”、“验证”以及“验证措施”进行介绍。3对设备的误解首先这个设备概念实验室应该很清楚,不管是资质认定还是实验室认可,都解释了设备不仅仅指的仪器设备,还有软件、测量标准、标准物质、参考数据、试剂、消耗品或者辅助设备。举例说明,实验室在装有仪器测量软件的台式机上进行系统更新,可能存在更新后软件不兼容或者需要安装补丁等措施;原有标准物质需要存放在5℃冰箱内,由于搬迁淘汰冰箱,直接使用新冰箱存储,需要调整冰箱内调温旋钮确保符合温度要求;由于搬迁非标设备装置需要拆除搬运,后组装机械配件和计数装置等,其中涉及装置限位器安装和表头的接线。这些看似不是仪器设备,但是是条款中指的“设备”的统称。都可能对测量活动的准确性有影响,所以必须进行验证。4设备使用前的情形设备投入使用前,这里实际指的就是新设备首次投入使用前的情形;重新投入使用前,是指已投入使用,后续由于某些原因重新投入使用,比如常见的维修后、设备搬迁后、设备脱离实验室控制、设备溯源外部送检返回后等。当然还有其他情况,比如,实验室固定人员以外人员使用,长期设备停用转为启用,这两种情况再次使用也要进行验证工作。5验证的概念验证一般都是在方法引入前,实验室扩项前对“人机料法环测”进行全面验证,这里的验证实际对主要针对设备的验证,当然如果其他方面由于搬迁带来了变化或者不可确认的情形,也要验证。比如,搬迁后设备操作人员的变动,需要验证,则可通过监督、质控等方式;比如电学仪器原有地点有接地避雷,搬迁后是否也存在该设施,也要验证和设施评审确认。验证是指提供客观证据,证明给定项目满足规定要求。其实概念已经说的很清楚,实验室需要做好设备验证工作,并存好相关记录、6采取的验证方式设备验证方式很多,包括外部校准、检定和比对、核查、检测等形式。为了精准的验证设备情况,可以考虑送检或现场外部计量机构溯源,出具校准或检定证书,这个缺点是计量周期较长,费用最高;比对或者期间核查等形式一般为内部操作,如果经过评审验证程序严谨可操作,可采取该方式,优点快捷且财力成本低。这里强调两点,第一,校准溯源不一定按照周期操作,实验室可选取常用点进行核查,并不是必须全部覆盖,根据实验室自身确认;第二,比对或(期间)核查实验室应该制定相关作业指导书或者程序,明确核查比对的方法、人员、记录等要求。举例说一些检测实验室交流功率计的外部溯源后的验证。实验室在送检前使用固定精密电源给功率计供电,同时使用标准负载进行几个校准点的测试,记录数据。设备溯源回来后,依然使用之前不变的电源和负载进行测试,记录数据,核查是否设备稳定符合规定要求,且显示位数设置未变化等。当然操作人员和环境温湿度也应该是前后两次测量保持一致。7结语实验室设备使用前的验证应该满足认可条款要求,实验员根据设备离开固定场所或者操作人不止一人使用情况下,使用前都需要进行验证。验证方式多种多样根据设备和实验室程序进行操作执行。实验室在内部审核时也可以及时核查评审该方面的条款,确保设备符合使用要求,不影响报告结果的有效性。

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 精密电子天平的预热时间

    公司采购了一台精度小数点后4位的精密天平,说明书要求预热时间2小时,谁知道这个依据什么原理,要是开机不到2小时就校正使用,会有没什么后果不?

  • 如何提高电子精密天平准确度?

    我们都知道精密天平是一种精密电子仪器,多用于实验室和医药等领域。这种电子天平采用了更高精度的传感器和更高端的控制芯片,因此相比普通电子天平具有更高的精度和灵敏度。尽管精密天平具有诸多优点,但是易受外界因素、电磁等因素干扰,会产生一定的误差,那么我们该如何提高精密天平的准确度呢?

  • 压敏涂料宽域(1Pa~600kPa)静态标定精密控制解决方案

    压敏涂料宽域(1Pa~600kPa)静态标定精密控制解决方案

    [align=center][size=16px][img=压敏涂层特性校准实验中的温度、真空压力和氧浓度控制,600,393]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311112470328_817_3221506_3.jpg!w690x453.jpg[/img][/size][/align][size=16px][color=#990000][b]摘要:针对客户提出的在温度-10℃~80℃、绝对压力1Pa~600kPa、氧浓度0~80%范围内实现对压力敏感涂料静态特性校准测试腔室的精密自动控制要求,本文提出了相应的解决方案。解决方案的主要技术内容是采用TEC半导体制冷器进行温度控制、采用动态平衡法和电控针阀进行真空压力控制、采用气体质量流量控制器和混气罐进行氧浓度控制。整个解决方案具有很高的控制精度和易实现性,且无需编程即可进行系统搭建和控制的特点。[/b][/color][/size][align=center][size=16px][color=#990000][b]================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 压力敏感涂料(Pressure Sensitive Paint:PSP)表面压力测量技术是二十世纪八十年代后期发展起来的气动力光学测量技术,相比基于离散测压孔的测量技术,PSP作为一种非接触式测压技术,可在远距离获得测量表面的全场压力分布,避免破坏模型及干扰流场,并具有空间分辨率和数据采集率高的特点,在航空航天、汽车制造和叶轮机械等领域具有极广的应用前景,被视为二十一世纪世纪最具发展潜力的风洞试验技术之一。[/size][size=16px] 压敏涂料或涂层的性能评价分为静态和动态以下两种方法:[/size][size=16px] (1)静态特性测试:这是指在静止或非常缓慢变化的压力条件下,对压力敏感涂层的性能进行测试。这种测试通常用于评估涂层的灵敏度,即施加压力后涂层的响应程度。静态特性测试还包括测试在不同温度下涂层的灵敏度。[/size][size=16px] (2)动态特性测试:这是指在动态或快速变化的压力条件下,对压力敏感涂层的性能进行测试。这种测试通常用于评估涂层的响应速度,即涂层对快速变化压力的响应能力。[/size][size=16px] 最近,有用户提出了压力敏感涂料的静态特性测试需要,要求在静态特性测试仪器上实现真空压力和温度的精确控制,为压敏涂层提供可控的真空压力、氧浓度和温度环境,指标如下:[/size][size=16px] (1)对一正方形金属薄板进行单面加热,金属薄板上涂覆有压敏涂层。整个薄板样品放置在一顶部具有光学窗口的密闭腔体内,要求腔体内的真空压力可准确控制。[/size][size=16px] (2)样品尺寸:50mm×50mm×5mm。[/size][size=16px] (3)样品温度:-10~80℃,控温精度±0.1℃。[/size][size=16px] (4)真空压力:绝对压力1Pa~600kPa,精度为读数的±1%。[/size][size=16px] (5)氧浓度:0~80%,精度为±1%。[/size][size=16px] 本文将针对上述用户提出的技术要求,提出压敏涂层静态特性测试装置的温度、气压和气氛环境精密控制解决方案,为测试装置提供各种温度和可变真空压力的准确控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 从上述技术要求可以看出,压敏涂层静态特性测试所要求的环境控制变量分别为温度、真空压力(正负压)和氧浓度三个变量,而且这三个变量都要求具有可调的不同数值。为此,本解决方案将分别采用以下三种独立的技术实现这三个变量的精确控制:[/size][size=16px] (1)温度控制:采用基于帕尔贴原理的TEC半导体制冷技术,这种温控技术是目前比较适合-10~80℃温度范围的加热制冷技术,具有精度高、响应速度快、便于实施和结构简单的特点。[/size][size=16px] (2)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现1Pa~600kPa(绝对压力)宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (3)氧浓度控制:采用气体质量流量控制技术,分别控制氧气和其他环境气体的流量,由此来实现混合气体中的氧浓度精密控制。[/size][size=16px] 采用上述三种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.压敏涂料静态特性测试仪器的真空压力温度和氧浓度控制系统结构示意图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311113547719_3272_3221506_3.jpg!w690x321.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 压敏涂料静态特性测试仪器的真空压力温度和氧浓度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,压敏涂料的温度控制回路由铂电阻温度传感器、TEC制冷片、TEC电源换向器和TEC温度控制器构成。其中样品的快速加热和冷却采用了TEC半导体制冷片,通过TEC电源换向器改变加载到TEC片上的电流方向来分别进行加热和制冷,由此可实现-10~80℃范围内的快速精确的温度控制。为了保证涂层样品的温度均匀性,在样品和TEC制冷片之间布置了一个紫铜板,紫铜板内还镶嵌了一只铂电阻温度传感器以用来测量和控制样品温度。为了在真空环境内给TEC制冷片提供很好的散热能力,图1中设计了水冷板冷却方式,外部循环冷却水进入校准用的密闭腔体对水冷板提供冷却。压敏涂料样品的温度程序控制采用了VPC2021-2型号的TEC温度控制器,此控制器具有加热和制冷双向控制功能,具有程序控制功能,可根据设置的一些列温度点和升降温速率进行程序控制。此控制器自带计算机软件,可通过上位机进行远程设置和操作。[/size][size=16px] 如图1所示,真空压力控制回路由进气电动针阀、真空压力传感器、排气电动针阀、双通道真空压力控制器和真空泵组成。其中真空压力传感器由一些列不同量程的薄膜电容真空计和正压压力传感器构成(图1中并未全部汇出),以满足不同量程范围内的真空压力准确测量,一般的配备是0.1、10、1000Torr三只不同量程的电容真空计和一只硅压阻式压力计,这些真空计和压力计都可以很轻松的达到0.5%的测量精度。真空压力计所采集的气压信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 这里需要说明的是,在动态平衡法真空压力控制过程中,对于绝对压力在1kPa~600kPa范围的较高气压区间,需要采用下游控制模式才能获得较高的控制精度,即固定进气电控针阀的开度保持进气流量恒定,通过快速自动调节下游排气电控针阀的开度来进行真空压力控制。对于绝对压力在1kPa以下的低压高真空区间,则需要采用上游控制模式才能实现较高精度的控制,即完全打开排气电控针阀,使真空泵全速抽取校准腔室内的气体,通过快速自动调节上游进气电控针阀的开度来进行真空度控制。[/size][size=16px] 为了实现两只电控针阀的单独调节,解决方案中配备了VPC2021-2系列的双通道真空压力控制器,两个独立的控制通道可分别用来进行上游和下游控制模式的运行,并进行独立的PID自动控制或手动控制。此控制器同样自带计算机软件,可通过上位机进行远程设置和操作。[/size][size=16px] 对于氧浓度的控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制氧气浓度或氧气所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入校准腔室,由此可以准确控制校准腔室内的氧分压。在氧浓度控制过程中,还特别需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以很好的实现用户提出的各项技术要求指标,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同控制范围的压敏涂料静态特性测试需要。[/size][size=16px] (2)解决方案中所采用的温度和真空压力控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起温度和真空压力控制系统,极大方便了压敏涂料静态特性的校准。[/size][size=16px][/size][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 精密电子天平漂移很厉害的原因

    这几天我们的AL104精密天平漂移的非常厉害,去皮后居然漂移到了0.0076g,自校正后,称量100g的标准砝码,数值一直在99.9995至100.0005之间漂移不定,按照核查要求100±0.0005范围内是可以接受的,但是它漂移厉害根本无法读数,所以很纠结,不知道这天平能用否。请教大家这天平是怎么了,为什么漂移得那么厉害?

  • 碳酚醛热防护材料气体渗透性能测试中的真空压力精密控制解决方案

    碳酚醛热防护材料气体渗透性能测试中的真空压力精密控制解决方案

    [align=center][b][img=防热烧蚀复合材料高温气体渗透率测试技术,690,458]https://ng1.17img.cn/bbsfiles/images/2023/11/202311090939039664_4444_3221506_3.jpg!w690x458.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:气体渗透率是树脂基纤维防热和烧蚀复合材料的关键性能参数,基于现有的稳态法渗透率测试技术相关研究报道,本文提出了更详细和切实可行的渗透率测试中的真空压力差精密控制解决方案。解决方案采用了两个真空度可精密控制的缓冲罐布置在被测样品的气流上下游,从而在样品上实现真空压力差可调且精密恒定控制。解决方案具有很强的可拓展性,为后续的高温氧化性能测试和质谱仪气体分析留有相应的连接接口。[/b][/color][/size][align=center][size=16px][color=#333399][b]=====================[/b][/color][/size][/align][size=18px][color=#333399][b]1. 项目背景[/b][/color][/size][size=16px] 树脂基纤维复合材料在工业炉、防火、棉絮材料和高速航天器的隔热罩等应用中被用作高性能隔热材料,这类高孔隙率材料通过在高温下提供气体缓冲,有效保护下层结构免受周围热源的影响,其低密度特性同时最小程度地增加了高速航天器的有效载荷质量。[/size][size=16px] 由于树脂基纤维复合材料的高孔隙率,气体可以很容易地在烧蚀材料中流动,例如酚醛树脂分解产生的热解气体在离开材料之前会穿过烧焦的结构,可能会与纤维发生反应。类似地,来自边界层的反应物可以进入材料微结构并在孔内流动,这种气体传输对整体材料响应具有显著的影响。这种通过多孔结构的流动行为常以渗透率为特征,因为渗透率控制着介质内的动量传输,因此在模拟多孔介质流动时,渗透率是一个关键的材料性能参数。[/size][size=16px] 材料渗透率的测量,特别是测试高温下的材料渗透率普遍采用稳态法,即在样品的上、下游端施加稳定的压力差,通过测量流经样品的流量气体,依据达西定律计算获得渗透率。在参考文献[1,2]中对纤维复合材料的高温渗透率稳态法测量进行了报道,并给出了测试系统结构示意图,但在如何形成稳定的高精度压力差方面并未给出说明,而这恰恰是稳态法渗透率测试的关键。[/size][size=16px] 为了真正实施稳态法高温渗透率测试方法,特别是模拟星际环境在被测样品两侧建立宽域可调且精确稳定控制的真空压力差,本文提出了如下真空压力控制解决方案。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 对于高温渗透率测试中的真空压力控制,解决方案拟达到如下技术指标:[/size][size=16px] (1)样品上下游的真空压力控制范围气压(绝对压力):0.1Torr~750Torr。[/size][size=16px] (2)控制精度:读数的±1%。[/size][size=16px] 可实现上述技术指标的真空压力差控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=高温渗透率测量装置真空压力差控制系统结构示意图,690,439]https://ng1.17img.cn/bbsfiles/images/2023/11/202311090940235059_6758_3221506_3.jpg!w690x439.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 高温渗透率测量装置真空压力差控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,本解决方案对文献[1,2]中所报道的真空压力差控制系统进行了细化,即系统中增加了上游和下游真空压力缓冲腔及其控制装置,分别将上下游缓冲腔按照所需的真空度设定值P1和P2(P1P2)进行精密恒定控制,由此可在高温样品的上下游形成宽域可调且精确稳定控制的真空压力差,然后通过布置在上游管路中的气体流量计测量压力差稳定后的气体渗透流量,由此最终根据样品尺寸数据计算得到不同温度和压差下的不同气体渗透率。[/size][size=16px] 对于上下游缓冲腔的真空度控制,配备了两套相同的真空度控制系统,每套控制系统主要由两只薄膜电容真空计、两只电控针阀和一个双通道真空压力控制器,具体型号和指标如下:[/size][size=16px] (1)薄膜电容真空计:量程1Torr和1000Torr,测量精度为读数的±0.25%。[/size][size=16px] (2)电控针阀:型号NCNV-20和-120,线性度0.1~2%,重复精度1%,响应时间1秒。[/size][size=16px] (3)双通道真空压力控制器:独立双通道,24位AD、16位DA和0.01%最小输出功率百分比,带PID参数自整体和MODBUS标准协议的RS485通讯接口,并配有计算机软件。[/size][size=16px] 在每个缓冲腔的真空度控制过程中,具体操作步骤需要注意以下内容:[/size][size=16px] (1)对于10~1000Torr的低真空范围内控制,采用排气调节模式,即将负责进气流量调节的电控针阀控制为固定开度使得进气流量恒定,然后再自动控制负责排气流量调节的电控针阀。[/size][size=16px] (2)对于0.1~10Torr的高真空范围内控制,采用进气调节模式,即将负责排气流量调节的电控针阀控制为100%固定开度使得全速排气,然后再自动控制负责进气流量调节的电控针阀。[/size][size=16px] (3)双通道真空压力控制器具有两路独立的PID自动控制通道,其中在第一输入通道上连接10Torr量程真空计,在第二输入通道上连接1000Torr量程真空计,第一输出通道上连接负责进气的电控针阀,第二输出通道上连接负责排气的电控针阀。[/size][size=16px] 还需说明的是本解决方案将气体流量计布置在样品的上游端,这样做的好处是流经流量计的气体温度为常温,常温气体对流量计不会带来损害。[/size][size=16px] 另外,红外测温仪也布置在石英管的上游端外,这是因为石英管上游端的密封法兰相对比较简单,而石英管下游端的密封法兰则相对比较复杂,这是因为下游端还需为今后的测试功能拓展留有余地。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对文献[1,2]所报道的高温渗透率测试装置中的真空压差控制系统进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,可实现样品上下游压力的恒定控制,这是文献[1,2]报道中所欠缺的关键技术,由此可任意设定和调节样品两端的压力差,更符合稳态法渗透率测试模型。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,实现不同压力差的精密控制及其对应渗透率测试。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同工作气体下的渗透率测量,也可进行多种气体混合后的真空压力差控制和氧化性能测试,具有很大的灵活性。[/size][size=16px] (4)更重要的是,本解决方案为后续的残余气体取样分析留有接口通道,可方便的与质谱仪和微流量可变泄漏阀连接,使得质谱仪分析流经被测样品的气体。[/size][size=16px] (5)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了试验装置的搭建和测试研究。[/size][size=18px][color=#333399][b]4. 参考文献[/b][/color][/size][size=16px] [1] Panerai F, White J D, Cochell T J,et al. Experimental measurements of the permeability of fibrous carbon at high-temperature[J]. International Journal of Heat and Mass Transfer, 2016, 101: 267-273.[/size][size=16px] [2] Panerai F, Cochell T, Martin A, et al. Experimental measurements of the high-temperature oxidation of carbon fibers[J]. International Journal of Heat and Mass Transfer, 2019, 136: 972-986.[/size][align=center][size=16px][color=#333399][b][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 采用电控针阀实现微量液体样品静态法饱和蒸气压高精度测量的解决方案

    采用电控针阀实现微量液体样品静态法饱和蒸气压高精度测量的解决方案

    [size=16px][color=#339999][b]摘要:针对目前静态法液体饱和蒸气压测量中存在测量精度差、自动化程度低以及无法进行微量液体样品测试的问题,本文提出了微量样品蒸气压高精度自动测量解决方案。解决方案基于静态法原理,采用了低漏率的测试装置和高精度电容真空计,微量样品测试装置和真空计整体放置在烘箱内进行加热,提高温度和蒸气压分布的均匀性,将饱和蒸气压测量精度提高到了1%以内。同时采用耐腐蚀的电控针阀,可实现整个快速测试过程的自动化。[/b][/color][/size][align=center][size=16px][color=#339999][b]====================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px]液体饱和蒸气压是指在密闭条件和一定温度下,与液体处于相平衡的蒸气所具有的压强。同一液体在不同温度下具有不同的饱和蒸气压,且随着温度的升高而增大。饱和蒸气压是液体的基础热力学数据,它不仅在化学、化工领域,而且在、电子、冶金、医药、环境工程乃至航空航天领域都具有重要的地位,而且是这些研究领域中必不可少的基础数据,尤其在工业化学品和石油行业的应用最为广泛。[/size][size=16px]目前有许多液体蒸气压测试方法,主要有但不限于静态法、沸点法、蒸腾法、逸出法等,通过这些方法以满足不同的压力状态、样品大小、温度范围和材料兼容性要求。但这些现有方法还是无法满足新材料研究的要求,一方面是测量精度较差,另一方面对于一些特殊工艺要求蒸气压测量时液体样品量小、测量精度高以及快速测量还是无能为力,最典型的就是采用迭代合成以获得所需的分子结构,这涉及到针对产物性质的最大数量化合物需使用最少量的合成质量进行筛选,由此对液体饱和蒸气压测量提出了以下三方面的要求:[/size][size=16px](1)微量液体样品(约0.5毫升)。[/size][size=16px](2)高精度测量,误差小于1%。[/size][size=16px](3)简单且自动化的测量装置。[/size][size=16px]为了解决诸如迭代工艺所需的蒸气压测量的上述特殊要求,特别针对高测量精度、短测量时间和微量液体样品用量,本文提出一种简便的静态法饱和蒸气压高精度自动测量解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px]解决方案的基本思路是基于传统的静态法,即将微量液体样品注入到样品管内,关键是将整个测量装置放置(包括高精度电容真空计)在烘箱内以保证整体温度和整体真空压力的一致性和准确性。整个微量液体饱和蒸气压高精度测量装置结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=微量液体饱和蒸气压高精度自动测量装置,690,523]https://ng1.17img.cn/bbsfiles/images/2023/10/202310071754271367_8815_3221506_3.jpg!w690x523.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 微量液体饱和蒸气压高精度自动测量装置结构示意图[/b][/color][/size][/align][size=16px]如图1所示,蒸气压测量装置主体由真空样品容器、两个316不锈钢卡套三通、真空样品容器、硼硅酸盐玻璃管、电容真空计和三只热电偶温度传感器构成。其中一个卡套三通用来向真有样品容器注入液体样品和抽气,另一个卡套三通用作连接电容真空计和抽真空接口。装置整体放置在烘箱内,以使得整个装置主体整体保持均匀的温度,以防止蒸汽在设置的任何部分冷凝,这是决定提高饱和蒸气压测量精度的关键措施之一,其中用了三只安装在不同位置处的热电偶检测装置主体的温度是否均匀。[/size][size=16px]装置中的一个卡套三通顶部连接一个电控针阀,此电控针阀用来控制液体样品的注入量并同时起到真空密封的作用;另一个卡套三通排气端也连接一个电控针阀,开启时抽取真空,闭合时起到真空密封作用。这两个电控针阀由一个真空压力控制器实施控制。[/size][size=16px]烘箱加热和温度调节由一个PID温度程序控制器控制,可以通过计算机软件进行不同温度设定点的编辑和自动程序控制。烘箱温度控制过程中,通过多通道数据采集器记录三只热电偶温度传感器的测量值以及电容真空计的真空压力测量值。[/size][size=16px]在蒸气压测量装置使用前,要使用氦气检漏仪来检测装置的漏率,即关闭顶部的电控针阀和开启右侧的电控针阀,开启真空泵对测量装置主体抽取真空,装置内的所有空气被泵出系统。然后关闭右侧电控针阀,并用检漏仪检测泄漏情况。整个测量装置要求具有很小的真空漏率,以免外部空气侵入,否则会对饱和蒸汽压准确测量带来严重误差。[/size][size=16px]微量样品饱和蒸气压测量分为以下几个步骤:[/size][size=16px](1)首先将液体样品瓶,或用透明玻璃管作为液体样品容器,连接到顶部电控针阀,调节此电控针阀的开度将约为0.5毫升的被测液体样品引入真空样品容器,然后关闭此电控针阀,即整个样品液体按照图1中的红色点线描绘的路径流动。[/size][size=16px](2)液体样品注入样品容器后,开启右边的电控针阀和真空泵抽取真空,气体按照图1中的橘黄色线描绘的路径排出。[/size][size=16px](3)当抽取真空达到极限真空度后,关闭右侧电控针阀使测量装置主体以及内部的液体样品处于室温和高真空状态。然后开启多通道数据采集器,分别采集三个位置处的温度和样品容器内的真空度。这三个位置处的温度应该基本一致,说明装置主体的温度均匀。这些温度值和真空度作为饱和蒸气压测量的起始值。[/size][size=16px](4)对温度程序控制器设置不同的设定点,设定点由小到大设置,且每个温度设定点需设置一定的恒温时间,然后使控制器控制烘箱温度按照设定程序进行变化。此时,数据采集器同时检测各个位置处的温度值和样品容器内的真空压力变化。在某一恒定温度下,样品容器内的真空压力变化过程如图2所示。随着烘箱温度按照设定程序的台阶式变化,通过多通道数据采集器可以获得一些列不同温度对应的图2所示真空压力变化曲线,由这些曲线的压力稳定值可得到对应的饱和蒸气压。[/size][align=center][size=16px][color=#339999][b][img=静态法饱和蒸气压测试过程,500,378]https://ng1.17img.cn/bbsfiles/images/2023/10/202310071756114873_5047_3221506_3.jpg!w690x522.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 静态法饱和蒸气压测试过程[/b][/color][/size][/align][size=16px]为了实现微量液体样品饱和蒸气压的高精度快速测量,具体实施过程中还需注意以下几点:[/size][size=16px](1)装置本体的设计和尺寸要首先保证装置温度的均匀性,以避免温度不均匀引起的蒸汽压力的非均匀性。同时,装置本体中的各个部件、电控针阀和任何接口都需要具有很好的真空密封性能,避免漏气对蒸气压的影响。[/size][size=16px](2)为了保证测量精度,真空计最好选择精度最高的可达到0.25%的电容真空计。[/size][size=16px](3)测量装置使用前和使用过程中,需采用纯蒸馏水和2-丙醇进行考核和定期校验,热电偶温度传感器也需进行定期校验。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px]综上所述,本文提出的解决方案尽管依然采用的是经典的静态法,但通过采用低漏率的真空结构、电控针阀、电容真空计和装置整体加热,很好的保证了温度均匀性和蒸气压测量准确性,减小了饱和蒸气压测量误差。本解决方案虽然设计用来测量微量液体样品,也可以推广应用到其它大容量液体的饱和蒸气压测量。[/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • ADI精密电阻网络

    [font=宋体][url=https://www.leadwaytk.com/article/5181.html]ADI[/url][font=Calibri][font=宋体]提供四电阻网络产品线,在整体温度条件下具有卓越的适配特性。[/font][font=Calibri]ADI[/font][font=宋体]所有的电阻都能够直接使用和偏置电压,所以对于任意能够得益于阻抗匹配的应用来说,都是一个通用型而方便快捷的选择。[/font][font=Calibri]ADI[/font][font=宋体]电阻网络提供高精密差分放大器、基准电压源和电桥电路需要精准的比例稳定性能。[/font][/font][/font]

  • 赛多利斯精密电子天平正确使用方法

    赛多利斯电子天平是精密通用型产品,此产品通常使用电磁力传感器(见称重传感器),组成一个闭环自动调节系统,稳定性好,准确度高。是传感技术、模拟电子技术、数字电子技术和微处理器技术发展的综合产物,具备自动校准、自动显示、超载保护等多种功能。  关于赛多利斯电子天平天平正确使用方法:  1、检查并调整精密天平至水平位置。  2、使用前先检查电源电压是否匹配(必要时配置稳压器),按仪器要求通电预热至所需时间。  3、预热足够时间后打开精密天平开关,精密天平则自动进行灵敏度及零点调节。待稳定标志显示后,可进行正式称量。  4、称量时将洁净称量瓶或称量纸置于称盘上,关上侧门,轻按一下去皮键,精密天平将自动校对零点,然后逐渐加入待称物质,直到所需重量为止。  5、被称物质的重量是显示屏左下角出现“→”标志时,显示屏所显示的实际数值。  6、称量结束要及时除去称量瓶(纸),关上侧门,切断电源,并做好使用情况登记。  7、慢慢旋动升降枢钮,开启精密天平,观察指针的摆动范围,若指针摆动偏向一边,可调节精密天平梁上零点调节螺丝。  注意:赛多利斯电子天平的精密度很高,产品的操作步骤也很严谨,我们将要称量的物质从左门放入左盘中间,按先在托盘精密天平上称得的初称质量用镊子夹取适当砝码从右门放入右盘中央,用左手慢慢半升升降枢钮(因精密天平两边质量相差太大时,全升升降枢钮可能导致吊耳脱落或损坏刀刃),视指针偏离情况由大到小添减砝码。待克组砝码试好后,再加游码调节。在加游码调节精密天平平衡过程中,右门必须关闭,这时可以将升降枢钮全部升起,等指针摆动停止后,要使标牌上所指刻度在零点或附近。 电子天平|精密天平|实验室仪器 欢迎到赛多利斯官网和仪器商城网选购实验室仪器!

  • 电控针阀在透射电子显微镜样品杆气体流量和真空压力控制中的应用

    电控针阀在透射电子显微镜样品杆气体流量和真空压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对环境扫描/透射电子显微镜对样品杆中的真空压力气氛环境和流体流量精密控制控制要求,本文提出了更简单高效和准确的国产化解决方案。解决方案的关键是采用动态平衡法控制真空压力,真空压力控制范围为1E-03Pa~0.7MPa;采用压差法控制微小流量,解决了以往采用质量流量控制器较难对混合气体和微小流量准确控制的难题,可实现气体和液体在0.005sccm~10slm范围内的流量的高精度控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]============================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在环境扫描/透射电子显微镜(ESEM/ETEM)技术应用中,常会在研究对象附近创造出一个气氛环境,以研究固体和气体在原子尺度上相互作用过程中发生的现象。这种气氛环境通常为负压低真空或高于一个大气压的正压压力,由一个称之为环境样品杆“environmental sample holder”的密封形式的特殊气体样品架来提供。典型的环境样品杆结构如图1所示,其具有两个进出端口,用于气体或液体流入和流出位于样品架尖端的空腔。[/size][align=center][size=16px][color=#339999][b][img=典型的电子显微镜样品杆,550,208]https://ng1.17img.cn/bbsfiles/images/2023/09/202309111733107508_954_3221506_3.jpg!w690x261.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 典型的电子显微镜样品杆[/b][/color][/size][/align][size=16px] 一般电子显微镜样品杆及其进气控制装置需具有以下功能:[/size][size=16px] (1)样品杆具有独立的气氛环境和很好的密封性,极低的漏率使得电子显微镜能正常工作在超高真空条件下。[/size][size=16px] (2)进入样品杆的一种或多种气体,采用一个或多个质量流量控制器(MFC)来控制流量,且每个MFC需要根据进气气体进行独立校准。[/size][size=16px] 在实际研究过程中,上述功能的电子显微镜样品杆进气控制装置还存在以下几方面的问题需要解决:[/size][size=16px] (1)无法实现真空压力的精密控制,即无法为被测样品提供稳定的真空压力环境,且随着反应过程的进行以及温度变化和反应气体的挥发,无法使真空压力不受影响并保持稳定。[/size][size=16px] (2)对于原子尺度上的研究,通常会涉及到纳米粒子的气体反应,这就要求进出样品杆的气体流速低至0.005 SCCM或更低,且始终保持稳定,这是采用MFC无法控制实现的。此外,由于MFC是针对特定的气体种类来进行校准,所以复杂的气体混合物或未知的气体混合物不能被精确地计量。[/size][size=16px] 因此,考虑到上述现有技术的问题,本文提出一种能准确控制样品杆内部真空压力环境以及全量程控制通过样品杆的气体流速的解决方案,且流速的控制与气体种类无关。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 针对电子显微镜气体样品杆内的真空压力控制,解决方案的基本原理是动态平衡法,使得样品杆的进气流量与排气流量达到不同的平衡状态,实现不同真空压力的精密控制。[/size][size=16px] 针对电子显微镜气体样品杆内的混合气体流量控制,解决方案的基本原理是压差法,使得样品杆的进出气口两端形成恒定压差,调节出气口开度大小来是实现不同微小流量的精密控制。[/size][size=16px][color=#339999][b]2.1 真空压力控制[/b][/color][/size][size=16px] 气体样品杆的真空压力控制装置如图2所示,整个装置主要由电控针阀、真空计、真空压力控制器和真空泵组成。装置中配置了两个电控针阀,分别用来调节进气流量和排气流量。真空计用来测量样品杆内的真空度,控制器采集真空计信号与设定值对比,驱动针阀来进行恒定控制。[/size][align=center][size=16px][color=#339999][b][img=气体样品杆真空压力控制装置,600,290]https://ng1.17img.cn/bbsfiles/images/2023/09/202309111733596359_8287_3221506_3.jpg!w690x334.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 气体样品杆真空压力控制装置[/b][/color][/size][/align][size=16px] 在此真空压力控制装置的具体使用过程中,需注意以下几点:[/size][size=16px] (1)此控制装置可实现宽泛范围内的真空度控制,如从1Pa~0.1MPa(绝对压力),且可以轻松达到±1%的控制精度。但需要注意的是需要至少采用两只电容真空计来覆盖整个范围,如果控制精度要求不高,可直接使用一只测量精度较差的皮拉尼等真空计来覆盖全真空度范围。[/size][size=16px] (2)此控制装置也可实现正压压力的精密控制,如从0.1MPa~0.7MPa(绝对压力),可以轻松达到±0.5%的控制精度。具体应用时,可以将真空计处增加一个正压压力传感器。[/size][size=16px] (3)控制装置中的真空压力控制器需要是两通道的高精度控制器,控制器可连接两只真空度传感器并驱动两个电控针阀,并可在两只真空计之间进行自动切换。在具体控制过程中,低真空(1000Pa~0.1MPa)范围内,具体控制方式是恒定进气针阀开度而自动调节排气针阀开度;在高真空(1Pa~1000Pa)范围内,控制方式是100%排气针阀开度而自动调节进气针阀开度。[/size][size=16px] (4)如果需要对气体样品杆内进行更高真空度(1E-04Pa~1Pa)范围的控制,则需更换真空计和进气针阀并增加分子泵等,关键是需将进气针阀更换为阀门开度更小(微米量级)和进气流量更低的可变泄漏阀。[/size][size=16px] (5)如果采用非电容式真空计作为真空度传感器来进行真空度控制,要求真空压力控制器需具有输入信号线性处理功能,这是因为除了电容式真空计外,其他形式的真空计输出的都是非线性信号,要实现准确的真空度控制,就要求真空压力控制器具有多点拟合线性化处理功能。[/size][size=16px][color=#339999][b]2.2 微小流量控制[/b][/color][/size][size=16px] 气体样品杆的微小流量控制装置结构如图3所示,整个装置主要由电控针阀、流量计、PID调节器、压力控制器和上下游气罐组成。装置中配置了两个气罐分别来恒定气体样品杆进出口两端的压力以形成压差,然后PID调节器根据设定值来调节电控针阀实现流量的精密控制。[/size][align=center][size=16px][color=#339999][b][img=气体样品杆精密流量控制装置,690,262]https://ng1.17img.cn/bbsfiles/images/2023/09/202309111734506728_6036_3221506_3.jpg!w690x262.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 气体样品杆精密流量控制装置[/b][/color][/size][/align][size=16px] 在此微小流量精密控制装置的具体使用中,需注意以下几方面的内容:[/size][size=16px] (1)因为流量控制是基于压差法,所以只需能提供稳定的压力差,且调节电控针阀的开度就可实现流量控制。压力差精密可控,且针阀的开度也可自动调节,这是保证微小流量精密控制的关键。[/size][size=16px] (2)另外决定微小流量精密控制的因素是流量计和PID调节器的精度,因此在采用满足流量测量范围要求的高精度流量计的同时,还需采用高精度的PID调节器,如24位AD和16位DA。[/size][size=16px] (3)同样,为了实现稳定的高精度的压差供给,需要对上下游气罐的压力进行精密控制。简单的方法是通过双通道的PID调节直接设定两个压力控制器为不同的压力控制值,采集压力控制器内部自带的压力传感器信号进行控制。如果要求实现更高精度的压差控制,则需在上下游气罐上增加更高精度的压力传感器并分别与PID调节器连接。[/size][size=16px] (4)图3所示的气体样品杆流量控制装置同样适用于液体的流量控制,同样可以实现液体微小流量的高精度控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,采用本文解决方案中真空、压力和流量控制装置,可实现以下功能:[/size][size=16px] (1)真空压力控制范围为1E-03Pa~0.7MPa(绝对压力),1E-03Pa~1Pa真空度范围内的控制精度可达±15%,1Pa~0.1MPa真空度范围内的控制精度可达±1%,0.1MPa~0.7MPa范围内正压压力控制精度可达0.5%。上述控制精度主要由真空计和压力传感器的测量精度决定。[/size][size=16px] (2)流量控制范围为0.005sccm~10slm,控制精度可达±1%,主要由流量计测量精度决定。流量控制装置可适应于气体和液体。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 电控针阀在定容法梯度充气式SF6气室容积测定中的应用

    电控针阀在定容法梯度充气式SF6气室容积测定中的应用

    [size=16px][color=#339999][b]摘要:在目前的六氟化硫气体精密计量中普遍采用重量法和定容法两种技术,本文分析了重量法中存在的问题以及定容法的优势,同时也指出定容法在实际应用中还存在自动化水平较低的问题。为了提高定容法精密计量过程中的自动化水平,本文提出了增加电控针阀和可编程压力控制器的解决方案,由步进电机驱动的电控针阀来精密调节气体压力,不同压力值的控制过程则由可编程压力控制器来进行控制操作,从而实现了定容法的自动化精密计量。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 六氟化硫气体(SF6)是一种优异的绝缘介质,广泛应用于电力行业,同时六氟化硫气体也是六种严禁排放的温室气体之一,世界各国明令禁止六氟化硫气体排放,特别是各级电网公司为了减少六氟化硫气体的排放量,会对运行中的六氟化硫电气设备进行六氟化硫气体重量统计,严格控制使用量和泄漏量。为了普查变电站六氟化硫气体使用量,需要一种检测变电站中六氟化硫用气量的方法。目前六氟化硫用气量有两种检测方法,一是重量法,二是定容法。[/size][size=16px] 有关重量法,在广东电网有限责任公司实用新型专利“CN208953045U:一种SF6气体计量装置”以及河南省日立信股份有限公司发明专利“CN112611439B:一种测量六氟化硫气体重量的装置及方法”中给出了典型的描述,其测试过程和装置如图1所示。[/size][align=center][size=16px][color=#339999][b][img=六氟化硫气体重量法充气计量装置结构示意图,690,339]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241519317761_2690_3221506_3.jpg!w690x339.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 六氟化硫气体重量法充气计量装置结构示意图[/b][/color][/size][/align][size=16px] 重量法的基本原理是通过天平或承重仪器检测向高压电气设备中充入的六氟化硫气体重量,并同时观察安装到高压电气设备上的压力传感器升高的压力值。在已知温度下六氟化硫气体密度后,由重量计算出补气的六氟化硫气体体积,结合压力传感器计算出的压力变化,可以推算出高压电气设备内部的有效容积。但在实际应用中,这种重量法存在以下明显的缺点:[/size][size=16px] (1)在重量称量中,一般是承重六氟化硫气体钢瓶的重量变化,而实际消耗的六氟化硫气体静重量要比钢瓶皮重小很多,这种“大质量小称量”方法对所消耗的气体重量测量精度极为不利,测量误差很大。[/size][size=16px] (2)当气室原有一部分气体时,此时该装置进行充补一部分气体入气室中提高气室内气体压力,却无法有效得知气室中原有的SF6气体量,无法对气室内部体积进行精确测算。另外重量法携带称重装置至现场给气体钢瓶进行称重,不方便搬运,且各地的地理位置不同,因海拔等不同导致重力系数不同,使得通过检测重力得出的质量有所偏差。[/size][size=16px] (3)对于部分体积较小的六氟化硫电气设备,采用气体钢瓶直接对其进行充气,由于气体钢瓶的压力较大,对于体积较小的六氟化硫电气设备来说很容易发生充气过压,引起过压危险。[/size][size=16px] 为了解决上述重量法中存在的不足,国内外新开发了一种定容积法,在国家电网有限公司的发明专利“CN112556777B:基于定容法的梯度充气式SF6气室容积测定方法”中对这种方法进行了介绍,其测量装置的结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=六氟化硫气体定容法精密计量装置结构示意图,690,457]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241519534784_89_3221506_3.jpg!w690x457.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 六氟化硫气体定容法精密计量装置结构示意图[/b][/color][/size][/align][size=16px] 定容法是流量测量中的一种经典测试方法,在对六氟化硫充气量计量测试中,有以下优点:[/size][size=16px] (1)这里的定容法是根据气室压力设定值分配多个阶段充气阈值,分阶段对气室进行充气并测量数据,各个阶段分别计算气室的体积与内部原有的气体质量,再区各个阶段测得的数据的平均值,可消除由于压力传感器的测量精度限制,对气室进行充气时,一次性从初始值充到设定值进行一次测量存在的较大偶然误差问题,可提高计算结果的精确度。[/size][size=16px] (2)能够精确测量气体的实时压力,在接近设定压力数值时能控制充气流量,使得压力传感器能在气体稳定时进行检测,检测数据更加精确,且不会使气室充入气体过多导致气体压力过高造成安全隐患。[/size][size=16px] (3)采用定容积的充气罐替代称重装置,通过温度、压力传感器和控制阀组,实现不同条件下的温度、压力测量,使得测算得出的气室体积和气体量结果更加精确。[/size][size=16px] 尽管定容法具有上述明显优点,但定容法要进行多个不同压力的充气过程和测量,即需进行多次标定试验,这就要求整个标定过程自动化程度很高,如果采用人工调节费事费力且精度无法保证。而在自动化测控方面,国家电网有限公司的发明专利“CN112556777B:基于定容法的梯度充气式SF6气室容积测定方法”并未给出详细描述。[/size][size=16px] 为了解决六氟化硫定容法精密计量中的自动化测控问题,本文提出了采用电控针阀的解决方案,即采用NCNV系列高速低漏率电动针阀来作为图2所示定容法装置中的调节阀门,并结合可编程程序控制器,从而实现定容法中多个不同压力下的充气过程中的全自动标定。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 定容法可编程压力自动控制的结构如图3所示,即将图2的流量调节阀更换为NCNV电控针阀,并增加一个VPC2021可编程压力控制器。压力控制器采集压力传感器信号,并根据设定好的不同压力设定值对电控针阀进行控制,从而在不同压力下实现准确恒定。压力控制器与计算机连接,通过控制器软件进行操作。[/size][align=center][size=16px][color=#339999][b][img=电控针阀可编程压力自动控制结构示意图,600,293]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241520124219_8385_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 电控针阀可编程压力自动控制结构示意图[/b][/color][/size][/align][size=16px] 解决方案中所采用的NCNV系列电控针阀具有一系列不同的孔径,范围从0.9mm~4.1mm,可满足不同容积的充气需要。另外,电控针阀具有小于5×10[sup]-9[/sup]Pa.m[sup]3[/sup]/s的极低漏率,基本消除了六氟化硫的泄漏现象。而且电控针阀具有很高的线性度和重复精度,可保证压力控制和重复性测量的精度。[/size][size=16px] 解决方案中所采用的VPC2021系列可编程压力控制器,具有24位AD、16位DA和0.01%最小功率输出百分比的高性能指标,并具有多段折线程序设定功能,通过手动或软件界面操作进行控制程序设置,软件可驱动压力控制器的运行并记录过程参数和曲线变化,避免了再编写控制程序的繁琐。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过本解决方案中增加的电控针阀和可编程压力控制器,可有效提高六氟化硫气体定容法计量的自动化水平,并保证计量精度,使得定容法在六氟化硫充气过程的准确计量技术中能得到真正的推广应用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 急:购买电控万能材料试验机

    我们单位准备购买一台美国或德国生产的电控万能材料试验机,要求性价比高,在成都或重庆设有维修服务站为最好。详细技术指标将于近日确定。有意者请尽快与我联系。站内信联系

  • 【分享】电控水力控制阀的工作原理及维护

    电动控制阀是一种以[color=#0000ff]电磁阀[/color][color=#0000ff]2W系列电磁阀[/color] 为向导阀的水力操作式阀门。常用于给排水及工业系统中的自动控制,控制反应准确快速,根据电信号遥控开启和关闭管路系统,实现远程操作。水力电动控阀并可取代闸阀和蝶阀用于大型电动操作系统。阀门关闭速度可调,平稳关闭而不产生压力波动。该阀门体积小、重量轻、维修简单、使用方便、安全可靠。电磁阀可选用交流电220V,或直流电24V,可根据各种场合选用常开或常闭型均可。电控水力控制阀结构特点和用途电控水力控制阀由主阀、电磁阀、针型阀、球阀、微形[color=#0000ff]过滤器[/color][color=#0000ff],风扇及过滤器FB-9804[/color]和[color=#0000ff]压力表[/color][color=#0000ff]数字式压力表SPG-063[/color]组成水力控制接管系统。通过电磁阀可以实现对阀门开启和关闭的遥控。加装附加装置后,可控制开启和关闭的速度。 电控水力控制阀利用导阀控制阀门的开启和关闭,节省能源。可代替其它阀门大型电动装置。电控水力控制阀产品广泛用于高层建筑、生活区等供水管网系统及城市供水工程。 电控水力控制阀工作原理 当阀门从进口端给水时,水流流过针型阀进入主阀控制室,当电磁导阀打开时,控制室内的水经电磁导阀、球阀流出。球阀开度大于针阀开度,主阀控制室内压力很低,主阀处于全开状态。 当电磁导阀关闭时,主阀控制室的水不能流出,控制室升压,推动膜片关闭主阀。 电控水力控制阀维护: 水力控制阀前要安装过滤器,并应便于排污的要求。 水力控制阀是一种利用水自润式阀体,无须另加机油润滑,如遇主阀内零部件损坏时,请按下列指示进行拆卸。(注:内阀内一般消耗损伤品为膜片和○型圈,其它内部零件损伤甚少)1.先将主水力控制阀前后端闸阀关闭。2.将主水力控制阀盖上的配管[color=#810081]接头[/color][color=#810081],铜制防水接头JG-T-M[/color]螺丝松开,释放阀内压力。3.将所有螺丝取下,包括控制管路中的必要铜管的螺帽。4.取水力控制阀阀盖和弹簧。5.将轴芯、膜片、活塞等取下,切勿损伤膜片。6.将以上各项东西取出后,检查膜片及○型圈是否损坏;如无损坏请勿再分自行争其内部零件。7.如发现水力控制阀膜片或○型圈有损坏,请将轴芯上的螺帽松脱,逐浙分解出膜片或型圈,取出后重新换上新的膜片或○型圈。8.详细检视主阀内部水力控制阀座、轴芯等是否有损坏,若有其它杂物在主阀内部将其清理出。9.依反向是顺序将更换后的零部件组合装好主阀,注意阀门不能有卡阻现象。

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    [b][color=#990000][size=16px]摘要:为解决电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容可调节散热量的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。解决方案中的反馈式闭环控制系统主要包括非接触式位移传感器、高速电控针阀和高精度[/size][size=16px]PID[/size][size=16px]控制器,通过高速和高精度电控针阀对冷却介质流量进行实施调节,可快速改变作用在主轴上的散热量,使主轴轴向热变形快速达到最小值并始终保持稳定状态。[/size][/color][/b][align=center][size=16px][img=高速电主轴冷却系统中的电控针阀流量闭环控制解决方案,600,392]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060506528065_863_3221506_3.jpg!w690x451.jpg[/img][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 对于高速数控机床而言,热误差是机床最主要误差,而电主轴则是热误差的主要误差源之一。为有效降低电主轴发热的影响,研究工作主要集中在电主轴冷却结构和冷却控制方面,但仍存在以下两方面的技术难点需要攻克:[/size][size=16px] (1)冷却效果差:还需根据电主轴内部温度场的分布进行冷却结构设计以及差异化冷却。[/size][size=16px] (2)响应速度慢:缺乏主动热误差控制技术手段,需实现电主轴温度的自动闭环控制。[/size][size=16px] 目前国际上电主轴热误差控制的最高水平是瑞士FISCHER公司的电主轴及其主动式冷却技术,其关键是将冷却回路集成在主轴中而大幅降低了热误差,使轴向膨胀减少了70%。特别是响应速度极快,预热和冷却时间大幅减少,等待时间缩短五倍。其热误差控制效果如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.瑞士FISCHER公司电主轴冷却效果示意图,650,288]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060509497004_7930_3221506_3.jpg!w690x306.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 瑞士FISCHER公司电主轴冷却效果示意图[/b][/color][/size][/align][size=16px] 为解决国内电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容以调节散热的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在电主轴冷却过程中,除了需要电主轴具有合理的冷却结构之外,还要求能将主轴所产生的热量及时带走,并使主轴受热引起的膨胀量快速达到最小值且保持恒定。[/size][size=16px] 针对国内电主轴冷却响应速度慢的问题,本文的解决方案是基于改变冷却介质热容的原理,即改变冷却介质流量来改变冷却介质热容,这意味着快速改变了作用在主轴上冷却量,由此来主动调节主轴温度并快速达到稳定。解决方案的实施采用闭环控制系统,闭环控制系统包括检测电主轴热膨胀位移量的非接触位移探测器、接收主轴热膨胀变形信号的高精度PID控制、受PID控制器驱动并对恒温冷却介质流量进行高速精密调节的电子针阀,此闭环控制系统结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.电主轴主动冷却闭环控制系统结构示意图,500,287]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060510119009_2558_3221506_3.jpg!w690x397.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 电主轴主动冷却闭环控制系统结构示意图[/b][/color][/size][/align][size=16px] 在此解决方案中,闭环控制系统中每一个部件的精度和响应速度等技术指标都会影响到电主轴最终热误差的控制精度。[/size][size=16px] 对于非接触位移探测器而言,需要具有几个微米的测量精度和一秒量级的响应速度,对于高速高精度机场的电主轴则可能需要更高位移测量精度和响应速度。位移探测器一般选择激光式或电容式位移传感器。[/size][size=16px] 对于冷却介质流量的调节,需根据电主轴规格、发热量和冷却介质最大输出流量选择相应流量调节范围的电控针阀,但无论流量调节是什么范围,都要求电控针阀具有小于一秒的响应速度,并具有很好的线性度,为此在本解决方案中选择采用了NCNV系列电动针阀,可直接采用模拟信号0~10V进行控制,响应速度800ms,线性度0.1~11%,孔径范围为0.95~6.7mm,液体水的最大流量范围是0.94~62.4L/min,流量调节分辨率为0.1~2L/min,完全可以满足各种规格电主轴的快速冷却调节。[/size][size=16px] 对于PID控制器,解决方案选择了VPC2021系列超高精度PID控制器,此PID控制器具有24位AD、16位DA和0.01%最小输出百分比,可充分发挥位移探测器和电控针阀的高精度优势。同时此系列PID控制器还具有独立双通道控制、PID自整定、RS485通讯接口、串行控制和计算机软件等高级功能,可对两个冷却回路进行同时控制,便于进行调试以及后续的上位机通讯。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的直接冷却流量调节的闭环控制系统,结合合理的冷却结构设计,可大幅度减少电主轴的轴向膨胀,使预热和冷却速度更快,可大幅缩短等待时间。更重要的是采用了闭环控制方式,使电主轴始终处于稳定的热条件下,保证了加工精度的重复性,使得废品率更低。另外这种主动式冷却方案可有效散发主轴中产生的热量,提高了电机过载能力。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 【转帖】现代Sonata电控发动机的检测与调整

    现代Sonata电控发动机的检测与调整韩国现代Sonata1.8I、20iGL/GLS和Sonata 2.4iGLS型轿车,虽配置的发动机不同,但均采用HYUNDAI EC-MULTI电控多点燃油喷射系统,其主要部件的布置如图1所示。当电控系统发生故障时,仪表板上的CHECK警告灯会闪亮报警。一、故障码的读取与清除1.打开如图2.a所示的位于仪表板下方保险丝盒旁边的故障检测插座。HYUNDAI EC-MULTI电控多点燃油喷射系统,其主要部件的布置如图1所示。当电控系统发生故障时,仪表板上的CHECK警告灯会闪亮报警。2.将电压表正负表笔分别与插座内的A、B(见图2.b)插孔相连。3.接通点火开关,即可通过观察电压表指针的摆动规律读出故障代码。没有电压表时,也可用LED测试灯像电压表一样连接,通过闪烁规律读出故障代码。4.故障代码见表1。5.故障码的清除。当故障排除完毕后,可拆下蓄电池搭铁线15s以上,即可清除故障码。表1 现代Sonata轿车发动机故障码故障码 故障诊断 故障部位 11 氧传感器信号不正常 氧传感器损坏、线路断路、或短路、混合器太浓或太稀 12 空气流量计信号不正常 空气流量计损坏、线路断路或短路 13 进气温度传感器信号不正常 进气温度传感器损坏、线路断路或短路 14 节气门位置传感器信号不正常 节气门位置传感器损坏、线路断路或短路、怠速位置开关损坏 15 怠速控制阀位置传感器信号不正常 怠速控制阀位置传感器损坏、线路断路或短路 21 冷却液传感器信号不正常 冷却液传感器损坏、线路断路或短路 22 曲轴位置传感器信号不正常 曲轴位置传感器损坏、线路断路或短路 23 上止点位置传感器信号不正常 第一缸上止点传感器损坏、线路断路或短路 24 车速传感器信号不正常 车速传感器损坏、线路断路或短路 25 大气压力传感器信号不正常 大气压力传感器损坏、线路断路或短路 36 点火正时传感器信号不正常 点火正时传感器损坏、线路断路或短路 41 喷油泵线路不良 喷油泵损坏、线路断路或短路 42 电动燃油泵继电器线路不良 电动燃油泵继电器损坏、线路断路或短路 44 点火系统线路不良 点火线圈故障、线路断路或短路

  • 新能源电控检测中列管式换热器故障说明

    新能源电控检测设备中的配件比较多,为了新能源电控检测更加稳妥的运行,新能源电控检测中的配件就需要避免一些故障,其中列管式换热器的故障比较常见,我们也需要尽量避免以上故障。  新能源电控检测换热器的管束的腐蚀、磨损造成管束泄露或者管束内结垢造成堵塞引起故障,循环水中含有铁、钙、镁等金属离子及阴离子和有机物,活性离子会使循环水的腐蚀性增强,其中金属离子的存在引起氢或氧的去极化反应从而导致管束腐蚀。同时,由于循环水中含有Ca2+、Mg2+离子,长时间在高温下易结垢而堵塞管束。为了提高传热效果,防止管束腐蚀或堵塞,采取了以下几种方法:对循环水进行添加阻垢剂并定期清洗;保持管内流体流速稳定;选用耐腐蚀性材料(不锈钢、铜)或增加管束壁厚的方式;当管的端部磨损时,可在入口200mm长度内接入合成树脂等保护管束。  新能源电控检测设备造成振动的原因包括由泵、压缩机的振动引起管束的振动;由旋转机械产生的脉动;流入管束的高速流体(高压水、蒸汽等)对管束的冲击。降低管束的振动常尽量减少开停车次数;在流体的入口处,安装调整槽,减小管束的振动;减小挡板间距,使管束的振幅减小;尽量减小管束通过挡板的孔径。  新能源电控检测列管式换热器除了平时多注意保养,注意操作,还需要选择质量靠谱的换热器,这样才能更好的运行新能源电控检测。

  • 精密热成型工艺中的正负压力控制解决方案

    精密热成型工艺中的正负压力控制解决方案

    [size=16px][color=#339999][b]摘要:真空压力热成型技术作为一种精密成型工艺在诸如隐形牙套等制作领域得到越来越多的重视,其主要特点是要求采用高精度的正负压力控制手段来抵消重力对软化膜变形的影响以及精密控制成型膜厚度。本文提出了相应的改进解决方案,通过可编程的纯正压控制技术实现软化膜上下压差以及热成型压力的精密调节,在保证产品质量的同时可简化控制系统。[/b][/color][/size][align=center][size=16px] [img=精密热成型工艺中的正负压力控制解决方案,550,292]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190914248981_6279_3221506_3.jpg!w690x367.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 热成型是一种将热塑性片材加工成各种制品的较特殊的加工方法。在具体成型过程中,片材夹在框架上加热到软化状态,在外力作用下,使其紧贴模具的型面,以取得与型面相仿的形状。冷却定型后,经修整即成制品。热成型方法有多种,但基本都是以真空和压力这两种方法为基础加以组合或改进而成。典型的真空和压力热成型原理如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.真空和压力热成型示意图,550,275]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917007981_2026_3221506_3.jpg!w690x345.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 真空和压力热成型原理示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空成型最大的成型压力为一个大气压,这造成真空成型压力较低,这往往使得受热软化后的热塑材料很难在模具的拐角或坑洼处形成紧密贴合,如图2所示,这会造成整体的成型精度较差。因此,真空成型工艺一般用于对成型精度要求较低的通用性塑料件的生产。[/size][align=center][size=16px][color=#339999][b][img=02.真空热成型过程中的非紧密贴合现象示意图,550,198]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917280643_6456_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热成型过程中的非紧密贴合现象示意图[/b][/color][/size][/align][size=16px] 正压热成型在真空(负压)基础上的发展演变而来,正压成型的压力往往可以达到4~5个大气压甚至更高,在压缩空气的正压作用下,贴合度大幅提高,产品外观质量和生产效率有了明显的提高,所以正压形式正逐步在高精度热成型工艺中得到广泛应用,特别是对于成型精密度有很高要求的隐形牙齿矫治器(隐形牙套、透明牙套),正压热成型已经成为一种标准工艺。采用正压热成型机器在3D打印模型上制造隐形牙齿矫正器,可以获得更均匀的塑料层,但产生均匀塑料层的理想正压水平需要根据以下几方面的影响因素进行确定和精密控制:[/size][size=16px] (1)牙模的结构比较复杂,表面沟壑较多,采用正压吸塑热成型工艺很难很好的控制牙套的厚度,要求正压压力控制精度极高。[/size][size=16px] (2)受热的热塑性材料呈软化状态,很容易受到重力影响而造成额外的形变,因此在正压热成型中受热软化片材的变形程度相差极大,必须消除重力带来的变形。[/size][size=16px] 为了解决上述问题,西安博恩生物科技有限公司在其发明专利CN112823761B中提出了正负压热成型工艺,首先控制平衡软化片材上下两侧的压强差,抵消重力带来的变形,然后在热成型时再通过压力变化来精确控制膜片的厚度。此发明专利仅提出了一种真空压力热成型工艺的新概念,并未给出压差和压力精密控制的具体实施方法描述,而具体真空压力控制的具体方式则是实现隐形牙套高精度热成型的关键技术之一。为此,本文针对诸如隐形牙齿矫正器正负压热成型工艺中的真空压力精密控制,提出相应的解决方案,以保证新型正负压热成型工艺的顺利实施。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 在专利CN112823761B中提出的正负压热成型过程如图3所示,固定有膜片的可上下移动的夹持器热成型设备分为上下两个独立的密闭腔室,每个独立腔室的真空和压力需要精密控制,只是真空压力的控制范围不同。[/size][align=center][size=16px][color=#339999][b][img=03.正负压加热成型过程示意图,385,113]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190917482920_2081_3221506_3.jpg!w385x113.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正负压加热成型过程示意图[/b][/color][/size][/align][size=16px] 在膜片被加热软化和随夹持器向下移动时,底部腔室相对于顶部腔室为正压,即顶部腔室内的压力要大于顶部腔室压力,底部腔室正压托起软化过程中的膜片以抵消重力的影响。[/size][size=16px] 当膜片贴附在牙模上后,撤掉底部腔室压力,并逐渐增大顶部腔室压力,使顶部腔室压力相对于底部腔室压力为正压,由此通过较大的正压压力使膜片与牙模紧密贴合。[/size][size=16px] 通过上述过程可以看出,正负压热成型中的压力控制具有以下两个重要特征:[/size][size=16px] (1)在压差控制阶段,底部腔室压力要始终大于顶部腔室,以托起软化中的膜片减少重力对膜片变形的影响。这种情况下,两个腔室压力都可以是正压,顶部腔室压力不一定非要是真空负压,顶部腔室也可以是正压,但只要底部腔室压力足够大并能形成相应的压差托起膜片极可。[/size][size=16px] (2)在加压贴附阶段,使顶部腔室的压力足够大就可实现软化膜片的紧密贴合,这也意味着底部腔室的压力也不一定非要是真空负压,只要是顶部腔室的压力足够大,底部腔室为常压时也完全能够实现高压贴合。[/size][size=16px] 由此两个特征可以得出结论:所谓的正负压热成型,完全可以只采用正压控制予以实现,但前提是能够精密和可程序控制上下两个腔室的正压压力。[/size][size=16px] 通过上述分析可知,对上下两个腔室进行正压精密控制,通过压差和高压可很好的实现膜片紧密贴合和保证厚度的均匀性,这样可以减少真空控制的环节和相应装置,简化了控制系统。[/size][size=16px] 依此,本文提出的解决方案就是两个腔室的精密正压压力控制解决方案,通过两套压力控制装置分别实现上下两个腔室的压力可编程控制,具体结构如图4所示。[/size][align=center][b][size=16px][color=#339999][img=04.隐形牙齿矫治器热成型精密压力程序控制系统结构示意图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/05/202305190918023454_1832_3221506_3.jpg!w690x321.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 隐形牙齿矫治器热成型精密压力程序控制系统结构示意图[/color][/size][/b][/align][size=16px] 在膜片被加热软化和随夹持器向下移动时,底部腔室相对于顶部腔室为正压,即顶部腔室内的压力要大于顶部腔室压力,底部腔室正压托起软化过程中的膜片以抵消重力的影响。[/size][size=16px] 当膜片贴附在牙模上后,撤掉底部腔室压力,并逐渐增大顶部腔室压力,使顶部腔室压力相对于底部腔室压力为正压,由此通过较大的正压压力使膜片与牙模紧密贴合。[/size][size=16px] 通过上述过程可以看出,正负压热成型中的压力控制具有以下两个重要特征:[/size][size=16px] (1)在压差控制阶段,底部腔室压力要始终大于顶部腔室,以托起软化中的膜片减少重力对膜片变形的影响。这种情况下,两个腔室压力都可以是正压,顶部腔室压力不一定非要是真空负压,顶部腔室也可以是正压,但只要底部腔室压力足够大并能形成相应的压差托起膜片极可。[/size][size=16px] (2)在加压贴附阶段,使顶部腔室的压力足够大就可实现软化膜片的紧密贴合,这也意味着底部腔室的压力也不一定非要是真空负压,只要是顶部腔室的压力足够大,底部腔室为常压时也完全能够实现高压贴合。[/size][size=16px] 由此两个特征可以得出结论:所谓的正负压热成型,完全可以只采用正压控制予以实现,但前提是能够精密和可程序控制上下两个腔室的正压压力。[/size][size=16px] 通过上述分析可知,对上下两个腔室进行正压精密控制,通过压差和高压可很好的实现膜片紧密贴合和保证厚度的均匀性,这样可以减少真空控制的环节和相应装置,简化了控制系统。[/size][size=16px] 依此,本文提出的解决方案就是两个腔室的精密正压压力控制解决方案,通过两套压力控制装置分别实现上下两个腔室的压力可编程控制,具体结构如图4所示。[/size][size=16px] 如图4所示,两套压力控制装置配置完全相同,都是由压力传感器、压力调节阀和真空压力控制器构成,两套装置公用一套高压气源。为了保证高精度压力的程序控制,具体配置如下:[/size][size=16px] (1)压力传感器采用超高精度压力计,压力测量范围为0~0.8MPa(表压),精度为满量程的0.05%。压力调节阀采用数控电子减压阀,外部模拟控制信号0~10V对应的压力调节范围为表压0~0.8MPa,综合精度为满量程的0.2%。[/size][size=16px] (2)压力控制器采用超高精度可编程PID调节器,具有24位AD、16位DA和0.01最小输出百分比,具有PID参数自整定功能,并可设计20条程序曲线进行调用和控制,具有标准MODBUS协议的RS485通讯接口。压力控制器自带计算机软件,通过软件可在计算机上直接对控制器进行设置、运行、过程参数显示和存储。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文对相关的正负压热成型工艺进行了分析,特别是针对隐形牙齿矫正器这类高精度热成型制作工艺,本文提出了改进的解决方案,即不采用正负压控制方式,而是采用纯正压控制方式。在具体热成型过程中,通过对上下腔室的压力进行不同的程序控制形成可控压差来抵消重力对受热膜片变形的影响,然后再对上腔室进行高压控制,由此可实现高精度的热成型厚度控制,可大幅提高热成型产品的质量和一致性。[/size][size=16px] 新的解决方案可通过两路压力的精确控制,同样可实现正负压热成型过程中的压力成型功能和精密制作能力,但避开了正压和负压同时控制所造成的装置的复杂性和较高成本,这使得新的解决方案更具有实用性。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 碳化硅氧化工艺中加热炉的正负压力精密控制方法及装置

    碳化硅氧化工艺中加热炉的正负压力精密控制方法及装置

    [size=16px][color=#339999][b]摘要:在目前的各种半导体材料热氧化工艺中,往往需要对正负压力进行准确控制并对温度变化做出快速的响应,为此本文提出了热氧化工艺的正负压力控制解决方案。解决方案的核心是基于动态平衡法分别对进气和排气流量进行快速调节,具体采用了具有分程控制功能和传感器自动切换功能的超高精度真空压力控制器,并结合高速电控针阀和电控球阀,可很好的实现0.1Torr~800Torr绝对压力范围内的正负压快速准确控制。[/b][/color][/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][color=#339999][b][size=16px] [/size][size=18px]1. 问题的提出[/size][/b][/color][size=16px] 热氧化工艺是碳化硅等半导体器件制程中的优选工艺,其特点是简便直接,不引入其他杂质,适合器件的大规模生产。目前比较有效的热氧化工艺有微正压和负压控制两种技术:[/size][size=16px] (1)微正压:氧化过程中氧化炉内1.05atm以上压力的恒定控制。[/size][size=16px] (2)负压:生长气压为10mTorr-1000mTorr范围内的控制。[/size][size=16px] 在热氧化工艺中,无论采用上述那种技术,都需要对氧化炉内的气压进行准确控制,以保证氧化硅层的质量,但如何实现准确控制正负压则是一个需要解决的技术问题。为此本文提出相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 目前碳化硅热氧化工艺,正负压控制范围为0.1Torr~800Torr(绝对压力)。对此范围的绝对压力控制,基于动态平衡控制方法,本文设计的控制系统结构如图1所示。[/size][align=center][color=#339999][b][img=碳化硅热氧化工艺真空压力控制系统,690,354]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251740511222_1299_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/align][align=center][size=16px][color=#339999][b]图1 碳化硅热氧化工艺真空压力控制系统[/b][/color][/size][/align][size=16px] 在图1所示的解决方案控制系统中,从加热炉的一端输入工作气体,工作气体流经加热炉以及炉内放置的圆晶后,由真空泵抽气排出。工作气体可根据工艺要求进行选择和配置,可选择多种气体按照比例进行混合。[/size][size=16px] 为了在0.1Torr~800Torr整个量程范围内实现正负压力的准确控制,需要至少采用两只不同量程的真空度,如1Torr和1000Torr,图1中只标识了一只真空计。在图1所示的控制系统中,真空计、电控阀门和真空压力控制器构成一个闭环控制系统,具体控制过程如下:[/size][size=16px] (1)工作气体和真空泵始终处于开启状态。[/size][size=16px] (2)两只真空计分别连接控制器的主输入端和辅助输入端,控制器具有传感器自动切换功能,可根据加热炉内的实际压力自动切换到相应量程的真空计。[/size][size=16px] (3)整个正负压力控制采用PID分程控制功能,电控针阀连接控制器的反向输出端,电控球阀连接控制器的正向输出端,由此可以根据不同的压力设定值自动调节进气和出气流量来实现压力的准确控制。[/size][size=16px] 由于热氧化工艺所使用的温度和正负压力范围较宽,本解决方案采用了以下关键装置:[/size][size=16px] (1)由于在真空压力控制过程中,加热炉始终处于加热或冷却状态,温度变化会对压力控制产生严重的影响。为了始终将氧化过程中的正负压力控制在设定值上,阀门的调节速度起着关键作用,本解决方案配备了响应时间小于1秒的高速电控针阀和电控球阀,由此可以将温度和其他因素对压力的波动影响快速恢复和稳定到设定压力。[/size][size=16px] (2)由于正负压力范围宽泛,跨越了好几个数量级,所采用的2只真空压力传感器往往在较低量程区间的信号输出比较弱小,这就需要真空压力控制器具有很高的采集精度和控制精度。为此,本解决方案配备了超高精度的真空压力控制器,技术指标是24位AD、16位DA和0.01%的最小输出百分比,可完全满足全量程真空压力的准确测量和控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述正负压力控制解决方案可以在全正负压力量程内达到很高的控制精度和响应速度,真空压力控制器除了具有高控制精度和分程控制功能外,还具有程序控制和PID参数自整定等多种功能。控制器还配备有RS485通讯接口,可便捷的与PLC上位机控制系统进行集成,采用自身所带软件也可在计算机上直接进行工艺调试和控制。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司)诚聘销售工程师,坐标上海,你准备好了吗?

    [b]职位名称:[/b]销售工程师[b]职位描述/要求:[/b]1、 本科以上学历,化学、制药、食品、环境工程专业的可以考虑大专及以上学历; 2、 有仪器仪表行业销售经验或市场推广经验优先; 3、 熟悉滴定仪、卡氏水份仪产品应用的优先考虑;4、 从事过相关化学分析仪器销售的可以不受专业限制。 [b]公司介绍:[/b] 第一家分析仪器企业,永争第一。 1953年,“雷磁”诞生了中国第一台pH计和第一支玻璃电极,标志着中国分析仪器的诞生。现在的“雷磁”,位于上海安亭汽车城,是国内最大的电化学分析仪器研制基地。“雷磁”是上海仪电科学仪器股份有限公司的自主品牌。2011年,上海仪电控股(集团)公司决定,对上海精密科学仪器有限公司进行机制改革,以国有控股、主要核心团队和关键技术骨干参股,成立“上海仪电科...[url=https://www.instrument.com.cn/job/user/job/position/51186]查看全部[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制