当前位置: 仪器信息网 > 行业主题 > >

近红外成像系统

仪器信息网近红外成像系统专题为您提供2024年最新近红外成像系统价格报价、厂家品牌的相关信息, 包括近红外成像系统参数、型号等,不管是国产,还是进口品牌的近红外成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近红外成像系统相关的耗材配件、试剂标物,还有近红外成像系统相关的最新资讯、资料,以及近红外成像系统相关的解决方案。

近红外成像系统相关的仪器

  • V10E系列可见-近红外高光谱成像仪 标准型(CMOS)增强型高效型高速增强型光谱相机型号V10E-PFHV10E-QEV10E-PSV10E-HS光谱范围(nm)400-1000400-1000400-1000400-1000光谱分辨率(nm)3.22.82.82.8光谱采样点(nm)0.650.650.63-5.060.72-5.8有效狭缝长度(mm)10.858.78.9811.84光透过效率50%50%50%50%相对孔径F/2.4F/2.4F/2.4F/2.4狭缝宽度(&mu m)30303030杂散光0.5%0.5%0.5%0.5%光谱通道数200200200-300100-200CCD相机像素1024× 10241344× 10241392× 10401600× 1200像素尺寸(&mu m)10.6× 10.66.45× 6.456.45× 6.457.45× 7.4A/D 输出(bits)12121212动态范围60dB1,500:160dB60dB帧数(fps, 全幅)308.911-1533帧数(fps, binning)-4362120曝光时间范围(ms)0.01-4100.01-10,0000.001-120,0000.1-100,000计算机接口USBIEEE1394-1995EthernetCamera Link镜头接口C-MountC-MountC-MountC-Mount
    留言咨询
  • Asiagene NIR2020 近红外I区和近红外II区生物医学荧光成像系统是上海亚晶生物科技有限公司自主研发的大型高端设备。 主机包含:1.暗箱2.科研一级CCD相机(光谱范围:400-1700nm)3.近红外探测器4.荧光光路及照明系统5.小动物麻醉系统6.操作分析软件7.电源线和数据线8.操作说明 其中暗箱:1.内部铺有吸光性能良好的材料;2.可以装配近红外探测器配备;3.多位波段滤光片及切换装置;4.可装配多个波段光源,并分别控制及采集5.可以支持小动物麻醉系统6.配备自动升降台,可以随时调整样品台高度7.配备小动物恒温模块,保证成像时动物体温8.配备明场光源 近红外探测器:1.探测器芯片:铟镓砷探测器2.分辨率:640(h)×512(v);3.带宽:900-1,700nm;4.峰值量子效率(peak QE):85%;5.保持信号完整性:65,535灰度值;6.扫描频率:4×18 MHz;7.InGaAs探测器运行能力:99.5%;8.输入像素尺寸:15×15μm;9.输入传感器尺寸:9.6×7.68 mm;10.读出杂讯:High gain mode 27-35 电子
    留言咨询
  • 近红外活体成像系统 400-860-5168转4585
    产品性能: 可实现近红外二区大视野及局部小动物成像 可进行多只小鼠同时成像 可对单幅高信噪比图片进行拍照 满足高帧率视频拍摄 可选配多种激光器以及LED、X射线应用范围:活体脏器多重成像,手术导航,血管成像,淋巴成像,肿瘤成像,炎症检测和监测,药物追踪,活体 原位疾病检测等仪器配置:响应波长:≥900 ~ 1700 nm;量子效率:≥80%(1000~1600nm),峰值85%;曝光时间:2 μs ~ 60 s;连续观察拍照: 10ms;分辨率:≥640 × 512;制冷温度:≤-190℃,-85℃,55℃等可选;读出噪声:<60 e-/p/s;帧率:多种帧率可供选择(110 fps、55 fps、22 fps)
    留言咨询
  • IR VIVOTM 近红外二区小动物活体成像系统 目前常见的分子影像技术如X-射线成像、断层扫描成像(CT)、磁共振成像(MRI)和超声成像(US)被用于对疾病等的医疗诊断,但这些方法具有较差的空间分辨率及其无法实现动态实时监测等缺点。光学成像技术以其高灵敏度和高时空分辨率等优点,为微小肿瘤/转移瘤及肿瘤相关血管的检测和研究提供了一种新的无创检测成像手段,在生物医学和临床诊断中发挥着重要作用。在过去几年里,研究者们致力于研究近红外一区窗口(700 nm~900 nm)的荧光成像,但是由于生物组织在这个波段范围内有很强的吸收和散射,致使其信噪比和组织穿透深度都比较低。相对于NIR-I区成像,新一代的近红外二区光学成像(NIR-II,1000-1700 nm)在成像灵敏度、穿透深度和空间分辨率方面有着显著提高。因此,近年来,位于近红外二区窗口(NIR-II,1000 nm~1700 nm)的材料得到了广泛的关注,在这个波段,生物组织自身的吸收和散射弱,这样就可以极大地提高成像质量和穿透深度。目前,一些无机材料如稀土下转换纳米颗粒、碳纳米管、量子点以及少数有机染料能够实现NIR-II的发射,但是它们的激发波长都位于近红外第一窗口内。因此,开发激发波长和发射波长都位于NIR-II的材料成为目前生物成像的热点。 IR-VIVO是一款用于用于活体近红外二区成像的高光谱成像系统。IR-VIVO使用可调谐滤波片和高光谱提供多光谱成像,成像范围可从850nm到1620nm,分辨率可达到4nm,凭借高效率的滤波器和高速科研级SWIR相机,VIVO可以准确的获得多个IR荧光谱,并可以实时成像,为涉及二区生物窗口检测的应用提供了完美工具。近红外二区(1000至1700 nm)中成像时,组织的散射减少,组织吸收和自发荧光最小。结果,与传统的可见光或红外光学成像(即400-1000 nm)相比,在这些波长下具有更好的图像对比度,灵敏度和对组织的穿透深度。NIR-II成像特性高空间分辨率高时间分辨率(实时动态)非电离和非侵入性良好的穿透深度(比传统的可见光学系统大10倍)应用领域: NIR-II成像增加的穿透深度和对比度,再加上快速的采集速度和微米级的空间分辨率,可以同时观察通过完整颅骨的微脉管系统和血流。其他生物学应用包括化疗药物的药代动力学以及肝脏和血液循环中的脂质定量。 PHOTON ETC还开发了临床前的二区成像红外相机ZephIR™ 1.7,以满足研究二区生物学窗口的研究人员的需求。PUBLICATIONS1.REAL TIME IN VIVO IMAGING IF ICG IN THE NIR-II with IR VIVO™ Imaging system We sought to develop a near infrared II small animal imaging system which could provide real time images and videos of shortwave IR (SWIR) fluorescent signals in vivo at wavelengths over 1000 nm. It was hypothesized that the SWIR wavelengths would give optimal resolution for in vivo optical imaging due to the low tissue autofluorescence, scattering and absorption of light at these wavelengths. The desired preclinical imaging system should enable measurement of heart rate, respiratory rate, hepatic function, hepatobiliary and intestinal function, blood flow and angiography in small animals.2.INSIGHT FROM THE INDUSTRY - IR VIVOUSING PRE-CLINICAL IMAGING TO DETECT CANCERBy émilie Beaulieu-Ouellet, Application Scientist in Life Science In this interview, émilie Beaulieu Ouellet talks about the recently released and breakthrough imaging system: the IR VIVO™ and its technology. Photon etc.’s IR VIVO™ system is the first and only turnkey hyperspectral preclinical imager optimized for imaging in the second biological window of the near-infrared (NIR-II) / short-wavelength infrared (SWIR) range available on the market to our knowledge. NIR-II imaging will bring an unprecedented combination of fast, high resolution and penetration depth imaging at lower cost and to a broader community than current preclinical imaging techniques. Altogether, it will enable to resolve and track single biomedical targets or processes throughout small animals, thereby opening a new window of possibilities for fundamental and biopharmaceutical research.如需索取更多资料请联系佰泰科技有限公司电子邮件联系电话:或直接联系 常经理
    留言咨询
  • 恒光智影自主研发最新的近红外二区小动物活体荧光成像系统-MARS。这是一款多色成像系统,可实现全波段(400-1700 nm)荧光,X射线,CT多模态成像。这款产品突破了传统荧光活体成像系统的局限,具有从微观到宏观,由细胞至活体的全视野成像能力,可以实现更深,更快,更清晰的成像效果。在肿瘤研究,动物模型成像,血管成像,纳米药物开发,药物制剂,靶向治疗,及脑科学研究等方向提供新的影像解决方案。 1. 活体穿透深度高于 15 mm2. 空间分辨率优于 3 μm3. 荧光寿命分辨率优于 5 μs4. 高速采集速度优于 1000 fps(帧每秒)5. 精准光热治疗模块6. 可定制多模态系统 (X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等) 可实现小鼠颅内血管成像,皮下肿瘤成像,大鼠褐色脂肪及血管成像,小鼠肝肺成像,淋巴管与淋巴结成像,肠道系统成像的应用案例。您也可以在恒光智影的网站上找到更多的应用案例和视频:上海恒光智影医疗科技有限公司为您提供恒光智影 近红外二区小动物活体荧光成像系统的参数、价格、型号、原理等信息,恒光智影 近红外二区小动物活体荧光成像系统产地为上海、品牌为恒光智影,型号为MARS,价格为面议,更多相关信息可来电咨询,公司客服电话7*24小时为您服务。
    留言咨询
  • 产品简介:近红外二区小动物活体成像系统是新一代的具有900~1700 nm荧光波长探测范围的活体成像仪器,其克服了传统荧光成像难以在深层组织成像的问题,具有更深的穿透深度、更少的背景散射和生物组织自发光干扰、更高的信噪比,能够获得更高分辨率的图片。同时其也具有无创,成本低等优点,广泛应用于分析化学、化学生物学和生物医学领域,是基础生物研究,药物研发和临床应用中最为有效的实时成像手段之一。适用于小动物研究领域。 此外还有高分辨近红外二区活体显微镜可实现对样品的高分辨显微荧光成像。从细胞尺度的分子机理研究,到活体尺度的多器官协同作用进行深入的研究,为科学家提供一整套的跨尺度光学成像方案。恒光的光路系统具备升级3D(NIR-II光谱 ,共聚焦)的潜在优势。适用于小动物的细小组织与细胞层面研究。 产品原理:相对于传统的可见光(400~750 nm)和近红外一区(NIR I,750~900 nm)荧光成像技术,近红外二区(NIR II,1000~1700 nm)的发射波长更长,可显著降低生物组织内光子的散射,增强生物组织的光吸收,具有穿透深度大,空间分辨率高,速度快等优势,被誉为下一代荧光成像技术。穿透深度高于 15mm空间分辨率优于4um荧光寿命分辨率优于10us高速采集速度高于1000fps产品特点:近红外二区成像NIR-Ilin-vivo lmaging近红外I区与II区小鼠颅内血管成像对比全光谱成像 Full Spectrum全光谱(可见光-近红外一区/二区)活体荧光成像系统,具备300-1700 nm双光路设计,可实现高灵敏度生物发光(bioluminescence)与荧光(fluorescence)成像。全视野 Cross-Scale首创的全视野成像能力,满足了从微观到宏观成像视野的需求(1.5-250 mm),极大丰富了用户的使用场景:肿瘤微环境、脑部精细成像、斑马鱼、眼部血管、神经成像、小鼠大鼠整体成像,到兔、犬、猴大动物的局部成像等均可轻松实现。 高灵敏度成像系统的核心相机均采用了业界知名的Teledyne Princeton Instruments的NIRvana系列,具有高灵敏度,低噪声,高速成像等优势,其量子效率与噪声抑制技术为高品质成像提供保证。可拓展X-ray / CT 模块市场上首台可嵌入小动物荧光成像系统的桌面式 X-ray激发/CT成像模块,系统顶部配置一块铅玻璃,在隔离射线辐射的情况下,让350-1700 nm的 光透射出射线腔,实现X-ray激发的荧光成像,CT-荧光三维共定位等。 荧光寿命与高精度激光器系统采用了高精度控制的电子门控激光器(下降沿优于900ns),方便用户在荧光强度成像与荧光寿命成像之间快速切换,而无需繁琐的硬件系统(如斩波器等),且荧光寿命精度可达15μs。 活体多模态成像设计采用模块化的结构设计,可进行后期功能扩展,整合近红外一区荧光成像,超声,光声,CT断层扫描,荧光寿命,PET-C,MRI等系统,实现多模态成像解决方案。其遮光外壳、上下机体可分离组合,带来更加自由的实验平台。近红外二区荧光探针与众多科研院所合作,为用户提供丰富的荧光探针选择方案:小分子,量子点,AIE,稀土纳米探针等;可满足肿瘤靶向,血管造影,淋巴标记,细胞体内追踪,药物筛选,体内分布等众多应用。同时团队具有丰富的生物学实验设计与数据分析经验,可为用户提供生物成像的培训及N3服务。应用领域:NIR-II区荧光成像拓宽了荧光成像的应用范围,包括:肿瘤研究、血管成像、药物开发、靶向治疗、手术导航、肠道菌群成像、淋巴成像、脑科学、药理研究、药效评价及大分子药物药代动力学研究等众多领域。部分文献[1]Ji A, Lou H, Qu C, et al. Acceptor engineering for NIR-II dyes with high photochemical and biomedical performance[J]. nature communications, 2022, 13(1): 3815.[2] Dong S, Feng S, Chen Y, et al. Nerve suture combined with ADSCs injection under real-time and dynamic NIR-II fluorescence imaging in peripheral nerve regeneration in vivo[J]. Frontiers in Chemistry, 2021, 9: 676928.[3] Feng S, Chen M, Chen Y, et al. Seeking and identifying time window of antibiotic treatment under in vivo guidance of PbS QDs clustered microspheres based NIR-II fluorescence imaging[J]. Chemical Engineering Journal, 2023, 451: 138584.[4] Zhang X, Ji A, Wang Z, et al. Azide-dye unexpected bone targeting for near-infrared window ii osteoporosis imaging[J]. Journal of Medicinal Chemistry, 2021, 64(15): 11543-11553.[5] Yang S, Zhang J, Zhang Z, et al. More Is Better: Acceptor Engineering for Constructing NIR-II AIEgens to Boost Multimodal Phototheranostics[J]. 2022.[6] Qiu Q, Chang T, Wu Y, et al. Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor-acceptor NIR-II dyes[J]. Biosensors and Bioelectronics, 2022, 212: 114371.[7] Yang R, Bao G, Li H, et al. Lead/cadmium-free near-infrared multifunctional nanoplatform for deep-tissue bimodal imaging and drug delivery[J]. Materials Today Advances, 2022, 16: 100306.[8] Pan Y, He Y, Zhao X, et al. Engineered Red Blood Cell Membrane‐Coating Salidroside/Indocyanine Green Nanovesicles for High‐Efficiency Hypoxic Targeting Phototherapy of Triple‐Negative Breast Cancer[J]. Advanced Healthcare Materials, 2022, 11(17): 2200962.[9] Chen M, Shu G, Lv X, et al. HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma[J]. Biomaterials, 2022, 284: 121512.
    留言咨询
  • 别名:NIR-II红外相机,NIR-II红外制冷相机,NIR-II红外低温相机,NIR-II红外成像,NIR-II红外制冷成像,NIR-II红外低温成像,NIR-II近红外成像相机,NIR-II近红外制冷成像相机,NIR-II近红外低温成像相机NIR-II近红外科研成像相机,NIR-II近红外科研制冷成像相机,NIR-II近红外科研低温成像相机,NIR-II近红外二区荧光成像相机,NIR-II近红外二区荧光制冷成像相机,NIR-II近红外二区荧光低温成像相机,相机部分:1、InGaAs 成像模块采用TEC电制冷方式,芯片工作温度达到-60℃或更低,且芯片工作温度可调;2、InGaAs成像模块有效像素数量不少于640 x 512,每个像元尺寸不小于15微米;3、InGaAs成像模块在900-1700nm具有高灵敏度,量子效率不低于70%;4、对于微弱信号可实现不短于99秒的连续曝光;5、能够实现近红外二区与彩色可见光的实时同步成像,且精确融合图像能够实时展示。6、近红外二区成像具备过曝光预警功能。成像窗宽窗位可手动自由调节。且具备灰度图像自动增强功能。7、可见光成像部分具备自动增益,自动曝光,自动白平衡功能,能够自动进行伽马矫正。融合算法先进,用户可以根据需求确定近红外与可见光融合的有效阈值。8、红外图像、可见光图像和二者融合图像可以同时显示。拍照和录像数据可一键采集,且拍照和录像保存后可再次进行后续数据分析并不失融合。9、成像参数与激光激发参数能够自动保存。激光部分:1、荧光激发光源采用两种波长激光光源(808nm, 980 nm),功率可调且总功率≥20瓦;2、每种荧光激发光源各采用两根液芯匀光光纤,分布两侧,保证无死角照射。3、每根光纤末端配备准直器,可调整荧光激发光的均匀照射。4、可通过系统软件实现激光控制。5、激光参数自动保存在成像参数中。暗室及控制系统:1、标配软件具备成像参数设置功能,如曝光时间、增益、相机工作温度、内外触发等,具备红外成像窗宽/窗位手动和自动调节功能;2、可通过软件去除背景,实现成像的平场校正等功能;3、能够实现100μs寿命材料的荧光寿命成像;4、可同时装载至少5个发射光滤片,标配滤片数量不少于4个;5、具备荧光寿命成像专用软件模块,可通过软件调节激发光照明时间、相机曝光时间和激发光与相机曝光间隔时间,具有延时成像能力;6、寿命图像与材料单光子寿命分析结果误差在10μs以内;7、具备5通道以上小动物气体麻醉功能;8、能够实现小鼠全身成像和局部成像,视野范围可调,最大视野范围不小于10cm x 8cm;9、动物载物台可电控升降,行程不小于50cm;10、动物载物台具有加温保暖功能;应用:适合从事生物学、医学、天文学等科研工作者,特别适用于生物医学荧光成像、材料学荧光成像、荧光偏振成像、荧光寿命成像、天文成像和激光光斑分析等多种科研领域及军事、高端安防等应用领域。荧光寿命成像展示:左图:荧光成像 右图:荧光寿命成像NIR-I区与NIR-II区,成像范围、深度、清晰度对比:近红外二区成像在不通波长下成像比较: 通过尾静脉注射PBS溶液中的NM-NPs雌性BALB/c小鼠。用1000LP、1250LP、1400LP滤光片进行160mW cm&minus 2808 nm激光激发,当波长在1000~1400 nm之间变化时,血管的清晰度明显提高,1400LP滤光片NIR-II荧光成像的空间分辨率明显提高,清晰度显著提高。 近红外二区成像在缺血性脑卒中应用:(RENPs应用于近红外二区脑血管成像)稀土纳米颗粒(RENPs)是一类稀土离子掺杂的荧光纳米材料,能够在近红外光激发下发射出位于第二近红外区的荧光。且其具有长荧光寿命、窄发射谱带、高光/化学稳定性、低毒性和可调谐荧光发射波长等优势,有望在生物分析和疾病诊断等领域发挥重要作用。利用染料敏化RENPs的复合材料,成功实现了非侵入性、高分辨率脑血管成像,清晰观察到脑血管网络结构及细小的毛细血管结构,并可实时监测生理过程中血液动力学及血管结构的变化。(比率型近红外二区纳米探针监测脑卒中示意图)缺血性脑卒中(Ischemic Stroke, IS)是导致长期残疾以及死亡的主要原因之一,该疾病的严重程度具有时间依赖性,及时评估IS对于该疾病的治疗以及预后起着至关重要的作用。利用比率型近红外二区纳米探针可有效富集在脑缺血病灶位点,可视化氧化应激水平用于及时评估IS。利用近红外二区成像的优势,该探针具有深层的脑组织穿透深度;基于目标物调控染料敏化RENPs发光的原理,该探针对高活性氧物种呈现优异的响应性能。综合以上功能,该探针通过可视化探针在病灶位点的富集程度以及氧化应激水平,在IS发生30min时即可对其进行监测,并评估其严重程度(传统磁共振成像则在IS发生24h才可观察到显著的信号变化)。近红外二区成像用于慢性肝脏疾病无创监测(a、高脂饮食小鼠模型中,体内肝脏处的自发荧光 b、离体肝脏的荧光成像)准非酒精性脂肪性肝病(NAFLD),由于缺乏用于监测炎症和肝纤维化进程的无创方法,肝活检仍是临床诊断NAFLD的金标。非酒精性脂肪性肝病的病理发展中氧化应激是关键驱动力之一,肝损伤和坏死性炎症由驱动纤维化的活性氧簇(ROS, Reactive oxidative species)介导,内源性脂褐素(lipofusion)是ROS的副产物,在808nm激光激发下,能够在近红外范围内被检测到,因此脂褐素的红外成像用于无创评估坏死性炎症活动和纤维化阶段,实现慢性肝病的无创监测。近红外二区成像联合酶激活的纳米探针用于术中进行快速组织病理学分析准确的分析病理组织是肿瘤手术成功的关键之一,一种可被基质金属蛋白酶(MMP)14激活的NIR-II纳米探针A&MMP@Ag2S-AF7P,可用于体内外神经母细胞瘤诊断和非破坏性的组织病理学分析。(1)A&MMP@Ag2S-AF7P在正常组织中的荧光可以忽略不计;但是在神经母细胞瘤组织中,其荧光信号会由于过表达的MMP14抑制了Ag2S量子点和A1094之间的荧光共振能量转移(FRET)过程而被快速激活。(2)与此同时,暴露的膜渗透多肽R9 (TAT-peptide)可以使得该纳米探针被癌细胞有效地内化,进而产生优越的T/N组织信号比值。该探针可以对病灶进行富集定位通过红外二区实时成像描绘出明确的肿瘤边缘,用于癌症手术或组织活检。
    留言咨询
  • Azure 500拥有卓越的性能、直观便捷的拍照流程和功能完备的分析软件,可为用户提供精确可重复的实验结果。仪器内置13.3英寸高清可触摸屏电脑,大大节省实验室空间;搭载双波长紫外光源、蓝光光源、双激光近红外光源和高分辨率CCD相机,无论是普通凝胶成像、化学发光成像,还是近红外荧光成像,Azure 500均可呈现高精度、高灵敏度、高分辨率的图像。 产品特点 性能卓越化学发光和荧光成像均具有超高的灵敏度和图像质量 定量精确专为定量设计。成像系统、试剂、软件完美适配,满足高质量期刊发表要求 智能化工作流程具有自动聚焦、自动激发光控制和自动曝光等功能,可设立自定义成像协议,确保样品之间的可重复性。如有需要,可外连电脑控制。 数据合规性Azure成像数据满足所有主流期刊发表要求,可提供符合FDA 21CFR Part11软件 应用 ● 琼脂糖凝胶检测● 蛋白胶检测● 化学发光检测● 彩色Marker成像● 激光近红外成像 Azure 500多功能荧光成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Azure多功能成像系统报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 近红外光谱脑功能成像系统 NirScan-6000A 近红外光谱是新一代的脑功能成像技术。该技术通过强穿透力的近红外光探测脑皮层血氧活动信息,包括含氧血红蛋白浓度HbO、脱氧血红蛋白浓度HbR和总血红蛋白浓度HbT。它具有时空分辨率高、床旁便携、探头佩戴方便,可以一边 说话一边检测、一边运动一边检测、 一边治疗一边检测的优势,为精神疾病检查、脑卒中评价、脑功能疾病疗效评估等提供了创新有效的定量检查方案。 近红外光谱脑功能成像系统的介绍:近红外脑功能成像是新一代的脑功能技术,它具有空间定位能力强、使用快捷、无创、生态效度高、对运动伪影/电磁干扰不敏感等诸多优势。近红外光(650-900nm)信号可穿透人体组织与颅骨,到达大脑皮质层(头皮下2-3cm深度),准确探测脑皮层中氧合血红蛋白与脱氧血红蛋白的浓度变化情况。血液中对光吸收敏感的主要成分是水、氧合血红蛋白和脱氧血红蛋白,这些成分在近红外光波段(650~900nm)的光吸收系数显著降低。因此,该波段是一个良好的光学透明窗口,使得近红外光可以到达颅内深部。该系统由北航科研成果转化、是国内通道数超100的医疗器械,相对而言,普通设备只有50多个通道。公司有实力提供全产业链品质保障,满足临床各种复杂应用场景。在解决方案提供上,慧创近红外,探头排布更灵活,通道数更多,软件功能丰富。 近红外光谱脑功能成像系统的产品特点:1、适合自然状态,抗干扰一说话一边测:一边运动一边测;一边治疗一边测;2、应用领域广泛谨慎类和脑功能疾病检查:抑郁症、精神分裂症、多动症、认知障碍等脑功能治疗评估:中风、脑瘫、运动障碍、儿童多动症、抑郁症等疾病的治疗评估适用人群广泛:婴幼儿、成人、老人3、空间分辨率高不同于脑电,近红外技术可以定位病灶空间位置,为疾病诊断提供更多的信息4、提供新的解决方案fNIRS为脑的研究、诊断、训练和诊断提供了全新的定量手段,为更多脑功能技术难题提供新的定量解决方案。5、一站式生成检查报告 近红外光谱脑功能成像系统的技术参数:产品型号: 6000A/B/C主要用途: 医疗+科研通道数: 102/82/53光源: 三波长典型的波长: 730/808/850探测器: 雪崩二极管(APD)时间分辨率: 超过11Hz软件配置: 医疗专用软件×1套+科研专用分析软件×1套选配件: 3D空间定位系统 近红外光谱脑功能成像系统的应用领域:精神类疾病检查诊断:精神分裂、抑郁症、双相障碍神经内科:阿尔茨海默症(老年痴呆)、帕金森康复科:脑功能障碍评测、康复效果评价、指导治疗方案、药物疗效评估、物理干预效果评估妇幼儿科:儿童大脑发育、儿童脑功能评价、药物疗效评估、物理干预疗效评估 脑卒中自闭症儿童多动症(ADHD)婴幼儿脑氧检测脑功能疾病检查脑功能疗效评估精神疾病的辅助诊断药物疗效评估物理干预疗效评估脑功能障碍评价康复效果评价治疗方案评估儿童脑发育评估儿童脑功能疾病评估与辅助诊断脑疾病治疗过程实时监控近红外光谱脑功能成像系统的产品优势1、技术优势十余年的fNIRS研究积淀,能全方位解决fNIRS的研发难题;获得超过100通道的fNIRS注册证,产品技术非常先进;国家重点研发计划、国家重大科学仪器研制项目牵引,与权威临床机构建立了紧密的合作关系,已形成多个领域的解决方案;在宣武医院、华山医院等60余家单位示范应用;2、产品设计优势型号覆盖广泛;功能模块化设计,满足客户升级需求;便利,操作简单易上手;3、符合用户需求高通道,支撑全脑检查;多领域拓展,从精神疾病拓展到儿童、老年、卒中等更多应用领域;定量准确,提供定量化的评价指标,方便开展临床评价;便携化,便于转运,适用穿戴检测等场景。4、全面及时的配套服务
    留言咨询
  • Sapphire 激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器可搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。本产品型号为Sapphire NIR,搭载有685nm和784nm两个固态激光器作为近红外波段激发光源,仪器可选配PI模块用于磷屏成像(放射性同位素自显影成像),也可选配CCD模块,用于传统化学发光成像。同时,仪器还可选配Q模块,加配520nm通道激光器,升级为Sapphire NIR-Q,用于总蛋白染色成像和绿色荧光通道成像。 产品特点● 强大的多重荧光检测,可同时扫描,也可逐通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire NIR激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、近红外荧光EMSA、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。通过选配CCD模块、PI模块和Q模块,仪器应用范围将拓展到化学发光成像、可见光成像、磷屏成像(放射性同位素自显影成像)以及总蛋白染色成像等。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光扫描成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 活体近红外光学成像系统IN VIVO OPTICAL IMAGING 1.1体内荧光成像系统基本原理荧光探针通过尾静脉注射或者口服的方式进入小动物体内;激发光源照射小动物,荧光探针发出荧光;荧光经过滤光片和镜头进入检测器,信号给到电脑进行成像。1.2体内荧光寿命成像系统近红外荧光寿命成像系统基本原理基于荧光成像系统,控制激光器与检测器的时间同步;Labview编程,设置采集参数,进行数据采集;同时,在Labview软件上进行数据处理,得到最终寿命成像结果。 2. 光学和性能检测器:InAsGa CCD,-55℃,-65℃,-85℃和-190 ℃四款相机可选。配有接口转接环,方便C口镜头随意切换。2.1 高灵敏检测器 CCD参数* 制冷温度越低,暗电流越小,灵敏度越高,越适合弱信号的采集 2.2 电脑自动化调焦和移动样品相机镜头,激发光源和集成模块成像视野200mm * 200 mm可调(购买的镜头)和20 mm ~ 20 mm可调(自制的镜头);高透波段900 nm ~ 1700 nm 激光器808 nm,980 nm及1064 nm等波长功率可选;滤光片波长及尺寸可选 电控调焦及电控移动样品,更便于操作;多光束集成装置,满足多光源激发和切换。 下图:不同荧光波段下,活体腿部血管的成像效果。下图:双镜头切换使用,满足不同成像视野需求。激发光源便捷切换,电动调焦和移动样品。2.3 先进的样品处理装置麻醉系统和温度调节装置提供气体麻醉装置,可持续长久的麻醉小动物,保持实验过程中小动物的相对静止;控温平台保证小动物(特别是裸鼠等)体温正常,尽量减小实验室低温环境对实验数据的影响。 下图:配有麻醉装置、控温平台2.4 多功能一体化数据采集和处理软件荧光成像用的是PI的LightFiled软件 ,可自动或手动获取图片;也可以制作成视频;图片可叠加强度,也可以取平均强度;可进行TTL调制;与Labview和Matlab等编程软件无缝连接;荧光寿命成像用的是自主用编写的Labview工作界面,具有独立版权。从采集的参数设置,到焦点调节,以及最后寿命成像的数据处理,阈值调整等,皆可实现。所有结果都可以后期用Matlab处理了。 下图:荧光成像使用LightFiled下图:荧光寿命成像使用Labview3. 基于荧光成像的研究案例★应用案例 1近红外成像指导外科手术利用该荧光成像系统和相应的近红外二区发射的荧光探针,实现对小鼠的近红外成像指导的外科手术。可识别并切除 1 mm的肿瘤。 探针材料:NaGdF4:5%Nd@NaGdF4激发光源:808 nm laser 参考文献:Wang, P. Fan, Y. Lu, L. Liu, L. Fan, L. Zhao, M. Xie, Y. Xu, C. Zhang, F., Nat. Commun. 2018,9 (1), 2898. 下图:DCNPs稀土纳米颗粒表面修饰DNA和目标多肽,可在肿瘤位置持久停留(长达6h),对其进行光学成像,利于卵巢癌转移瘤切除的外科手术。下图:对比于近红外一区发射的荧光探针(ICG),1060 nm发射的稀土纳米颗粒,具有更高的光学稳定性和更深的模拟组织穿透深度。★应用案例 2活体肠胃药物释放监控利用该荧光成像系统和巧妙设计的竞争吸收近红外发射荧光探针,实现对活体的肠胃药物释放过程的实时动态监控,并进行半定量的检测。 探针材料:NaGdF4:5%Nd@NaGdF4激发光源:808 nm laser. 参考文献: Wang, R. Zhou, L. Wang, W. Li, X. Zhang, F., Nat. Commun. 2017, 8 (1), 1038. 下图:在pH大于等于8时, SSPI分散开来,染料及药物释放出来,730 nm激发载体,再次发射出1060 nm的荧光。根据荧光强度的恢复大小定量药物的释放量。808 nm激发用于跟踪药物。下图:合成材料的电镜图设计微米尺寸载体:稀土纳米颗粒静电吸附于表面,介孔通道中载有连接药物的NPTAT染料。稀土颗粒可以被730 nm和808 nm激发产生1060 nm的荧光,染料在730 nm处也有吸收。由于染料具有极大的吸收截面,微米载体在730 nm激发下,无法产生1060 nm发射。载体表面有pH响应SSPI用于保护介孔通道中的染料不会释放出去。★应用案例 3:活体炎症成像和检测利用该荧光成像系统和炎症响应性的近红外二区探针,可以实现活体中活性氧物种的高信噪比成像和高精确性的检测。 探针材料:NaGdF4:5%Nd@NaGdF4激发光源:808 nm laser. 参考文献:Zhao, M. Wang, R. Li, B. Fan, Y. Wu, Y. Zhu, X. Zhang, F., Angew. Chem. Int. Ed. 2018, 58, 2050-5054. 下图:DCNPs稀土纳米颗粒表面修饰生物内源性的物种GSH,GSH遇到活性氧之后,会发生偶联反应,诱发纳米颗粒聚集。达到点亮活性氧富集的部位。下图:透射电镜表征单分散纳米颗粒在体外遇到活性氧,发生强烈的偶联反应,形成二硫键,导致颗粒聚集。★应用案例 4:活体深组织成像监控心率近红外二区成像得到更高分辨率的血管成像;更高的成像分辨率和更深组织穿透深度,可以对活体心率进行准确的监控和测试。 探针材料:FD-1080激发光源:1064 nm laser. 参考文献:Li, B. Lu, L. Zhao, M. Lei, Z. Zhang, F., Angew. Chem. Int. Ed. 2018, 57 (25), 7483-7487. 下图:首次设计合成近红外二区激发和发射的小分子探针,相对于ICG,该探针具有更高的稳定性下图:由于长波长荧光具有低的散射,从体外成像深度和分辨率的结果看,波长越长,成像的穿透深度和分辨率越高。★应用案例 5:评估临床药物的疗效临床前药物的药理评估对药物的推广和疗效评价非常重要。利用近红外活体荧光成像系统实现对降血压药物的动力学药理评估和监控。 探针材料:FD-1080 and DMPC激发光源:1064 nm laser. 参考文献:Sun, C. Li, B. Zhao, M. Wang, S. Lei, Z. Lu, L. Zhang, H. Feng, L. Dou, C. Yin, D. Xu, H. Cheng, Y. Zhang, F., J. Am. Chem. Soc. 2019, 141 (49), 19221-19225. 下图:FD-1080与DMPC混合重组装,形成J聚集体,染料的吸收和发射主峰都红移到1300 nm之后。实现有机染料的长波长激发和发射。下图:波长越长,光子的散射越小,通过体外实验,对比不同成像窗口,发现1500nm之后成像的分辨率最好。★应用案例 6:活体胃酸检测设计高亮的抗淬灭长波长发射有机探针,利用其pH相应的特性,通过比例荧光实现对胃酸的高精确检测。 探针材料:BTC系列探针激发光源:1064 nm laser. 参考文献: Wang, S. Fan, Y. Li, D. Sun, C. Lei, Z. Lu, L. Wang, T. Zhang, F., Nat. Commun. 2019, 10 (1), 1058. 下图:以腈染料为基础进行改造,可以得到具有很强抗溶剂淬灭的系列BTC染料。该染料的激发/发射波长主峰可以达到近红外二区。同时,由于其抗淬灭性质,使其具有很强的荧光强度,光稳定性也远优于ICG。下图:对比ICG的成像效果,BTC1070具有高分辨和高信噪比的腿部血管和淋巴成像。★应用案例7:监控药物的肝毒性设计长波长且可调的系列近红外探针,利用比例荧光对药物诱导的肝毒性进行定量实时的检测。 探针材料:BTC系列探针激发光源:1064 nm laser. 参考文献: Lei, Z. Sun, C. Pei, P. Wang, S. Li, D. Zhang, X. Zhang, F.,. Angew. Chem. Int. Ed. 2019, 58 (24), 8166-8171.★应用案例8:肿瘤检测稀土离子的荧光寿命非常稳定,几乎不受外界环境的干扰,也不随活体组织的穿透深度而变化,因此利用荧光寿命成像系统对生物标志物进行检测,具有极高的稳定性和准确性。 探针材料:NaGdF4@NaGdF4:Yb,Er@ NaGdF4 :Yb@ NaGdF4 :Nd激发光源:808 nm laser. 参考文献:Fan, Y. Wang, P. Lu, Y. Wang, R. Zhou, L. Zheng, X. Li, X. Piper, J. A. Zhang,F., Nat. Nanotechnol. 2018, 13 (10), 941-946.★应用案例9:活体信息存储和解析将不同荧光寿命的材料编辑成二维码,空间上重叠植入到活体皮下。荧光成像无法解析出二维码信息,荧光寿命成像可以将两种不同荧光寿命的二维码解析出来,得到活体信息存储和解码的过程。更多的荧光寿命,实现更大的信息存储。 探针材料:NaYF4:Tm,Er@NaYF4激发光源:1208 nmlaser. 参考文献: Zhang, H.X. Fan, Y. Pei, P. Sun, C. X. Lu, L. F. Zhang, F., Angew. Chem. Int. Ed.2019, 58 (30), 10153-10157.参考文献 1. Wang, P. Fan, Y. Lu, L. Liu, L. Fan, L. Zhao, M. Xie, Y. Xu, C. Zhang, F., Nat.Commun. 2018, 9 (1), 2898.2. Zhao, M. Wang, R. Li, B. Fan, Y. Wu, Y. Zhu, X. Zhang, F., Angew. Chem. Int. Ed.2018, 58, 2050-5054.3. Li, B. Lu,L. Zhao, M. Lei, Z. Zhang, F., Angew. Chem. Int. Ed. 2018, 57(25), 7483-7487.4. Sun, C. Li,B. Zhao, M. Wang, S. Lei, Z. Lu, L. Zhang, H. Feng, L. Dou, C. Yin, D. Xu, H. Cheng, Y. Zhang, F., J. Am. Chem. Soc. 2019, 141(49), 19221-19225.5. Fan, Y. Wang, P. Lu, Y. Wang, R. Zhou, L. Zheng, X. Li, X. Piper, J. A. Zhang,F., Nat. Nanotechnol. 2018, 13 (10), 941-946.6. Zhang, H. X. Fan, Y. Pei, P. Sun, C. X. Lu, L. F. Zhang, F., Angew. Chem. Int. Ed. 2019,58 (30), 10153-10157.7. Antaris, A.L. Chen, H. Cheng, K. Sun, Y. Hong, G. Qu, C. Diao, S. Deng, Z. Hu, X. Zhang, B. Zhang, X. Yaghi, O. K. Alamparambil, Z. R. Hong, X. Cheng, Z. Dai, H., Nat. Mater. 2016, 15 (2), 235-42.8. Hong, G. Antaris, A. L. Dai, H., Nat. Biomed. Eng. 2017, 1 (1),0010.9. Wang, R. Li,X. Zhou, L. Zhang, F., Angew. Chem. Int. Ed. 2014, 53(45), 12086-90.10. Liu, L. Wang,S. Zhao, B. Pei, P. Fan, Y. Li, X. Zhang, F., Angew. Chem. Int. Ed. 2018,57 (25), 7518-7522.11. Wang, S. Fan, Y. Li, D. Sun, C. Lei, Z. Lu, L. Wang, T. Zhang, F., Nat. Commun.2019, 10 (1), 1058.12. Wang, R. Zhou, L. Wang, W. Li, X. Zhang, F., Nat. Commun. 2017, 8(1), 1038.
    留言咨询
  • ISS是一家致力于开发用于研究、临床和工业的高精度、高敏感度光学设备的公司,有30多年光学成像技术与产品研发历史。1992年ISS公司与伊利诺伊大学Gabriele Gratton研究团队合作开发了Imagent功能行近红外脑成像系统,它是一款集成功能性近红外(fNIRS)与快速光学信号(EROS)采集功能的近红外光学成像设备。1.Imagent兼具高时间分辨率和高空间分辨率目前脑成像技术主要包含两类,一类具有高空间分辨率(可达1-2毫米)但时间分辨率差,比如功能性磁共振成像(fMRI)和正电子发射断层扫描成像(PET)。另一类具有高时间分辨率(毫秒级)但空间分辨率差,比如脑电图(EEG/ERP)和脑磁图(MEG)。Imagent采用频域技术,从检测到的信号中测量三大参数:直流振幅、交流振幅和相位延迟。直流振幅和交流振幅的测量可以预测缓慢的血液动力学信号,相位延迟可以预测快速的神经元放电信号。因此Imagent除了可以采集到大多数NIRS只能测量到的慢速的血液动力学光信号之外, Imagent的事件相关光学信号(EROS)系统更能测量快速的光信号。 2.先进的近红外技术 Imagent 采用独有的频域法,以100MHz的调制频率近红外光作为光源,光电倍增管作为探测器进行测量,提供信号的平均强度、幅度和相位差信息,从而解析含氧血红蛋白、脱氧血红蛋白、总体血红蛋白浓度的绝对变化值和血氧饱和度;高达64个光源32个探测器,最多可在全脑分布512个光学通道,实现0.5-1cm的空间采样;事件相关光学信号(EROS)系统可以实现小于16毫秒的快速时间采样。 3.适用不同被试群体独特的传感器垫填充柔性泡沫材料和可调节深度纤维,可以调节光源和探测器位置以测量大脑区域并能适应不同头型的被试;儿童型传感器垫可方便用于儿童研究;通用的头盔具有遍布全脑的插孔,方便用户自由设置光源和探测器分布。4.与核磁共振(MRI)比较 核磁共振检查对任何人来说都不是件容易的事情。被试者在封闭狭小的隧道中忍受仪器的咔咔作响,并且在机器检查时不能移动,最多长达20分钟。在检查儿童或婴儿、患有注意缺陷障碍(即多动症)的青少年和患有幽闭恐惧症的人时,上述弊端表现得更为明显。Imagent则没有这些弊端,光纤传感器置于被试者头部,被试者身处轻松随意的氛围中,坐在椅子上活动自如;仪器不发出任何噪音。设备同时也使科学家可以进行大脑活动期间的扩展神经网络分析研究,这在核磁共振时代是很难实现的。操作者可以坐在远处也可以坐在仪器旁边,纤维长度可达十米,这为研究目的提供了许多有趣的选项。此外,在部分日常使用中,研究者希望监测大脑的长期活动,当使用Imagent时,这可以轻松实现,其电极甚至可留在原地长达几小时。
    留言咨询
  • 便携式近红外脑成像系统介绍 近红外脑功能成像技术是新一代非侵入式脑功能成像技术。该技术利用脑组织中的氧合血红蛋白和脱氧血红蛋白对600-900nm不同波长的近红外光吸收率的差异特性,来实时、直接检测大脑皮层血氧活动。近红外光谱脑功能成像技术fNIRS与fMRI都是通过检测脑血流动力学得知脑神经活动的变化。fNIRS技术由于其时空分辨率相对较高、抗运动干扰和电磁干扰能力强、生态效度高等特点为心理学、运动体育、医学研究、人因工程等领域提供了一种可靠而有效的新型定量检测手段。产品优势:1.将通常台式仪器所使用的雪崩二极管集成入便携设备,实现体积小、超高灵敏的高水准便携设备,在有头发覆盖区域表现优异。2.通道数高,超过传统设备两倍以上,可达63,可覆盖更多脑区3.北航超微光探测技术,可在全脑检测到高质量信号,降噪性能好4.续航时间长达6小时,可实现长时间可穿戴式测量5.传输半径可达20m,更适应运动场景6.高性能Wifi传输,信号流畅技术参数:通道数:63通道探测器:雪崩二极管光源:双波长电池续航:高性能锂电池,续航长达6小时传输方式:WIFI传输头帽设计:多距离探头排布,支持tomography同步接口:8通道TTL或CMOS支持与EEG、tDCS、TMS、fMRI联用软件特点:1,简单易上手,远离数据分析困扰2,专业的分析工具包,深度挖掘数据中的金矿:时许平均、广义线性模型GLM统计;3,支持脑激活与脑网络分析功能,多种分析方式,多角度全方面评价脑功能4,丰富的可视化手段:曲线、二维、三维脑图谱融合显示,数据感知更直观、数据展示更精彩5.运动伪迹识别与矫正功能,数据处理方便、效果好产品应用:1.脑卒中康复研究2.神经性疾病的研究:阿兹海默症、癫痫等3.新生儿脑网络发育的研究4.运动心理学5.运动康复6.运动戒毒7.脑机接口8.神经反馈9.视、听、嗅、触觉研究10.神经科学领域的研究11.多模态联合应用研究:如TMS、tDCS、EEG、MEG、fMRI等
    留言咨询
  • fNirs近红外脑成像系统 NirScan fNirs近红外脑成像系统介绍近红外脑功能成像技术是新一代非侵入式脑功能成像技术。该技术利用脑组织中的氧合血红蛋白和脱氧血红蛋白对600-900nm不同波长的近红外光吸收率的差异特性,来实时、直接检测大脑皮层血氧活动。近红外光谱脑功能成像技术fNIRS与fMRI都是通过检测脑血流动力学得知脑神经活动的变化。fNIRS技术由于其时空分辨率相对较高、抗运动干扰和电磁干扰能力强、生态效度高等特点为心理学、运动体育、医学研究、人因工程等领域提供了一种可靠而有效的新型定量检测手段。产品优势 1.北航超微光探测技术,配合雪崩二极管主动降噪,针对亚洲人特点设计,在有头发区域信号获取表现优异2.使用三波长检测,检测准确3.超过100通道,可实现真正意义上覆盖全脑4.获得医疗器械注册证,慧创产品质量、安全性、有效性获得国家认证 技术参数:通道数:超过100通道探测器:雪崩二极管(APD)光源:三波长可拓展性:支持8通道生理信号同步采集:心电、呼吸、脉搏等头帽设计:多距离探头排布,支持tomography同步接口:8通道TTL或CMOS支持与EEG、tDCS、TMS、fMRI联用 软件特点:1,简单易上手,远离数据分析困扰2,专业的分析工具包,深度挖掘数据中的金矿:时许平均、广义线性模型GLM统计;3,支持脑激活与脑网络分析功能,多种分析方式,多角度全方面评价脑功能4,丰富的可视化手段:曲线、二维、三维脑图谱融合显示,数据感知更直观、数据展示更精彩5. 运动伪迹识别与矫正功能,数据处理方便、效果好 产品应用1.脑卒中康复研究2.精神类疾病的诊断研究:抑郁症、精神分裂症等3.神经性疾病的研究:阿兹海默症、癫痫等4.新生儿脑网络发育的研究5.运动心理学6.运动康复7.脑机接口8.神经反馈9.心理学情绪实验10.多人同步交互扫描11.视、听、嗅、触觉研究12.神经科学领域的研究13.多模态联合应用研究:如TMS、tDCS、EEG、MEG、fMRI等
    留言咨询
  • OxyMon近红外脑成像是一款功能强大的台式近红外成像系统,每个主机光源发射端2,检测通道4,可以一个或者多个主机组合,组成112测试通道的系统,购买多个主机时,既可以组成一个系统使用,也可以分拆成几个系统(降低通道数)同时使用。Artinis使用柔软的软氯丁橡胶的测试光极帽以及光极探头,扁平的光极探头,适合检测前额或者无发的头皮表面,普通光极探头可以测试有头发的脑区,Artinis为老人、儿童和心血管易损病人的大脑氧合状态监测提供更加安全简单的操作,帮助fNIRS研究达到更高层面。技术规格●技术原理:使用改良朗伯比尔定律的连续波近红外光谱;●检测目标:含氧血红蛋白、脱氧血红蛋白以及总血红蛋白;●光源:温度稳定的脉冲激光光源((class I according to iec-60825-1, safety of lasers);●数据分析软件: OxySoft;●测试脑区:全脑/有发脑区;●光源通道 :4~32;●测试通道: 1~112通道;●光源波长: 765nm和855nm,其它波长可定制;●探测器:2~16通道在,可定制;●光极间距 :30mm;●光极测试帽:头带和头帽有不同型号,儿童版(3个月~6岁)、成人版(XS~XL);●电磁兼容性:不受脑电图(EEG)、心电图(ECG)、肌电图(EMG);●采样率:50Hz,250Hz。
    留言咨询
  • Asiagene NIR2020 近红外I区和近红外II区生物医学荧光成像系统是上海亚晶生物科技有限公司自主研发的大型高端设备。 主机包含:1.暗箱2.科研一级CCD相机(光谱范围:400-1700nm)3.近红外探测器4.荧光光路及照明系统5.小动物麻醉系统6.操作分析软件7.电源线和数据线8.操作说明 其中暗箱:1.内部铺有吸光性能良好的材料;2.可以装配近红外探测器配备;3.多位波段滤光片及切换装置;4.可装配多个波段光源,并分别控制及采集5.可以支持小动物麻醉系统6.配备自动升降台,可以随时调整样品台高度7.配备小动物恒温模块,保证成像时动物体温8.配备明场光源 近红外探测器:1.探测器芯片:铟镓砷探测器2.分辨率:640(h)×512(v);3.带宽:900-1,700nm;4.峰值量子效率(peak QE):85%;5.保持信号完整性:65,535灰度值;6.扫描频率:4×18 MHz;7.InGaAs探测器运行能力:99.5%;8.输入像素尺寸:15×15μm;9.输入传感器尺寸:9.6×7.68 mm;10.读出杂讯:High gain mode 27-35 电子
    留言咨询
  • OctaMon+便携式无线近红外脑成像系统是荷兰Artinis公司的一款便携式近红外成像设备,采用LED光源,非常轻便、便携。Artinis使用柔软的软氯丁橡胶的测试光极帽以及光极探头,与OctaMon扁平的光极探头不同,OctaMon+普通光极探头可以测试有头发的脑区,Artinis为老人、儿童和心血管易损病人的大脑氧合状态监测提供更加安全简单的操作,帮助您的fNIRS研究达到更高层面。技术规格技术原理:使用改良朗伯比尔定律的连续波近红外光谱;检测目标:含氧血红蛋白、脱氧血红蛋白以及总血红蛋白;数据分析软件: OxySoft测试脑区:OctaMon+全脑/有发脑区光源 :2×8;测试通道: 8通道;自定义通道和短通道都可实现;光源波长: 760nm和850nm,其它波长可定制;光极间距 :30mm电源: 快速充电电池,一次充电可用6小时,可用移动电源充电;主机总重量:OctaMon, 230克(包括电池在内) OctaMon+, 260克(包括电池在内) 主机尺寸:85×54×20mm光极测试帽:OctaMon采用头带;OctaMon采用全脑光极帽,有不同型号,儿童版(3个月~6岁)、成人版(XS~XL);电磁兼容性:不受脑电图(EEG)、心电图(ECG)、肌电图(EMG);离线数据存储 :100+小时采样率:50Hz惯性传感器:9轴加速器
    留言咨询
  • IMA-IR™ 近红外高光谱显微成像系统 IMA-IR™ 近红外高光谱显微成像系统快速多合一高光谱显微镜IMA IR 提供了无与伦比的图像和数据质量。该高光谱平台针对红外 光谱范围进行了优化 。特点快速全局映射(非扫描)高空间和光谱分辨率完整的系统(源,显微镜,相机,滤镜,软件)无损分析可定制从900 nm到1700 nm的灵敏度应用领域 NIR高光谱显微镜覆盖900-1700 nm的检测范围,是 空间和光谱识别以及二区窗口中发射的荧光团测量的理想选择 。例如,单壁纳米管 (SWNT)的发射带很窄(?20 nm),每个带对应于唯一(n,m)种(手性)。借助红外高光谱显微镜, 可以在活细胞(体内)和体外以单一的SWNT空间分辨率分离这些物种 。PUBLICATIONSCarbon Nanotubes as Optical Sensors in BiomedicineA Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid FluxA Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical PathwayA carbon nanotube reporter of microRNA hybridization events in vivoHyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging 如需索取更多资料请联系:佰泰科技有限公司电子邮件联系电话:或直接联系 常经理
    留言咨询
  • 独立外置激光器LOIS-3D 采用的是独立外置 Nd:YAG 高能 量可协调 OPO 脉冲光器,具有高能量激发,高通量波长输出,快速波长协调,可移动性等优势,为活体或组织研究提供高质量的成像数据。&bull 标配 180 mJ 高能量输出,高配可达 250 mJ 的高能量输出集泵浦激光,OPO 和 PSU 一体化;&bull 波长调谐范围 660-1064 nm,高配可达 660-2300 nm,涵盖近红外一区及近红外二区;&bull 4 束激光(2 个正交,2个斜交)同时进行激发,确保组织接收激发能量均一性。专用成像设备成像系统采用精密旋转马达控制活体完成 360° 旋转,具有电磁屏蔽和光冲击保护涂层的超宽屏带弧形阵列探测器(中心频率0.1~8 MHz) 360° 全视野采集超声信号,获得高分辨率、高对比度,高灵敏度的三维光声层析成像。&bull 3D 空间 x-y-z 等向性分辨率 150 μm &bull 光吸收对比度 0.03 [1/cm] (~1 pmole of ICG) &bull 全视野获取小鼠身体及脑部成像(40 mm x 40 mm x 40 mm)&bull 成像深度 ≥ 4.5cm@mouse应用方向LOIS-3D小动物全身光声成像系统具有高安全性、高分辨率以及实时成像等优点,能够提供生物组织结构、功能、代谢等方面的重要信息。在分子探针、生物纳米材料、心血管疾病(血管生成、心肌炎、血栓、心梗等)、血红蛋白监测、肿瘤的早期监测、前哨淋巴结监测、脑成像及脑功能监测等领域得到了广泛的研究。应用案列TomoWave 自推出 LOIS-3D 临床前小动物光声成像系统以来,获得了用户的高度认可。迄今为止,在世界顶级癌症医疗机构美国MD安德森癌症研究中心、华盛顿大学圣路易斯分校、休斯顿大学、青岛大学、广西大学等都有装机,与中国科学院深圳先进技术研究院、中山大学、中山大学附属第三医院、华中科技大学、苏州大学、华南师范大学、华中农业大学、南京工业大学、南京邮电大学等多个科研团队开展合作,研究中的活体光声成像表征均在 LOIS-3D 近红外一区&近红外二区小动物全身 3D 光声成像系统上完成测试。
    留言咨询
  • 近红外二区小动物活体成像系统 MARS 拥有完整的小动物活体光学成像系统,并可个性化定制,满足不同需求。 MARS的近红外二区相机采用Teledyne Princeton Instruments 的NIRvana系列,其出色的量子效率与先进的噪声抑制技术为高品质成像提供保证。 FAST与Pathfinder两套定制的光学方案能实现不同场景的实验需求,从大视场下对小鼠的整体拍摄,到局部的微观分析,我们独特的光学解决方案在保证空间分辨率的前提下,为您提供优异的光通量与信号强度。 MARS系统采用别具匠心的整体设计,开放的用户界面带来独特的便捷性与灵活性。模块化的设计可以方便用户扩展功能,并可整合超声,光声,CT断层扫描,荧光寿命,PET-CT,MRI等成像系统,提供无缝多模态成像解决方案。 小鼠血管荧光成像, 使用水溶性D-A-D小分子染料(QY≈1.2%)
    留言咨询
  • 荷兰高科技近红外光谱成像研究公司Artinis请了几位儿童发育研究人员,指出他们在研究过程中通常会遇到的主要困难,以及婴儿友好型fNIRS设备应该具备哪些功能,接着根据他们的反馈,开发了一款专为婴儿大脑活动研究而生的便携式近红外脑成像系统BabyBrite。BabyBrite 是 Brite MKII用于婴儿研究的新型优化版本。该设备允许研究人员在众多环境中灵活地进行实验测试,其灵活的模板功能使研究人员能够从婴儿头部的任何位置测量大脑活动。BabyBrite 软件包带有距离保护装置,可确保稳定的光极间距和安装解决方案,除了实验室以外,也适用于现实生活中的交互研究(例如汽车座椅、父母膝上、高脚椅、四处爬行)。BabyBrite 采用与 Brite MKII 相同的创新功能(即高数据质量、多功率增益控制和环境光保护),是一款十分适用于测量 0 至 2 岁婴幼儿大脑活动的便携式 fNIRS 设备。与 Brite MKII结合使用,还可以轻松完成超扫描(例如亲子互动)。通过组合两个 BabyBrite 设备,可以形成一个Dual BabyBrite,并在较大的婴儿身上测量超过54个通道。BabyBrite 可以测量大脑中氧合和脱氧血红蛋白浓度水平的变化,由于它仅重300克并且是便携式NIRS设备,因此婴儿在佩戴该设备时能够自由移动和爬行。可应用于婴儿认知发展、语言发展、婴儿脑部疾病、亲子互动/同步和婴儿点对点互动等研究。BabyBrite的核心是:灵活、舒适、可靠可测量任何皮质脑区的氧合、脱氧和总血红蛋白的浓度变化;光极和光极支架由柔软的材质制成,十分舒适;基于改进的Brite MKII高质量数据;优化了在常见婴儿研究环境中进行测试的灵活性;设置时间短;超扫描适用于众多年龄段;具有便携式可穿戴特点。
    留言咨询
  • HSM可见-近红外高光谱显微成像系统特点:高光谱显微镜的各个模块相对独立性高,便于固件升级以及替换;高光谱成像仪采用美国Headwall公司高光谱分辨率成像仪,波段400-1000nm和900-1700nm可选配,采集数据准确可靠;客户端操作系统人性化,便于用户高光谱数据采集操作;适用适用于生物、制药、病理、化工、血液、细胞、基因工程等应用领域。 应用案例:
    留言咨询
  • 产品图片:名称:近红外II区(NIR-II)深度制冷科研相机(-80℃)别名:NIR-II红外相机,NIR-II红外制冷相机,NIR-II红外低温相机, NIR-II红外成像,NIR-II红外制冷成像,NIR-II红外低温成像, NIR-II近红外成像相机,NIR-II近红外制冷成像相机,NIR-II近红外低温成像相机 NIR-II近红外科研成像相机,NIR-II近红外科研制冷成像相机,NIR-II近红外科研低温成像相机, NIR-II近红外二区荧光成像相机,NIR-II近红外二区荧光制冷成像相机,NIR-II近红外二区荧光低温成像相机,产品描述:成像系统采用TE4深度制冷方式,低温度达到-80℃。对成像单元(传感器)进行大范围、精确的温度控制,显著降低成像热噪声,提高图信比。支持针对微弱信号的成像,支持超长的曝光时间,确保图像质量的曝光时间,图像质量非常好。独特的静音式散热系统,保证使用用环境安静无干扰。内置滤光元件接口极大简化外围成像路设计复杂性。高透率石英真空密封装置对成像单元提供充足防护,高相机的性和使用寿命。14-bitA/D为每个像素提供精确量化。成像软件系统:自主研发的成像分析软件(opto-X),可对成像系统的工作状态进行控制与显示,并实现图像、视频便捷的采集、存储与实时分析。独特的灰度定量映射功能可针对图像明暗进行自定义,实现图像的实时增强。双文件格式(*.tiff/*.jpg)图像存储,不但可存储图像原始数据,同时存储当前显示状态图像,包括灰度映射或添加伪彩后的图片。所有视频直接存储原始数据,在回放中可实时截图。应用:适合从事生物学、医学、天文学等科研工作者,特别适用于生物医学荧光成像、材料学荧光成像、荧光偏振成像、荧光寿命成像、天文成像和激光光斑分析等多种科研领域及军事、高端安防等应用领域。产品参数:分辨率640 × 512传感器尺寸16 mm × 12.8 mm传感器像素尺寸25 μm × 25 μm有效感光波长范围900 - 1700 nm制冷温度范围室温~ - 80 ℃散热方式风冷光学接口C-mount数据接口USB 2.0外触发接口MCXA/D转换速率10 MHzA/D量化位数14 bit增益模式high 23.6 μV/ e- | low 1.26 μV/ e-传感器满井容量high 118 Ke- | low 1.9 Me-传感器非线性度≤ 2 % (15 –85% full well capacity)帧率20 Hz曝光时间范围1 ms ~ 65 s暗电流(e-/p/sec) @ -80℃ 800*供电电压220 V无制冷运行功耗 3 W制冷峰值运行功耗 600 W重量4 kg配套成像分析软件opto-X for windows 应用案例:示例 :滤光元件:1200nm LP荧光材料:吲哚青绿(ICG)相机参数制冷温度:-80℃曝光时间:0.3s镜头:Edmund 50mm SWIR lens光圈:F4.0示例 2:显微成像系统:奥林巴斯IX73 400X滤光元件:1200nm LP 、810nm BP 、900nm DMLP荧光材料:吲哚青绿相机参数制冷温度:-80℃曝光时间:3000ms
    留言咨询
  • CRAIC30 PV TM: 30 PV TM,显微分光光度计结合了最新的科技,允许用户测量直径小于1微米样品区域的紫外-可见-近红外光范围内的透射比、吸光度、反射率、释放强度和荧光光谱,即使是薄膜和色彩空间都能被检测到。在获得Microspectra(显微光谱)的同时,可以观察到样品深紫色、可见光和近红外光处高分辨率的数字图像。易用的特点也附加到了20/30 PV 强大的系统中,包括了软件自动化仪器人体工程学的所有进步。20/30 PV&trade 显微分光光度计简单易用,测量方法为非破坏性并且得到的光谱数据无与伦比显微分光光度计,可以无缝从深紫光到近红外光区域获得显微样品的光谱和图像。它可以在吸光度、反射率和荧光性中获得Microspectra(显微光谱)和图像。主要特点l 光谱范围:200至2100纳米l 紫外-可见-近红外光透射比传递显微分光计l 紫外-可见-近红外光透射比成像l 紫外-可见-近红外光反射显微分光计l 紫外-可见-近红外光传递成像l 紫外-可见-近红外光荧光显微分光计l 紫外-可见-近红外光荧光显微成像l 拉曼显微分光计l 紫外光、可见光和近红外光区域的偏振显微分光计l 紫外光、可见光和近红外光区域的偏振微尺度成像l 膜厚度测量l 微观样品的色度学l 带rIQ&trade 包的折射率测量l 手动或者全自动操作l Lightblades&trade 技术的特色l 整合TE冷却系列探测器,噪音低,稳定性好l 精确的样品温控l 带刻度,有不同的测量区域,甚至有的小于1微米l 目镜和数字成像带来出众的图像l 具有LambdaFire&trade 分光计和成像控制以及分析软件的特色l LambdaFire&trade 同时包含触屏控制l 专业软件包括数据分析、光谱数据库、图像分析等软件应用半导体薄膜厚度(测量)l MEMS设备l 表面等离子体共振l 光激能带隙水晶l 杂质加工检测l 蛋白质晶体l 法庭科学l 药物化学l 可疑文件l OLEDl 平板彩色面罩l 组合化学紫外-可见-近红外光显微分光光谱仪来自领导者的前沿显微分光计 一个完全整合的显微分光计装置,描述从深紫外光到可见光到近红外光范围的光谱。同时直接可以获得样品空隙的图像,而且样品的测量更快、更精确。20/30 PV&trade 拥有Lightblades&trade 科技的特点,甚至能够让您测量次微米级样品的透射比、反射率、偏振和荧光光谱。 CRAIC科技也是NIST可追溯的显微分光计标准的唯一来源。拉曼显微分光光谱仪灵活的拉曼显微分光光谱仪 当20/30 PV&trade 装上CRAIC阿波罗&trade 拉曼分光仪模块后,它能像拉曼、共振拉曼以及其他测量显微样品的仪器一样工作。这些模块包括激光、拉曼分光计和界面光学,能让您收集到样品高质量的拉曼光谱。荧光性高灵敏度发射显微分光计和成像系统 20/30 PV&trade 可以被装配成测量显微样品荧光和冷光光谱以及图像的仪器。 20/30 PV&trade 拥有Lightblades科技的特点,能够激发从深紫外到近红外的光,能测出相同范围的放射,它对于材料科学、生物学、地质学等学科的显微荧光测定法来说是一款强大的工具。偏振紫外-可见-近红外光显微分光计和成像系统 20/30 PV&trade 甚至可以被装配成获得偏振光谱和图像的仪器。20/30 PV&trade 显微分光计拥有偏振Lightblades科技的特点和从紫外光到近红外光的光谱范围,它的性能是其他仪器无法达到的。用这个精细的系统您可以容易且迅速地获得双折射和其他有偏振特点的样品的光谱和图像。光谱表面成像 光谱表面成像整合了为自动化光谱分析设计的软硬件和带有显微空间解析度的样品3D成像技术。样品吸光度、透射比、反射率、荧光性、放射性和拉曼光谱这些数据的3D地图也许能够生成。紫外-可见-近红外光显微光度计 从紫外光到近红外光的出众图像质量 20/30 PV&trade 包含带有研究级光学器件的紫外-可见-近红外光显微镜,非常独特。20/30 PV&trade 拥有精细的成像软件,带有彩色、紫外线和近红外光区域的高分辨数码成像特点。这允许您简单迅速地通过透射比、反射率、偏振和荧光显微镜来实时获得样品的图像。北京美嘉图科技有限公司地址:北京海淀区中关村南大街12号百欣科技楼6003室
    留言咨询
  • IR VIVO™ 近红外小动物活体成像范围覆盖了近红外一区及二区波段的所有波段的成像需求,波段覆盖500-1620nm.更提供了多光谱拆分与超光谱拆分两种配置模式。可全面覆盖从离体组织到小动物活体等各类样本的实验需求。该系统集成了微米级别的高分辨率、高清实时成像、全光谱覆盖动物样本全身、多色荧光光谱拆分等强大实用的功能。更配备了超高信噪比的科研级InGaAs 近红外专用相机,为您的科研增添助力。利用二区近红外光的成像优势,IR VIVO系统可对小动物进行活体扫描,独特的高速摄像机及HyperCubeTM高光谱滤光器使IR VIVO可以详细研究任意波长下的红外成像情况。IR VIVO 系统可在短波光源的激发下利用组织发出的二区近红外光光进行成像,最大限度的减少组织散射、反射、吸收及自荧光的干扰,穿透深度可达3 cm。与其他成像手段相比,IR VIVO系统成像的效费比更高,成像速度极快,有效填补了介于高费用全身扫描与低费用浅层扫描之间的空白。IR VIVO系统可搭载特别的高光谱滤光器,作为一种实时分光系统,它可以完成任意波长下的小动物活体成像。滤波后光强度仍可保持在90%以上,光谱分辨率可达10纳米以内。生理特征检测 将吲哚菁绿红外探针注射至小鼠体内后,可通过IR-II成像动态分析小鼠各器官中吲哚菁绿的积累和排泄,调查体内脏器的工作情况。在心脏与肺部,利用收缩与舒张期间血量的变化可观察到荧光强度的周期性改变,可实现对呼吸和心跳频率的监测。调查体内脂质积累情况 细胞中脂质异常积累,通常预示着动脉硬化、脂肪肝等疾病。采用单壁碳纳米管荧光探针,通过近红外发射无创测量细胞中的脂质积累。在注射24 h后,探针富集在肝脏部位,与脂质结合后会使发光峰蓝移,积累越多则蓝移现象越明显,由此实现对脂质的定量检测。该方法可广泛应用于简化药物开发过程,并推动脂质相关疾病的研究。NIR-II指导肿瘤光热治疗 纳米粒子(NPs)辅助光热疗法(PTT)是一种有前途的癌症治疗方式,并且已经吸引了科学主流的注意。利用聚集诱导发射(AIE)纳米颗粒和肿瘤细胞来源的“外泌体帽”(TT3-oCB NP@EXOs)制备具有增强的第二近红外(NIR-II,900–1700nm)荧光特性和PTT功能。由于它们在808 nm照射下具有高且稳定的光热转换能力,因此TT3-oCB NP@EXOs可以用作仿生的NPs用于NIR-II荧光成像引导的肿瘤PTT,因此,随着其他靶向性差的AIE纳米粒子的验证,肿瘤细胞衍生的EXO/AIE纳米粒子杂化纳米囊泡可能为改善肿瘤诊断和PTT提供一种替代的人工靶向策略。NIR-II检测药物代谢动力学临床前药代动力学(PKs)的常用方法为在不同的时间点抽取血液,并通过不同的分析方法对血液水平进行定量。NIR-II可以通过测量麻醉小鼠眼睛和其他身体区域中标记化合物的荧光强度,无创地连续监测血液水平。通过非侵入性眼睛成像测量的血液水平与通过经典方法产生的结果之间有极好的相关性。全身成像显示预期区域(如肝脏、骨骼)有化合物积聚。所以眼睛和全身荧光成像的结合能够同时测量血液PKs和荧光标记化合物的生物分布。NIR-II检测阿尔兹海默症近红外荧光(NIRF)成像已广泛用于临床前研究;然而,它的低组织穿透性对于神经退行性疾病的转化临床成像来说是一个令人生畏的问题。众所周知,视网膜是中枢神经系统(CNS)的延伸,被广泛认为是大脑的窗口。因此,视网膜可以被认为是研究神经退行性疾病的替代器官,并且眼睛由于其高透明性而代表理想的NIRF成像器官。利用CRANAD-X荧光探针标记淀粉样蛋白β(aβ),并利用成像系统对眼部进行观察可以明显观察到患病前后及治疗前后眼部的荧光强度的差异,进而在未来的人类研究中具有显著的转化潜力,并可能成为未来快速、廉价、可获得和可靠筛查AD的潜在成像技术。NIR-II检测心肌梗塞利用近红外荧光成像的优越采集速度和近红外发射纳米粒子的有效选择性靶向,在急性梗塞事件后仅几分钟就获得了梗塞心脏的体内图像。这项工作为急性梗死后缺血心肌的经济、快速和准确的体内成像开辟了一条途径。监测体内药物释放 特定器官和组织中的药物浓度通常用破坏性方法测量,费时费力。针对小剂量毒性药物,可使用功能化的红外探针,与药物接触时发光峰会发生削弱与红移,以实现对药物的检测。将纳米探针放入可长时间存留于生物体内的条形生物膜中,并植入皮下、腹腔内等不同腔室,药物在腹膜内释放后,可检测到内侧纳米探针发光强度减弱与红移。NIR-II成像指导肿瘤摘除手术NIR-II成像的高灵敏度可对肿瘤组织进行精准定位。利用靶向NIR-II荧光探针成像并引导进行小鼠头部肿瘤切除手术。实验分两组进行,在完全切除手术后(左二),选区线扫结果显示病灶部位近红外信号明显减弱,与健康组织相似,在对比实验(右二,人为留下少部分肿瘤组织)中则观察到部分区域仍存在高强度信号,肿瘤组织的切除并不完全,表明NIR-II在肿瘤摘除手术中具有潜在的指导作用。小分子纳米探针颅内血管成像 小分子荧光探针在生物性修饰后依然可以维持较小的尺寸,可迅速经循环系统进入血管网络。稀土掺杂的钪基探针(KSc2F7:Yb,Er)在1525 nm具有强烈的NIR-II下转换发射,这在生物成像应用中经常被忽略。基于NIR-II成像的高穿透性、高分辨率,KSc2F7:Yb,Er的颅内血管成像显示出了极高的清晰度。此外,与常见的碳纳米管造影剂相比,更高的量子效率也使得钪基纳米材料有望成为生物应用的理想探针。NIR-II成像协同光热治疗 在NIR-II成像的过程中,一部分激发能量以热能形式释放,由此可对病变部位实施光热治疗。采用聚合物封装BPN-BBTD-NPs可在785 nm光的激发下实现NIR-II成像,当材料靶向聚集至肿瘤部位后,在高激发功率下进行光热治疗,结果显示肿瘤体积逐渐缩小直至根除。此外,BPN-BBTD纳米颗粒能够长时间(32天)保持对肿瘤组织的靶向能力,并监测肿瘤的生长状况
    留言咨询
  • 高空间分辨率NIRSIT配置了24个光源和32个探测器,具有4种光源探测器分布距离,组合成204通道,通过光散射断层成像使空间分辨率达到4mmX4mm,解决了传统近红外成像设备空间分辨率低的问题,被应用于科学研究和商业应用中。全移动设计NIRSIT内置锂电池供电,500g的轻巧设计,可采用无线信号传输数据,充分考虑到移动的便携性和实用性,同时内置6维运动传感可用于运动伪迹校正,血液动力响应灵敏度在1μM以内,即使是在移动的情况下信号也不会受影响。产品组成硬件模块轻量级设计,高达200多通道,提供高空间分辨率,8Hz扫描提供高时间分辨率,8小时持续供电满足各种任务需求,施测自由无限制。采集软件模块针对不同被试进行增益校准,允许NIRSIT设备测量极好的信号,内置多种任务模式,界面友好,可实时显示HbO2 / HbR / HbT浓度变化的3D 脑图和2D时间序列。分析软件模块模块化的数据分析界面,操作方便,简单易懂,提供多种数据分析视角。
    留言咨询
  • ▶ 产品介绍AniView30F近红外二区活体成像系统是一款高灵敏度、可实时成像的近红外二区活体成像系统。系统采用的InGaAs探测器,拥有超大像素点尺寸和超高的量子效率,对900-1700nm的光具有极高的检测灵敏度。10W激光光源,通过四合一光纤通路,可同时连接四个激光光源,光源均匀性≥90%;配备上近红外二区专用发射光滤光片,涵盖1095-1700nm波长范围,使成像穿透深度更深,具有更高的时间和空间分辨率。 ▶ 产品特点● 超灵敏系统采用InGaAs相机,在900- 1700nm范围内具有超高的光谱敏感性。制冷温度最低可至- 40℃,进⼀ 步降低暗电流和读数噪⾳ ,因此具备超高的灵敏度。● 更快速系统最大帧率可达600FPS,能够快速捕获荧光信号的实时变化,适用于采集包含时间信息的样品。● 更均匀激光的出光⼝ 配备扩束镜,有效地增大了激发光照射⾯ 积,并且荧光成像经过标准校正,均匀性>90%。● 大视野系统采用电动升降温控样品台,最大视野110mm×88mm,可满足3只小鼠同时成像;最小视野50mm×40mm,可针对⾎ 管等组织结构进行微距成像。● 多光源系统采用四合⼀ 光纤通路,可同时连接四个激光光源,多波长成像时⽆ 需更换激光器。可配备 X 光激发模块,用于X射线对持续发光纳⽶ 颗粒的激发成像。● 智能化软件可实时显⽰ 设备各项指标的运行状态,智能化的拍摄方式和强大的分析功能,能够大大提升成像的便捷性。 ▶ 智能软件1、软件支持单次拍摄、延时拍摄以及视频拍摄,所有拍摄方式均可自主调节帧率;2、所有数据均可保存为.blt格式文件,自动保存在电脑中,避免数据丢失;3、软件可加载.blt格式文件,对于视频文件还可显示帧列表,方便拖动到指定位置;4、软件可进行添加注释、ROIs分析、多图组合分析、长度测量等分析;5、软件可直接对视频文件进行逐帧分析,用于心跳、呼吸频率的统计分析,并直接生成折线图;6、软件具备符合GLP规范的多级用户管理功能,自动生成系统日志,保障数据安全可靠;7、量化分析功能,以动物体表单位时间、单位面积、单位弧度角所发射光子(p/s/cm2/sr)与激发强度(μw/cm2)之比进行定量;8、图像具备3D峰值显示,实现数据立体化。 ▶ 应用领域可视化微脉管系统,监测血流和代谢成像;肿瘤的生长、转移和治疗;药物靶向和动力学评价;识别肿瘤组织,指导实时手术;无接触监测心率和呼吸频率;监测细胞环境(脂质,pH和mRNA);干细胞示踪及其再生医学研究等。 ▶ 应用案例
    留言咨询
  • NIRSIT LITE近红外脑成像OBELAB新研发的一款轻量级便携式功能性近红外光谱(fNIRS)系统:NIRSIT LITE! NIRSIT LITE通过将波长分别为780nm和850nm的两种近红外光束辐射到大脑皮层中来实时测量大脑血液动力学的变化。它是一款轻便、易于使用、多通道的fNIRS脑成像系统,重量轻至193g。该系统为研究人员配备了专业的数据监控和分析软件,灵活的硬件设计可以匹配各种头型。一、功能介绍1. 全移动设计NIRSIT LITE内置锂电池供电,193g的轻巧设计,可采用蓝牙传输数据,充分考虑到移动的便携性和实用性,同时使用嵌入式运动传感器的运动伪影去除算法,即使是在移动的情况下信号也不会受影响。2. 简单、精巧的设计NIRSIT LITE把光源和探测器完全融入在头盔中,即戴即用,不受线缆影响,非侵入式、无创测量数据,头盔灵活的设计适合各种头部尺寸,被试范围广。二、产品组成1. 采集头盔轻量级设计,15个采集通道,8Hz扫描提供高时间分辨率,5小时持续供电满足各种任务需求,施测自由无限制。2. 采集软件模块操作界面友好,可实时显示HbO2 / HbR / HbT浓度变化的3D 脑图和2D时间序列。3. 分析软件模块模块化的数据分析界面,操作方便,简单易懂,提供多种数据分析视角。
    留言咨询
  • 产品简介: 可实现近红外一区和近红外二区(650-2300 nm)小动物全身3D光声成像,应用于分子探针、生物纳米材料、心血管疾病(血管生成、心肌炎、血栓、心梗等)、血红蛋白监测、肿瘤的早期检测和疗效监测、前哨淋巴结监测、脑成像和脑功能监测等前沿性研究。 LOIS-3D系统特征: 1、可实现近红外一区&近红外二区光声成像,提供深组织光声成像 2、3D 空间x-y-z等方向性分辨率:220 um3、成像视野:40 mm x 40 mm x 40 mm4、有128 个超声电子原件弧形阵列探测器;含有4 个激光光纤束 5、128电子通道DAQ数据采集单元 6、成像深度:5 cm;成像灵敏度:50 nM ICG 7、3D 体积、2D Slices *.mat or *.vtk 输出 8、可用于体内生物分布研究,也可用于动力学研究,并且配备专用的软件对数据进行定量分析,作出动力学模型。 LOIS-3D系统应用案例: 1、功能性3D全身光声成像 2、脑部3D光声成像 LOIS-3D系统全球用户: 德克萨斯大学MD安德森癌症研究中心(美国) 华盛顿大学圣路易斯分校(美国) 休斯顿大学(美国) 德克萨斯大学医学分院眼科和视觉科学系(美国) 德克萨斯大学圣安东尼奥健康科学中心(美国) 爱德华王子岛大学(加拿大) 都灵大学(意大利) 马德里卡洛斯三世大学 (西班牙) 中山大学(中国) 广州医科大学(中国)
    留言咨询
  • 近红外二区活体成像 400-860-5168转4543
    下面给您介绍一款开放式近红外二区活体成像系统
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制