甲醇制烯烃装置

仪器信息网甲醇制烯烃装置专题为您提供2024年最新甲醇制烯烃装置价格报价、厂家品牌的相关信息, 包括甲醇制烯烃装置参数、型号等,不管是国产,还是进口品牌的甲醇制烯烃装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲醇制烯烃装置相关的耗材配件、试剂标物,还有甲醇制烯烃装置相关的最新资讯、资料,以及甲醇制烯烃装置相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

甲醇制烯烃装置相关的厂商

  • ”卡尔费休试剂”生厂商,“色谱试剂”加工基地。目前公司拥有卡尔费休试剂生产线三条,年产300000升无吡啶容量法卡尔费休试剂一条,年产150000升含吡啶容量法卡尔费休试剂一条,年产150000升库伦电量法卡尔费休试剂一条,避免了其他厂家混用一条生产线造成污染影响检测精度的风险。年产1000吨色谱甲醇连续精馏装置及年产700吨的色谱乙腈装置已投产,通过多级反应氧化精馏可以与进口色谱试剂相媲美。灵活多样的包装形式,高品质低价位,深得广大客户信赖。另还有多套精馏设备以提供更多品种的色谱试剂。乙腈、甲醇、无水乙醇、异丙醇、正己烷、环己烷、异辛烷、四氢呋喃、二氯甲烷、二甲基甲酰胺、叔丁基甲醚、乙酸乙酯、苯等提供全新进口4L、2.5L、1L瓶装,外箱可提供泡沫箱、蜂窝板箱、纸膜箱等多种包装样式。恭迎广大客户来电来函或来人参观考察。电话:022-83719159 传真 022-83719119
    留言咨询
  • 上海炫一智能科技有限公司(炫一科技)注册于上海市紫竹科学园区,注册资金1500万人民币,是国内一流在线色谱分析仪和预处理系统生成企业。依靠多位资深在线分析仪领域的技术专家和团队,炫一科技为环保行业和工业场合提供国际一流的核心在线分析仪器。公司与多家科研院所建立有合作关系,如上海交通大学、上海第二工业大学、中石化上海石油化工研究院,北京石科院等。目前公司是上海市高新技术企业、上海闵行区科技小巨人,具有近18项(10项在审)发明专利、20项(13项在审)实用新型专利以及14项软件著作权,同时注册有“炫一”、“Asicotech”、“UniStation”等多项自主品牌。公司近年承担了多项上海市科委和闵行区重大产业技术攻关项目。公司自主研发和生产的产品涵盖实验室色谱仪,化工在线色谱仪以及全系列VOCs在线分析仪,具体包含永久性气体分析仪、过程色谱仪、非甲烷总烃、PAMS、气质联用全组分、便携式VOCs等。炫一具备非防爆与防爆两个产品系列,并自主研发了全套色谱仪控制软件和色谱工作站,均处于国际领先水平。炫一在2015年研发的单台PAMS在线分析仪,打破了国外同行在该领域的垄断。2020年,公司上线了基于物联网平台的UniMind环保专用数据管理系统,已经在超过30个市级工业园区成功应用。目前,炫一科技已与多家国内外知名企业进行产品的研发与生产合作。通过2017 年与2020年的运营,公司已经为中国近500个工业园区和国控空气监测站点提供了核心的VOC监测设备,为当地环保局和政府在污染源监测、园区规划和监测治理等方面的决策提供了有力准确的数据支撑。作为国内技术领先的专业团队,炫一科技于2010年开始,为中石化扬子石化,洛阳石化,湖北化肥,燕山石化等提供定制型在线色谱仪,共同实施了多项重点技术攻关项目,如中石化自主知识产权的煤制乙二醇项目、甲醇制烯烃项目等。炫一科技还是中化集团,中核集团,中煤集团,蓝星化工等国内知名企业的长期合作伙伴。 炫一致力于为客户提供最先进的技术和服务,相信炫一能帮助客户在分析领域实现最大价值。
  • 江苏通广石化工业气体有限责任公司专业生产高纯氢气及纯氢,普氢和各类高纯气体,标准气体,医用气体,消防气体等。  江苏通广石化工业气体有限责任公司成立于1996年,是一家集研发、生产、运输、销售于一体的专业气体工贸公司。经多年的发展,公司拥有一批专业的技术、销售人才,较大规模的危化品运输车队,下属公司有南京天泽气体有限公司、南京芳业医药有限公司、上海伟创标准气体有限公司,在南京、镇江、上海分别拥有独立的气体生产、研发基地。  南京基地位于南京栖霞经济技术开发区,占地50余亩,紧邻312国道,交通便利,环境优美。厂区设有甲醇裂解制氢装置两套,标准气,高纯气,消防气生产装置多套,主要生产、研发、经营氢气、高纯氢、标准气、电子气、特种气体、混合气及运送气体。  2011年我公司医用氧成为全国首家通过药品经营企业GMP(医用氧药品)管理认证、GSP(药品经营管理规范)认证单位。  镇江基地位于镇江大港区,合作拥有专业的空分设备,主要产品液氧、液氮、液氩;同时拥有2套氢气回收提纯设备,每天产量为5万立方,拥有近20辆氢气长管运输车,主要产品为普氢(99.9%%)、纯氢(99.99%%)、高纯氢(99.999%%)。  上海基地专业从事标准气、电子气、高纯气的生产研发,。  公司产品主要服务于石化、军工、高校、科研、电力、电工、太阳能、半导体、船航、煤矿、医疗、消防、航空航天、食品、建筑、冶金、精细化工、加工制造等行业。  本公司多年来重合同,守信用,以客户满意为目标,以振兴民族气体工业为使命,努力提升自身综合竞争力。公司现为国家二级标准物资单位,坚持自主研发,拥有60多项国家标准物资证书,同时是全国化工标准物资委员会成员单位。 打造中国气体工业民族品牌,更好地服务于广大客户是我们的美好愿望,让我们携手一起创造更辉煌的明天。
    留言咨询

甲醇制烯烃装置相关的仪器

  • 酿酒厂甲醇探测器 快速检测甲醇泄漏报警装置酿酒厂甲醇探测器 快速检测甲醇泄漏报警装置产品概述:【 】气体探测器是按照GB153322.1-2003.GB12358-2006设计的三线制4-20MA功业用可燃气体检测仪器,现场无显示功能,一组开关量信号输出。酿酒厂甲醇探测器 快速检测甲醇泄漏报警装置特点:1、测量准确 采用先进的进口传感器,性能稳定,林敏度高,抗中毒性能好2、防爆型设计 防爆等级为Exd IIC T6 Gb ,防护等级为IP65,适用于工厂条件的一区,2区【 】更多产品信息请登录如特安防网站:酿酒厂甲醇探测器 快速检测甲醇泄漏报警装置参数:供电电源:DC24V±15%信号输出:4-20MA 一组无源开关量检测原理:催化燃烧式,电化学式,红外式,半导体式防护等级:IP65防爆链接螺纹:G1/2’’内螺纹工作温度:-40℃~70℃资质证书:防爆合格证、生产许可证、检验报告、型式认可证书等国家各项证书产品销往:山东-江苏-江西-河北-河南-浙江-辽宁-天津-甘肃-四川-广东-广西--福建-湖北-湖南-重庆-云南-安徽-宁夏-内蒙古-吉林-上海-贵州-新疆-陕西-山西等全国各地。产品售后服务:1、我公司生产的产品,质保期为自出厂之日起一年(人为因素和不可抗拒力除外)2、一般情况下传感器的使用寿命为:催化燃烧式传感器为2年,电化学式传感器为1年。传感器的实际使用寿命与工作环境有直接的关系,使用环境不同,传感器的寿命会发生变化。3、为确保产品性能的可靠性,我们建议用户,在使用期限内,定期对产品进行维护和校准。【 】更多产品信息请登录如特安防网站:
    留言咨询
  • 二氧化碳催化加氢制甲醇装置采用烘箱加热,气体缓冲罐和反应釜夹套设计,配高温油加热,以便快速升温。阀门及压力传感器均在烘箱外部,配备管路伴热,釜体配备条形视窗,视窗法兰雕刻刻度,可通光照,配备高精度压力传感器,精确观察记录气体缓冲罐及反应釜内二氧化碳压力变化,搅拌采用进口耐高温磁子搅拌器。
    留言咨询
  • 岩征仪器合成气制烯烃反应装置由于使用核壳结构的催化剂壳层分子筛具有高度发达的孔结构,反应物一氧化碳和氢气能顺利到达催化剂核反应,同时由于分子筛择形性,限制大分子产物的生成,提高低碳烯烃的选择性,同时采用流化床反应器,对烯烃生成有利。合成气制烯烃反应装置流程为气体通过质量流量计控制进气,客户原液通过泵从原料罐中抽取原液进入系统,液体与气体分别进如预热/汽化/混合罐充分混合预热汽化后,温度升至反应温度,进管路保温一起进入反应器,原料流过床层进冷凝模块,温度降低到客户需求温度,最终进入产物二级气液分离罐,液相留在分离罐里,定时排放,气相通过压力控制器,全气相可切换流进在线产物采样管路,去尾气排放,本系统还设置一路配气旁路,可预先在缓冲罐进行配气后进入后续工段。 设计参数:反应器:固定床 ?8 ?10 ?12(用户自定义)催化剂装填量:1-10ml反应压力:常压-10MPa反应温度:室温-650℃ 快开式加热炉 控制精度±1℃液体流量:0.01~10ml/min 平流泵原料预热温度:室温-350℃预混配气缓冲罐1个进气:5路 4~200sccm(其中1路配气罐供气)进液:1路冷凝气液分离:2级在线采样管线:1路 自动 伴热(时间间隔 取样时间可调)自动化程度高安全连锁超温、超压
    留言咨询

甲醇制烯烃装置相关的资讯

  • 【瑞士步琦】喷干技术塑型ZSM-5基催化剂:对甲醇制烯烃过程的影响
    喷干技术塑型ZSM-5基催化剂对甲醇制烯烃过程的影响喷干应用”在石油化工领域,采用喷雾干燥法制备 FCC(流体催化裂化)催化剂和 SAPO-34 基甲醇制烯烃催化剂。在此我们向您介绍一项研究,是使用步琦喷雾干燥仪 B-290 探索用喷雾干燥法制备一系列含有 ZSM-5 商业沸石与不同的粘土和粘合剂的催化剂复合材料;在甲醇制烯烃(MTO)过程中,评价了所得到的形状颗粒的催化性能。该研究选用天然粘土如高岭土、滑石、蒙脱土、硅镁土和海泡石作为催化剂配方。本研究中优化得到的喷雾干燥参数均可以平移转换到步琦最新款喷雾干燥仪 S-300 上使用,完美实现不同型号设备之间的平稳过渡!1简介在基质设计的进步是在实验室规模上开发的新催化剂的大规模实施至关重要。最佳的催化剂体是结合了活性、选择性、寿命和合适的成本等性能的催化剂体。催化剂配方需要适当选择成分,这高度依赖于所使用的制备方法(即挤出或喷雾干燥)。喷雾干燥是一种通过溶剂蒸发将喷雾状的浆料转化为干粉的技术。喷雾干燥过程的主要原理是使液体浆料与干燥气体(通常是空气或氮气)接触,一起通过一定孔径的喷嘴,形成小液滴的喷雾。喷雾干燥允许对最终产品性能的显著控制:粒度分布,残余水分含量,堆积密度和形态。与其他湿法塑型的方法(如挤压或造粒)相比,喷雾干燥技术提供了几个主要优点,即可以通过浆料的固体含量来控制颗粒密度,以及制备具有高度均匀性的有效填充球形颗粒的能力。2实验部分使用不同粘土、粘合剂和 ZSM-5 沸石制备复合浆料的过程,以及通过喷雾干燥技术将浆料转化为粉末状催化剂的方法。使用了三种不同的粘合剂-胶体二氧化硅,薄水铝石和水合氯铝。制备了10wt.%薄水铝石(PuralSB)溶胶;分散率为 45wt.% 的 NH4- ZSM -5 (SAR23)原液;50wt.% 的粉末与 0.01M 的(NH4)2HPO4 溶液混合,得到高岭土分散体。所有其他粘土,即滑石、膨润土、硅镁土和海泡石,以粉状形式加入浆料中,用水分散,根据固体含量达到~ 20wt .%的浆料。喷雾干燥过程采用实验室规模的步琦喷雾干燥机 B-290 Advanced,搭配可变孔径(1.4mm, 2.0mm 和 2.8mm)的钛合金双流体喷嘴。选择最佳喷雾干燥条件的标准是干燥室底部不存在液体沉积。最后,将干燥的复合材料在静态烘箱中,在 700º C 的空气下,以 5º Cmin-1的坡度煅烧 7h。3表征方法包括 X 射线衍射(PXRD)、氮气吸附实验、热重分析(TG)、扫描电子显微镜(SEM)、X 射线荧光测量(XRF)、静态光散射(SLS)、电感耦合等离子体(ICP)分析、傅里叶变换红外光谱(FTIR)和程序升温 NH3 脱附(NH3-TPD)等。4结果与讨论加工过程参数对塑型过程的影响首先评估加工参数的影响。在保持其他工艺参数不变(Tin= 200°C, 11 mLmin-1,抽气机在 80%)的情况下,以34 wt.%(固形物基础上)高岭土为基体,40 wt.% ZSM-5 (H+ 的 MFI 沸石)和 26 wt.% 的 Pural SB(粘合剂)的复合浆料以不同的气体流量进行喷雾干燥。不同产物和初始浆料的形态特征对比如图1a-c 和 S1 所示,表明组分的亚微米级颗粒聚集形成球形复合颗粒。值得注意的是,复合球的平均直径与用于形成喷雾的气体流量有关。从粒径分布图(图1d)可以看出,复合材料具有较窄的粒径分布曲线和较低的粒径分布曲线。这样的观察结果与事实是一致的,即高气流产生的更高的压降迫使液滴分解成更小的液滴。▲ 图1所示。(a)浆料的扫描电镜图像,浆料中高岭土含量为 34%,ZSM-5 含量为 40%,Pural SB 含量为 26% 不同气流(b) 173 Lh-1和(c) 283 Lh-1雾化得到喷雾干燥颗粒。(d)旋风收集器中收集的固体产品的粒径分布随气体流速的变化曲线。喷雾干燥条件:Tin= 200°C, 11 mLmin-1,抽气机80%。不经过(e-f)和经过(g-h)球磨机预处理 30min 得到复合颗粒。对三种不同孔径(2.0 mm、1.4 mm 和 0.7 mm)的喷嘴进行了评估,目的是确定上述固定组合物对产生的颗粒尺寸的影响。▲ 图2。(a)喷雾干燥喷嘴示意图,突出了喷嘴直径(上)和喷嘴孔径(下)。(b)喷雾干燥机收集固体产品的区域:干燥室底部收集器(红色区域)和旋风收集器(蓝色区域)。(c)底部收集器(上)和旋风收集器(下)通过不同孔径的喷嘴喷射产生的固体馏分粒度分布:2.0 mm(蓝色)、1.4 mm(红色)和0.7 mm(绿色)。(d)喷嘴孔径分别为2.0 mm、1.4 mm和0.7 mm的底部(红色框)和旋风收集器(蓝色框)收集的固体产物光学显微镜图像(从左至右为柱);比例尺对应100 μm。(e)旋风收集器(蓝色区域)、底部收集器(红色区域)和干燥室沉积物(米色区域)收集的固体产品质量分布图;(f)孔径分别为2.0 mm、1.4 mm和0.7 mm的喷嘴产生的喷雾几何形状(从上到下)。橙色区域表示湿喷雾与干燥室壁的接触区域。相应地,喷嘴帽的选择使喷帽与喷嘴尖端之间的间隙为0.8 mm (2.8 / 2.0 mm 2.2 / 1.4 mm 1.5 / 0.7 mm)。在评价过程中,浆料的组成(高岭土 60 wt.%, ZSM-5 20 wt.%, Al2Cl(OH)5 20 wt.%)和喷雾干燥条件(进料- 15 mLmin-1,气体流量- 473 Lh-1,抽气机- 80%,Tin- 210℃)保持不变,以排除任何侧干扰。喷雾干燥过程产生颗粒产品被分成两个主要部分——一个在干燥室的底部收集器中,另一个在旋风收集器中(图2b)。样品在两个馏分之间的分离与颗粒的大小和密度的差异有关。从粒径分布曲线(图2c)可以看出,粒径较小、粒径较轻的产物优先被收集到旋风容器中,粒径较大、粒径较重/密度较大的产物则倾向于沉降到底部干燥桶中,且粒径最大的组分粒径与喷嘴孔径的相关性较好 孔径为 2.0 mm 的喷嘴产生的喷雾颗粒约为 35μm,孔径为 0.7 mm 的喷嘴产生的最细颗粒约为 9μm。此外,光学显微镜图像(图2d)证实了这一观察结果,即无论喷嘴大小如何,较轻的亚微米(0.20-0.22 μm)复合颗粒优先被旋风分离器分离。另一个有趣的观察结果是,喷嘴尺寸极大地影响了干燥产品在不同馏分之间的质量分布,如图2e所示,其中红色馏分对应于干燥室底部收集的粉末质量,蓝色馏分对应于旋风收集器收集的粉末百分比,米色馏分对应于喷雾干燥筒壁上积聚的喷雾造成的不希望的损失。无论喷嘴孔径大小如何,较重/较大颗粒的相对质量分数几乎没有变化(约为 10-13 wt.%),而细颗粒的相对质量分数随着喷嘴孔径的减小而增加。此外,固体产品损失呈相反趋势下降。这种相关的质量分布可以从具有一定孔径的喷嘴产生的喷射锥几何形状来解释(图2f)。考虑到喷雾干燥筒的长度(L)和直径(D)是固定的,孔口处的压力是恒定的,当孔口孔径较大时,喷雾锥的角度要宽得多。因此,这导致与湿浆接触的面积更大,并在干燥室的壁上形成固体。相反,较小的孔板孔径最大限度地减少了与干燥室壁的直接接触,并在旋风收集器中增加了更多的产品。表1总结了所研究的不同变量对喷涂颗粒最终性能的影响,作为对有兴趣制定自己的喷雾干燥方案的读者的指导。▲ 图3。(a)“循环再循环”概念的示意图。在底部容器中的复合颗粒收集是通过喷涂(b)新鲜配制的浆料(60 wt.%高岭土,20 wt.% ZSM-5和20 wt.% Al2Cl(OH)5)制备的 (c)经球磨预处理(标尺- 100 μm)和(d)不经此预处理(标尺- 500 μm),由旋风收集器的细粒再分散制备的浆料。在不同倍率下(e) ×5(标尺- 500 μm)和×20(标尺- 100 μm)煅烧和筛分至粒径 38 μm的最终粉末的光学显微图。(g)复合材料终组分粒度分布图。喷雾干燥条件:Ø 喷嘴= 2.0 mm,Tin= 210℃,进料= 15 mLmin-1,气体流量= 473 Lh-1,抽气机= 80%。粘土对塑型过程的影响在上述优化之后,后续研究了五种不同粘土对所得技术体的配方和催化性能的影响。选择高岭土、海泡石、滑石、硅镁土和蒙脱土,具有不同的结构、化学成分和晶体形态(图4)。▲ 图4。(a)高岭石,(b)海泡石,(c)滑石,(d)硅镁石,(e)蒙脱石 相应的晶体结构表示如下:AlO6八面体表示为赤土色,SiO4四面体表示为米色,MgO6八面体表示为紫色,蓝色球体表示为水分子,紫色表示为Ca2+/Na+阳离子。(f-j)由20wt .%的ZSM-5(SAR 23)、20wt .%的Al2Cl(OH)5和60wt .%的粘土-高岭土(f)、海泡石(g)、滑石(h)、硅镁石(i)和蒙脱土(o)组成的喷雾干燥颗粒(f-j)。从图4可以看出,只有在以高岭土为基础的混合物中才能形成具有光滑外表面的致密球体。在这种特殊情况下,由于粘土的亲水性和润湿性以及晶体的板状特性,浆料的高固体含量(~ 47 wt.%)有利于喷雾干燥颗粒内的致密堆积。相比之下,海泡石和硅镁石粘土往往形成凝胶状分散体,迫使混合浆料稀释到相对较低的固体含量(海泡石和硅镁石分别为 ~ 25% 和 22wt .%)。由于这种稀释作用,复合颗粒的密度降低,形状偏离球形,外表面粗糙(图4g,i,l,n)。在滑石基浆料的情况下,由于材料的疏水性和高结晶度,我们能够制备固体含量约为 42 wt.% 的可泵送浆料。然而,由于粘土与水浆中其他组分的低混相性,导致球形不规则,充填效率低,成分分布不均匀,形成的形状颗粒表面非常粗糙(图4h,m)。这些结果表明,粘土的性质,特别是润湿性在喷涂过程中起着非常重要的作用。5结论在这项工作中,我们探索了一种用于催化剂配方的喷雾干燥技术。整喷雾干燥工艺参数,得到粒径在 30 ~ 100μm 之间的颗粒。结果表明,通过改变气体流量、喷嘴孔径、球磨浆前处理和浆料组分配比,可以制备出具有不同粒径和形态特征的复合颗粒。在所有不同的研究变量中,浆料配方中最关键的方面是可喷涂浆料的总固体含量,这受到催化剂成分(特别是粘合剂和粘土)的强烈影响:浆料稀释率低于 30wt.% 会导致松散的、表面缺陷的复合材料,其耐磨性较差,而更高的负载,在最佳喷涂条件下,提供更好的形状颗粒。另一方面,所选粘土的性质不仅影响喷雾本身,而且影响催化性能。特别是,我们的研究结果表明,所选择的粘土对改变复合材料的最终酸度有很大的影响,当应用于 MTO 时,会导致烯烃或芳烃循环的传播。6参考文献Shaping of ZSM-5 based catalysts via spray drying: effect on methanol-to-olefins performanceTuiana Bairovna Shoinkhorova, Alla Dikhtiarenko, Adrian Ramirez, Abhishek, Dutta Chowdhury, Mustafa Caglayan, Jullian R. Vittenet, Anissa Bendjeriou-Sedjerari, Ola S Ali, Isidoro Morales Osorio, Wei Xu, and Jorge GasconACS Appl. Mater. Interfaces, Just Accepted Manuscript &bull DOI: 10.1021/acsami.9b14082 &bull Publication Date (Web): 15 Oct 2019 Downloaded from pubs.acs.org on October 19, 2019
  • 大化所“煤取代石油”制烯烃技术机理研究再升级
    p   现代化学工业原料主要依赖于石油裂解产生的乙烯丙烯等低碳烯烃。我国作为一个石油进口国,石油进口依存的现实限制了石化产品的发展。以中科院大连化学物理研究所刘忠民院士,魏迎旭研究员的团队,在甲醇制烯烃的生成机理方面取得了新的进展。这一技术进步我国石化产业发展,实现“石油替代”战略,保证我国能源安全具有重大战略意义。这一团队又创造了新的功勋。 /p p   乙烯、丙烯等低碳烯烃是重要的基本化工原料,随着我国国民经济的发展,特别是现代化学工业的发展对低碳烯烃的需求日渐攀升,供需矛盾也日益突出。目前,乙烯、丙烯主要依赖于石化路线生产,但我国石油资源短缺,石油进口依存度逐年增加,在一定程度上限制了以石化路线生产乙烯和丙烯产品的发展。 /p p   甲醇制烯烃(Methanol to Olefins,MTO)是重要的C1化工新工艺,是指以煤合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。由于我国特殊的能源结构特点——煤炭资源相对富裕,这种以煤炭资源为原料的,非石油路线制取低碳烯烃的技术表现出了很大的优势。 /p p   什么是DMTO? /p p   DMTO是中国科学院大连化学物理研究所的专利专有技术,MTO代表甲醇制烯烃技术,D代表二甲醚/大连/double的意思,最初的研究是基于二甲醚制烯烃,后来技术改进从甲醇开始,而从甲醇开始的过程也包含甲醇转化为二甲醚,二甲醚转化烯烃的过程,故引用double的意思 由于大连化物所地处大连,大部分人认为这个D也是大连的意思。 /p p style=" text-align: center " img title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/93dc63c8-3fe4-45b0-9038-bd1079fd8afc.jpg" / /p p style=" text-align: center " strong DMTO技术荣获2014年国家技术发明一等奖 /strong /p p   DMTO工业化技术解决了煤制烯烃的技术瓶颈,是连接煤化工和石油化工的桥梁,为煤化工行业和煤制烯烃产业提供了有力的技术支撑。DMTO工业化技术可缓解我国石油资源的不足,使低碳烯烃生产原料多元化。在当今国内石油资源短缺的背景下,该技术对于实现我国“石油替代”战略,保证我国的能源安全具有十分重大的战略意义。 /p p   DMTO技术目前的发展 /p p   DMTO工业化技术研发成功,对于减少我国石油进口、开辟我国烯烃产业新途径具有重要意义。同时,这也标志着我国甲醇加工能力将由万吨级装置一举跨越到百万吨级大型装置。DMTO成套技术的开发与应用,无论从经济上还是战略上对我国发展新型煤化工产业、实现“石油替代”的能源战略都具有极其重要的意义。2010年甲醇制烯烃国家工程实验室与合作单位研发的具有自主知识产权的DMTO技术成功应用于世界首套煤制烯烃工业项目、国家示范工程神华包头年产180万吨甲醇制取年产60万吨烯烃装置,技术指标达到国际领先水平。目前DMTO技术已实现技术实施许可1313万吨烯烃/年,已投产646万吨烯烃/年。 /p p style=" text-align: center " img title=" 02.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/f46d15fd-c2b3-41bd-a8ba-9e51c85c645f.jpg" / /p p style=" text-align: center " strong 2015年底第九套神华榆林年产180万吨甲醇制取年产60万吨烯烃DMTO装置投产 /strong /p p style=" text-align: center " img title=" 03.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/16d0361f-b74f-4b59-9bb3-28ce81cbe63e.jpg" / /p p style=" text-align: center " strong 至2015年底已经投产的九套DMTO装置 /strong /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201707/insimg/f0058c83-9e05-42ce-b6ad-11485cd9fd79.jpg" / /p p style=" text-align: center " strong 甲醇制烯烃国家工程实验室下属部分研究组 /strong /p p   DMTO机理研究再升级 /p p   甲醇制烯烃国家工程实验室一直坚持应用研究与基础研究并重,不但在MTO过程工业化方面取得巨大成功,而且长期致力于该化学过程中的基础科学问题研究。虽然MTO过程稳态反应阶段的间接机理已形成广泛的共识,但MTO反应中从C1物种甲醇或者二甲醚生成第一个C-C键的反应一直是C1化学中极具挑战性和争议性的课题。由于转化发生在反应的最初始阶段,难以捕获中间物种,一直以来所提出的反应机理缺乏直接证据。 /p p   最近,大连化学物理研究所刘中民院士、魏迎旭研究员团队在甲醇制烯烃初始C-C键生成机理方面取得新进展,相关研究成果以热点文章形式发表在《德国应用化学》(Angewandte ChemieInternational Edition)杂志上(doi: 10.1002/anie.201703902),并被推荐为内封面文章。 /p p style=" text-align: center " img title=" 05.png" src=" http://img1.17img.cn/17img/images/201707/insimg/2fc60744-3054-46ac-8e25-b01bfc64fb6c.jpg" / /p p style=" text-align: center " strong 刘中民院士 /strong /p p style=" text-align: center " img title=" 06.png" src=" http://img1.17img.cn/17img/images/201707/insimg/bd29ddc7-114e-4d33-9913-0e12d736492a.jpg" / /p p style=" text-align: center " strong 魏迎旭研究员 /strong /p p style=" text-align: center " img title=" 07.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/151b78ee-4a38-4db9-a765-e6708247d5ab.jpg" / /p p style=" text-align: center " strong 研究成果论文文章 /strong /p p   本项工作中,研究人员通过在线监测最初始反应阶段,推测初始烯烃来源于催化剂表面C1吸附物种的直接转化 随后通过催化剂液氮淬冷和固体核磁表征,确定了催化剂上最初始反应阶段存在的表面C1吸附物种(甲醇和二甲醚)和C1活性物种(表面甲氧基和三甲基氧鎓离子) 进一步通过原位固体核磁研究,在真实甲醇转化反应条件下,成功捕捉到二甲醚C-H键活化后生成的类亚甲氧基(methyleneoxy analogue)物种,由此获取了C1物种活化生成第一个C-C键的直接证据 在此基础上提出了初始烯烃生成的反应路径—表面甲氧基/三甲基氧鎓离子协助甲醇/二甲醚活化转化的协同反应机理。 /p p style=" text-align: center " img title=" 08.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/9041f9be-cf2f-4f62-8d8b-748c8a90871e.jpg" / /p p style=" text-align: center " strong 反应机理示意图 /strong /p p   这是首次在MTO反应过程中原位观测到C1物种的初始活化和转化,这一发现将关联甲醇初始转化的直接机理和高效转化阶段的间接机理,建立甲醇转化反应完整的反应历程。此前在MTO反应稳定阶段烃池(Hydrocarbon Pool)机理的研究中,研究人员曾直接捕捉到最为重要的反应中间物种—苯基和环戊烯基碳正离子中间体,并确定了分子筛催化甲醇制烯烃的催化循环途径(J. Am. Chem. Soc. 2012,134(2),836—839 Angew. Chem. Int. Ed. 2013,52(44),11564-11568)。 /p p style=" text-align: center " img title=" 09.png" src=" http://img1.17img.cn/17img/images/201707/insimg/7439a642-45a7-4f32-88e1-0ba6fe8afebd.jpg" / /p p style=" text-align: center " strong 分子筛催化甲醇制烯烃的催化循环途径 /strong /p p   这些基础机理研究的工作,不但丰富了C1催化化学的基本理论,也对DMTO的工业应用具有重要的促进和支撑作用。 /p
  • 低比例甲醇汽油将出国家标准
    中国石油和化学工业联合会副秘书长胡迁林日前透露,低比例甲醇汽油国家标准(M15)的相关实验工作已经完成,目前正在做补充、完善和标准修订的工作,今年下半年或明年上半年将有望出台。   据中国石油和化学工业联合会副会长周竹叶介绍,目前我国醇醚燃料产品滞销严重,甲醇、二甲醚开工率不足。   我国甲醇的生产能力已突破3000万吨,但由于甲醇制烯烃项目仍在示范中,M15标准尚未出台,再加上国外低价甲醇的倾销,目前甲醇行业整体开工率不到50%,全国二甲醚装置平均开工率已降至20%左右,生产运行困难。   胡迁林认为,标准的缺失是制约醇醚燃料发展的突出问题。他认为,在新兴能源产业发展的背景下,醇醚燃料等洁净煤利用技术将和风能、太阳能一样,成为重要的替代能源。他表示,一方面,醇醚燃料的资源能够得到保证,生产甲醇二甲醚用劣质煤,我国12亿亿吨的煤炭储量中有20%是劣质煤,通过现代煤化工技术可以实现洁净转化,技术上也没有瓶颈 另一方面,实践证明,醇醚燃料的经济性、清洁型、车用适应性都没有问题。   此前,我国2007年立项,2009年正式颁布了车用燃料甲醇汽油标准和高比例甲醇汽油国家标准(M85)。胡迁林表示,只有这三个标准还不够,要推广醇醚燃料是一个系统工程,除了三个产品标准外,配套的加注系统、输配系统等的标准也应当及时出台。

甲醇制烯烃装置相关的方案

甲醇制烯烃装置相关的资料

甲醇制烯烃装置相关的论坛

  • 【原创大赛】甲醇制取烯烃产物分析系统原理介绍

    【原创大赛】甲醇制取烯烃产物分析系统原理介绍

    [align=center][size=24px]甲醇制取烯烃产物分析系统原理介绍[/size][/align][align=center][color=black]概述[/color][/align][color=black]使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]配置三检测器四切换阀系统,测定甲醇制取烯烃反应过程中的各种气体组分含量。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]乙烯、丙烯等低碳烯烃是重要的基本化工原料,随着我国国民经济的发展,特别是现代化学工业的发展对低碳烯烃的需求日渐攀升,供需矛盾也将日益突出。甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺是重要的化工技术。该技术以煤或天然气合成的甲醇为原料,生产低碳烯烃,是发展非石油资源生产乙烯、丙烯等产品的核心技术。[/color][color=black]甲醇制取烯烃的反应过程中各工段的产物组成较为复杂,包括甲醇、二甲醚、小分子烷烃烯烃类、以及少量二氧化碳和永久气体等组分,使用简单的单根[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱难以实现分离。如果采用多次进样的方法,无疑分析效率会显著降低。那么设计可单次进样,可在线连接的专用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析系统会极大提高分析效率。[/color][align=center][color=black]二 系统结构原理[/color][/align][color=black]本例采用Shimadzu 的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2014,设计甲醇制取烯烃过程气体分析系统,系统结构原理如图1所示,系统中含有三检测器——两个FID检测器、一个TCD检测器——四支自动阀,具有并行的三路分析通道。[/color][color=black]通道1采用十通阀进样反吹并辅助以六通阀切换色谱柱的方法,用以测定样品中的少量氢气、氧气、氮气、一氧化碳、二氧化碳等组分含量。[/color][color=black]通道2采用六通阀直接进样、PLOT Q毛细管柱分离的方法,用以测定样品中甲醇和二甲醚等组分的含量。[/color][color=black]通道3采用十通阀进样反吹、氧化铝毛细管柱分离的方法,用以测定样品中的丙烯、乙烯以及其他烃类化合物含量。[/color][color=black]本系统可以实现一次进样完成样品所有组分的分离测定,并且可以实现在线或者离线方式的采样。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091651539518_1703_1604036_3.jpg[/img][/align][align=center]图1 甲醇制取烯烃产物分析系统原理图[/align][align=center][color=black]三 工作流程讲解[/color][/align][align=center][color=black]本分析系统的工作过程简述:[/color][/align][align=center][color=black]通道1的工作过程:[/color][/align][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out)。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V1旋转36度,此时样品被载气携带进入预分离色谱柱PC1中(样品流经 car1 - loop - PC1 - C1 - C2 -TCD1 )。[/color][color=black]样品在PC1中被预分离,其中较轻的组分(氢气、氧气、氮气、甲烷、一氧化碳)作为合峰流入C2色谱柱。[/color][color=black]3 反吹[/color][color=black]当样品中的二氧化碳之前的组分全部流入色谱柱C1之后,十通阀V1旋转36度,此时预分离色谱柱PC1中的载气流速反方向流动,保留时间较长的重组分被反吹流出PC1柱(样品流经 car1 - PC1 - Vent1)。[/color][color=black]4 色谱柱选择[/color][color=black]样品在C1色谱柱中被分成两部分,一部分为氢气、氧气、氮气、甲烷、一氧化碳的合峰,另一部分为二氧化碳和其他烃类。[/color][color=black]当合峰完全流入色谱柱C2中时,V2阀旋转60度,合峰中的氮气、一氧化碳、甲烷等组分被封闭在色谱柱C2中。C1色谱柱中的二氧化碳流出色谱柱,由于色谱柱保留时间配合的关系,氢气和氧气也会流出进入TCD检测器。此时观察到的TCD出峰顺序为氢气、氧气、二氧化碳。[/color][color=black]5 复位[/color][color=black]当乙炔完全流出色谱柱C1之后,V2阀旋转60度,恢复到系统的初始状态,C2中封闭的组分,再次流出并在TCD1上出峰,其顺序为氧气、氮气、甲烷、一氧化碳。[/color][align=center][color=black]通道2 的工作过程:[/color][/align][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out)。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,六通阀V3旋转60度,此时样品被载气携带进入色谱柱C3中(样品流经 car3 - C3 - FID1)。[/color][color=black]色谱柱C3为PLOT Q毛细管柱,可以将样品中的甲醇和二甲醚分离开,此通道的管路、阀和定量环需要特殊处理,予以保温和进行惰性化处理。[/color][align=center][color=black]通道3 的工作过程:[/color][/align][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out)。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V4旋转36度,此时样品被载气携带进入预分离色谱柱PC2中(样品流经 car3 - loop -PC3 - C3 - TCD2)。[/color][color=black]样品在预分离色谱柱PC2(采用了强极性色谱柱)中分离为较轻组分(烃类物质永久气体)和较重组分(极性较强组分包括甲醇和二甲醚)。[/color][color=black]其中保留较弱的烃类组分流入色谱柱C4(氧化铝毛细管柱),并在FID2检测器上被检测到。[/color][color=black]3 反吹[/color][color=black]当色谱柱PC2中的较轻组分完全流入色谱柱C4中,十通阀V4再次旋转36度,此时色谱柱PC2内部的载气反向流动,将保留时间较强的组分反吹流出系统。[/color][color=black]最终总系统复位,准备下次进样。[/color]系统的典型谱图如图3所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091651542232_7794_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091651544849_9664_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091651544537_9697_1604036_3.jpg[/img][/align][align=center]图3 系统典型谱图[/align]

  • 甲醇装置低温甲醇洗系统中氨含量的监测

    在甲醇生产过程中,低温甲醇洗系统是一个关键环节,其主要目的是去除合成气中的杂质,如二氧化碳、硫化氢和氨等,以确保甲醇产品的质量和纯度。在这些杂质中,氨的含量控制尤为重要,因为它不仅影响甲醇的品质,还可能对设备和环境造成不良影响。因此,对低温甲醇洗系统中的氨含量进行准确监测和控制至关重要。[url=http://news.isweek.cn/wp-content/uploads/2024/04/03C4BC4E-0A78-4917-B4AC-3614AF16B6BF.png][img={03C4BC4E-0A78-4917-B4AC-3614AF16B6BF},458,300]http://news.isweek.cn/wp-content/uploads/2024/04/03C4BC4E-0A78-4917-B4AC-3614AF16B6BF-458x300.png[/img][/url][b]氨含量监测的重要性[/b]在低温甲醇洗系统中,氨通常以溶解态存在于甲醇溶液中。如果氨含量过高,它不仅会降低甲醇的纯度,还可能导致设备腐蚀和催化剂中毒,进而影响整个生产过程的稳定性和经济性。此外,高浓度的氨还可能对操作人员的健康造成威胁。因此,实时监测和控制氨含量是确保甲醇装置安全、高效运行的关键。[b]氨含量监测方法[/b]目前,常用的氨含量监测方法主要有化学法和仪器法两种。化学法主要包括比色法、滴定法等,这些方法操作简便,但精度相对较低,且受环境因素影响较大。仪器法如氨气传感器、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]等,具有高精度和快速响应的特点,但成本相对较高。在实际应用中,应根据装置的具体情况和需求选择合适的监测方法。氨含量监测,工采网推荐[b]日本figaro [color=red]氨气传感器[/color] 高灵敏度防漏液线性输出 - FECS44-1000[/b]氨气传感器 FECS44 是独特的电化学原理 NH3 传感器。它最引人注目的特点是受 H2S 的干扰小,暴露在 NH3 中有卓越的耐用性和独特的防漏液结构。这些特性使得传感器在 NH3 检测仪和侦测仪更好的应用。[b]监测系统的设计与实施[/b]为了确保氨含量监测的准确性和可靠性,需要设计并实施一套完善的监测系统。该系统应包括采样系统、分析仪表和数据处理系统三个部分。采样系统负责从低温甲醇洗系统中提取具有代表性的样品;分析仪表用于对样品中的氨含量进行快速、准确的测量;数据处理系统则负责将测量数据进行处理和分析,生成可视化的报告和警报。[b]监测结果的应用[/b]通过实时监测氨含量,操作人员可以及时发现并处理异常情况,确保装置的稳定运行。同时,监测结果还可以为工艺调整和优化提供数据支持,帮助提高甲醇产品的质量和产量。此外,对氨含量的长期监测还可以为设备维护和检修提供重要参考。[b]结论[/b]总之,对甲醇装置低温甲醇洗系统中的氨含量进行准确监测和控制是确保装置安全、高效运行的关键。通过选择合适的监测方法、设计并实施完善的监测系统以及合理应用监测结果,我们可以有效地控制氨含量在合理范围内,从而提高甲醇产品的质量和产量,降低生产成本,保障操作人员的健康和安全。

甲醇制烯烃装置相关的耗材

  • 光明理化学甲醇检测管119SA,119U
    甲醇119SA0.05—6.0%10支/盒119U20—1000PPm10支/盒104SB20-300ppm5×2支/盒甲醇-液化石油气中119LPG100-1000ppmv10支/盒119SA 甲醇检测管说明检测对象甲醇测定范围0.05~6.0%取气量100ml测定时间1.5分钟颜色变化黄橙色→浅绿色(前端茶色)检测限度100ppm使用温度范围0-40℃(温度校正)湿度影响无影响反应原理CH3OH+Cr6++H3PO4→Cr3+有效期限3年 其它物质的影响名称浓度(ppm)影响结果脂肪族炭氢化合物(C3以上)指示值偏高烯烃类〃烷烃类〃酮类〃芳香族炭氢化合物〃卤化碳氢淡绿色的境界,读取值无影响操作步骤① 打通检测管两端② 按检测管上箭头方向将其插入吸气泵前端③ 将红线与轴线对齐 ④ 根据所需检测范围抽取定量气体。⑤ 抽取100ml气体时手泵的红色指示器弹出就说明气体已全部进入检测管中,需要多次采集气体时将手柄推回去,同样方法采集即可 ⑥ 取下检测管,读值ppm。(20℃以外的浓度需要温度校正表校正)浓度换算(ppm和mg/cm3转换)测定浓度(mg/m3)= 13300×测定浓度(%)(20℃以外的浓度需要温度校正表校正)使用环境温度:需校正湿度:无影响气压:读取值(ppm)×1013(hpa)/ 测定点的气压(hpa)温度校正表(20℃基准)读取值(%)真实浓度(%)0℃10℃20℃30℃40℃6.0--6.04.33.35.0--5.03.72.84.0--4.03.02.33.0-5.13.02.31.82.0-3.02.01.6 1.21.02.71.41.00.80.60.51.00.70.50.40.30.10.10.1 0.10.10.1气体检测管原理,检测管内装有能同被测气体反应的药剂,被测气体经过AP-20抽取到检测管中,同药剂发生反应,产生颜色变化,检测管上有刻度值,读取分界面刻度值,即是被测气体浓度值。操作如上图所示,把检测管插入到手泵中,抽取一定体积的气体,读取2个颜色分界面刻度值。只需手泵AP-20一支,配合这几种量程的气体检测管,即可完成对工业企业不同范围的气体检测。
  • 甲醇汽油中甲醇的分析 其他气相专用柱
    甲醇汽油中甲醇的分析特点:可以快速检测甲醇汽油中甲醇含量色谱柱:1m*2mm(ID)柱温度:70℃进样器:150℃检测器:150℃其它条件:载气流速20ml/min色谱柱货号:ZJJ1-0102
  • 甲醇折射计甲醇折射仪PAL-36S
    甲醇折射计甲醇浓度计甲醇折射仪PAL-36S&diams 酒精 型号 Model 特殊标度种类 面板颜色 4434 PAL-34S 乙醇 C 4436 PAL-36S 甲醇 C 4437 PAL-37S 异丙醇 C 4485 PAL-85S 聚乙烯醇 C
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制