当前位置: 仪器信息网 > 行业主题 > >

激光束传输类器

仪器信息网激光束传输类器专题为您提供2024年最新激光束传输类器价格报价、厂家品牌的相关信息, 包括激光束传输类器参数、型号等,不管是国产,还是进口品牌的激光束传输类器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光束传输类器相关的耗材配件、试剂标物,还有激光束传输类器相关的最新资讯、资料,以及激光束传输类器相关的解决方案。

激光束传输类器相关的资讯

  • 美国科学家制造出高能效激光束
    美国普林斯顿大学研究人员日前用一种新型设备制造出了高能效的激光束,这一成果将有助于开发激光在环境检测和医疗诊断等方面的新用途。   据美国媒体27日报道,研究人员使用了一种叫“量子级联激光器”的设备,这种设备通过让一股电流穿过某种特殊物质来制造激光束。   研究人员说,利用传统激光器制造激光束时,电子常常会把发射出去的光子重新吸收回来,这就降低了激光束的能效。而利用“量子级联激光器”制造激光束,这种吸收率降低了90%,这就有可能使激光器在较弱的电流条件下工作,且不易受到温度变化的影响,其发射的激光束能效因此显著提高。   负责这项研究的克莱尔格马赫尔介绍说,他们利用这种设备不仅制造出了一条主激光束,而且还制造出了一条副激光束。相比传统的激光束,发射副激光束只需较少的电能。   格马赫尔说,他们的研究证明“量子级联激光器”性能优于普通激光器,它可广泛用于红外通信、远距离探测、大气污染监测、工业烟尘分析和无损伤医学诊断等。
  • 美打造高强度窄波段X射线激光束
    据物理学家组织网日前报道,美国能源部斯坦福直线加速器中心国家加速器实验室的研究人员,采用金刚石细薄片把直线加速器的相干光源转化为手术刀般更精确的工具,以探测纳米世界。改进后的激光脉冲可在X射线波长更窄频带高强度聚焦,开展以前所不能为的实验。该研究结果刊登在《自然光子学》杂志上。   这个过程被称为“自激注入”,金刚石将激光束过滤为单一的X射线颜色,然后将其放大。研究人员可以在原子水平研究和操纵物质上有更强的能力,传送更为清晰的物质、分子和化学反应的影像。   人们谈论“自激注入”已经近15年,直到2010年斯坦福线性加速器中心成立时,才由欧洲自由电子激光器和德国电子加速器研究中心的研究人员提出,并由来自斯坦福线性加速器中心和阿贡国家实验室的工程队伍将其建立。“自激注入”可潜在地产生更高强度的X射线脉冲,显著高于目前直线加速器相干光源的性能。每个脉冲增加的强度可以用来深入探测复杂的材料,以帮助解答诸如高温超导体等特殊物质或拓扑绝缘体中复杂电子态等问题。   直线加速器相干光源通过接近光速的电子群加速激光束,用一系列磁体将其设定为“之”字路径。这将迫使电子发射X射线,聚集成亮度超过之前10亿倍的激光脉冲。如果没有“自激注入”,这些X射线激光脉冲包含的波长(或颜色)范围比较宽,无法被所有的实验使用。之前在直线加速器相干光源创造更窄波段(即更精确波段)的方法则会导致大量的强度损失。   研究人员在可产生X射线的130米长磁体的中间段安装了一片金刚石晶体,由此创建了一个精确的X射线波段,并且使直线加速器相干光源更像是“激光”。该中心物理学家黄志荣(音译)说:“如果我们完成系统的优化,并添加更多的波荡,所产生的脉冲集中的强度将达10倍之多。”目前世界各地的相关实验室已经趋之若鹜,计划将这一重要进展与自身的X射线激光设施相结合。
  • 新型激光输电技术前景广阔 或变革输电技术
    时代在进步,科技在发展,随着我们对电能的需求增大,全国性的电网联通覆盖是时代所趋,但传统的有线输电线路会受到地形及天气的影响,现在新的电力输送模送正在研发当中。   据报道,美国华盛顿州一家高科技公司正在研发一种激光输电技术。这种新型技术应用前景广阔,未来可能彻底取代依靠电线输电的模式,使人们的日常生活告别电线。这家公司的研究人员借助一个激光转换器,将常规电能转换成功率达数百瓦的可视激光束。这种光束可在空气中传播,被接收后在专门的光电电池中再转换回电能。通过望远镜和一系列镜面,操作人员可以控制激光束的传输方向。据了解,这家公司目前的主要研究方向如何运用这种新型激光输电技术为无人飞行器供电,并且已经在这个方面取得了一定成果。不过公司的长远目标绝不局限于此。他们希望这项技术未来能够应用到更为广泛的领域,比如取代现有电线输电模式从而降低远距离电力传输的成本,或是从地球为远在太空轨道上的卫星供电等。   这种模式从现在已有数据看来,本不是一种空想,只是要真正能投入到实用阶段还需要很长一段时间的发展。同时,纯粹的利用激光产生电能也是一种非常高效的手段,这种技术目前也在研发当中。当这两项技术成熟之后,利用激光发电,输送电能,都将不是一种梦。或许我们以后不光局限于激光输电手段,用微波输电也许也能成真。
  • 人类首次用激光在星际间进行图像数据传输
    图片来源:Xiaoli Sun, NASA Goddard   美国航天局日前利用激光束将名画《蒙娜丽莎的微笑》传输到绕月飞行的“月球勘测轨道飞行器”上,这是人类首次利用激光在星际间进行图像数据传输。   美国航天局发表声明说,这是该局利用“月球勘测轨道飞行器”进行激光通信试验的一部分。通常飞离地球的航天器都是利用无线电通信,“月球勘测轨道飞行器”是目前唯一绕其他星球飞行且能使用激光通信的航天器。   这幅名画首先被数字编码,分解为152×200个像素 然后每个像素都变为激光脉冲,从美国航天局位于马里兰州的戈达德航天中心发出,传输到近24万英里(约38万公里)外的“月球勘测轨道飞行器”上,数据传输速率约为300比特每秒。   “月球勘测轨道飞行器”上的仪器在接收到激光脉冲后重建图像,并通过传统的无线电系统再将图像传回地球,从而验证激光传输成功。   “在不久的将来,这种简单的激光通信技术可能成为卫星无线电通信的补充”,美国航天局专家戴维史密斯说,“再往后看,这种传输方式有可能实现比现有无线电通信线路更高的数据传输速率”。   美国“月球勘测轨道飞行器”项目耗资4.91亿美元,于2009年进入月球轨道,重点考察月球两极,为未来载人探月寻找合适的着陆点。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • CINOGY光束质量分析仪—角度响应校准:应用于大角度发散角的激光光束测量
    Cinogy光束质量分析仪—角度响应校准:应用于大角度发散角的激光光束测量1.1 应用范围有不同种类的应用需要考虑角度响应。这些应用大多使用(非常)发散的光束。在这种情况下,我们在一幅图像中有连续的入射角范围。照相机的灵敏度取决于激光束的入射角,这是由过滤器和传感器造成的。1.2 角度线性原因1.3过滤器这里,我们将只考虑吸收滤波器。如果光束没有垂直入射到滤光器上,则通过滤光器的路径较长。较长的路径导致较强的吸收,因此相机(滤光片和传感器)的响应较低。与过滤器相关的效果是各向同性的。但是,如果滤光器相对于传感器倾斜(取决于相机型号),则会在滤光器倾斜的方向上产生各向异性。入射角αin的线性透射可以用数学方法描述,如果透射指数为垂直光束T0和折射率n已知。因为对吸收性滤光片来说,T0与波长有很大的线性关系,与入射角度有关的相对透射率Trel也与波长密切相关。1.4 传感器角度响应取决于传感器技术、传感器类型、波长和微透镜。通常它不是各向同性的。图1:KAI-16070对单色光(未知波长)的角度线性灵敏度。参考:KAI-16070的 数据表图2 CMX4000白光的角度线性灵敏度如这些示例所示,对于不同类型的传感器,角度响应可能完全不同。因为这种效应还 取决于波长和单个传感器(每个传感器表现出稍微不同的行为),取决于波长的校准是必要的。两个传感器都显示出各向异性。为了考虑校准中的各向异性,需要比仅在x和y方向上更复杂的测量。2 涂层通过一种特殊的涂层,我们可以消除(主要是抑制)传感器本身的角度产生。剩余的影响角度的灵敏度是由滤波器引起的。这产生了以下主要优点:1)剩余的角度响应是各向同性的,这意味着它不再取决于入射角的方位角。2)剩下的角度响应的校正系数更小,因此更不容易出错。下面的图表显示了CinCam cmos Nano 1.001在940nm下的两个角度响应测量值,前面有CMV4000传感器和OD8吸收滤光片。第1张图表中的摄像机采用默认设置,没有特殊涂层。图3:CMV 4000传感器在x(蓝色)和y(橙色)方向的角度响应,前面有OD8吸收滤光片,在940nm处测量。上半部分显示相对角度响应,下半部分显示测量点和蕞佳拟合曲线之间的相对偏差。第二张图中的相机是用特殊涂层制作的。图4:CMV 4000传感器在x(蓝色)和y(橙色)方向的角度响应,该传感器具有特殊涂层,前面有OD8吸收滤光片,在940纳米处测量。上半部分显示相对角度响应,下半部分显示测量点和蕞佳拟合曲线之间的相对偏差。这里,角度响应是各向同性的、平滑的,对于大角度,下降效应不太明显。CinCam CMOS Nano Plus-X针对传感器和外壳正面之间的极短距离进行了优化。这使得入射角度高达65°时的角度响应测量成为可能。3 角度响应的拟合函数拟合函数是Zernike2多项式,其中入射角的正弦用于半径。这些多项式为入射角的任意方向提供了x和y方向的简单插值。用这种方法,我们可以用少量的系数描述高达±60度的测量结果。4 均匀性由于生产原因,涂层并不在任何地方都具有完全相同的厚度。这导致照相机灵敏度的不均匀性增加。这个缺点通过进一步的均匀性校准来补偿。图5:940纳米无涂层传感器(紫色)和均匀性校准后(绿色)的相对灵敏度。5 精度整体精度取决于以下几点:1)拟合精度。2)角度响应的各向同性。3)垂直光束位置(x,y)的精度。4)顶点到传感器的光学距离的精度(z)。5)蕞大角度下的角度响应下降。通过特殊的涂层,我们可以提高拟合精度和角响应的各向同性。此外,大角度灵敏度的相对下降要弱得多。6 RayCi中的校正要求为了根据角度响应校正图像数据,必须满足以下要求:1)角度响应校准数据必须可用于每个波长。该数据由蕞佳拟合的Zernike多项式系数组成。2)为了生成从每个像素到相应入射角的映射,必须知道光束垂直的x和y传感器位置。3)需要传感器和激光焦点位置之间的光学距离。4)CINOGY Technologies提供外壳和传感器之间的光学距离作为额外的校准数据。5)外壳和焦点之间的距离必须由用户提供。6)软件版本必须是RayCi 2.5.7或更高版本。 昊量光电提供的德国Cinogy公司生产的大口径光束分析仪,相机采用CMOS传感器,其中大口径的CMOS相机可达30mm,像素达到惊人的19Mpixel。是各种大光斑激光器、线形激光器光束、发散角较大的远场激光测量的必不可少的工具。此外CinCam大口径光束分析仪通用的C/F-Mount 接口设计,使外加衰减片、扩束镜、紫外转换装置、红外转换装置更为方便。超过24mm通光孔径的大口径光束分析仪CinCam CMOS-3501和CinCam CMOS-3502更是标配功能齐全的RayCi-Standard/Pro分析软件,该软件可用于光束实时监测 、测量激光光斑尺寸 、质心位置、椭圆度、相对功率测量(归一化数据)、二维/三维能量分布(光强分布) 、光束指向稳定性(质心抖动) 、功率稳定性 (绘制功率波动曲线)、发散角测量等 ,支持测量数据导出 ,测试报告PDF格式文档导出等。主要特点: 1、芯片尺寸大,可达36mm 2、精度高,单像元尺寸可达4.6um 3、支持C/C++, C#, Labview, Java语言等多种语言二次开发主要技术指标:RT option: CMOS/ccd-xxx-RT:响应波长范围:320~1150nmUV option:CMOS/CCD-xxx-UV:响应波长范围:150nm~1150nmCMOS/CCD-xxx-OM:响应波长范围:240nm~1150nmIR option:CMOS-xxx-IR:响应波长范围:400~1150nm + 1470nm~1605nm 关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:“当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。”近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。1、什么是大气颗粒物激光雷达呢?大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 2、激光雷达提供什么数据呢?① 消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。② 退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。③ 颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。④ 能见度:给出垂直、水平能见度视程。⑤ 外源性污染物强度:外源传输的输送通量和局地污染的占比。3、如何从激光雷达结果上读取沙尘信息呢?我们来分析三个案例。案例分析一:L地经历的一次严重的沙尘过程(数据来源:L地站点)① 沙尘爆发前:雷达图像监测显示,9日白天污染程度较轻,近地面有一定的尘漂浮。② 沙尘爆发期:夜间22时,近地面的退偏振度突然增大,消光系数也有伴随增大的现象,L地区的粗颗粒程度明显增加,近地面的PM10由250μg/m3升至1500μg/m3,沙尘天气加剧。③ 沙尘消散:沙尘天气持续至10日夜间22时,沙团中的粗颗粒明显沉降,退偏振度和消光系数明显减弱,污染物浓度下降,特别是PM10浓度,回落到750μg/m3,经历11日的持续沉降和过境,沙尘天气的影响基本消除,PM10浓度回落到250μg/m3。 案例分析二:过境沙团和沉降沙团的过程监控(数据来源:W地站点)颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。沙尘输入过程的激光雷达监测结果(W地)① 沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。② 沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。③ 沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。④ 沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】案例分析三:沙尘传输的激光雷达组网观测基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。2016年3~5日中央气象台的沙尘落区预报如下图所示。为有效捕获此次沙尘污染传输,我司利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析,实时结果如下图所示,沙尘到达北京、郑州和武汉等地的时间、高度、强度和沙尘团轮廓的演化有很大的不同和较强的关联性。 中央气象台的沙尘落区预报激光雷达组网点位布设沙尘传输的激光雷达组网观测结果致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:  “当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超过600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。  1、什么是大气颗粒物激光雷达呢?  大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 双波长三通道雷达 扫描雷达  2、激光雷达提供什么数据呢?  消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。  退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。  颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。  能见度:给出垂直、水平能见度视程。  外源性污染物强度:外源传输的输送通量和局地污染的占比。  3、如何从激光雷达结果上读取沙尘信息呢?我们来分析两个案例。  案例分析一:过境沙团和沉降沙团的过程监控(数据来源:中科光电无锡站点)  颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。 图 沙尘输入过程的激光雷达监测结果(无锡)  沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。  沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。  沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。  沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。  详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】  案例分析二:沙尘传输的激光雷达组网观测  基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。为有效捕获此次沙尘污染传输,中科光电利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析。 激光雷达组网点位布设 沙尘传输的激光雷达组网观测结果  致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。   光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。   科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。   在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。   魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。   魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • “探针”大气颗粒物激光雷达助力雾霾及沙尘天气监测
    p   针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部日前印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。 /p p style=" text-align: left " & nbsp  & nbsp & nbsp 依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说: /p p   “当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超过600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。 /p p   1、什么是大气颗粒物激光雷达呢? /p p   大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 /p p    /p p style=" text-align: center " & nbsp img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/953cf944-43c8-42e1-ad34-819e5677432c.jpg" / /p p & nbsp /p p style=" text-align: center "   双波长三通道雷达 /p p    /p p & nbsp /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/b6cf185b-c349-4c2b-b908-4203dbbec112.jpg" / /p p style=" text-align: center "   扫描雷达 /p p   2、激光雷达提供什么数据呢? /p p   消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。 /p p   退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。 /p p   颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。 /p p   能见度:给出垂直、水平能见度视程。 /p p   外源性污染物强度:外源传输的输送通量和局地污染的占比。 /p p   3、如何从激光雷达结果上读取沙尘信息呢?我们来分析两个案例。 /p p   案例分析一:过境沙团和沉降沙团的过程监控(数据来源:中科光电无锡站点) /p p   颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。 /p p    /p p & nbsp /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201703/insimg/e0b052d0-3d4c-4288-a91d-bd4c5328d8ef.jpg" / /p p style=" text-align: center "  图 沙尘输入过程的激光雷达监测结果(无锡) /p p   /p p   沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。 /p p & nbsp  沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。 /p p   沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。 /p p   沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。 /p p   案例分析二:沙尘传输的激光雷达组网观测 /p p   基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。为有效捕获此次沙尘污染传输,中科光电利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析。 /p p    /p p & nbsp /p p & nbsp /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/e9c642df-e57a-4117-a882-b73c0172a5a3.jpg" / /p p style=" text-align: center "   激光雷达组网点位布设 /p p    /p p & nbsp /p p & nbsp /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/586db30b-7165-4155-97ba-40770f26e853.jpg" / /p p style=" text-align: center "   沙尘传输的激光雷达组网观测结果 /p
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。   激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。   2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。   半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?   半导体市场:黯然神伤   虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。   “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。   “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”   ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”   相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。   作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。   Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。   “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”   随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:   1 激光技术在晶片/芯片加工领域的应用   1.1在划片方面的应用   划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。   目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。   1.2在晶片割圆方面的应用   割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。   传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。   2 激光打标技术   激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。   激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:   (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。   在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。   3 激光测试技术   3.1激光三角测量术   微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。   在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。   3.2颗粒测试   颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。   对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。   4 激光脉冲退火(LSA)技术   该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。   该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
  • 丹东百特研制成功国内首台三光束激光粒度仪
    经过多年的准备和一年多的奋力攻关,国内首台三光束激光粒度仪&mdash &mdash Bettersize2000激光粒度仪在丹东百特研制成功。经测试,该系统的动态测试范围达到0.01-2000微米,平均重复性误差小于1.5%,实际测试多种国际国内颗粒度标准物质,平均准确性误差(D50)小于1.35%。与几种进口激光粒度仪进行样品平行测试比较,结果偏差小于进口仪器之间的偏差。上述测试结果表明,Bettersize2000三光束激光粒度仪的主要技术指标达到了国内外现有同类仪器的先进水平。为中国高端粒度仪器用户增添了新的选择。
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界      经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。   开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon® 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 沙尘“侦察兵”:中科光电激光雷达网让沙尘传输有迹可循
    2021年以来沙尘天气频发,我国西北、华北地区遭遇了多次大范围沙尘天气过程,其中4月中旬的沙尘天气甚至跨越长江,影响到江南地区。沙尘天气的爆发致使传输路径上的多数城市AQI持续爆表,对人们的生活产生不利影响。如何实现对沙尘天气的提前感知和预警预报,每一次沙尘天气在国内的传输和扩散轨迹如何?作为区域沙尘天气立体观测“侦察兵”,中科光电激光雷达组网记录了每一次沙尘天气在全国的传输轨迹 。让我们跟随“侦察兵”的报告,对今年的主要沙尘天气进行回顾和盘点。1月10日-15日沙尘过程分析 西北区域(甘肃) 图1 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图1月10日-13日,河西地区多次出现短时沙尘传输过程。1月10日,沙尘气溶胶分布高度随传输过程逐渐扩大至2km,粒子形态偏不规则型,沙尘传输速度在45km/h左右。1月11日-13日,沙尘团为近地面传输,沙尘气溶胶多集聚1km内,河西西部地区主要为非球形粗粒子,河西东部地区球形细粒子占主导地位,沙尘团在阿克塞-玉门一带传输速度在20km/h左右,玉门-武威一带传输速度显著增大至49km/h左右。1月13日午后至14日,各地沙尘强度较高,沙尘团分布在2km高度内,粒子形态高度不规则,沙尘传输速度在45km/h左右。华东区域(江苏、浙江) 图2 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图1月12日0时起,江苏北部和南部、浙江中部和南部先后监测到2.0km高度有沙尘传输并逐渐下沉至地面,沙尘平均移动速度约为38km/h。江苏北部0.8km高度内以球形粒子为主,1.0km高度左右以非球形粗粒子为主;江苏南部、浙江中部、南部以非球形粗粒子为主。3月15日-19日沙尘过程分析 西北区域(甘肃) 图3 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图3月15日-18日,受蒙古强沙尘暴污染传输影响,甘肃省自西向东出现强沙尘天气,沙尘传输速率在玉门-武威一带达100km/h左右,武威-临夏一线传输速率明显减弱至20km/h左右,沙尘团主势力集聚1km内,各激光雷达500m内消光系数均突破阈值1km-1,多站点甚至高达4km-1,退偏振比接近阈值0.4,规则细粒子和不规则粒子占比较高,PM2.5和PM10均达到严重污染水平;期间仍有外源沙尘间歇性输送,致使各地沙尘污染反复。3月19日,各地出现短时雨雪天气,沙尘污染逐渐消散。4月12日-19日沙尘过程分析 西北区域(甘肃) 图4 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月12日和4月15日,甘肃全省监测到两次沙尘天气,沙尘主势力集中在1km内,气溶胶形态偏不规则粗粒子型,12日沙尘传输速率在12-15km/h左右,15日沙尘传输速率显著增强至100-120km/h。13日出现降水过程,污染快速消散;但16日扩散条件较差,导致浮尘天气持续。 华东区域(江苏、上海、浙江) 图5 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图4月16日4时起,江苏南部、上海中部、浙江中部和南部依次监测到污染气团并逐渐影响地面,沙尘平均移动速度约为42km/h。其中江苏南部、上海中部近地面先受到规则细粒子污染,随后转为不规则粗粒子污染。浙江中部及南部近地面以不规则的粗粒子为主,尤其浙江南部的粗粒子极不规则,退偏比达到0.4以上。4月25日-26日沙尘过程分析 西北区域(甘肃) 图6 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月25日-26日,受强冷空气活动影响,甘肃省自河西东部向南部地区相继监测到强沙尘输入,1km内规则细粒子含量骤增,同时粒子不规则度明显增大,沙尘传输速率为20km/h。26日各地细粒子污染逐渐降低,但粒子不规则程度依然较高。5月4日-8日沙尘过程分析 西北区域(甘肃) 图7 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图5月5-7日,甘肃省监测到两次间歇性短时沙尘过程,其中5日沙尘范围较大,沙尘传输速率达80km/h左右,沙尘团高度在传输过程中逐渐降低至1.5km,主要为非球形粗粒子。7日沙尘范围集中在中部地区,沙尘传输速率达50km/h左右,沙尘团多分布在500m高度内,球形粒子含量较高,午后各地沙尘污染逐渐消散。 华东区域(江苏、上海、浙江) 图8 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图5月5日0时起,江苏北部和南部、上海中部、浙江中部先后在1.5km高度监测到污染气团传输并于5时左右下沉至地面,沙尘平均移动速度约为171km/h。其中江苏北部和南部以球形粒子为主,上海中部、浙江中部以非球形粗粒子为主。7日3时起,江苏北部和南部、浙江中部在2.0-3.0km高度内监测到沙尘团,其中江苏北部球形粒子含量较高,但0.4km高度以下主要为非球形粗粒子。总 结激光雷达组网发挥其全面监控每次沙尘过程的空间分布、传输特征、气溶胶特性等的优势,实现对污染传输过程的精细立体监测,同时对污染传输情况进行提前预判,为研究区域污染物的累积与输送提供有力的技术手段,并对区域的大气污染联防联控提供有效支持。2021年以来,全国共经历6次大范围的强沙尘传输过程。甘肃省沙尘传输路径主要为北路和西北路,当出现沙尘暴天气时,影响范围较广,气溶胶粒子多集聚在500m高度内,主要为规则球形粒子(不规则粗粒子不利于远距离传输),传输速率与天气形势相关;当出现强沙尘天气时,气溶胶粒子多分布在1km高度内,沙源地周边城市主要为不规则粗粒子,其余城市球形粒子和不规则粗粒子占比相当,甚至球形粒子占主导;沙尘污染较强时,影响范围缩小,气溶胶粒子多分布在2km高度内,主要为不规则粗粒子。华东地区则均受到北部沙尘传输贡献,其中1月和4月沙尘平均移速相当,5月沙尘平均移速最快。沙尘传输高度基本在2km以内,且逐渐下沉,最终造成地面监测数据(主要是粗颗粒物数据)升高;污染气团多以不规则粗粒子为主,但在部分地区、部分时段以规则细粒子为主;沙尘影响时间均超过3天。
  • 或裁员百人,这个芯片大厂为何舍弃激光雷达技术开发?
    近日,Mobileye宣布终止用于自动驾驶和高度自动驾驶系统的下一代调频连续波 (FMCW) 激光雷达的内部开发。激光雷达研发部门将于 2024 年底解散,影响约 100 名员工。Mobileye预计2024 年激光雷达研发部门的运营费用总计约为 6,000 万美元(包括与股权激励费用相关的约 500 万美元)。Mobileye认为,下一代 FMCW 激光雷达的可用性在其“非视觉系统路线图” 的重要性有所下降。此外,公司基于EyeQ6的计算机视觉感知技术取得了实质性进展,内部开发的成像雷达性能进一步明确,而第三方供应商开发的飞行时间(ToF)激光雷达装置的成本降幅超出预期。由于需求环境不确定,Mobileye选择精简业务以应对市场变化。同时,第三方ToF激光雷达的成本节省效果优于预期,这也是Mobileye决定关闭内部FMCW激光雷达研发部门的重要因素之一。Mobileye的成像雷达已达到基于 B 样品的性能规格,预计将于明年按计划投入生产。成像雷达是Mobileye在内部传感器开发项目中的一项战略重点。Mobileye表示,“这是一项核心构建块技术,我们预计它将在成本/性能优化和可扩展性方面为基于 Mobileye 的免目视系统带来竞争优势。”此次终止激光雷达意味着Mobileye在自动驾驶技术战略上的重大调整,这一举措并不影响Mobileye的客户产品计划或产品开发,也不会对2024年的业绩产生重大影响,不过将减少未来激光雷达研发的支出。Mobileye的股价因宣布终止激光雷达的内部研发而下跌2.6%。FMCW激光雷达成本过高激光雷达(LiDAR,Light Detection and Ranging)是一种利用激光束进行探测和测距的光学遥感技术。具体来说,激光雷达由激光发射单元、接收单元、扫描系统和信息处理单元组成。激光雷达技术分为飞行时间(ToF)激光雷达、调频连续波(FMCW)激光雷达、成像雷达。ToF激光雷达通过测量发射激光脉冲与目标回波脉冲之间的时间间隔来计算距离。具体而言,激光器发出一个激光脉冲,当该脉冲遇到物体后反射回来,接收器记录下回波信号到达的时间,从而计算出目标距离。ToF激光雷达系统结构简单、成本较低、响应速度快、探测精度高,适用于中短距离测距。不过也存在距离盲区,不能测量近距离内的物体;空间分辨率受限于脉冲宽度。FMCW激光雷达使用频率调制的连续波信号进行测距和测速。相较于传统的脉冲式激光雷达,FMCW激光雷达具有抗恶劣天气干扰能力强、高度集成化、灵敏度高和信噪比高等优点。此外,FMCW激光雷达在复杂环境中也能实现良好的成像效果。相比ToF,FMCW激光雷达的成本较高。成像雷达通常指的是毫米波或微波成像雷达,它通过发射电磁波并接收反射回来的信号来生成目标的图像。成像雷达能够生成目标区域的二维或三维图像,广泛应用于自动驾驶汽车、气象探测等领域。随着新能源汽车的普及率不断提升,高级辅助驾驶系统(ADAS)和自动驾驶技术的发展,对激光雷达的需求也在增加,应用正在快速增长。如今的激光雷达,价格还是过于昂贵,主要应用在售价20万元的车型上,包括小鹏和蔚来在第二品牌车型上基本都放弃了使用激光雷达,转向纯视觉或轻传感器方案。激光雷达在新能源汽车中的应用不仅限于当前的L2+和L3级别自动驾驶,还将在未来向更高阶的自动驾驶技术迈进。例如,L5级自动驾驶通常需要四至六个激光雷达来确保安全性。成像雷达成Mobileye一项战略重点成像雷达与激光雷达的主要区别在于使用的波长不同。激光雷达使用的是可见光或近红外光,而成像雷达则使用微波或毫米波。在抗干扰能力和穿透能力方面,成像雷达可能优于激光雷达。Mobileye的成像雷达技术在近年来取得了显著进展。Mobileye与Wistron NeWeb Corp.(启碁科技)合作生产其软件定义的成像雷达,预计于2025年内实现量产。去年9月,Mobileye与法雷奥达成合作,共同开发全球领先的成像雷达。Mobileye与法雷奥达认为,作为自动驾驶传感系统的关键部分之一,成像雷达将成为更先进的 ADAS 解决方案和自动驾驶功能的支持性部件。Mobileye成像雷达采用了先进的雷达架构,包括大规模 MIMO(多收多发)天线设计、自主开发的高端射频设计和高保真采样技术,这些技术使得成像雷达能够实现精确的物体探测和更广泛的覆盖范围。据悉,Mobileye的成像雷达采用集成式片上系统设计,最大限度地提高了处理器效率,并采用了领先的雷达数据解析算法,可提供 300 米以致更远距离周围环境的详细四维图像。该雷达具有中距离 140 度视场角和 近距离 170 度视场角,即使在拥挤的城市街道上,也能更准确地探测到其他传感器可能会忽略的 行人、车辆或障碍物。英特尔营收收紧,准备卖了Mobileye?据悉,Mobileye终止激光雷达内部开发的决策是关于公司未来技术投资的一项独立决策,基于对激光雷达的市场经济效益、该产品的项目时间规划以及资金需求等方面的考量。Mobileye研发FMCW激光雷达的计划在2021年前后,原计划在2027年-2028年开始量产FMCW激光雷达。Mobileye的预期在2028年是该产品需求的爆发期,而且会持续爆发。目前为止,尽管也有不少公司同样押注了这条赛道,但这几年来,ToF依旧是目前市场主流的激光雷达测距路线。同时,由于新能源市场行情景气下滑等因素,Mobileye也受到了影响,正朝着连续第三年亏损的方向发展。Mobileye的财报显示,2023年公司的初步业绩整体不佳,客户芯片库存过高导致年度展望不及市场预期,进一步拖累了股价。截至9月5日,Mobileye的股价今年已下跌约71%,市值约为102亿美元。Mobileye也大幅下调了2024年营收和利润预期。Mobileye预计,由于中国市场不稳定,其全年营收将在16亿至16.8亿美元之间,调整后营业利润在1.52亿至2.01亿美元之间。Mobileye成立于1999年,其核心业务包括开发用于自动驾驶和ADAS的视觉传感器、芯片及软件解决方案,其主要产品包括EyeQ系列系统集成芯片。Mobileye于2017年被英特尔收购,当时是英特尔在自动驾驶领域的重要布局。近日,由于英特尔经营业绩下滑,以及在代工业务上的巨额亏损以及市场需求疲软等问题,彭博援引知情人士报道称,英特尔在对其战略进行全面评估的过程中考虑出售Mobileye。去年,英特尔已经出售了Mobileye的部分股份,并从该交易中获得了约15亿美元的资金。如果英特尔试图通过出售更多Mobileye的股份来筹集资金,说明英特尔与Mobileye正度过一个艰难时期。
  • 丹麦拟研发激光风能扫描仪
    丹麦即将建设一个欧洲风能研究中心,其中一个重要项目是研发风能扫描仪,用以分析大气中的风能信息,使风力开发更有效率。   丹麦媒体29日报道说,风能扫描仪是一种特殊的激光测风设备。激光雷达向空中发射激光束,在遇到空气中的微粒后,激光束可反射回雷达,仪器据此自动分析出当前风力条件。   使用风能扫描仪,风力涡轮机制造商能够根据特定风力环境选择安装合适的风机产品 航空系统也可以事先了解气流的详细信息,让飞行员有足够的心理准备,使飞机起降时更加安全。   该仪器还可在风机出现问题时协助进行故障诊断,以确定故障原因是否与当地特定风力条件有关。   风能扫描仪项目由丹麦技术大学的可再生能源国家实验室领导实施,与德国、希腊、西班牙、荷兰、挪威和波兰的研究伙伴共同完成,预计2013年投入运行。该项目计划耗资4500万至6000万欧元,欧盟将提供1500万欧元的资金支持。   除风能研究中心外,欧盟委员会还批准建立另外两个可再生能源研发中心,即设在西班牙的欧洲太阳能研究中心和设在比利时的欧洲核能研究中心。
  • 我国首台万瓦光纤激光器问世 年内产值1.6亿元
    经由一根绣花针粗细的光纤,释放出的激光能量可焊接飞机、轮船。记者22日从武汉市获悉,我国首台万瓦连续光纤激光器在光谷问世,中国成为继美国后第二个掌握此技术的国家。   记者在武汉锐科研发中心看到,这台激光器虽然只有约两台冰柜叠加大小,它肚子里却藏着10块“能量方”,每块1100瓦,各产生一条激光束,10条激光束再汇聚到一根光纤,形成合力,最终产生1万瓦的强大能量。这项激光功率合束技术,被美国视为万瓦激光器的核心机密。   据悉,为打破垄断,两位国家“千人计划”专家闫大鹏、李成率队,历时一年研发攻关,终于掌握该技术的自主知识产权。   据了解,在国际上,光纤激光器越来越广泛应用于工业造船、汽车制造、航空航天、军事设备等领域。与传统二氧化碳激光器相比,它的耗电仅为其1/5,体积只有其1/10,但速度快4倍,转换效率高20%,还没有污染。   中国光学学会理事长、中国科学院院士周炳琨认为,过去,我国核心激光器件主要依赖进口,如今取得这一技术国际领先,对我国工业发展将产生巨大推动。   据透露,该技术已纳入明年的国家863计划。闫大鹏表示,年内有信心冲刺2万瓦技术,实现产值1.6亿元。
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 丹东百特三光束激光粒度仪项目列入科技部创新基金计划
    日前,丹东百特科技有限公司三光束激光粒度仪项目正式列入2009年科技部中小型科技企业创新基金计划。这是继2007年宽域智能激光粒度仪项目列入科技部创新基金项目后,丹东百特再获的科技部科技创新计划的支持,表明丹东百特在持续激光粒度测试技术创新方面做出了不懈的努力,达到了新的水平。
  • 可伐-玻璃组装式(无吹制)氦氖激光器研制成功并批产
    据悉,镭测科技公司经过7年的研发,在国内首次研究成功可伐-玻璃组装式的氦氖激光器,并实现批量生产。这一成果终结了我国50年靠玻璃吹制氦氖激光器的历史,有力推动我国高端激光仪器的发展。  清华大学教授、镭测科技公司顾问张书练表示,氦氖激光器是气体激光器的一种,是气体激光器中最先研发问世的产品类型。氦氖激光器是以中性原子气体氦和氖为工作物质、由放电管和光学谐振腔构成的激光器,可输出连续激光。氦氖激光器工作在可见光与红外光频段,可输出绿光543.5nm、红光632.8nm、红外光1.15μm和3.39μm等多种波长。其中,红色波长632.8nm在氦氖激光器家族中有独一无二的品质,应用最广泛。波长632.8nm氦氖激光束质量高、光束横截面上光强度非常接近完美的高斯分布,非常小的发散角,传播百米后光斑直径还保有几毫米大小;输出功率稳定,噪声非常低;有天然的频率(波长)稳定点,波长稳定性可以非常高,可以做到1小时时间内632.8nm仅漂移百万甚至亿分之一;造价低,可靠性高,一致性好互换性强等。  张书练指出,氦氖激光器在仪器仪表、精密测量方面应用广泛,无可替代。国内外的单频干涉仪,双频干涉仪,面型干涉仪,测振仪,椭偏仪,激光陀螺仪等都采用氦氖激光器做光源,这些仪器是精密机床、光刻机、航空、航天、机械和光学加工,薄膜技术等领域精度的保证。我国这些产业向高端发展的速度加快,市场对相关仪器的需求将持续增长,将会拉动我国对可伐-玻璃组装式的氦氖激光器需求规模不断扩大。  根据某研究中心发布的《2022-2026年氦氖激光器行业深度市场调研及投资策略建议报告》显示,2021年,全球氦氖激光器市场规模约为0.74亿元;预计2021-2026年,全球氦氖激光器市场将以4.2%左右的年均复合增速增长,到2026年市场规模将达到0.91亿元左右。在全球市场中,氦氖激光器生产商主要有美国Lumentum Operations、美国Melles Griot(被Pacific Lasertec收购)、美国Thorlabs、美国Excelitas Technologies、德国Lasos、德国Phywe、日本Neoark。  张书练表示,多年来,我国依赖玻璃吹制技术生产氦氖激光器(管),激光器之间一致性较差,稳定性不佳,不能达到各类激光仪器的应用要求。过去几十年,虽然国内也有对可伐-玻璃组装式(无吹制)氦氖激光器进行了研究,但没有坚持下来,也曾引进了一条国外(装配)生产线,运行几年,终因没有自己元器件供应链,没有自己的工艺被迫停产。激光仪器仪表仪器装配的氦氖激光器都从国外购买,因为容易频率突跳或不出双频振荡,淘汰率很高。  镭测科技自主研发的可伐-玻璃组装式的氦氖激光器用已成批用于双频激光干涉仪上和光刻机的失效激光器替换。用作双频激光器时,激光功率可以达到1.3mW以上,激光频率差可选定3MHz、7MHz、10 MHz、20 MHz,或更大,这是国内外以前没有实现的。此外,之前,不论是单频还是双频激光干涉仪,国产还是国外购买,各型号都有几纳米甚至十几纳米的非线性误差,可伐-玻璃组装式的氦氖激光器作光源的双频激光干涉仪非线性误差不大于1纳米。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 奥林巴斯激光共焦显微镜OLS5100,5G技术普及守护者
    说到5G技术,我们会想到一个字:快!更严谨的来说,5G技术有3大优点: 1. 超大连接2. 超快速度3. 超低延时高速,同样需要付出代价,那就是:传输损耗 研究发现,高频信号比低频信号更容易造成信号传输损失。所以,为了有效传输5G信号,需要使用传输损耗低的PCB板。这里说的PCB板主要是指应用在5G通讯基站上的高速高频多层板。多层板,是指拥有3层以上的导电图形层。通过在核心层的顶层和底层重复蚀刻过程和钻孔过程,可以形成任意数量的层。在高频的信号下,5G的趋肤效应更加明显。趋肤效应是指,高频电流流过导体时,电流会趋向于导体表面分布,越接近导体表面电流密度越大。这是频率较低时,铜电路里面的信号流动区域,信号时充满整个区域的。频率增高,信号趋向于表面分布频率越高,铜箔表面的电流密度越大。这是电流与趋肤深度和频率的关系图: 原来在PCB的生成过程中,会对铜箔的表面进行粗化处理,从而得到较好的结合强度。但是在5G高频信号下,信号集中在铜箔表面。如果是在粗糙度较大的铜电路表面,信号传输的路径很长,传输损耗增加。 如果是在粗糙度较小的铜电路表面,信号传输的路径变短,传输损耗就会降低。 总的来说,铜箔表面既需要大的粗糙度来增强结合强度,同时也需要小的粗糙度来降低趋肤效应。所以,以下的两点在铜箔的检测中就显得十分重要: 1. 非接触形式的测量2. 更小的粗糙度数值 还记得奥林巴斯上个月发布的新品OLS5100吗?针对上述这样较为严格的检测条件,奥林巴斯OLS5100的粗糙度测量功能,可以很好的匹配这样的测量诉求。接触式表面粗糙度仪用触针直接在铜箔表面划过,可能会损坏铜箔样品,难以得到准确的测量结果。OLS5100显微镜采用非接触的测量方式,不会损坏样品,可以获得准确的数据结果。OLS5100显微镜使用直径0.4μm的激光束扫描样品表面,这让其能够轻松测量接触式表面粗糙度仪无法测量的样品表面粗糙度。这种同时获取接触式表面粗糙度仪无法获得的表面彩色图像、激光图像和3D形貌,使得更多分析功能得以实现。同样的,为了满足非接触以及更为精细的粗糙度检测,对测量器材就有了一定的要求,尤其在物镜选择上。要想实现精确的粗糙度测量,选择合适的物镜非常重要。其“智能物镜选择助手(Smart Lens Advisor)“,就是帮助检测高效顺利进行的好帮手。 我们通过智能物镜选择助手(Smart Lens Advisor),只需选中物镜后启用智能物镜选择助手,单击开始,智能物镜选择助手(Smart Lens Advisor)就会告诉您该物镜的推荐程度。这样,就可以确定您所使用的物镜对于测试而言是否合适。 智能物镜选择助手(Smart Lens Advisor)通过三个简单步骤即可避免通过猜测为粗糙度测量选择合适的物镜。只需确定您的视场,启动智能物镜选择助手(Smart Lens Advisor),然后按下开始按钮,软件就会告诉您所选的物镜是否适合您的实验。 这样一来,就能顺利减少因错误选择物镜造成的实验时间浪费。 在智能物镜选择助手(Smart Lens Advisor)的帮助下检测过关的铜箔,就可以成为低耗PCB的材料,保证了大家在5G技术加持下,高速的网络体验。
  • 史上最强激光器或落户英国 有望破解宇宙奥秘
    史上最强激光器能撕裂真空 超高场激光器有望帮助人类解答一系列关于宇宙空间的难题   据英国《每日电讯报》10月30日报道,一座能撕开真空的激光发射器有望在英国问世,它将帮助科学家破解宇宙的未解之谜。   史上最强激光发射器的正式称谓是“超强激光构造计划超高场激光器”(Extreme Light Infrastructure Ultra-High Field Facility),它是继大型强子对撞机(Large Hadron Collider)之后物理学界的又一个重大实验项目,英国卢瑟福 阿普尔顿实验室高级激光技术与应用中心的科学家目前正在研制实验所需的相关技术。   欧盟委员会今年早些时候已经批准了在捷克、匈牙利和罗马尼亚分别建立三座激光发射器的计划。这三座激光发射器总造价约2亿欧元(约合17.6亿元人民币),预计2015年正式启用,将作为超高场激光器的组成部分,并为其提供原始激光束。整个超高场激光器将于2020年前后问世,总造价约10亿欧元(约合88亿元人民币),运转后将能在百万兆分之一秒内制造出总能量相当于全世界全部电能输出10万多倍的强大激光,全部激光束汇聚为一点后将产生比太阳核心还极端的超高温高热状态。   科学家希望利用超高场激光器“撕破”宇宙中的真空,探索宇宙空间的构成和所谓“暗物质”的真相。与人们通常的认识不同,宇宙中所谓的“真空”其实并非空无一物。根据科学家推测,所谓的真空是在物质与反物质的相互抵消作用下形成的 由于构成真空的所谓“鬼粒子”转瞬即逝,因此一直未能被人类所认识。超高场激光器的出现有望改变这一局面,甚至可以帮助科学家验证“额外维度”(extra-dimension)的存在。德国物理学会主席沃尔夫冈桑德纳教授表示:“我们往往认为真空中没有任何物质,但事实上,真空似乎是由存在时间极短的成对分子组成的。高能激光射线能将这些分子拉开,并延长它们存在的时间。”   此外,超强激光还有望催生癌症激光疗法和新的医学诊断方法。普利茅斯大学理论物理学副教授托马斯 海因茨尔接受采访时称:“超强激光构造计划将引领我们进入前所未知的物理学新领域,必将有许多令人惊讶的发现等待着我们。”   超高场激光器的最终落户地址将于明年公布,目前除英国外,俄罗斯、法国、匈牙利、罗马尼亚和捷克的研究机构也都在积极申请。
  • 激光共聚焦成像质量更好的原因
    激光共聚焦成像质量更好的原因激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种高性能的显微镜,具有出色的成像质量。那么,为什么激光共聚焦显微镜的成像质量更好呢?激光共聚焦显微镜采用了共聚焦技术,即在样品上使用聚焦的激光束扫描。通过这种方式,LSCM可以在一个特定的焦点上获取清晰的图像。这种成像方式相比传统显微镜有诸多优势。激光显微镜激光器的特点1、激光共聚焦显微镜具有优异的分辨率传统的显微镜在成像时,由于光的衍射效应,无法观察到比波长更小的细微结构。而激光共聚焦显微镜通过聚焦激光束,可以有效地减少光的散射和干扰,突破波长的限制,观察到更小的细胞结构和微观组织。2、激光共聚焦显微镜具有较大的深度聚焦范围传统的显微镜由于焦平面的限制,只能观察到样品的一个薄层。激光共聚焦显微镜激光束的特性,可以在样品的不同深度上获取图像。这使得我们能够观察到三维样品的内部结构,实现三维成像,而不仅仅局限于表面。这对于研究生物学过程中的细胞内部活动以及组织结构的变化非常重要。这种深度成像的能力,使得研究者可以观察到样品内部结构的细节,进一步深入研究生物学和医学领域的问题。3、激光共聚焦显微镜具有较低的背景噪声传统显微镜在成像过程中会受到来自样品和环境的背景干扰,导致图像质量下降。而激光共聚焦显微镜通过使用激光束的聚焦性,缩小激发范围并使用光学切片来消除背景噪声,提高图像的对比度和质量。4、激光共聚焦显微镜灵敏度更高激光束聚焦后,可以通过光电倍增管等探测器,将样品反射或荧光信号转化为电信号。这种高灵敏度的探测方式,使得激光共聚焦显微镜可以观察到非常微弱的信号,进一步提高了成像质量。激光共聚焦显微镜的成像质量更好,得益于其共聚焦技术、优异的分辨率、较大的深度聚焦范围、较低的背景噪声和更高灵敏度。这使得激光共聚焦显微镜在生物学、医学等领域的研究中得到广泛应用,并为我们提供了更多细胞和微观结构的细节信息。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制