异型体

仪器信息网异型体专题为您整合异型体相关的最新文章,在异型体专题,您不仅可以免费浏览异型体的资讯, 同时您还可以浏览异型体的相关资料、解决方案,参与社区异型体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

异型体相关的耗材

  • 异形件卡具
    产品简介:异形件卡具配合固定座使用,方便装卡异形块状试样,不需要加热粘接,节省时间。
  • 异形刚玉陶瓷件
    氧化铝陶瓷坩埚,刚玉陶瓷坩埚有:弧形氧化铝刚玉坩埚,方形氧化铝刚玉坩埚,长方形氧化铝陶瓷刚玉坩埚,圆柱形陶瓷刚玉坩埚,氧化铝刚玉管,等等各种异形氧化铝陶瓷坩埚,承接非标订做各种异形氧化铝刚玉陶瓷坩埚.欢迎联系!刚玉陶瓷坩埚系列:适用于各种实验室金属、非金属样品分析及熔料用。 坩锅系列——用于化验室及各种工业分析。 氧化铝坩埚刚玉瓷坩埚特点:1、纯度高:Al2O3>99%,耐化学腐蚀性好 2、耐温性好,长期使用在1600℃,短期1800℃ 3、耐急冷急热性好,不易炸裂 4、注浆成型密度高 高纯氧化铝坩埚 刚玉坩埚理化指标名 称氧 化 铝 坩 埚 化 学 成 分Al2O3≥99R2O≤0.2Fe2O3≤0.1SiO2≤0.2体 积 密 度(g/cm2)≥3.80显 气 孔 率(%)<1抗 弯 强 度(Mpa)>350抗 压 强 度(Mpa)>12000介 电 常 数 ∑(1MHz)2 最 高 使 用 温 度(℃)1800规格有:弧形坩埚:10毫升,15毫升,20毫升,30毫升,50毫升,100毫升,150毫升,200毫升,300毫升,500毫升,750毫升,1000毫升。直形坩埚:直径30*30------160*160毫米方形坩埚:65*65-------240*240毫米备:可根据用户需求定制各种非标异型氧化铝坩埚 99氧化铝特种陶瓷: 氧化铝陶瓷具有熔点高,硬度大,致密高强,耐磨性好,化学稳定性好,同时还具有高频及微波电绝缘等优良特性,广泛应用于航空航天,电子机械,冶金陶瓷,化工,纺织,生物等领域。名称用途特性弧型坩埚烧制彩电粉,荧光粉,稀土材料,贵金属材料,是焙烧高,中,低陶瓷电容器NTC,PTC压电陶瓷及钴酸锂,锰酸锂粉末的最佳焙烧容器。有良好的化学稳定性和抗热震性能,使用温度高。园底坩埚直型坩埚方型坩埚方板焙烧电子产品,高温基座材料,陶瓷盖板。有良好的化学稳定性和抗热震性能,使用温度高。圆板研钵研磨各类高纯化工原料及医药制品强度高,耐腐蚀,耐磨性好。球磨罐适用粉碎各类化工产品,医药产品,稀土材料及各类硅酸盐材料。有良好的化学稳定性和耐磨性滚筒粉碎各类非金属材料材质致密,抗冲击,耐磨性好。颚板气流粉碎内衬用于气流式粉碎强度高,抗冲击,耐磨性好。炉管适用于高温炉内衬,化工加热反应器壳体,热电偶测温保护套管。化学稳定性,气密性,绝缘性良好保温罩生长各类高温晶体化学稳定性好,耐高温。异型制品特种行业及军工企业特殊需求定身(加工)超特异型制品
  • 定制异形刚玉板,陶瓷板,氧化铝板
    氧化铝陶瓷具有熔点高,硬度大,致密高强,耐磨性好,化学稳定性好,同时还具有高频及微波电绝缘等优良特性,广泛应用于航空航天,电子机械,冶金陶瓷,化工,纺织,生物等领域。名称用途特性弧型坩埚烧制彩电粉,荧光粉,稀土材料,贵金属材料,是焙烧高,中,低陶瓷电容器NTC,PTC压电陶瓷及钴酸锂,锰酸锂粉末的焙烧容器。有良好的化学稳定性和抗热震性能,使用温度高。园底坩埚直型坩埚方型坩埚方板焙烧电子产品,高温基座材料,陶瓷盖板。有良好的化学稳定性和抗热震性能,使用温度高。圆板研钵研磨各类高纯化工原料及医药制品强度高,耐腐蚀,耐磨性好。球磨罐适用粉碎各类化工产品,医药产品,稀土材料及各类硅酸盐材料。有良好的化学稳定性和耐磨性滚筒 粉碎各类非金属材料材质致密,抗冲击,耐磨性好。颚板气流粉碎内衬用于气流式粉碎强度高,抗冲击,耐磨性好。炉管适用于高温炉内衬,化工加热反应器壳体,热电偶测温保护套管。 化学稳定性,气密性,绝缘性良好保温罩生长各类高温晶体化学稳定性好,耐高温。异型制品特种行业及军工企业特殊需求定身(加工)超特异型制品

异型体相关的仪器

  • 异型加热炉 400-860-5168转1989
    产品说明:纤维与电阻丝镶嵌的组合加热器,是近年来发展较快且应用广泛的一种新型电阻加热器件,由于它具有许多独特的优点,是传统电阻加热设备的理想替代产品。我公司采用"特殊"加工工艺将不同材质、高温电阻丝与不同强度的纤维镶嵌组合,形成单个纤维质电热器件,最高工作温度可达1300℃。主要品种有:各种实验室箱式电阻炉炉膛, 坩埚炉膛,管式炉膛、工业电阻炉用的板状、园弧状加热器及各种异型电阻加热器。电阻丝元件有"之"字型和"螺旋"状两种。纤维电加热器的特征   1、 结构紧凑、重量轻、便于安装  选用容重小、绝缘、绝热性能高的纤维与电热元件镶嵌组合成一体,具有体积小,重量轻并可简化电热设备的结构安装特方便,大大降低工程造价,彻底解决了全纤维电阻炉元件吊挂问题。  2、 升温快、保温性好、节能效果显著纤维电加热器蓄热量小,保温性能好,因而升温速度快,热效率高,加热时间短,一般节电40%以上,特别适合间隙工作的电热设备,能显著高劳动生产率。  3、 适用性强、应用范围广  不但有标型的,便于用户选用,而且还可以按用户要求设计或任意状使产品应用到标型产品不易安装的设备部位。纤维电加热器电阻丝镶嵌形式(1) 埋入式  电阻丝埋入3-5mm,一般是埋入较细的电热丝,按电阻丝表面负荷1.4w/cm2,加热器负荷不超过20kw/m2,炉丝加热器热面温度与电阻丝最大温差小于100℃。  (2) 微露式  这种镶嵌式在加热器面可以看到微露的电阻丝,所以炉丝发热条件优于埋入式,适用于小功率的电热丝埋入。  (3)外露式  这种镶嵌方式使螺旋状电阻丝有一部分露在加热器的热面,炉丝发热条件好,适合较粗炉丝的镶嵌。产品特征:  有强度 低导热率 抗热震 易机械加工  低蓄热 重量轻  产品性能表:  使用温度:1250-1600℃  容重:200-600KG/M3  重烧线收缩率:1500℃×1h-2.0%  导热率:(w/m.c)1000℃-0.16  1250℃-0.2 1350℃-0.25  尺寸:来图加工定制(按不同使用温度而定)  品种:不同容重的毡,板;标、异型制品。产品适用:  高温电阻炉、感应炉、钢包盖、玻璃熔窑、窑车密封槽、高温辐射管、高温器皿,烧嘴等军工、科研、航天、核反应堆等行业的特殊高温设备。产品特征:  板面平整  容重、厚度均匀一致  优越的机械和结构强度  低导热、低收缩  抗气流冲刷产品应用:  各种高温工业炉炉衬隔热  陶瓷窑炉,机械及冶金热处理炉及其它工业窑炉的热面炉衬材料  炉门、窑车、膨胀缝等隔热材料注:本系列产品可以来图加工定制,成分可按使用温度而定,容重可视不同情况确定,产品可加工成电加热纤维制品镶嵌模块及异型件等,并可代替国外进口材料。
    留言咨询
  • 异型热电偶校准炉一般为定制产品,主要为校准航空发动机、汽车和特种领域的异型热电偶(超短偶、扇形偶,梳子形偶),校准温度高,温场稳定,防散热设计。配合RKT 3000系统组成异型热电偶自动校准系统,可自动完成除装炉、捆扎和参数设置外的操作。1.技术特点(1) 加热材料为特种合金,兼备陶瓷材料和金属材料的双重特性(2) 防散热设计,排除导热、气流等干扰(3) 每支热电偶一个小检定炉,组合式设计(4) 检测数量∶1~30支热电偶2.技术参数(1) 温度范围∶300℃~900℃,300℃~1100℃(2) 与温度设定点之差∶T400℃时,±4.4℃;400℃≤T≤1100℃时,±5℃(3) 加热方式:电热(4) 显示分辨率:0.1℃(5) 巡回检测期间炉温变化不大于0.2℃/min(6) 检定炉任意测试孔之间温度差≤2℃(7) 标准孔与测试孔之间温差≤1℃(8) 炉深∶30mm (9) 测孔尺寸:φ5mm (10) 微型炉体尺寸∶方形100×100×200(11) 电源220V AC(±10%),50/60Hz
    留言咨询
  • 异型电磁铁DZ-6异型电磁铁概述: 异型电磁铁在进行科学实验时,有时候会遇到正常类型的电磁铁无法满足正常的使用需求,因此就需要定制各种 形状的电磁铁,以满足不同的实验需求。例如:钳式电磁铁双极突出线包外侧,外形如钳,通常用来产生 面内磁场,适合显微镜下、探针台、空间受局限、磁光实验,磁矿粉筛选等特殊使用环境。 我公司可根据用户要求设计制作各种异形、特殊用途的电磁铁。可根据不同的使用方式、不同的实验 要求、不同的工作环境、和与不同设备的配套装配进行设计制作;可使电磁铁在保持高磁场的可能下, 实现大的变形。异型电磁铁在进行科学实验时,有时候会遇到正常类型的电磁铁无法满足正常的使用需求,因此就需要定制各种 形状的电磁铁,以满足不同的实验需求。例如:钳式电磁铁双极突出线包外侧,外形如钳,通常用来产生 面内磁场,适合显微镜下、探针台、空间受局限、磁光实验,磁矿粉筛选等特殊使用环境。 我公司可根据用户要求设计制作各种异形、特殊用途的电磁铁。可根据不同的使用方式、不同的实验 要求、不同的工作环境、和与不同设备的配套装配进行设计制作;可使电磁铁在保持高磁场的可能下, 实现大的变形。异型电磁铁在进行科学实验时,有时候会遇到正常类型的电磁铁无法满足正常的使用需求,因此就需要定制各种 形状的电磁铁,以满足不同的实验需求。例如:钳式电磁铁双极突出线包外侧,外形如钳,通常用来产生 面内磁场,适合显微镜下、探针台、空间受局限、磁光实验,磁矿粉筛选等特殊使用环境。 我公司可根据用户要求设计制作各种异形、特殊用途的电磁铁。可根据不同的使用方式、不同的实验 要求、不同的工作环境、和与不同设备的配套装配进行设计制作;可使电磁铁在保持高磁场的可能下, 实现大的变形。
    留言咨询

异型体相关的方案

  • 双特异性抗体药物功能分析
    双特异性抗体(Bispecific antibodies, BsAbs)是一种可以与相同或不同抗原上的不同表位结合的抗体结构。目前双特异性抗体被广泛应用于肿瘤治疗领域,比如将抗CD3抗体与肿瘤靶向抗体进行组合,所构建的双特异性抗体可招募T细胞接近肿瘤细胞,起到介导T细胞杀伤肿瘤细胞的作用,除此之外,双特异性抗体还被应用于治疗骨质疏松、血友病、自身免疫疾病等其他领域。
  • 人抗肝特异性脂蛋白抗体(LSP)检测试剂盒
    人抗肝特异性脂蛋白抗体(LSP)检测试剂盒人抗肝特异性脂蛋白抗体(LSP)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗肝特异性脂蛋白抗体(LSP)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗肝特异性脂蛋白抗体(LSP)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗肝特异性脂蛋白抗体(LSP)抗原、生物素化的人抗肝特异性脂蛋白抗体(LSP)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗肝特异性脂蛋白抗体(LSP)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 人抗乙型肝炎病毒e抗体(HBeAb)检测试剂盒
    人抗乙型肝炎病毒e抗体(HBeAb)检测试剂盒人抗乙型肝炎病毒e抗体(HBeAb)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗乙型肝炎病毒e抗体(HBeAb)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗乙型肝炎病毒e抗体(HBeAb)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗乙型肝炎病毒e抗体(HBeAb)抗原、生物素化的人抗乙型肝炎病毒e抗体(HBeAb)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗乙型肝炎病毒e抗体(HBeAb)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度

异型体相关的论坛

  • CrossMAb技术:推动双特异性及多特异性抗体治疗的创新与应用

    [font=宋体][font=宋体]随着生物制药技术的快速发展,抗体疗法已成为治疗多种疾病的有力手段。特别是双特异性抗体([/font][font=Calibri]bsAbs[/font][font=宋体])和多特异性抗体([/font][font=Calibri]msAbs[/font][font=宋体]),因其能够同时靶向多个生物学标志物,展现出了独特的治疗潜力。然而,这些抗体的开发面临着重重挑战,尤其是在确保正确的重链和轻链配对方面。本文将基于一篇关于[/font][font=Calibri]CrossMAb[/font][font=宋体]技术的综述文章,探讨该技术在构建双特异性及多特异性抗体中的应用及其潜力。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CrossMAb[/font][font=宋体]技术[/font][/font][font=宋体]最初由[/font][font=宋体][font=Calibri]Roche[/font][/font][font=宋体]等公司开发,[/font][font=宋体]是一种[/font][font=宋体]新型[/font][font=宋体]的抗体工程技术,其核心在于[/font][font=宋体]利用[/font][font=宋体]免疫球蛋白[/font][font=宋体]结构[/font][font=宋体]域交叉来实现正确的轻链配对。[/font][font=宋体]此外,该技术还可与[/font][font=宋体][font=Calibri]knobs-into-holes[/font][/font][font=宋体]([/font][font=宋体][font=Calibri]KiH[/font][/font][font=宋体])[/font][font=宋体]技术或静电[/font][font=宋体]转向[/font][font=宋体]等[/font][font=宋体]正确的[/font][font=宋体]重链配对技术相结合,[/font][font=宋体]产生各种不同形式的双特异性抗体,[/font][font=宋体][font=宋体]极大地提高了双特异性[/font][font=Calibri]IgG[/font][font=宋体]抗体的生成效率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]自[/font][font=Calibri]2011[/font][font=宋体]年[/font][font=Calibri]CrossMAb[/font][font=宋体]技术首次被[/font][/font][font=宋体]提出[/font][font=宋体]以来,它已被证明是一种多功能的抗体工程技术,能够[/font][font=宋体]开发出[/font][font=宋体]多种[/font][font=宋体]形式的[/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url],包括异源二聚体[/font][font=Calibri]/[/font][font=宋体]非对称双价、三价、四价[/font][/font][font=宋体]的[/font][font=宋体]双特异性抗体以[/font][font=宋体]和特异性性[/font][font=宋体][font=宋体]抗体。这些双特异性抗体可以从任何现有的抗体对中通过域交叉获得,无需识别共同的轻链、翻译后加工[/font][font=Calibri]/[/font][font=宋体]体外化学组装或引入一组强制正确轻链配对的突变。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CrossMAb[/font][font=宋体]技术的一个关键优势在于其能够[/font][/font][font=宋体]开发[/font][font=宋体][font=宋体]针对特定疾病的双特异性抗体。例如,针对肿瘤治疗的双特异性抗体[/font][font=Calibri]vanucizumab[/font][font=宋体]([/font][font=Calibri]RG7221[/font][font=宋体]),它能够同时靶向血管内皮生长因子[/font][/font][font=宋体][font=Calibri]A[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]VEGF-A[/font][font=宋体])和血管生成素[/font][font=Calibri]-2[/font][font=宋体]([/font][font=Calibri]Ang-2[/font][font=宋体]),在临床前研究中显示出强大的抗肿瘤效果。此外,该技术还被用于开发针对眼部疾病的[/font][font=Calibri]VEGF-Ang-2 CrossMAb RG7716[/font][font=宋体],以及针对实体瘤的[/font][font=Calibri]CEA TCB[/font][font=宋体]([/font][font=Calibri]RG7802[/font][font=宋体])等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]除了在双特异性抗体领域的应用,[/font][font=Calibri]CrossMAb[/font][font=宋体]技术还[/font][/font][font=宋体]可用于生成其他类型的抗体[/font][font=宋体][font=宋体]。例如,通过该技术可以生成功能性的单价抗体([/font][font=Calibri]MoAb/MonoMAb[/font][font=宋体])和二聚体[/font][font=Calibri]MoAb[/font][font=宋体]([/font][font=Calibri]MoAb-dimer, DuoMAb[/font][font=宋体])。此外,还可以构建三特异性抗体,如针对[/font][font=Calibri]HER[/font][font=宋体]家族受体的[/font][font=Calibri]panHER[/font][font=宋体]家族[/font][font=Calibri]DAF-CrossMAb[/font][font=宋体]抗体,以及四特异性抗体,如针对[/font][font=Calibri]EGFR/HER1[/font][font=宋体]、[/font][font=Calibri]HER2[/font][font=宋体]、[/font][font=Calibri]HER3[/font][font=宋体]和[/font][font=Calibri]VEGF[/font][font=宋体]的[/font][font=Calibri]FL518[/font][font=宋体]和[/font][font=Calibri]CRTB6[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CrossMAb[/font][font=宋体]技术的成功不仅在于其能够生成具有特定生物学功能的抗体,还在于其能够通过标准化的工作流程和典型的上下游处理产生高质量的[/font][/font][font=宋体]抗体[/font][font=宋体][font=宋体]产品。这些抗体在规模、产量、糖基化、稳定性和质量方面与传统的[/font][font=Calibri]IgG[/font][font=宋体]抗体相当。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]总之,[/font][font=Calibri]CrossMAb[/font][font=宋体]技术为双特异性及多特异性抗体的开发提供了一种强大且灵活的平台。随着该技术的不断发展和优化,将有更多基于[/font][font=Calibri]CrossMAb[/font][font=宋体]技术的抗体进入临床试验阶段,为患者带来[/font][/font][font=宋体]治疗福音[/font][font=宋体][font=宋体]。然而,尽管[/font][font=Calibri]CrossMAb[/font][font=宋体]技术已经取得了显著的进展,但在实际应用中仍可能遇到产量或纯度不足等问题,需要进一步的优化和改进。未来的研究将继续探索[/font][font=Calibri]CrossMAb[/font][font=宋体]技术的潜力,以满足临床治疗的需求。[/font][/font][font=宋体] [/font][font=宋体]本篇文章由[url=https://cn.sinobiological.com/][b]义翘神州[/b][/url]进行整理,同时提供[url=https://cn.sinobiological.com/services/bispecific-antibody-service][b]双特异性抗体生产服务[/b][/url],详情可点击了解!参考文献:[/font][font=宋体][font=Calibri]Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies [published correction appears in MAbs. 2018 Nov 13 11(1):217]. MAbs. 2016 8(6):1010-1020. doi:10.1080/19420862.2016.1197457[/font][/font]

  • 双特异性抗体的优缺点介绍

    [font=宋体][font=宋体]双特异性抗体是含有两种抗原结合位点的抗体,可结合不同表位(通常在两个抗原上)。一般来说,一个抗原结合位点特异性结合靶细胞表面的抗原,而另一个则结合效应细胞表面上的触发分子,例如一种[/font][font=Calibri]Fc[/font][font=宋体]γ[/font][font=Calibri]R[/font][font=宋体]或[/font][font=Calibri]CD3/T[/font][font=宋体]细胞受体复合物。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]双特异性抗体可以改变效应细胞对其自然靶标的特异性,并使其重定向,杀死它原本会忽略的靶标。不同的细胞毒性细胞表达不同的触发分子(受体)。因此,通过改变靶标和效应结合域的特异性,可针对大多数类型的靶细胞产生多种效应应答。或者,通过特异性结合血清免疫球蛋白,可以实现全范围的效应功能(即[/font][font=Calibri]ADCC[/font][font=宋体]、吞噬作用、补体激活和延长血清半衰期)。[/font][/font][font=宋体] [/font][font=宋体]近日,市面上出现了用于治疗用途的两种双特异性抗体。由于其独特的作用机制,双特异性抗体受到了广泛的关注,越来越多的双特异性抗体不仅用于癌症研究,也用于其他疾病的临床试验。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]双特异性抗体的优缺点:[/b][/font][font=宋体]优势:[/font][font=宋体]①双特异性抗体将效应细胞直接靶向肿瘤细胞,增强其细胞毒性。[/font][font=宋体]②双特异性抗体可以同时识别两种分子,提高了抗体的选择性和功能性亲和力,改善了药物的安全性和有效性。[/font][font=宋体]③与两种单克隆抗体药物联合用药治疗相比,双特异性抗体药物减少了开发和临床试验成本。[/font][font=宋体] [/font][font=宋体]与单克隆抗体药物相比,双抗药物也存在不足之处,主要表现在:[/font][font=宋体]①存在重链、轻链错配现象,制备工艺难度高[/font][font=宋体]②双抗并非天然结构,存在使用过程中产生抗药物抗体的可能。[/font][font=宋体] [/font][font=宋体][b]双特异性抗体的制备方法:[/b][/font][font=宋体][font=宋体]制备[url=https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody][b]双特异性抗体[/b][/url],科学界同仁已开发了诸多解决方案。杂交[/font][font=Calibri]-[/font][font=宋体]杂交瘤法(也称为四源杂交瘤)是最早用于制备双特异性抗体的技术。基于两种不同杂交瘤细胞系的体细胞融合,表达所需特异性的鼠[/font][font=Calibri]IgG[/font][font=宋体]。然而,这种方法制备的功能性双特异性抗体占比低,为后续的抗体纯化和质控带来了巨大的挑战。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]通过使用分子克隆技术,双特异性[/font][font=Calibri]IgG[/font][font=宋体]抗体由同一细胞系表达的两条不同重链和轻链组成。双特异性抗体的制备需要至少两个用于异二聚化重链的质粒和一个用于公共轻链的质粒。如果使用两个不同的轻链,则需要两个轻链质粒。一般建议[/font][font=Calibri]2[/font][font=宋体]个单独的质粒上表达[/font][font=Calibri]HC[/font][font=宋体]和[/font][font=Calibri]LC[/font][font=宋体],因为调整质粒比率是一种简单有效的方法。随后,通常要经历复杂的过程从异质稳定转染池中选择最理想的克隆细胞系,以用于大规模抗体生产。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]与稳定转染相比,瞬时转染无需将重组[/font][font=Calibri]DNA[/font][font=宋体]整合至宿主基因组中,可以在数天内快速得到结果。人胚肾细胞([/font][font=Calibri]HEK293[/font][font=宋体])可用于双抗的瞬时表达,适合应用于双抗药物开发的早期阶段。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font]

  • 双特异性抗体:定义、种类及其优势

    [font=宋体][font=宋体]双特异性抗体是含有[/font][font=Calibri]2[/font][font=宋体]种特异性抗原结合位点的人工抗体,能在靶细胞和功能分子[/font][font=Calibri]([/font][font=宋体]细胞[/font][font=Calibri])[/font][font=宋体]之间架起桥梁应,激发具有导向性的免疫反应,是基因工程抗体的一种,现已成为抗体工程领域的热点,在肿瘤的免疫治疗中具有广阔的应用前景。[/font][/font][font=宋体] [/font][b][font=宋体]双特异性抗体类型:[/font][/b][font=宋体][font=宋体]由于抗体的模块化结构,目前已经产生了[/font][font=Calibri]100[/font][font=宋体]多种不同的双特异性抗体形式。这些形式在许多方面均有不同,包括它们的分子量、抗原结合位点的数量、不同结合位点之间的空间关系和药代动力学半衰期等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组双特异性抗体可分为两种类型:具有[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体和无[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]具有[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体保留[/font][font=Calibri]Fc-[/font][font=宋体]介导的效应功能,例如[/font][font=Calibri]CDC[/font][font=宋体]和[/font][font=Calibri]ADCC[/font][font=宋体]。此类抗体包括[/font][font=Calibri]"knob into hole" IgG[/font][font=宋体]、[/font][font=Calibri]crossMab[/font][font=宋体]、[/font][font=Calibri]ortho-Fab IgG[/font][font=宋体]、[/font][font=Calibri]DVD IgG[/font][font=宋体]、[/font][font=Calibri]two in one IgG[/font][font=宋体]、[/font][font=Calibri]IgG-scFv[/font][font=宋体]和[/font][font=Calibri]scFv2-Fc[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]无[/font][font=Calibri]Fc[/font][font=宋体]区的双特异性抗体缺乏[/font][font=Calibri]Fc-[/font][font=宋体]介导的效应功能。然而,相较于类[/font][font=Calibri]IgG[/font][font=宋体]抗体,较小尺寸的抗体具有更好的肿瘤组织渗透性。在这种形式中,每个亲本单克隆抗体的可变区和多肽([/font][font=Calibri]linker[/font][font=宋体])均被克隆,并形成单链双特异性抗体。这些双特异性抗体有多种形式,包括[/font][font=Calibri]tandem scFvs[/font][font=宋体]、单链双抗体、[/font][font=Calibri]TandAbs[/font][font=宋体]、[/font][font=Calibri]DART[/font][font=宋体]、 [/font][font=Calibri]dock-and-lock[/font][font=宋体]([/font][font=Calibri]DNL[/font][font=宋体])以及纳米抗体等。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]双特异性抗体(双抗)相对于单克隆抗体具有以下优势:[/font][/b][font=宋体] [/font][font=宋体]①特异性增强:双抗具有两个抗原结合位点,可以同时结合两种不同的特异性表位或目的蛋白,因此其特异性更强。[/font][font=宋体]②杀伤肿瘤细胞效率提高:双抗可以将免疫细胞募集至肿瘤细胞周围,通过重新定向免疫细胞,增强对肿瘤的杀伤力。同时,双抗可以阻断两种不同的信号通路,从而增强细胞杀伤毒性。[/font][font=宋体]③降低副作用:双抗与两种不同的细胞表面抗原结合后,潜在增加结合特异性,降低脱靶等引起的副作用。[/font][font=宋体][font=宋体]④提高药物经济学效益:双抗的治疗效果可以达到普通抗体的[/font][font=Calibri]100-1000[/font][font=宋体]倍,使用剂量最低可降为原来的[/font][font=Calibri]1/2000[/font][font=宋体],显著降低药物治疗成本,提高了市场空间。[/font][/font][font=宋体]⑤适应症更广泛:双抗在组织渗透率、杀伤肿瘤细胞效率、脱靶率和临床适应症等指标方面也具有较强的竞争力,临床应用优势显著。[/font][font=宋体]综上所述,双特异性抗体具有更强的特异性、靶向性,可以提高杀伤肿瘤细胞效率并降低副作用,同时还能降低治疗成本,提高药物的市场空间。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/bispecific-antibody-service][b]双特异性抗体制备服务[/b][/url],服务内容包含:基因合成及密码子优化[/font][font=宋体]→载体构建→表达与纯化→[/font][font=Calibri]QC[/font][font=宋体]分析→交付内容[/font][/font][font=宋体] [/font][font=宋体][font=宋体]文章来源:双特异性抗体[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/bispecific-antibody[/font][/font]

异型体相关的资料

异型体相关的资讯

  • 半导体所观测到各向异性平面能斯特效应
    磁性材料是构成现代工业的重要基础性材料,在永磁电机、磁制冷、磁传感、信息存储、热电器件等领域扮演着重要角色。在自旋电子学前沿领域,利用磁性材料中的磁矩引入额外对称性破缺效应是一个研究热点。最近,中国科学院半导体研究所半导体超晶格国家重点实验室的朱礼军团队在单晶CoFe (001)薄膜器件中观测到各向异性的平面能斯特效应(Planar Nernst Effect),其强度随 (001) 晶面的晶格方向强烈变化并呈现面内双轴各向异性(见图1)。当磁矩在外磁场驱动下在薄膜材料平面内旋转时,电流产生的温度梯度导致的平面能斯特电压表现为一个sin2φ依赖的二次谐波横向电压信号(φ为磁矩相对电流的夹角)。这种有趣的各向异性平面能斯特效应被认为主要起源于内禀的能带交叠效应,可能对谐波霍尔电压、自旋扭矩铁磁共振、自旋塞贝克等自旋电子学实验的分析产生重要影响(见图2),有望应用于能量收集电池和温度传感器等。然而,这种平面能斯特效应的各项异性并没有导致任何极化方向的非平衡自旋流(Spin Current)或自旋轨道矩(Spin-Orbit Torque)的产生。该工作以“Absence of Spin-Orbit Torque and Discovery of Anisotropic Planar Nernst Effect in CoFe Single Crystal”为题发表在期刊Advanced Science上 [链接:https://doi.org/10.1002/advs.202301409]。朱礼军研究员为通讯作者,博士后刘前标为第一作者,博士生林鑫作为合作者完成了有限元分析并参与了器件的加工测量。该工作的完成离不开中国科学院半导体研究所赵建华研究员(单晶CoFe样品生长)、周旭亮副研究员(光刻工艺)、北京师范大学熊昌民副教授(PPMS测试)、袁喆教授(能带理论讨论)的支持和帮助。相关工作得到了科技部国家重点研发计划、国家自然科学基金委面上项目和中国科学院战略先导专项的资助。图1. (a)双十字霍尔器件中的平面能斯特效应;(b)CoFe (001)平面能斯特电压的各向异性。图2. 各向异性平面能斯特效应对(a)谐波霍尔电压、(b)自旋塞贝克、(c)自旋扭矩-铁磁共振等自旋电子实验的广泛影响及其在(d)热电器件方面的应用案例。
  • Nature Communication:范德华晶体光学各向异性研究取得重要进展
    引言范德华晶体,包括石墨烯、氮化硼、过渡金属硫族化合物等广受关注的新型二维材料等,具有优良的力学、电学、光学性质,是构筑功能可控范德华异质结的基本单元,也是组成下一代高性能光电器件的基础材料。 范德华晶体具有层状结构,在层内由较强的共价键相互作用结合,在层间由较弱的范德华力结合。这一层状结构决定了范德华晶体的各种物理性质具有天然的各向异性,其中,光学各向异性对于新型光电器件的设计和优化至关重要,必须得到准确的表征。然而,受限于高质量范德华单晶的尺寸,传统的基于远场光束反射的光学各向异性表征方法,如端面反射法、椭偏法等,均不能准确表征范德华微晶体的光学各向异性。 成果介绍日前,中国科学院纳米科学中心纳米表征实验室戴庆(Quantum Design中国子公司用户)研究团队利用德国neaspec近场光学技术克服了上述范德华晶体有限尺寸导致的困难,成功测量了氮化硼及二硫化钼的介电常数张量。 图1 实验装置和近场成像原理示意图该团队先理论论证了在各向异性范德华纳米片中存在寻常及非寻常波导模式,这两种模式的面内波矢分别与范德华晶体的面内及面外介电常数相关;之后,他们使用neaSNOM散射型扫描近场光学显微镜,在范德华纳米片中激发寻常及非寻常波导模式,并对这些波导模式进行实空间近场光学成像;后,他们通过nanoFTIR纳米傅里叶红外模块对实空间近场光学图像的傅里叶分析,求得所测范德华晶体的光学各向异性。 图2 不同厚度MoS2样品的近场光学像及傅里叶分析 结论这一方法克服了传统表征手段对样品大小的限制,能够对单轴及双轴范德华晶体材料的光学各向异性进行的表征;通过对基底材料的优化设计,这一方法有望用于少层甚至单层范德华晶体光学各向异性的直接表征。该研究结果在线发表于Nature Communications,表征方法已申请发明。相关研究工作得到自然科学基金、青年千人计划等项目的资助。参考文献:Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging (Nat. Commun., 2017, DOI: 10.1038/s41467-017-01580-7)文章来源:中国科学院纳米中心官网 neaSNOM小知识,你了解多少呢? neaSNOM散射式近场光学显微镜采用了化的散射式核心设计技术,大提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像,保证了高度的可靠性和可重复性。技术特点和优势: ☆ 保护的散射式近场光学测量技术 ☆ 的高阶解调背景压缩技术 ☆ 保护的干涉式近场信号探测单元 ☆ 的赝外差干涉式探测技术 ☆ 保护的反射式光学系统 ☆ 高稳定性的AFM系统双光束设计nano-FTIR——纳米红外表征界的杠把子 nano-FTIR纳米傅里叶红外光谱技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,在纳米尺度下可实现对几乎所有材料的化学分辨。而且在不使用任何模型矫正的条件下,nano-FTIR获得的近场吸收光谱所体现的分子指纹特征与使用传统FTIR光谱仪获得的分子指纹特征高度吻合,这在基础研究和实际应用方面都具有重要意义。相关产品及链接1、超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C170040.htm 2、纳米傅里叶红外光谱仪 :http://www.instrument.com.cn/netshow/SH100980/C194218.htm3、太赫兹近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C270098.htm
  • 涉及半导体大硅片、功率器件等,宜兴市多项目迎来新进展
    中环领先集成电路用大直径硅片项目总投资30亿美元的中环领先集成电路用大直径硅片项目一期已经投产,二期部分投产,全部达产后将形成年产8英寸硅片900万片、12英寸硅片420万片的产能。据不完全统计,“中环系”已在宜兴市投资约500亿元。中车中低压功率器件产业化项目一期今年3月开工的总投资59亿元的中车中低压功率器件产业化项目一期,目前正在加快推进建设,计划年内主体工程封顶,预计2024年底投产。该项目产品主要用于新能源汽车领域,达产后可新增年产36万片中低压组件基材的生产能力,满足每年300万台新能源汽车或300GW新能源发电装机需求。无锡海容电子超级陶瓷电容器与智能传感器制造项目总投资103亿元的无锡海容电子超级陶瓷电容器与智能传感器制造项目厂房已经封顶,预计年内一期竣工投产。去年4月,无锡海容电子超级陶瓷电容器与智能传感器制造项目开工仪式在无锡宜兴举行。该项目建成投产后,将年产4000亿只高压高容多层片式电容器、200万只氮氧传感器、1亿只汽车传感器等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制