药物真假鉴定

仪器信息网药物真假鉴定专题为您整合药物真假鉴定相关的最新文章,在药物真假鉴定专题,您不仅可以免费浏览药物真假鉴定的资讯, 同时您还可以浏览药物真假鉴定的相关资料、解决方案,参与社区药物真假鉴定话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

药物真假鉴定相关的耗材

  • 用于违禁药物的 TRACE GC 色谱柱
    用于违禁药物的 TRACE GC 色谱柱专为分析常见的违禁药物而特别设计 TRACE TR-DoA 5MS;广泛用于分析和测定各种毒理学目标化合物,包括安非他明、可待因和吗啡 TRACE TR-DoA 35MS;推荐用于药物检测实验室的色谱柱,专门用于鉴定四氢大麻酚(tetrahydrocannabinol,以下简称 THC)订货信息:
  • 用于违禁药物的 TRACE GC 色谱柱
    产品特点:用于违禁药物的 TRACE GC 色谱柱专为分析常见的违禁药物而特别设计* TRACE TR-DoA 5MS;广泛用于分析和测定各种毒理学目标化合物,包括安非他明、可待因和吗啡* TRACE TR-DoA 35MS;推荐用于药物检测实验室的色谱柱,专门用于鉴定四氢大麻酚(tetrahydrocannabinol,以下简称 THC) 订货信息:用于违禁药物的 TRACE GC 色谱柱固定相ID (mm)长度 (m)膜厚 (μm)部件号数量TR-DoA350.2150.3326AC497P1 支TR-DoA50.25150.2526AF130P1 支
  • PCR方法肉种鉴定
    PCR方法肉种鉴定 德国IFP公司是世界上一家生产肉种鉴定PCR方法检测试剂盒的生产商,该公司凭借自己卓越的研发实力,该公司凭借自己卓越的研发实力,在维生素、氨基酸、过敏原、致病菌、抗生素、激素等快速检测产品领域在全球获得了全球各大公司及政府实验室的好评。其中肉种鉴定检测产品适合检测肉制品的真假。目前现有肉种鉴定检测产品品种如下: 猪(Pork) 牛(Cattle) 反刍动物(Ruminants) 哺乳动物(Mammals) 鸡(Chicken)

药物真假鉴定相关的仪器

  • 专业鉴定白酒真假仪器采用手提式一体化系统检测技术,将分光光度模块、胶体金检测模块、新型农残检测模块、数字化管理模块、无线通讯模块高度集成于一体,支持检测200种食品安全检测项目,同时预留升级检测方法。仪器检测模块标准化、智能化,可随意自由组合。检测箱体内置多个标准检测单元,检测模块可以调整配置。专业鉴定白酒真假仪器采用全新安卓智能系统,主控芯片采用 ARM Cortex-A7,RK3288/4核处理器,10.1寸高清液晶触摸竖屏,更加高效的UI交互界面,运转快捷 仪器配备无线通信模块: 4G(APN)通讯模块、Wifi模块,蓝牙传输,同时具有双USB接口以及RJ45接口能以多种方式实现数据保存和数据传输功能。  创新检测模式:  检测通道:≥12通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值。  仪器具有自动识别比色皿检测功能,即:将样品比色皿放入仪器后,点击样品检测,仪器自动识别比色皿进行通道检测。  进口高精光源:  高精度进口四波长冷光源,通道配置 410、520、590、630nm 波长光源,一个光源芯片驱动一个光源,误差极小,每台设备单独精确校准光源,精确比对,同时参照四种不同波段光源覆盖市面上99%的农残食品项目检测。
    留言咨询
  • 真假肉检测仪 400-860-5168转4652
    真假肉检测仪采用了先进的生物识别技术和化学分析技术,通过对肉类样本中的特定成分进行检测,实现对肉类的快速鉴别。其操作过程简单易懂,用户只需按照说明书上的步骤进行操作,即可轻松完成肉类的鉴别工作。同时,该设备还具备易于控制的特点,用户可以根据实际需求设置检测参数,以满足不同场合下的检测需求。真假肉检测仪具有使用简单,操作简便和易于控制的特点。可针对肉源性鉴定(鸡,鸭,鹅,牛,羊,猪,马,驴等)检测。一、仪器特点1.体积小,重量轻,易于携带。轻松满足外出实验的需求。2.内置7寸高清电容屏PDA,触屏操作,简便快捷。3.Marlow高品质Peltier制冷片,结合德国高端PT1000温度传感器以及电性电阻加热补偿边缘的温度控制模式,最大升温速度7℃,最大降温速度5℃,大大缩短实验时间。4.整板3s快速采光模式,保证实验结果孔位一致性。5.简洁直观的软件引导,轻松开启检测实验。二、肉类快速鉴别仪应用领域□基础科学研究□病原体检测□肉制品掺假□转基因检测□食品安全检测□药物开发及合理用药□基因表达□水体监测三、技术参数样品容量:8x0.2ml、支持8联管适用耗材:常见透明PCR耗材,8x0.2ml排管,0.2ml单管反应体系:5-120ul反应模式体系加热/制冷模块:进口半导体热电模块温度控制范围:4°C-99℃升降温平均速率≥2°C/秒温控精度:≤±0.1°C温度均匀性:≤±0.2°C温控区域数量:多点(2点)梯度数:0个梯度温度范围:无梯度孔数:无激发光源:免维护led激发光波长范围:400-700nm检测部件:进口光电检测器检测通道数:标配1通道(FAM)、高配(选配)(FAM、VIC)适用染料和探针:FAM/SYBR Green I,VIC/HEX/CY3(选配),ROX/Texas Red(选配),Cy5,TAMARA(选配)软件功能:荧光定量PCR系统软件 实时扩增反应曲线功能 特定标本实时反应曲线显示 数据分析功能 阴阳结果自动判定功能 图形化显示功能。噪音:45 dB屏幕尺寸:7英寸(HD)触摸屏:电容式外接USB:支持数据导入导出热盖:自动压力调节外观尺寸:290(W)*308(L)*130(H)箱子尺寸:75长*38宽*19高cm净重:约3Kg
    留言咨询
  • 药物气溶胶生成器 400-860-5168转4990
    该液体气溶胶发生器由英国波顿的Microbiological Research Establishment设计,采用Collison原理,通过高速气流和液体之间形成剪切力将溶液形成持续稳定的雾化气溶胶。广泛应用于空气生物学,气溶胶研究,生物危害性测试,过滤器的性能评估等。 附: 公司简介北京元森凯德生物技术有限公司2013年成立于北京中关村科技园,是一家专业从事生命科学类实验仪器研制、生产与销售的科技创新型企业。服务毒理学、药理学、免疫学、生物安全、大气污染物、化学物质毒性鉴定、临床前药物开发与安全性评价、呼吸系统、环境与健康等领域。元森凯德在中国北京、美国宾夕法尼亚均设有技术联络中心,注重仪器的售前、售中、售后沟通,时刻关注行业的新进展动态,客户群体主要有全国各大高校、实验动物科研单位、药物研发机构、第三方CRO及医院中心实验室等。我们将以优质的产品、完善的服务致力于成为业内优秀的实验仪器设备供应厂商。我们的目标是:服务用户至上,让科研仪器的使用变得更简便和高效。
    留言咨询

药物真假鉴定相关的方案

药物真假鉴定相关的论坛

  • 药物杂质鉴定新流程实现泮托拉唑杂质谱分析

    药物杂质鉴定新流程实现泮托拉唑杂质谱分析

    药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门制定了相应的指导原则对其进行严格管控。http://ng1.17img.cn/bbsfiles/images/2015/12/201512141737_577892_3005330_3.jpg 独有的四极杆静电场轨道阱Q Exactive™ Focus高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合新一代的智能小分子化合物鉴定软件Compound Discoverer™,以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141737_577893_3005330_3.jpg 通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141738_577894_3005330_3.jpg 在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,可进一步对杂质变化位点进行推测。在本例中,通过152、185等共有碎片和200、216等特征差异碎片的比对,推测出该杂质为泮托拉唑砜:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141738_577895_3005330_3.jpg 基于新一代四极杆-静电场轨道阱质谱Q Exactive Focus和新一代小分子化合物分析软件Compound Discoverer,建立了药物杂质鉴定的新流程。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美的实现。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。(分享)

  • 药物靶蛋白鉴定方法

    [font='times new roman'][size=14px]药物靶蛋白鉴定方法[/size][/font][font='times new roman'][size=14px]非蛋白质组学鉴定方法[/size][/font][font='times new roman'][size=14px]非蛋白质组学的传统药物靶蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的迁徙分析等方法,通常耗时、耗力且不适合进行高流通量的筛选。目前,所使用的技术包括:第一,蛋白鉴定的图象分析,利用产生的表观分子量的网格来估计蛋白的分子量,未被修饰的小蛋白错误率大约[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]30%[/size][/font][font='times new roman'][size=14px],而翻译后修饰蛋白错误率更高,故需联合其他技术完成鉴定;第二,微量测序,首先使经凝胶分离的蛋白直接印迹在[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]PVDF [/size][/font][font='times new roman'][size=14px]膜,经过一系列操作后将其置于测序仪中进行蛋白质鉴定,但该方法仍然存在一些缺点,如由于酸性水解或者部分降解而产生氨基酸的变异,故应联合其他的蛋白质属性进行鉴定。[/size][/font][font='times new roman'][size=14px]化学蛋白质组学方法[/size][/font][font='times new roman'][size=14px]化学蛋白质组学方法一般先将小分子化合物通过与蛋白质溶液反应,使化学探针或小分子化合物与固相联接,得到被修饰的固相微球,然后利用合适的分离技术将这些蛋白质纯化,结合[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] [/size][/font][font='times new roman'][size=14px]分析,得到靶蛋白的信息。[/size][/font][font='宋体']亲和色谱法[/font][font='times new roman'][size=14px]亲和色谱法是化学蛋白质组学策略中较为经典的方法之一,它主要应用于研究蛋[/size][/font][font='times new roman'][size=14px]白质与生物活性小分子或蛋白质与蛋白质的相互作用[/size][/font][font='times new roman'][sup][size=14px][17][/size][/sup][/font][font='times new roman'][size=14px]。该方法通过官能团将配体结合在固相基质中,然后与蛋白质孵育,此时与配体结合的蛋白会留在基质上,最后通[/size][/font][font='times new roman'][size=14px]过变性或与自由配体竞争将结合蛋白洗脱下来,再通过凝胶电泳或者[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]进行分[/size][/font][font='times new roman'][size=14px]析。该方法的缺陷在于所研究分子衍生物活性不确定、材料配体结合力差异性以及非特异性吸附都将会干扰研究结果。[/size][/font][font='宋体']基于活性的化学蛋白质组学技术[/font][font='times new roman'][size=14px]基于活性的化学蛋白质组学技术([/size][/font][font='times new roman'][size=14px]ABPP[/size][/font][font='times new roman'][size=14px])是广泛使用的技术之一。[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]是由美国的[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]Cravatt[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]课题组在[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]2002 [/size][/font][font='times new roman'][size=14px]年首次提出,最早用于酶谱分析,之后被应用于药物靶蛋白筛选。[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]技术的关键是合成同时带有反应基团和标记物的[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]探针,可进一步与待测的蛋白质发生相互反应。药物靶点筛选领域设计的[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]探针通常包括三[/size][/font][align=center][font='times new roman'][size=14px]3[/size][/font][/align][align=center][/align][font='times new roman'][size=14px]个功能部分:反应基团、连接基团和报告基团。与二维凝胶电泳法([/size][/font][font='times new roman'][size=14px]2-DE[/size][/font][font='times new roman'][size=14px])、同位素编码亲和标签([/size][/font][font='times new roman'][size=14px]ICAT[/size][/font][font='times new roman'][size=14px])等技术相比,[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]技术着重研究蛋白质的表达和功能,[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]可从天然蛋白质组样品中直接筛选出与小分子特异性结合的蛋白质,从而能更直接快速地明确小分子和蛋白质之间的相互作用,确定小分子的作用靶点,这对于筛选具有低亲和力的靶蛋白极为有利。另外,根据富集和鉴定策略的不同,[/size][/font][font='times new roman'][size=14px]ABPP [/size][/font][font='times new roman'][size=14px]技术可分为竞争性标记方法和生物正交的探针模拟物标记方法。[/size][/font][font='times new roman'][size=14px]1.%2.%3 [/size][/font][font='times new roman'][size=14px]非化学修饰的蛋白质组学方法[/size][/font][font='times new roman'][size=14px]1.1.%3.%4 [/size][/font][font='times new roman'][size=14px]细胞热位移测定[/size][/font][font='times new roman'][size=14px]在过去[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]20 [/size][/font][font='times new roman'][size=14px]年中,热位移分析([/size][/font][font='times new roman'][size=14px]TSA[/size][/font][font='times new roman'][size=14px])已成为最广泛使用的无修饰药物靶点发现方法之一。这种方法简单直接,但探针无法区分不同的蛋白质,因此[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]TSA [/size][/font][font='times new roman'][size=14px]仅适用于纯化蛋白质的实验。为了规避这个问题,[/size][/font][font='times new roman'][size=14px]Molina [/size][/font][font='times new roman'][size=14px]等人开发了一种概念上相似的技术,称为[/size][/font][font='times new roman'][size=14px]细胞热位移测定[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]C[/size][/font][font='times new roman'][size=14px]ETSA[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px],用于直接研究细胞环境中的药物[/size][/font][font='times new roman'][size=14px]-[/size][/font][font='times new roman'][size=14px]靶标相互作用。如图[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]A[/size][/font][font='times new roman'][size=14px])所示,细胞裂解物或完整细胞的多个等分试样首先用药物或载体处理,加热到不同的温度并冷却,然后通过离心分离出可溶性部分。随着温度的升高,蛋白质逐渐展开以暴露疏水核,导致蛋白质在高温下沉淀。蛋白质越稳定,蛋白质对热诱导沉淀的抵抗力越高,因此,可以测定可溶性蛋白质随温度变化的稳定性曲线。例如,该[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/antifolate][font='times new roman'][size=14px]方法通过叶酸[/size][/font][/url][font='times new roman'][size=14px]抗癌药物[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/methotrexate][font='times new roman'][size=14px]甲氨蝶呤[/size][/font][/url][font='times new roman'][size=14px]与[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/dihydrofolates][font='times new roman'][size=14px]二氢叶酸[/size][/font][/url][font='times new roman'][size=14px]还原酶的结合、雷替曲塞与胸苷酸合成酶的结合进行了药物靶标的验证。[/size][/font][font='times new roman'][size=14px]CETSA[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]是一种允许研究活细胞中药物靶点的方法。[/size][/font][font='times new roman'][size=14px]CETSA[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]结合小分子库可用于筛选潜在抑制剂、评估靶标参与效率和监测靶标特异性。此外,[/size][/font][font='times new roman'][size=14px]CETSA[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]还可用于筛选[/size][/font][font='times new roman'][size=14px]新药和表型化合物的靶点,解决脱靶蛋白、结合机制、药物疗效和完整细胞耐药性等[/size][/font][font='times new roman'][size=14px]问题。[/size][/font][font='times new roman'][size=14px]1.2.%3.%4 [/size][/font][font='times new roman'][size=14px]热蛋白组学分析[/size][/font][font='times new roman'][size=14px]热蛋白组学分析([/size][/font][font='times new roman'][size=14px]TPP[/size][/font][font='times new roman'][size=14px])首先将蛋白在有或无活性小分子情况下孵育,并加热到不同的温度以诱导蛋白变性,剩余的可溶性蛋白用缓冲液提取。如图所示,在每个温度下,可溶性蛋白通过高分辨质谱进行量化,画出变性曲线,进一步测[/size][/font][align=center][font='times new roman'][size=14px]4[/size][/font][/align][align=center][/align][font='times new roman'][size=14px]定热稳定性和识别配体引起的变化。其中,[/size][/font][font='times new roman'][size=14px]50% [/size][/font][font='times new roman'][size=14px]蛋白发生聚沉时的温度为[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]Tm[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]melting temp[/size][/font][font='times new roman'][size=14px]e[/size][/font][font='times new roman'][size=14px]r[/size][/font][font='times new roman'][size=14px]a[/size][/font][font='times new roman'][size=14px]tur[/size][/font][font='times new roman'][size=14px]e[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px],通过对比加药前后[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]T[/size][/font][font='times new roman'][size=14px]m[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]的变化,确定活性分子的靶蛋白。[/size][/font][font='times new roman'][size=14px]TPP[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]可以[/size][/font][font='times new roman'][size=14px]通过定量[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]MS [/size][/font][font='times new roman'][size=14px]分析,在蛋白质组水平评估活细胞中活性分子与蛋白结合的情况。[/size][/font][font='times new roman'][size=14px]图[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]A[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px]细胞热位移测定和[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px]B[/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px]热蛋白组学分析简要工作流程[/size][/font][font='times new roman'][size=14px][14][/size][/font][font='times new roman'][size=14px]药物亲和反应的靶点稳定性技术[/size][/font][font='times new roman'][size=14px]药物亲和反应的靶点稳定性技术([/size][/font][font='times new roman'][size=14px]DARTS[/size][/font][font='times new roman'][size=14px])是一种鉴定药物靶标的新方法。药物[/size][/font][font='times new roman'][size=14px]与靶蛋白结合后,靶蛋白对蛋白酶的敏感性降低,与对照组相比,药物结合蛋白更不[/size][/font][url=https://www.sciencedirect.com/topics/chemistry/protein-hydrolysis][font='times new roman'][size=14px]易水解[/size][/font][/url][font='times new roman'][size=14px]。这种差异可通过蛋白凝胶电泳和质谱等技术对差异蛋白进行鉴定,可以确定[/size][/font][font='times new roman'][size=14px]药物直接作用的靶点蛋白[/size][/font][font='times new roman'][size=14px],最大优势是不需要对药物进行任何化学修饰,即可以确定药物的直接结合蛋白。[/size][/font][font='times new roman'][size=14px]DARTS[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]在天然小分子靶点的鉴定中发挥了重要的作用,例如[/size][/font][font='times new roman'][size=14px]对[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]ecumicin[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]、白藜芦醇[/size][/font][font='times new roman'][size=14px]([/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]resveratrol [/size][/font][font='times new roman'][size=14px])[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]等多种天然产物蛋白靶点的鉴定[/size][/font][font='times new roman'][sup][size=14px]。但[/size][/sup][/font][font='times new roman'][size=14px]DARTS[/size][/font][font='times new roman'][size=14px] [/size][/font][font='times new roman'][size=14px]也存在局限性,例如细胞裂解液中的低丰度蛋白的鉴定和非特异性结合会导致[/size][/font][font='times new roman'][size=14px]蛋白对蛋白酶的敏感性升高增加。利用这一特性,研究者还开发了药物亲和力响应靶稳定性的方法用于药物靶点筛选。[/size][/font]

药物真假鉴定相关的资料

药物真假鉴定相关的资讯

  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 从真假鉴别到过程控制 近红外拓出药检新天地——访中国食品药品检定研究院胡昌勤研究员
    日前,在全国第六届近红外光谱学术会议上颁发了第一届“陆婉珍近红外光谱奖”。其中,中国食品药品检定研究院胡昌勤研究员获得 “陆婉珍近红外光谱科技奖”。胡昌勤,现任中国食品药品检定研究院(简称:中检院)化学药品检定首席专家,抗生素室主任兼微生物检测室主任,中检院学术委员会委员,第十届药典委员会执行委员。  华中科技大学骆清铭教授、近红外光谱分会理事长袁洪福教授为胡昌勤研究员颁奖  胡昌勤研究员带领他的课题组从2001年开始从事近红外光谱在制药领域中的应用研究。承担了国家“十一五”科技支撑计划、国家公益性行业专项基金等多项与近红外相关的研究工作。在财政部直接拨款的“药品检测车”项目中,胡昌勤研究员担任药品近红外光谱快速分析系统的总技术负责人,首次提出了针对药品市场不同的监管目的,建立近红外光谱通用性模型和近红外光谱快速比对模型等理念,并赋予实施。如今“近红外光谱药品快速检测系统”已经装配在全国400多辆流动的药品检测车上,用于广大基层地区药品的现场快速筛查,并在2008年四川汶川地震、2010年广州亚运会等多个国内重大事件的现场发挥了作用,第一时间保证了用药安全。胡昌勤研究员  作为近红外光谱领域“新人”,胡昌勤获此奖项有何感想?“药品检测车”项目从立项到广泛应用于基层药品快检都经历了哪些不为人知的辛酸苦辣?我国近红外光谱药品快检技术与国外相比有何异同?今后近红外光谱在药品检测领域有何发展?仪器信息网编辑就这些问题采访了胡昌勤研究员。  仪器信息网:这次获得“陆婉珍近红外光谱科技奖”对您来说有什么不同的意义吗?  胡昌勤:确实有点不一样。我真正开始从事近红外光谱研究是在2001年,虽说也有15年的时间了,但是相对来说我还只是近红外光谱领域的“新人”,当时会场上就有很多近红外光谱领域的前辈、专家,这个奖项会颁发给我其实是完全没有想到的。对我而言,一项新的工作、在原本不太了解的领域能获得业界的认可,是非常令人兴奋和惊喜的,意义重大。  仪器信息网:您开始近红外光谱研究以来,尤其是“药品检测车项目”上,经历了哪些不为人知的辛酸苦辣和哪些令人兴奋的事情?  胡昌勤:说起这些,“故事”就很多了。近红外光谱技术用于药品的检测,从最开始的一个概念到现在的广泛应用,并不是一蹴而就的简单过程。初期的时候,我们仅知道国外有文献说近红外光谱可以用于真假药品的鉴别,但是更具体的就不知道了。当时只觉得,近红外光谱既然是一种光谱技术,那么是完全可以用于药品检测的,中检院可以说是在进行一项几乎完全陌生的新工作。  这个项目给我和这个课题组带来的压力都是很大的,这种压力既有来自项目的时间进度,也来自于不同领域专家的争议,还有更重要的,药品安全关系着我国人民的生命健康,当时国家下定决心整治假药问题,可以说是身兼重任,自然更有压力。  由于当年对近红外光谱的很多理论的了解并不是特别清晰,所以在建模的过程中经历了许多反复,当时从全国药检所抽调了很多人员配合进行这项工作,财政部四个亿的拨款也已经到位,甚至国家药监局已经开始通知仪器厂商生产仪器,项目倒计时的压力一直存在。另一方面,由于近红外光谱在当时在药检领域还是一个全新的技术,尤其是“通用性模型”这个概念,无论在国内外,都是一种比较新的理念,因此也引起了一些专家的争议。当时的中国食品药品检定所所长桑国卫院士在全所组织了一次论证会,不同领域的专家各抒己见 在财政部组织的项目论证会上,专家组组长由中国科学技术大学的苏庆德教授担任,苏教授对我们的课题非常支持,给我们的项目签了字,但直到半年后我们的课题顺利通过以陆婉珍院士为组长的专家组的鉴定,苏教授才真正放下心,由衷为我们高兴。  压力虽然很大,但同时也是一种动力,在课题组的努力下,近红外光谱检测车最终成功装车,我们将检测车“开”到湖北进行了四个月的试运行,在各种实际路况下来验证仪器的性能和抗震能力,考察检测车用仪器与实验室仪器的区别。一次在山区的试运行,随行的一辆车的司机由于“跑山路”经验不足,发生了侧翻,当看到我们的同事逐一从车中爬出来时,大家悬着的心才放下。不断试验,不断改进,可以说最开始的模型并不理想,首要解决的是“能用”,在使用过程中发现问题、解决问题,同时对近红外技术也有了更系统、深入的认识,比如说现在液体制剂的快速检测就已经不再采用近红外光谱,而是采用适用性更好的拉曼光谱。  我国药品近红外光谱通用性模型的建立是有一定难度的,相比国外同一通用名药物仅有少数药厂生产而言,我国同品种药物的生产厂家往往非常多,虽然活性成分一致,但是所用的药用辅料等成分是完全不同的,这也就意味着除药物活性成分外背景光谱完全不同,所以我们国家的近红外光谱通用性模型相对于国外而言是一个更加复杂的系统。目前中检院已经建立了几百种通用性模型,包括了市场常见的口服制剂。  虽然,2006年药品近红外光谱快速检测系统已经配备在药品检测车上正式向全国装备,但是一直到现在相关研究工作还在继续。2010年中检院成立了“标准化研究室”,专门负责药品快检方法的研究。  仪器信息网:现在国内很多药厂开始尝试将近红外光谱应用于过程控制,您觉得这项应用的前景如何?  胡昌勤:中国仪器仪表学会曾进行过调研,发现我国制药企业和中国食品药品监督管理总局(CFDA)的沟通存在一定问题。企业想将新技术应用起来,但国家目前并没有标准和配套政策,所以企业担忧前期的投入是否能与最后的政策相符合 而CFDA则认为,企业应用的很少,没有明确依据来制定相关法规,这是一个矛盾的问题。而在国外,例如美国FDA在一项新技术应用的初期,会与企业定期探讨,共同促进技术发展。而我们国家目前人力物力不足,可能还没有精力来做这项工作。  所以目前我们计划先建立若干示范工程,帮助企业认识新技术能给企业带来的益处,也同时帮助CFDA了解一项新技术在企业的具体应用,促进二者沟通,带动技术发展,促进我国制药生产技术与国外接轨。目前,CFDA认识到过程控制技术的重要性,也在推动项目进程,并列入“十三五”计划。  仪器信息网:药品快检和生产过程控制,近红外光谱技术的应用与国外有什么不同?  胡昌勤:单纯从假药快检角度来讲,中国是领先于世界的,CFDA也在推动药品快检技术向非洲的援助,可以说我们的检测技术是达到国际先进水平的。  但是,药品快检更广泛的意义是应用于生产中的过程控制,这方面我国与国外还有一定差距。目前我国制药企业过程控制应用近红外光谱技术,还仅仅停留在检测,而没有数据收集方面的意识 其实很多看似没有关联的数据,如果深入挖掘、分析,就是一个很大的数据库。近年来日益频繁的飞行检查,检查方式还停留在针对纸质资料的检查上,存在效率上的很大不便,如果针对过程控制中存档的电子数据的检测,则可大大便利检察人员的工作。  目前我国药厂实验室检测大多还是使用色谱仪器。从绿色环保角度来说,色谱需要使用有机溶剂会产生大量废气废液,对环境威胁很大,同时也会给企业带来后续废液处理问题,增加成本。如果近红外光谱、拉曼光谱等快速检验手段能够应用到生产过程控制中中间体的检测,而色谱方法仅作为最终产品质量控制的手段,则可降低解决这一问题的难度。  仪器信息网:以您多年的研究经验,如何看待近红外光谱技术未来的定位和发展趋势?  胡昌勤:我认为近红外光谱技术的研究应该聚焦于应用研究,因为,近红外光谱技术是伴随着相关应用而发展起来的,所以,仪器的设计和研发都应根据用户的需求来开展。  以制药企业来说,其实有很多环节可以使用近红外光谱。但高昂的价格往往使企业担心成本,若能针对生产过程中某一个检测物质,设计简单的、目标单一的仪器,则会更加便于使用,降低成本。模块化、价格相对低廉的仪器应用比较灵活,同时也会促进更多的企业应用,反过来也会促进仪器的发展。  另外,提到近红外光谱,很多人谈 “建模”而却步。将来如能以实用性为目的,抽象化几个简单步骤来建立模型,也会带动仪器的应用。现在的建模过程还是很繁琐的,其实任何一家企业的产品,在通用性模型里都是一个局部,如果将来按照一定规模建好光谱库,当检测某一个药厂的某个样品时,则可以按照一定规则从光谱库里选择相应的样本,结合网络、云、大数据等概念,建模过程可大大的简化。不求最优,但是适用性强,这样可推广近红外光谱的应用,也能促进仪器的发展。  后记  我国已经渡过了缺医少药的年代,药品生产工艺在优化完善,整体药品质量在不断提高,相关质量检测技术更是日新月异。近年来,“QbD(质量源于设计)”理念在制药行业日益凸显,如何从生产源头保障产品质量、如何保证现有工艺能够生产出“质量一致”的仿制药,“过程控制”不可不说至关重要。利用过程控制技术,生产过程中可以可靠、快速、直接、简单地评估风险,执行质量控制,因此其在药品的生产中正得到越来越广泛的应用。  近红外光谱应用于假药鉴别方面,我国已达世界领先水平,而在过程分析控制中的应用则刚刚起步,与国外还存在一定差距。制药企业如何在具体工作中应用近红外光谱,近红外光谱仪器厂商如何根据需求更新产品,胡昌勤研究员的工作可以说是深入到各方面的细节,也是在探索我国制药行业近红外光谱的应用方向。从假药鉴别到过程控制,近红外光谱在我国制药行业潜力无限、大有可为。(撰稿:王明煜)
  • 医疗粉末应用 | 拉曼光谱法鉴定药物辅料
    安东帕Cora 5001 药物辅料鉴定Cora 5001拉曼仪与符合制药要求的Spectroscopy Suite桌面软件一起,是一种快速鉴定药物辅料的工具,并且根据USP法规进行方法开发和验证是非常容易的。制药行业是世界上监管最严格的行业之一。从原料的交付到最终产品的包装,均需根据法律要求对生产过程进行监控,以确保产品质量,并将患者的风险降至最低。药物中使用的赋形剂以及不具有药理学活性的部分,需要根据国际药典和现行GMP指南的规定,对其化学特性进行测试。因此,需要快速准确的方法来评估该批次是否可以进一步使用或是否需要拒收。Anton Paar的Cora 5001拉曼光谱仪与Spectroscopy Suite桌面软件搭配使用,可用于基于算法数据库匹配方法的快速可靠的进行辅料ID测试。依靠直观的软件操作界面,拉曼法的方法开发和验证过程是非常方便和简单的。并且该软件完全符合FDA的CFR 21 part 11,因此它确保了数据完整性和审计跟踪。使用拉曼光谱进行辅料ID测试对于辅料的ID测试,使用激发波长为785nm的Cora 5001 Direct拉曼光谱仪。以三个成分十分相近的纤维素衍生物为例说明拉曼光谱技术的应用优势。首先获取三个纤维素衍生物,包括乙基纤维素、羟丙基纤维素以及微晶纤维素的参照拉曼光谱,再将每个样品的测试光谱与其他样品的参照光谱进行匹配。下图 2 为不同纤维素衍生物的拉曼光谱:乙基纤维素、羟丙基纤维素和微晶纤维素,该谱图说明了拉曼光谱的物质分辨能力。尽管这些化合物在结构上非常相似,但很容易通过它们的拉曼光谱指纹来进行区分。图2:不同纤维素衍生物的拉曼光谱,如在Anton Paar Spectroscopy Suite软件中所示。以上拉曼光谱均已进行最大值归一化。想要了解更多关于使用拉曼光谱进行药物辅料ID测试的详细应用报告,请点击查看!https://www.17m17.com/material/brochure?shareId=794Cora5001拉曼光谱仪用于根据物质的化学指纹快速、可靠地进行鉴定,晶型分析、杂质检测、中控以及终产品质控。选择 Fiber 模式,通过探头在仪器外进行灵活分析,或选择 Direct 模式则在密闭隔间中分析样品,同时已获 1 级激光认证,使用超安全。引导式分析程序意味着 Cora 5001 适合在经过少量培训的情况下进行操作。其小尺寸和电池选项使得该台式拉曼仪成为了室内或现场分析任务的多功能工具。❶ 最高安全级别-1级激光,极大保障使用者安全❷ 无需样品制备 — 提高效率的附件❸ 双波长可选—可配置两个波长,扩大样品范围❹ 制药合规性 — 尽在 Anton Paar Spectroscopy Suite 软件❺ 自动对焦 — 可重现结果的最强信号申请免费试用 400 820 2259
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制