药典方法分析

仪器信息网药典方法分析专题为您整合药典方法分析相关的最新文章,在药典方法分析专题,您不仅可以免费浏览药典方法分析的资讯, 同时您还可以浏览药典方法分析的相关资料、解决方案,参与社区药典方法分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

药典方法分析相关的耗材

  • 2015版药典中药材分析二氧化硫专用气相柱
    2015版药典中药材中二氧化硫分析毛细管色谱柱符合药典要求的专用柱§中药材使用硫黄熏蒸,是药材种植户对药材进行初加工的一种习用方法,目的在于防霉、防腐和干燥等。但是近年来,部分不法商贩为追求药材的外观漂亮、保存期长,用工业硫黄过量、反复熏蒸中药材,以旧充新,以次充好。 §一般来说,经硫黄熏蒸后的药材会残留少量的二氧化硫和亚硫酸盐类物质。 §国家药典委员会规定,中药材中二氧化硫残留量不得超过400 mg/kg。 §本法系用酸碱滴定法、气相色谱法、离子色谱法分别作为第一法、第二法、第三法测定经硫磺熏蒸处理过的药材或饮片中二氧化硫的残留量。对于具体品种,可根据情况选择适宜方法进行二氧化硫残留量测定。订货请联系我们
  • 2015版药典中药材中二氧化硫分析气相柱
    2015版药典中药材中二氧化硫分析毛细管色谱柱符合药典要求的专用柱§中药材使用硫黄熏蒸,是药材种植户对药材进行初加工的一种习用方法,目的在于防霉、防腐和干燥等。但是近年来,部分不法商贩为追求药材的外观漂亮、保存期长,用工业硫黄过量、反复熏蒸中药材,以旧充新,以次充好。 §一般来说,经硫黄熏蒸后的药材会残留少量的二氧化硫和亚硫酸盐类物质。 §国家药典委员会规定,中药材中二氧化硫残留量不得超过400 mg/kg。 §本法系用酸碱滴定法、气相色谱法、离子色谱法分别作为第一法、第二法、第三法测定经硫磺熏蒸处理过的药材或饮片中二氧化硫的残留量。对于具体品种,可根据情况选择适宜方法进行二氧化硫残留量测定。订货请联系我们
  • 2015版药典分析二氧化硫专用气相毛细管柱
    2015版药典中药材中二氧化硫分析毛细管色谱柱符合药典要求的专用柱§中药材使用硫黄熏蒸,是药材种植户对药材进行初加工的一种习用方法,目的在于防霉、防腐和干燥等。但是近年来,部分不法商贩为追求药材的外观漂亮、保存期长,用工业硫黄过量、反复熏蒸中药材,以旧充新,以次充好。 §一般来说,经硫黄熏蒸后的药材会残留少量的二氧化硫和亚硫酸盐类物质。 §国家药典委员会规定,中药材中二氧化硫残留量不得超过400 mg/kg。 §本法系用酸碱滴定法、气相色谱法、离子色谱法分别作为第一法、第二法、第三法测定经硫磺熏蒸处理过的药材或饮片中二氧化硫的残留量。对于具体品种,可根据情况选择适宜方法进行二氧化硫残留量测定。订货请联系我们

药典方法分析相关的仪器

  • 产品简介:药典不溶性微粒显微镜计数系统是普勒新世纪实验按照普洛帝分析仪器事业部的规划,于2001年推向市场的成熟系统仪器;符合中国药典规范附录0903不溶性微粒检查法第二法(显微计数法)。该系统为一种图像法粒度分布测试以及颗粒型貌分析等多功能颗粒分析系统,该系统包括光学显微镜、数字 CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;不仅可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段。执行标准:GB/T 11446.9-2013 电子级水中微粒的仪器测试方法美国药典USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典EP6.0、EP7.0、EP7.8、EP8.0;英国药典BP2013、BP2012、2010、2009;日本药典JP16、JP15、JP14;印度药典IP2010版;WHO国际药典IntPh第五版;中国药典2015&2020版;GB8368输液器具;ISO21510;ISO11171等。0.1~3000μm的超宽范围、超高分辨率满足510多个标准要求。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。技术参数:订制要求:各类液体检测要求;测试范围: 1μm-500μm放大倍数:40X~l000X倍分辨:0.1μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300万像素标尺刻度:0.1μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 1秒分割成功率: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232或USB方式精 确 度:±3% 典型值;重合精度:10000粒/mL(5%重合误差);分 辨 率:95%(按中国药典2020版校准);10% (按美国药典、ISO21501校准)鉴定机构:国家西北计量测试中心(民品)售后服务:普洛帝服务中心/普研检测。
    留言咨询
  • 不溶性微粒分析仪,微粒分析仪,微粒计数仪可以对液体颗粒度、清洁度、污染物进行监测和分析;制药设备及其日常维护和保养;药机部件中的磨损试验;纯净溶液和超纯水中不溶性微粒测试;药包材的洁净度测试;人体骨骼的附着颗粒监测;药典不溶性微粒检测;药典不溶性微粒分析仪采用英国普洛帝技术—“光阻测量颗粒”,并可根据用户的要求,内置用户所需多种标准。引用精密柱塞泵和超精密流量电磁控制系统,实现进样速度恒定和进样体积准确的双控制,取样量1ml~无限大随意设定,准确无误。传感器采用普洛帝经典“光阻测量颗粒”传感器,更加适合于基于该原理的国际510多个标准。内置阈值、粒径曲线和脉冲阻值,可设定通道粒径值。集成式自动取样仓,内设压力测量系统,可实现正/负压,使仪器可实现样品脱气和高粘度样品的检测。采用大屏幕液晶显示,触摸屏菜单操作,键盘、触摸双输入,外形美观功能及全。数据处理功能丰富;可根据标准给出等级,绘制分布直方图等。内置操作系统和微型打印机,无需外接电脑和打印机可直接测试和打印。具有标准串行RS232口,可外接计算机存储检测结果,方便数据分类、检索。可按中国药典、美国药典、ISO21510等标准进行标定、校准。根据客户要求可有偿提供高级国家西北计量测试中心的校准报告。提供校准物质(GBW),协助客户每年一次的校准计量工作。执行标准:美国药典USP35-NF30、USP32-NF27;欧洲药典EP6.0、EP7.0、EP7.8、EP8.0;英国药典BP2013、BP2012、2010、2009;日本药典JP16、JP15、JP14;印度药典IP2010版;WHO国际药典IntPh第四版;中国药典2010年、2015年;GB8368输液器具;ISO21510;ISO11171等。1000通道的0.01μm超多通道、超高分辨率满足全球510多个标准要求。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。仪器参数:订制要求:各类液体检测要求;激光传感检测器:第七代双激光窄光检测器(光散射法或光阻法。可选);测试软件:P6.4分析测试软件集成版或PC版;控制方式:集成式工控机控制或工业PC 控制;检测方式:满足中国药典、美国药典、GB8368等标准;操作方式:彩色液晶触摸屏操作;检测范围:0.03μm~3000μm(需选型)特殊检测:自定义检测0.03~100μm或者4~70μm(c)微粒,0.01μm或者0.1μm(c)任意检测;取样方式:计量泵;进样精度:±1%;精 确 度:±3%典型值;重合误差:3%检测浓度0~40000粒/ml分 辨 率:95%(按中国药典2015版校准);<10%(按JJG1061校准) <10%(按美国药典USP、ISO21501校准)通 道 数:1000个,可任意4、6、8、12、16、32、64、128个尺寸范围颗粒计数值;结果存储:不少于20000组(可接U盘,无限制存储) 测试粘度:0~99mm2/s;加压可达500mm2/s 取样流速:5mL/min~150mL/min;清洗流速:5mL/min~500mL/min; 流体温度:0℃~80℃; 环境温度:-15℃~50℃; 接口方式:RS232或RS485转USB或USB接口或LAN接口;可定制尺寸;显示操作:彩色液晶屏 操作方式:手指触摸屏或外接键盘; 模拟输出:1MA~20mA、串口协议、MODBUS协议; 报告方法:颗粒度/ml及等级 输入电压:100V~265V,50Hz~60Hz 产 地:英国; 鉴定机构:中特计量检测研究院或中国计量院国家西北计量测试中心; 售后服务:普洛帝中国服务中心普洛帝优势产品:不溶性微粒分析仪,微粒分析仪,微粒计数仪,药典不溶性微粒检查仪、药典不溶性微粒检测仪、药典不溶性微粒测试仪、药典不溶性微粒分析仪、药典智能微粒监测仪、药典颗粒计数器、药典颗粒计数仪、药典颗粒计数系统
    留言咨询
  • 一、化学抽提装置介绍该化学抽提装置运行原理:将样品加入化学抽提装置的反应容器中,经过加热以及化学试剂的共同作用,断裂样品中的特定基团,通过载气输送至冷凝回流管,经过冷阱的作用,将过量的水蒸气与化学试剂冷凝后,仅将待测基团输送至检测器。二、典型应用介绍:样品中总亚硝胺有机物提取低分子肝素类药品低分子肝素类药品主要用于防止血栓的形成,在癌症的化疗过程中也能够极大改善病人的生活质量,防止并发症的产生。低分子肝素钙是一类提取自猪小肠的药物,由于蛋白质类化合物与酸性试剂联合反应即可能产生未知的亚硝胺,因此欧盟药典(EP)对低分子肝素钙类的药物中亚硝胺的含量作出了明确的规定。该化学抽提装置即可完全满足欧盟药典的要求,使得用户免于自行搭建整套装置,极大方便了用户的实验室环境构建。化妆品类人们在化妆品原材料中发现亚硝胺杂质,欧洲和加拿大都已经明令禁止在化妆品中使用亚硝胺,因此,这些原材料在使用前都应该经过筛选。尽管如此,一些蛋白质和防腐剂的反应也会导致亚硝胺衍生物的形成。例如二乙醇胺或者三羟乙基胺,这些复合物都是常见的添加剂,用来调节ph或是作为一种保湿的药剂。据报道,每十个产品中就有一个可能仍然包含有这些可以结合形成亚硝胺的复合物。化妆品中可以加入大量的抑制剂来防止N-亚硝基复合物的形成,但并不是每次的结果都可被预测。因此必须在化妆品工厂中执行大量的亚硝基测试。农用化学品类在农药和除草剂制造业中,二级有机胺二硝基苯胺常常被用来作为前体物质使用。这些可能包含令人吃惊的高水平亚硝胺杂质。除此之外,另一种在生产加工中普遍出现的物质---亚硝酸盐中,也可能产生亚硝胺。在农用化学品工业中,没有必要去精确知道亚硝胺种类的情况,但是需要检测总亚硝胺含量。化学降解TEA分析Ellutia 化学降解系统可以一致地和TEA800系列施行总亚硝胺分析。现在常常采用用化学反应的方式替代裂解器来加热亚硝胺以移除NO基团,在亚硝基中加入乙酸乙酯和氢溴酸并经由回流反应使NO含量降低。亚硝胺样本被加入到反应器皿中并产生NO,仲胺和溴。之后NO 通过冷阱被气流带入热能分析仪中。?三、 订购编号?货号描述32081131化学有机物含量测定用化学降解系统,符合欧盟药典检测要求
    留言咨询

药典方法分析相关的试剂

药典方法分析相关的方案

药典方法分析相关的论坛

  • 【讨论】阿奇霉素美国药典分析方法

    不知道大家用过美国药典TEST 2的分析方法做过阿奇霉素的有关物质?对于美国药典分析方法耐用性的评价如何?我最近在做这个,发现美国药典的分析方法对于缓冲液pH,柱温,以及流动相比例都很敏感,不知道那位大侠以前遇到过类似的问题,告知下小弟如何解决的。谢谢了

  • 【求助】按照药典上的方法液相或气相分析问题?

    内标外标的计算方法大家好我主 要是按照药典上的方法液相或气相分析,现在的药典上的方法大多是内标,外标,或者自身对照,这样做了以后要根据对照峰面积和样品称量,才能得到最终结果.现在我就是在这些计算方面不大明白,哪位高手能帮我指点一上,不胜感激.

药典方法分析相关的资料

药典方法分析相关的资讯

  • 《中国药典》之光谱分析方法深度解析
    p   国家药品标准是国家为保证药品质量,对药品的质量指标、检验方法等作出的强制性规定,是药品生产、流通、使用和监管所必须遵循的法定技术要求。2020年4月9日,第十一届药典委员会执行委员会会议在北京召开,会议听取了国家药典委员会关于2020年版《中国药典》编制工作情况报告,审议并通过了2020年版《中国药典》草案。2020年4月17日, 国家药典委员会正式发文《中国药典》,2020年版编制工作已完成,并开始征订。 /p p   据国家药品监督管理局局长焦红介绍,新修订《药品管理法》进一步强化了国家药品标准的法定性作用,要不断巩固药典的法律地位,加强药品标准体系和管理能力建设,全面提升国家药品标准整体水平,扎实做好新版药典颁布实施和贯彻执行,确保新版药典理解到位、执行到位、监督到位。 /p p   红外、近红外、拉曼等光谱分析方法在科研及各项检测、质控中得到了广泛的应用。并且随着技术的进步,光谱分析方法也在不断的发展中,一系列新的光谱技术也在不断呈现。 /p p   那么,光谱分析方法在《中国药典》中的地位如何呢?由仪器信息网主办、江苏省分析测试协会协办的第九届光谱网络会议(简称iCS2020)就药典及光谱分析方法,特别开设光谱在制药领域的应用(5月29日)专场,将邀请江苏省食品药品监督检验研究院原副所长、国家药典委员会理化专业委员会委员王玉等多位知名专家进行深度解析。 a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 点击立即报名》》》 /strong /span /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 240px " src=" https://img1.17img.cn/17img/images/202005/uepic/04e2013f-acda-45a2-a521-ec08417a56eb.jpg" title=" 王玉.jpg" alt=" 王玉.jpg" width=" 200" height=" 240" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 江苏省食品药品监督检验研究院原副所长、国家药典委员会理化专业委员会委员 王玉 /strong /p p   江苏省食品药品监督检验研究院原副所长、国家药典委员会理化专业委员会委员王玉是多家药学杂志的编委,已在国内外相关杂志发表论文160余篇,主编出版《药品检验》等专著多部,参与《中国药品检验操作规程》等和多部专著的编写,是《中国药典分析检测技术指南》副主编,还参与中国药典二部部分品种和四部的部分通则的英文版编审工作。 /p p   在iCS2020中,王玉将分享 a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6777" target=" _blank" strong 《药典中的光谱法及其应用》 /strong /a ,报告内容涉及药典中收载的光谱法特点,光谱分析方法在药典中的定位以及在药品质量研究、质量控制中的适用性。此外,王玉还将介绍药典中可望进一步增订的光谱法及可能的应用。 a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" strong span style=" color: rgb(227, 108, 9) " (报名参会) /span /strong /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 303px " src=" https://img1.17img.cn/17img/images/202005/uepic/c7003d04-126f-4c71-8ada-a691bccd2700.jpg" title=" 周群.jpg" alt=" 周群.jpg" width=" 200" height=" 303" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 清华大学副教授 周群 /strong /p p   清华大学周群副教授多年来一直从事红外光谱、拉曼光谱的研究工作,其主要研究领域为振动光谱成像、二维相关光谱法等分子光谱法与文物鉴定以及中药和食品的宏观质量控制。现任《计算机与应用化学》杂志常务编委,《光谱学与光谱分析》杂志编委,北京理化分析测试技术学会光谱分会理事。 /p p   在iCS2020中,周群将做题为 a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6466" target=" _blank" strong 《基于振动光谱成像的复杂混合物化学成分信息提取与表征》 /strong /a 的报告。振动光谱成像是振动光谱法与显微技术的完美组合,该方法无需对样本进行复杂的前处理,是无需标记的直接分析技术。中药等天然复杂混合物具有化学成分空间分布不均匀的特点,振动光谱成像与各种“非靶向”与“靶向”的化学计量学方法相结合,有望深度挖掘、提取及表征混合物中的化学成分,并获取相应的空间分布信息。 a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" span style=" color: rgb(227, 108, 9) " strong (报名参会) /strong /span /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 262px " src=" https://img1.17img.cn/17img/images/202005/uepic/37974e44-de95-416c-bfef-e3f238830e3a.jpg" title=" 微信图片_20200521114839.png" alt=" 微信图片_20200521114839.png" width=" 200" height=" 262" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 山东大学药学院副教授 聂磊 /strong /p p   聂磊副教授现任山东大学药学院药物分析研究所秘书、分析化学教研室主任、中国仪器仪表协会药物质量分析与过程控制分会理事、中国医药生物技术协会药物分析技术分会理事。其作为课题负责人承担多项国家重点项目子课题及省部级课题,作为主要参与者参与承担国家科技重大专项项目、国家重大科学仪器设备开发专项等。 /p p   在iCS2020中,聂磊将分享题为 a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6453" target=" _blank" strong 《红外及近红外光谱法在中药质量分析及评价中的应用》 /strong /a 的报告,主要介绍红外及近红外光谱法在中药领域的应用,包括中药鉴别(产地鉴别、真伪鉴别等);中药有效成分的定量分析;中药抗氧化活性的建模研究;校正集及验证集划分方法、模型转移(传递)方法等。 a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" span style=" color: rgb(227, 108, 9) " strong (报名参会) /strong /span /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 240px " src=" https://img1.17img.cn/17img/images/202005/uepic/3c7936c7-7836-4a13-a284-5be2288488ae.jpg" title=" 李页瑞.jpg" alt=" 李页瑞.jpg" width=" 200" height=" 240" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 浙江大学苏州工业技术研究院博士后 李页瑞 /strong /p p   作为浙江大学药物分析学博士、浙江大学苏州工业技术研究院博士后、苏州高新区创新领军人才、苏州高新区高层次人才,李页瑞主要从事中药制药工程关键技术研究与产业化推广工作,涉及中药新型装备与工艺、中药生产过程自动化控制、中药生产过程质量控制、中药生产信息化管控、制药数据挖掘与知识服务等方向。 /p p   iCS2020中,李页瑞的报告题目为: a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6557" target=" _blank" strong 《过程分析技术与中药智能制造实践探索》 /strong /a 。本报告将从行业背景、技术原理、应用案例和发展趋势等几个方向,讲述过程分析技术与中药智能制造实践历程,分享实践过程取得的成效,总结实践过程遇到的问题。 a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" strong span style=" color: rgb(227, 108, 9) " (报名参会) /span /strong /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 286px " src=" https://img1.17img.cn/17img/images/202005/uepic/1023d6b1-3125-4c07-8bd2-057974ff578c.jpg" title=" 史芸 如海光电.jpg" alt=" 史芸 如海光电.jpg" width=" 200" height=" 286" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 上海如海光电科技有限公司理化实验室主管 史芸 /strong /p p   上海如海光电科技有限公司理化实验室主管史芸(材料工程硕士),多年一直从事拉曼光谱仪器的应用研究、技术支持等相关工作。自入职如海光电后,主要负责小型化拉曼光谱仪器在制药领域的应用与方法开发。本次报告题目为 a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6829" target=" _blank" strong 《小型拉曼光谱技术在制药领域的应用和关键技术开发》 /strong /a 。 /p p   拉曼光谱技术由于指纹光谱的特性,可以对不同物质进行识别与区分。如海光电利用自身在小型化拉曼光谱仪器研发技术上的优势,开发了针对药物原辅料的快检技术方案,并且在药物晶型鉴别应用上也已有一定的经验积累,结合优化的高稳定性激光器与微型光谱仪技术,能够利用小型化拉曼光谱仪对药物晶型进行快速鉴别。 a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" strong span style=" color: rgb(227, 108, 9) " (报名参会) /span /strong /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 200px " src=" https://img1.17img.cn/17img/images/202005/uepic/efb5ef89-8de9-4fe8-86a6-c13501206aa2.jpg" title=" 刘鸿飞.jpg" alt=" 刘鸿飞.jpg" width=" 200" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 奥谱天成(厦门)光电有限公司总经理刘鸿飞 /strong /p p   奥谱天成(厦门)光电有限公司总经理刘鸿飞长期从事小型拉曼光谱仪的研制与应用工作,主持或参与多个国家级重大项目的的研制工作,深度参与中国国家标准《拉曼光谱仪》、中国国家标准《基于拉曼光谱的危化品检测仪》、福建省地方标准《便携式拉曼光谱仪》等标准的制定工作。本次他将介绍 a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6842" target=" _blank" strong 《拉曼光谱在制药领域的应用》 /strong /a strong /strong 。 /p p   拉曼光谱方法在美国、欧盟、日本的制药厂已经得到了广泛的应用,在2020版《中国药典》的地位也空前提高。拉曼光谱是物质的“指纹谱”,具有准确、快速、无损、非接触等特点,能够在短短的数秒内,快速鉴别出原辅料的成分,且兼具无需样品前处理、简单易用、功耗低、体积轻便、便于携带和现场使用等特点。刘鸿飞的报告将主要介绍拉曼光谱仪在制药(尤其是化学制药)领域中进行快检和质量控制的最新应用进展。 strong span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" (报名参会) /a /span /strong /p p strong   更多会议详情请点击: /strong a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" _src=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" https://www.instrument.com.cn/webinar/meetings/iCS2020/ /a & nbsp /p p strong /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202005/uepic/52bc1209-b0f9-46fe-9dfd-5e21221f68b8.jpg" title=" 53d87772-9fc3-4350-927d-3056df183037.jpg!w1920x420.jpg" alt=" 53d87772-9fc3-4350-927d-3056df183037.jpg!w1920x420.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p strong /strong /p
  • 2015年新版药典新增As和Hg形态分析方法
    新药典的更新内容   根据2015年新版药典,电感耦合等离子体质谱(ICP-MS)法已经成为重金属安全性的检测的重要手段,不但新增了方法检出限和方法定量限,而且ICPMS方法可用于I、II、III部。   同时,在2015年新版药典中新增 As 和 Hg 形态分析。进一步确定了药物中的元素不仅需要考虑总量,也需要考虑形态和价态;元素的价态形态已经成为药物科研的一个前沿方向。新版药典 As 的形态及其价态分析应用于雄黄及其制剂;Hg 元素的形态及其价态分析应用于朱砂及其制剂。   新药典引入形态分析的背景知识   因为早期研究发现,元素形态不同,其毒性、生物利用度、生物累计效应及迁移率等性质就会有差别[1]。很多金属和非金属在毒理学和生物学上的重要性主要取决于其化学形态,不同元素形态具有不同的物理化学性质、毒性或疗效。色谱-ICP-MS联用作为分析体内药物代谢、毒理学的手段之一在元素的体内代谢机制、毒理学研究等方面具有独特的优势。例如,应用色谱-ICPMS分离生物体内含Se、As、Cd、Cu、Zn、Pb等元素与多种氨基酸、多肽和蛋白质的结合机理以及研究元素对酶的作用位点。此外,维生素、大环化合物等的研究和DNA片段与金属元素的作用也日益在色谱-ICPMS技术发展中得到应用。因此元素形态分析对控制药品的安全性具有重要的意义。   2015年药典新增的As和Hg形态分析就充分考虑到了不同形态毒理学性质的不同:As化合物被认为是对人的皮肤和肺有致癌作用的物质,不同形态的As具有各种化学和毒物学性质,其中As(III)和As(Ⅴ)的毒性最大,一甲基砷(MMA)和二甲基砷酸(DMA)具有中等毒性,而As-甜菜碱(AB)和砷胆碱(AC)相对来说是无毒的。在动物体内,无机砷的生物甲基化作用被认为是一个去毒性过程,产物被排泄或储存。为分析低含量(ppb级)As化合物的形态,不仅需获得有关化合物形态的信息,又要有极高的灵敏度,目前最为理想的方法应属HPLC或IC与ICP-MS联用,该方法对于砷化合物的生物检测极为有用。   Hg是人体必需监控的有毒元素,主要以甲基汞、Hg(II) 与乙基汞形式存在,其中生物与人类对Hg的甲基化及富集所产生的影响尤为重要。目前WHO法规不仅对人体中总Hg的限量极低(   针对元素形态分析的样品前处理与元素的总量分析有着较大的不同。对于注射剂、澄清、均匀的口服液(不含混悬液)等液体制剂中微量元素的形态分析,可在过滤和稀释后直接进行形态分析;而对于固体样品,则需要采用较温和的方法将微量元素的不同形态提取出来。提取方法既要考虑较高的回收率,又要保持初始的化学形态。传统的提取方法有水煎法、索氏提取法等。近几年,一些先进的提取技术如超临界流体萃取、微波辅助萃取、酶解法等在中药微量元素形态分析中也有应用。   由于西药多为人工合成药,而中药大部分是天然产物,因此元素的形态分析多应用于中药中。中药有多种剂型,服用方法大多为水煎剂和酊剂,所以研究较多的是中药中微量元素在水或乙醇中的溶出率。目前样品前处理方法制药分三类:第一类也是最常见的一类方法为经典的水提法或索氏提取法,例如王京宇等[2]在考察若干中药中25种元素在不同浸取液中的分布情况时,采用了水提、二氯甲烷浸取、残渣消化及不同浓度乙醇浸取等方法处理;第二类为聚焦微波辅助萃取[3] (microwave assisted extraction,MAE),是在微波能的作用下,选择性地将样品中的目标组分以其初始形态的形式萃取出来的一种技术。它具有高回收率、高选择性和低溶剂消耗的优点。更多的关于中药砷和汞形态分析的前处理方法及关键技术请参考《矿物药检测技术与质量控制》[4]中第十章(朱砂)、第十三章(雄黄)和第三十一章(朱砂和雄黄的毒理研究)内容。   严冬,宋娟娥   安捷伦科技(中国)有限公司   参考文献:   [1] Das A K, Chakraborty R, Cervera M L, et al. Metal speciation in biological fluids: a review [J]. Microchim Acta, 1996, 122 (3-4): 209-246.   [2] 王京宇,欧阳荔,刘雅琼,等 若干中草药中25种元素在不同浸取液中的分布 [J],中国中药杂志,2004,29(8):753-759.   [3] 傅荣杰,冯怡,等 微波萃取技术在中药及天然产物提取中的应用 [J]. 中国中药杂志,2003,28(9):804-807   [4] 林瑞超 主编. 《矿物药检测技术与质量控制》. 科学出版社,2013年出版.
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法 Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain 沃特世公司,美国马萨诸塞州米尔福德 方案优势 ■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典章指南的规定。 ■ 将样品运行时间缩短80%,从而提高了生产能力。 ■ 将溶剂用量减少90%,降低了运行成本。 沃特世提供的解决方案 ACQUITY UPLC® H-Class系统 Alliance® HPLC系统 XSelect&trade CSH&trade C18色谱柱 Empower® 3软件 eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶 关键词 美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药 引言 全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典章色谱分析指南的规定。章列出了允许的方法变化幅度。 噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。 实验条件 Alliance 2695 HPLC色谱条件 流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m, 部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111 柱温: 25 ℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 ACQUITY UPLC H-Class色谱条件 流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m, 部件号:186006727 柱温: 25℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 数据管理: Empower 3软件 样品描述 用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。 结果与讨论 全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。 在HPLC仪器上使用XP色谱柱进行有机杂质分析 噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。 在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。 本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。 接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。 在UPLC仪器上使用XP色谱柱进行有机杂质分析 如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。 为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。 最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。 结论 在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。 参考文献 1. USP General Chapter , USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012. 2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012. 3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制