当前位置: 仪器信息网 > 行业主题 > >

化学发光酶标仪

仪器信息网化学发光酶标仪专题为您提供2024年最新化学发光酶标仪价格报价、厂家品牌的相关信息, 包括化学发光酶标仪参数、型号等,不管是国产,还是进口品牌的化学发光酶标仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学发光酶标仪相关的耗材配件、试剂标物,还有化学发光酶标仪相关的最新资讯、资料,以及化学发光酶标仪相关的解决方案。

化学发光酶标仪相关的论坛

  • 化学发光免疫分析仪与酶标仪的区别

    虽然酶标仪价格低廉、仪器简单、方便操作,但在越来越多的项目检测中,化学发光免疫分析仪逐渐取代酶标仪的使用。 化学发光的优点到底在哪里呢?从原理上说,酶标仪是通过对酶标板中液体的吸光值检测,获得一个OD值后进行定性或半定量的分析,达到检测的目的。化学发光免疫分析仪是化学发光反应(酶促发光或直接发光)产生的光信号通过光电倍增管进行信号转换后等到相应的信号值,用RLU(相对光单位)表示,以达到定量或定性的检测目的,其更加灵敏,线性范围更宽,而且可以做定量检测,可进行全自动操作,而酶标仪无论检测还是线性范围都不如发光仪,且只能做定性检测,但是目前国内酶标仪较为成熟,化学发光尚处于成长期。

  • 【求助】新手请教鲁米诺化学发光的问题

    请教下各位大虾关于化学发光的问题我在优化鲁米诺+双氧水+催化剂的体系时发现数据很难重复,而且平行数据之间的差别很大,本底很高,用的是beckman的酶标仪测定的,各位大虾有什么 意见或者建议么?

  • 化学发光免疫分析

    化学发光免疫分析放射免疫分析法有很高的灵敏度,但存在着放射性防护和同位素污染等问题。近年来,许多非放射性同位素标记的免疫分析方法相继出现。其中,在化学发光反应及抗原-抗体特异性识别基础上建立起来的一种新的非放射免疫分析技术--化学发光免疫分析法,由于这种方法具有灵敏度高,特异性强,精密度好,线性范围宽,仪器设备简单,试剂价格低廉,方法稳定、快速等优点,已成为一种重要的非同位素标记免疫分析方法,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测。  化学发光免疫分析包括三大类型:即标记化学发光物质的化学发光免疫分析;标记荧光物质的荧光化学发光免疫分析和标记酶的化学发光酶联免疫分析。下面以偶合放大化学发光酶联免疫分析法检测人血清中乙型肝炎表面抗原(HBsAg)为例。  (一) 原理  尽管辣根过氧化物酶(HRP)可以催化Luminol-H2O2反应体系产生化学发光,但由于该体系的检测灵敏度不够高,不能满足酶联免疫测定的要求。因此,为了提高体系的检测灵敏度,可将HRP催化H2O2氧化曙红(Eosin)的反应与该反应产物增强HRP催化luminol-H2O2的化学发光反应相偶合,建立偶合放大化学发光酶联免疫分析法。这里,酶的活性是基于下列发光反应进行检测的:  HRP         luminol+H2O2───→产物+hν                 产 物                  ↑       Eosin+H2O2 ──────┘               HRP 二) 操作步骤  1. 包被抗体 在每个小试管中加入聚苯乙烯珠各一枚,再加入300μl用0.05M,PH9.6 碳酸盐缓冲液稀释的抗HBsAg抗体,同时设空白对照,置4℃过夜。  2. 洗涤 用抽滤针头吸干管内液体,加入Tris-HCl-Tween20洗涤3次,每次加2ml,放置3~5min,用抽滤针头吸干管内液体。  3. 加待检血清和阳性标准品 用PBS-Tween20缓冲液不同倍数稀释HBsAg阳性标准品或待检血清,每管加入300μl。同时设阴性对照;空白对照管只加抗体稀释液。置37℃孵育2h。  4. 洗涤 同2。  5. 加酶标抗体  用含小牛血清的PBS-Tween20缓冲液稀释HRP标记的抗HBsAg抗体,每管加入300μl,空白对照管只加用于稀释酶标抗体的稀释液。置37℃孵育2h。  6. 洗涤 同2。  7. 化学发光测定 给每管加入300μl底物溶液,置37℃保温20min。犎;后将小试放入LKB-1250 lumimeter中,并置于测量位置,加入300μl 5.0×10-4M luminol。记录仪记录化学发光强度。  8. 同时用ELISA方法进行对照,结果测量采用DG3022型酶联免疫检测仪。  结果判定(1) 定性 按下列公式判别阴、阳性:          L样品-L空白     ┌≥2.1 为阳性   S/N = ──────── = 商│       L阴性对照-L空白    └<2.1 为阴性   (2) 定量 以不同稀释度的HBsAg阳性标准品的化学发光强度为纵坐标,不同稀释倍数为横坐标,作出剂量反应曲线(标准曲线),犜r待测样品中HBsAg的含量就可由测量的化学发光强度换算得到。

  • 免疫化学发光原理

    一)原理  化学发光免疫测定属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。    (二)标记物  1.发光剂直接标记 常用鲁米诺及其衍生物等,它们属环肼类化合物,能与很多氧化物如氧、次氯酸、磺、过氧化物等反应而发光。因此可直接将鲁米诺或其衍生物标记抗体或抗原进行CLIA。这类方法特异性强,但往往会因交联影响发光物特性,降低敏感性。  2.发光催化酶标记 常用辣根过氧化物酶、丙酮酸激酶、葡萄糖氧化酶等标记抗体或抗原。与酶标抗体测定基本相同,差别在于CLIA是用发光性底物指示反应,有人称为发光酶免疫测定。  3. 标记物产物参与反应 标记物不直接催化发光反应,而其反应产物能使反应系统发光。如用草酸类标记抗体或标记抗原,在有H2O2作用下,生成二噁二酮,后者可使红荧稀(Rubrene)激化发光。  (三)应用  CLIA特异性强、敏感性高,可检测到10-5mol/L的抗原量。快速,一般几十分钟或1-3小时内完成。操作简便,可进行固相和均相分析。试验重复性好,试剂易标准化和商品化。目前已用于多种药物、激素、病原微生物及其代谢产物、抗体及其他生物活性物质的测定。

  • 化学发光免疫分析的类型介绍

    化学发光反应参与的免疫测定分为以下几种类型:   (一)化学发光酶免疫测定   化学发光酶免疫测定(CLEIA)是采用化学发光剂作为酶反应底物的酶标记免疫测定。经过酶和发光两级放大,具有很高的灵敏度。以过氧化物酶为标记酶、以鲁米诺为发光底物、并加入发光增强剂以提高敏感度和发光稳定性。应用的标记酶也可以为碱性磷酸酶,发光底物为dioxetane磷酸酯,固相载体为磁性微粒贵州学|习网搜集整理。   (二)化学发光免疫测定   化学发光免疫测定(CLIA),是用化学发光剂直接标记抗原或抗体的一类免疫测定方法。吖啶酯是较为理想的发光底物,在碱性环境中即可被过氧化氢氧化而发光。   用作标记的化学发光剂应符合以下几个条件:   1.能参与化学发光反应。   2.与抗原或抗体偶联后能形成稳定的结合物试剂。   3.偶联后仍保留高的量子效应和反应动力。   4.应不改变或极少改变被标记物的理化特性,特别是免疫活性。   鲁米诺类和吖啶酯类发光剂等均是常用的标记发光剂。   (三)微粒子化学发光免疫分析   该免疫分析技术有两种方法:一是小分子抗原物质的测定采用竞争法;二是大分子的抗原物质测定采用双抗体夹心法。该仪器所用固相磁粉颗粒极微小,其直径仅1.0%26mu;m,这样大大增加了包被表面积,增加抗原或抗体的吸附量,使反应速度加快,也使清洗和分离更简便。其反应基本过程:(1)竞争反应:用过量包被磁颗粒的抗体,与待测的抗原和定量的标记吖啶酯抗原同时加入反应杯温育,其免疫反应的结合形式有两种,一是标记抗原与抗体结合成复合物;二是测定抗原与抗体的结合形式。(2)双抗体夹心法:标记抗体与被测抗原同时与包被抗体结合成一种反应形式,即包被抗体-测定抗原-发光抗体的复合物。   (四)电化学发光免疫测定   电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发的特异性发光反应,包括电化学和化学发光两个部分。分析中应用的标记物为电化学发光的底物三联吡啶钌或其衍生N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,制成标记的抗体或抗原。ECLL的测定模式与ELISA相似。其基本原理是发光底物二价的三联吡啶钉及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发态的二价钌,随即释放光子而恢复为基态的发光底物。这一过程在电极表面周而复始地进行,不断地发出光子而常保持底物浓度的恒定。

  • 大家有知道化学发光免疫分析仪的么?

    化学发光标记免疫分析又称化学发光免疫分析(CL IA ) ,是用化学发光剂直接标记抗原或抗体的免疫分析方法。化学发光免疫分析仪包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。简介化学发光免疫分析仪包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。   化学发光免疫分析仪器中核心探测器件为光电倍增管(PMT),由单光子检测并传输至放大器,并加高压电流放大,放大器将模拟电流转化为数字电流,数字电流将发光信号由R232数据线传输给电脑并加以计算,得出临床结果。 分类化学发光标记免疫分析法  化学发光标记免疫分析又称化学发光免疫分析(CL IA ) ,是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物——acridin ium ester (A E) ,是有效的发光标记物 , 其通过起动发光试剂(N aOH2H2O 2 ) 作用而发光, 强烈的直接发光在一秒钟内完成,为快速的闪烁发光(见图1)。吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法 ,大分子抗原则采用夹心法 , 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。 发光酶免疫分析法  从标记免疫分析角度, 化学发光酶免疫分析( chem ilum inescen t enzym e imm unoassay,CL E IA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂,操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光, 用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) ,它们有各自的发光底物。 发光试剂  HRP 标记的CLEIA常用的底物为鲁米诺(32氨基邻苯二甲酰肼,lum ino l) ,或其衍生物如异鲁米诺(42氨基邻苯二甲酰肼) , 是一类重要的发光试剂。其结构如图4 所示。鲁米诺的氧化反应在碱性缓冲液中进行,在过氧化物酶及活性氧存在下,生成激发态中间体, 当其回到基态时发光, 其波长为425nm。   早期用鲁米诺直接标记抗原(或抗体) ,但标记后发光强度降低而使灵敏度受到影响。近来用过氧化物酶标记抗体, 进行免疫反应后利用鲁米诺作为发光底物, 在过氧化物酶和起动发光试剂(NaOH2H2O 2) 作用下, 鲁米诺发光, 发光强度依赖于酶免疫反应物中酶的浓度。Kodak Am erliteTM半自动分析系统就是利用这一体系专门设计的。 增强发光酶  增强发光酶免疫分析(enhanced luminescence enzyme immunoassay, ELEIA )在发光系统中加入增强发光剂, 如对2碘苯酚等, 以增强发光信号,并在较长时间内保持稳定, 便于重复测量, 从而提高分析灵敏度和准确性。在全自动分析仪上, 还可通过计算机严密控制, 进行自动操作, 如加试剂,混合, 温育, 洗涤, 加发光试剂, 发光计数, 数据处理, 绘制标准曲线, 直至完成病人血清样品的分析并打印出结果。Am erliteTM发光增强酶免分析系统用荧光素、噻唑等增强剂, 其发光时间可持续长达20m in, 试剂盒有甲状腺功能检测的   促甲状腺素、三碘甲腺原氨酸、甲状腺素、甲状腺素结合球蛋白、游离甲状腺素, 与性激素有关的有促黄体激素、促卵泡激素、人绒毛膜促性腺激素、甲胎蛋白、雌二醇、睾酮, 以及其他方面的如癌胚抗原、铁蛋白、地高辛等。   ALP标记的CLEIA所用底物为环1, 22二氧乙烷衍生物, 这是一类很有前途的发光底物 ,用于化学发光酶免分析底物而设计的分子结构中包含起稳定作用的基团——金刚烷基, 其分子中发光基团为芳香基团和酶作用的基团,在酶及起动发光试剂作用下引起化学发光。最常使用的底物是AM PPD , 中文名为: 32(2’2螺金刚烷) 242甲氧基242(3’2 磷酰氧基) 2苯基21, 22环二氧乙烷)。在碱性磷酸酶(AL P) 作用下,磷酸酯基发生水解而脱去一个磷酸基, 得到一个中等稳定的中间体AM PD (半寿期为2~ 30m in) ,此中间体经分子内电子转移裂解为一分子的金刚烷酮和一分子处于激发态的间氧苯甲酸甲酯阴离子, 当其回到基态时产生470nm 的光,可持续几十分钟。AM PPD 为磷酸酯酶的直接化学发光底物,可用来检测碱性磷酸酯酶或酶和抗体、核酸探针及其它配基的结合物。可检测到碱性磷酸酯酶的浓度为10- 15mol/L 。

  • 国际主流化学发光免疫分析仪的原理技术及特点

    化学发光放大技术同样利用抗原一抗体反应原理,将酶或其他非放射性标记物标记于抗原或抗体,然后与已知抗原或抗体反应,标记的酶使反应底物进行发光,经光电倍增管测量后可得到被测样本的每秒钟发光计数CPS,再根据内置的标准曲线将CPS转换为样本的浓度值"由于这项技术的应用,使抗原一抗体的反应时间缩短,特异性程度和灵敏度得到提高,同时辅以单克隆技术的应用,使整个反应的全自动化实现成为可能,并一改过去依赖于手工加样,再交由仪器测量的半自动化技术的局面,也是近十年来免疫检验技术的一个飞跃。 化学发光免疫分析系统由以下子系统构成:反应杯传送系统,测试包被珠装载系统,样本装载系统,条码读取系统,试剂装载系统,加样系统,温育系统,离心清洗系统,发光计数测量系统,计算机控制系统组成。1.微粒子捕捉酶免疫分析技术(MEIA) 下面以双抗体夹心法为例介绍微粒子捕捉酶免疫分析技术:已包被了抗体的塑料微珠试剂中,加入待测标本后,经温育,再加入碱性磷酸酶标记的抗体!形成抗体一抗原一酶标记抗体复合物"然后将其转移到玻璃纤维柱上,用缓冲液洗涤,没有结合的抗原!酶标抗体被洗掉,结合抗原抗体的塑料微珠则被保留在纤维柱滤膜的上方"这时再加入底物,4一甲基伞型酣磷酸盐,酶标抗体上的碱性磷酸酶将4一甲基型酣磷酸盐分解,脱磷酸后形成甲基伞型酣,在365nm激发光的照射下,发出448nm的荧光,经过荧光读数仪的记录、放大,计算出所测物质的含量"。2.荧光偏振免疫分析技术(FPIA) 这是一种均相荧光免疫分析法,主要用于测定小分子量物质,如药物浓度测定"原理是:标记在小分子抗原上的荧光素经485nm的激发偏振光照射后,吸收光能,越入激发状态,激发状态的荧光素不稳定,很快以发出光子的形式释放能量而还原"发射出的光子经过偏振仪形成525~55Onm的偏振光,这一偏振光的强度与荧光素受激发时分子转动的速度呈反比,游离的荧光素标记抗原,分子小,转动速度快,激发后发射的光子散向四面八方,因此通向偏振仪的光信号很弱,而与抗体大分子结合的荧光素标记抗原,因分子大,分子的转动慢,激发后产生的荧光比较集中,因此偏振光信号比未结合时强得多",在测定过程中待测抗原小分子!荧光标记抗原小分子和特异性抗体大分子同时加入到一反应杯中,经过温育,待测抗原和荧光标记抗原竞争性地与抗体结合,待测抗原越少,与抗体竞争结合的量越少,而荧光标记抗原与抗体结合量就越多,当激发光照射时,荧光偏振的程度与荧光标记物分子转动的速度成反比,而荧光标记的小分子抗原与大分子抗体结合后,其分子的转动速度减慢,因此荧光偏振信号强"结果是待测抗原的浓度低,可以通过计算获得其含量。3.利用化学发光技术和磁性微粒子分离技术相结合此方法以叮咤酶为发光的标记物,固相载体为极细小的磁性颗粒"其测定原理与放射免疫和酶联免疫中的双抗体夹心法和竞争结合法相似。4.采用酶联免疫技术!生物素亲和素技术和增强化学发光技术此方法是用辣根过氧化物酶(日RP)标记抗原或抗体!以子弹头型塑料小孔管为固相载体,鲁米诺为化学发光剂,并加入化学发光增强剂,可使化学发光强度增强,时间延长而且稳定。 在链霉亲和素包被的子弹头型塑料小孔管中,加入生物素标记的特异性抗体和待测标本,经过37e温育,链霉亲和素与生物素结合,特异性抗体与标本中的抗原结合,形成链霉亲和素一生物素一抗体一抗原复合物,经过洗涤,将多余的标本和生物素标记抗体除去,加入辣根过氧化物酶标记抗体,经37e温育,形成链霉亲和素一生物素一抗体一抗原一酶标抗体复合物,并固定在小孔管壁上,加入氧化剂日202,增强化学发光剂和鲁米诺,这时结合在固相载体上的辣根过氧化物酶在强氧化剂的作用下将增强化学发光剂亚铁原吟琳激活,接着它催化并激活鲁米诺发光,这种化学发光强渡比单独鲁米诺发光强,持续时间长,而且稳定,易于测定。鲁米诺发光强度经光量子记录系统记录,经计算从标准曲线上得出待测抗原含量。

  • 化学发光仪

    本人研一新生,想做化学发光,但组内没有化学发光仪,有一台荧光分光光度计,不清楚如何使用荧光分光光度计来测化学发光强度!也可以测流动化学发光么?希望懂的老师,师兄师姐可以帮忙一下,或留下联系方式,十分希望有人指点!

  • 生物试验中化学发光的标记

    吖啶酯以及相关化合物通过简单的加入氢氧化钠以及过氧化氢就可以使吖啶酯标记的抗原或抗体发光,这种抗原或抗体采用一种活性标记物[2',6'-dimethyl-4'-(N-succinimidyloxycarbonyl) phenyl 10-methylacridinium-9-carboxylate]来获得。发光过程非常短暂,只是快速的一闪,持续时间小于5s。这么短暂的发光过程给反应的起始与测量带来了一定的限制(Weeks et al.1983,Law et al.1989)。通常是将试剂直接注入放在光度计暗仓内光探测器前面的试管内来检测发光。吖啶酯以及氨甲酰吖啶类似物[acridinium-9-(N-sulronyl) carboxamide](Kinkel et al.1989,Mattingly 1991)是用于免疫分析的主要化学发光标记物(可从Assay Designs lnc,Athens,GA;Behringwerke AG,Marburg,Germany;Ciba Coming Diagnostics,Medfield,MA以及Molecular Light Technology Research Ltd,Cardiff,UK等处获得)。这类标记的检测的最小量为~0.5attomol(0.5X10-18mol)。基于杂交保护的非分离DNA探针分析(nonseparation DNA probe assay)方法已被设计出来(Arnold et al.1989)。这种类型的分析无需将结合与未结合的标记物分开,因而分析可方便的一步完成。这种杂交保护分析利用已与互补DNA杂交的吖啶酯标记探针与溶液中游离探针之间水解速率相差百万倍的特性,在pH7.6的硼酸缓冲液中破坏游离探针的化学发光特性,从而使水解后的化学发光仅仅来源于已杂交的标记探针(可从Gen-Probe,San Diego,CA获得)。 鲁米诺及其类似物鲁米诺(Luminol)是第一个用于免疫学分析标记的化学发光化合物(Schroeder et al.1978)。在合适的催化剂(辣根过氧化物酶、微过氧化物酶(microperoxidase)、铁氰化物)存在的情况下,通过加入氧化剂(如:过氧化氢)可导致发光。然而,通过鲁米诺的5-氨基进行标记会使发光量减少10倍。异鲁米诺,一种鲁米诺6氨基异构体,其发光效率较鲁米诺低(量子产额0.1%),但当通过第6位进行标记时可使发光量增加10倍。因而,这种化合物以及其氨基取代类似物,比如ABEI(N-(4-aminobutyl)-N-ethylisoluminol),已在免疫分析应用中成为最受欢迎的标记物(Kohen et al.1979;Pazzagli et al.1982)。吡啶哒嗪(Pyridopyridazines)代表另一类化学发光化合物。早期的数据显示这些化合物,尤其是8-氨基-5-氯-7-苯基和8-羟基-7苯基衍生物,可作为检测过氧化物酶标记的标记和协同底物(co-substrates)。与鲁米诺相比,这类化合物具有很强的化学发光特性(约为50倍)(Masuya et al.1992)。 碱性磷酸酶磷酸金刚烷基1,2-二氧杂环丁烷(如:AMPPD;disodium 3-(4-methoxyspiro[1,2-dioxetane-3,2'-tricyclo[3.3.13,7]decan]-4-yl)-phenylphosphate)以及5-位取代类似物(如:5-choro:CSPD;可从Tropix Inc获得)已成为碱性磷酸酶标记的最为广泛使用的化学发光底物(Bronstein et al.1989,1990,1991;Schaap et al.1989)。这种酶的检测极限是1 zeptomole(10-21摩尔)并且其发光持续时间超长(1h),因而特别适合与基于膜的分析。这个反应的发光强度可被尼龙膜表面以及特定的多聚物增强,如:聚氯苄(苄基二甲基铵)乙烯(polyvinylbenzyl(benzyldimethylammonium)chloride)。对尼龙膜来说,这种增强作用是用于其疏水性基团对去磷酸化的反应中间体的螯合作用;从而稳定和减少中间体的非发光性降解。碱性磷酸酶标记的化学发光分析目前被广泛地用于印迹试验以及DNA序列测定(Beck and Koster 1990,Tizard et al.1990)。 beta-半乳糖苷酶AMPGD(Adamantyl 1,2-dioxetane aryl galactoside)做为这种酶的底物现已越来越流行。这种酶从芳香环的第3位裂解半乳糖苷基团产生一种苯氧化物中间体,这种中间体的降解可导致发光。对这种酶采用这种分析方法的检测极限为30zeptomol。 辣根过氧化物酶鲁米诺以及其他环状二酰基酰肼(cyclic diacylhydrazides)化合物是辣根过氧化物酶的化学发光协同底物。采用鲁米诺、过氧化氢,以及一种增效剂(如:4-碘苯酚或4-羟基肉桂酸),辣根过氧化物酶的碱性同工酶可被检测出的最小量96h)。 葡萄糖氧化酶目前已经发展了几种用于葡萄糖氧化酶的法学发光分析。异鲁米诺或鲁米诺在微过氧化物酶催化剂存在的情况下可用于分析葡萄糖氧化酶与葡萄糖反应所产生的过氧化物(Sekiya et al.1991);另一种方法是采用化学发光荧光基团致敏的bis(2,4,6-trichlorophenyl)oxalate反应来检测(Arakawa et al.1982)。 商业试剂、试剂盒及光度计对于可获得的化学发光试剂和试剂盒以及用于发光测定的光度计的全面的评述已有发表(请参见Stanley 1992,1993)。一系列关于化学发光在基础及应用领域的当前进展的资料汇编也同样可以得到(请参见Kricka and Stanley 1992,Kricka et al.1993,Wilkinson 1998)。化学发光可采用一系列的检测设备来进行检测,包括光电倍增管(采用光子计数或灵敏度较低的光子流模式(photon current mode))、硅光电二级管、CCD照相(Wick 1989)摄影或胶片摄影(Kricka and Thorpe 1986)。CCD照相由于是检测二维光源(如膜以及96孔微板)的方便且灵敏的方法而被广泛使用。除此以外,它还能容易的监测发光动力学、可通过图像增强以及背景减影来改善结果质量。

  • 化学发光基本常识普及系列之化学发光现象及化学发光法

    化学发光现象是一种常见的自然现象,利用化学发光测定化学发光反应反应物、催化剂、增敏剂、抑制剂,偶合反应中的反应物、催化剂、增敏剂的方法叫做化学发光法。   化学发光是物质在化学反应过程中,其物质分子吸收化学能产生光的辐射现象。

  • 特殊的化学发光现象之三:纳米化学发光和电致化学发光

    如前所述,对于化学发光的研究一般仅局限于分子和离子水平以及简单的分子聚集体如胶束和微乳液等。纳米材料作为一种微尺度的物质构成单元,其特殊的Kubo 效应、小尺寸效应、表面效应及量子隧道效应使其呈现许多奇异的物理、化学性质。近年来,有关纳米材料参与的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应体系受到了越来越广泛的关注。对于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光反应,张兴荣课题组从2002 年开始利用纳米材料优良的催化性能发展了一系列基于纳米材料的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光传感器,主要用于易挥发性有机物的测定。例如,乙醇和丙酮蒸气在7 种金属氧化物纳米材料的催化氧化作用下具有化学发光现象,其中纳米TiO2 催化作用下的化学发光信号最强,其可能的发光中间体被认为是氧化生成的激发态乙醛分子,并具有很高的选择性。其它易挥发的有机物如丁酮和乙醛也能够在纳米材料的催化氧化作用下产生[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光。而挥发性氯代有机物在纳米TiO2 的作用下转化为Cl2;生成的Cl2 被富集在填充纳米TiO2 的管中,可以用柱后化学发光法检测。Bard 等于2002 年在Science 上发表第一篇有关纳米粒子的液相电致化学发光的报道以来,纳米粒子参与的液相电致化学发光和化学发光行为也已经引起了人们的关注。Bard 等报道半导体纳米粒子如Si,CdS,CdSe,CdSe/ZnSe,Ge 以及CdTe 等都可以产生电致化学发光。Poznyak 等报道了半导体CdSe/CdS 纳米粒子与H2O2 反应可以产生液相化学发光,其中CdSe/CdS半导体纳米粒子被鉴定为发光体。Corrales 等人报道了纳米TiO2 型着色剂,其化学发光特性可用于聚合物热稳定性的表征。在半导体纳米粒子参与的化学发光或电致化学发光反应中,半导体纳米粒子的表面缺陷以及量子尺寸效应是产生化学发光的基础。总之,纳米材料作为一种新型化学发光响应单元对于提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义

  • 推荐:多功能酶标仪

    [font=&][color=#333333]种检测模式的单体台式酶标仪叫做[/color][/font][url=https://baike.baidu.com/item/%E5%A4%9A%E5%8A%9F%E8%83%BD%E9%85%B6%E6%A0%87%E4%BB%AA/3926239?fromModule=lemma_inlink]多功能酶标仪[/url][font=&][color=#333333],可检测吸光度(Abs)、荧光强度(FI)、时间分辨荧光(TRF)、荧光偏振(FP)、和化学发光(Lum)。[/color][/font]

  • 【求助】关于化学发光成像分析 vs 化学发光检测仪

    刚学习化学发光,请专家指点化学发光检测仪采用液相(态)检测方法比化学发光固相(态)检测(成像系统)灵敏多少个数量级? 3~5个?对于化学发光检测,是不是PMT单光子检测做的工作,化学发光成像系统一定不可以做? 例如?

  • 化学发光仪使用问题

    我们是用磁微粒化学发光法做体外诊断试剂的,现在碰到一个很大问题是:用同样试剂在同一台化学发光仪上测同样的样本,上午测的发光值和下午测的发光值偏差20%-30%,甚至前一个小时和后一个小时测的发光值偏差都在10%以上,仪器用的仁迈生物的化学发光仪,型号ACL2800,用的是滨松的PMT,查了相关资料,说PMT受到温度,湿度的影响,我们把温度和湿度控制稳定,发光值上下午偏差依然较大,请问这大概是什么原因导致的?如果是试剂原因,第二天同时段测的发光值又差10%以内,这个还可以接受,麻烦老师帮忙分析一下原因?感谢??

  • 化学发光仪使用问题

    我们是用磁微粒化学发光法做体外诊断试剂的,现在碰到一个很大问题是:用同样试剂在同一台化学发光仪上测同样的样本,上午测的发光值和下午测的发光值偏差20%-30%,甚至前一个小时和后一个小时测的发光值偏差都在10%以上,仪器用的仁迈生物的化学发光仪,型号ACL2800,用的是滨松的PMT,查了相关资料,说PMT受到温度,湿度的影响,我们把温度和湿度控制稳定,发光值上下午偏差依然较大,请问这大概是什么原因导致的?如果是试剂原因,第二天同时段测的发光值又差10%以内,这个还可以接受,麻烦老师帮忙分析一下原因?感谢??

  • 化学发光免疫测定(Chemiluminescent immunoassay, CLIA)

    化学发光免疫测定是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术,最初建立于1976年。  (一)原理  化学发光免疫测定属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。    (二)标记物  1.发光剂直接标记 常用鲁米诺及其衍生物等,它们属环肼类化合物,能与很多氧化物如氧、次氯酸、磺、过氧化物等反应而发光。因此可直接将鲁米诺或其衍生物标记抗体或抗原进行CLIA。这类方法特异性强,但往往会因交联影响发光物特性,降低敏感性。  2.发光催化酶标记 常用辣根过氧化物酶、丙酮酸激酶、葡萄糖氧化酶等标记抗体或抗原。与酶标抗体测定基本相同,差别在于CLIA是用发光性底物指示反应,有人称为发光酶免疫测定。  3. 标记物产物参与反应 标记物不直接催化发光反应,而其反应产物能使反应系统发光。如用草酸类标记抗体或标记抗原,在有H2O2作用下,生成二噁二酮,后者可使红荧稀(Rubrene)激化发光。  (三)应用  CLIA特异性强、敏感性高,可检测到10-5mol/L的抗原量。快速,一般几十分钟或1-3小时内完成。操作简便,可进行固相和均相分析。试验重复性好,试剂易标准化和商品化。目前已用于多种药物、激素、病原微生物及其代谢产物、抗体及其他生物活性物质的测定。

  • 资料---化学发光原理

    详细请见附件化学 发 光 是指在某些特殊的化学反应中,反应的中间体或产物由于吸收了反应释放的化学能而处于电子激发态,当其回到基态时伴随产生的光辐射现象。根据化学发光反应在某一时刻的发光强度或反应的发光总量来确定反应中相应组分含量的分析方法,称为化学发光分析。广义的化学发光也包括电致化学发光。一个化学反应要产生化学发光现象,必须满足以下条件:第一是该反应必须提供足够的激发能,并由某一步骤单独提供,因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程,使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子,或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。化学 发 光 反应能用于分析测定,是因为化学发光强度与化学反应速度相关联,因而一切影响反应速度的因素都可以作为建立测定方法的依据[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18547]化学发光[/url]

  • 化学发光的原理

    化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。 间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。 一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。   化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。本产品针对辉光型化学发光反应进行检测。

  • 化学发光联用技术-流动注射化学发光

    FIA-CL检测系统 流动注射分析是Ruzicka和Hansen于1975年首先提出的一种创新技术,这种新技术的发展摆脱了溶液化学分析平衡理论的束缚,可在物理和化学不平衡状态下进行测定。它适应性广泛,分析效率高,试样和试剂消耗量少,检测精密度高,设备简单。该技术发展非常迅速,已被广泛应用于很多分析领域。流动注射分析技术能使样品和试剂以高度重现的方式混合,从混合到检测的时间间隔可以严格控制。同时,由于计算机控制和大规模集成电路的出现,FIA可以实现自动化分析。而一般的化学发光是快速反应,在溶液混合的瞬间就产生发光信号,并且在几秒内发光强度达到峰值。要达到精度较好的测量结果,就必须严格保持测量过程中的物理性质和化学性质能很好地重现。在这方面,流动注射为化学发光分析提供了一个很好的手段。在流动过程中,所有的试验参数如试剂体积、保留时间、温度、试剂的混合时间和方式等都能严格控制并重复操作。因此,这种方法克服了化学发光分析法重现性差、操作费时、不便于实现自动化等缺点。流动注射和化学发光分析的结合,使之成为一种快速、有效的痕量分析技术,被广泛应用于水质检测、土壤样品分析、农业和环境监测、科研与教学、发酵过程监测、药物研究、禁药检测、血液分析、食品和饮料、分光光度分析、火焰光度分析、质谱分析、原子光谱分析、荧光分析、生物化学分析等等。 流动注射化学发光系统一般包括两个部分。一部分是流动体系部分,它控制发光试剂的流速及其混合方式;另外一部分是化学发光检测部分,它将检测到的发光反应发出的光转变成电信号,并由记录仪记录下其发光响应值。常见的流动注射化学发光检测器的装置示意图如图1-1a所示: 图1-1 FIA-CL 联用装置示意图Fig. 1-1 Schematic diagram of FIA-CL detectionP:蠕动泵;V:进样阀;C:流动池;D:检测器;R:记录仪; W:废液 一般优化的流路有三通路、四通路和多通路等形式,各发光试剂以某一恒定流速经蠕动泵驱动,通过进样阀将待测组分与发光试剂混合, 在流动池里面发生化学发光反应, 流通池亦即反应池内的光信号由光电倍增管转换并放大,最后由记录仪记录。由于该检测法不需要光源,消除了光源不稳定的杂散光的干扰, 另外直接检测发光强度,因此灵敏度很高。流动池中的反应可以是不完全反应,只要其中的试剂分散和反应程度可以高度重现就符合试验要求。试样和试剂的分散是所有FIA方法的核心问题,通常用分散系数D来描述试样的分散状态。D定义为:决定分析读数的流体微元组分在扩散过程发生前(C0)与发生后(Cmax)的浓度比值,即D=C0/Cmax 。FIA体系中的分散过程是许多不同因素 (包括流速、管道长度、管径、试样体积与检测方式等)的复杂函数。主要影响有:①试样的进样体积越大,D越小;②反应器管长度越大,D越大;③管路集合形状越复杂,试样在其中流动方向改变越多,D越大;如:直管反应器的D最小,盘管与编织管反应器的D较大。④流速对D的影响与反应器的管径大小有关,关系较复杂。在此装置中,流动池的设计是个关键。由于直管反应器的分散系数较小,试剂分散度不够,所得的发光强度值较弱。因此,在实际中,一般采用如图1-1b所示的盘管式反应器。一般来说,反应器的体积应尽可能大,其发光截面尽可能大,且同光电倍增管尽可能靠近。根据实际分析情况,还可以将萃取渗析、交换柱及填充柱引入FIA系统,使FIA-CL应用更加广泛。

  • 化学发光仪使用问题

    我们是用磁微粒化学发光法做体外诊断试剂的,现在碰到一个很大问题是:用同样试剂在同一台化学发光仪上测同样的样本,上午测的发光值和下午测的发光值偏差20%-30%,甚至前一个小时和后一个小时测的发光值偏差都在10%以上,仪器用的仁迈生物的化学发光仪,型号ACL2800,用的是滨松的PMT,查了相关资料,说PMT受到温度,湿度的影响,我们把温度和湿度控制稳定,发光值上下午偏差依然较大,请问这大概是什么原因导致的?如果是试剂原因,第二天同时段测的发光值又差10%以内,这个还可以接受,麻烦老师帮忙分析一下原因?感谢??

  • 化学发光简介

    化学发光  化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。  间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。  一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光; 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态; 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。  化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。  化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。

  • 【资料】化学发光的原理

    [size=4]化学发光的原理化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。 化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。[/size]

  • 化学发光及生物发光的原理及其应用

    化学发光及生物发光的原理及其应用

    第一部分 概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24995_1636364_3.jpg[/img]依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24996_1636364_3.jpg[/img]在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。

  • 【原创】化学发光及生物发光的原理及其应用

    化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ) ,第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4— 氨基已基 —N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。 2 .光泽精 光泽精以硝酸盐的形式存在,在碱性介质中,过氧化氢将其氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发光。利用光泽精与还原剂作用,可用于测定临床医学上一些重要的还原性物质,如抗坏血酸、肌酸酐、谷胱甘肽、葡萄糖醛酸、乳糖、葡萄糖。 3 .洛粉碱 洛粉是文献上记载最早的化学发光试剂,但却迟迟未得到应用,直到 1979 年 Marino 等人将它应用于 Co 的测定后才得到重视。此试剂已被用于多种元素的分析测定。 4 .过氧化草酸酯类 草酸盐类化学发光反应大都生成过氧草酰 (Peroxalate) 中间体,因此这类反应亦称过氧草酰类化学发光反应。过氧草酸盐类化学发光分析应用的推广还有赖于新的荧光衍生试剂的开发。 5 . 吖啶酯类 McCap r 等合成了一系列吖啶酯类化合物,对该类试剂的化学发光机理研究表明,发光效率与试剂中的可解离酸性基团的 pKa 有密切关系, pKa 一般应小于 11 。吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作 DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。 以上五种化学发光剂化学发光量子产率高,水溶液稳定,能被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光,许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。目前报道的有邻菲咯啉,碱基水杨酸、罗明丹 —B 、没食子酸、香豆素、皮素,茜素紫、苏木色精,培花青,三苯甲烷类染料,丙酮、乙醇、羟胺等。这些试剂商品化程度高,价廉,使用方便,但化学发光量子产率较低,因此,研究增敏试剂来提高它们的化学发光量子产率是非常关键的。

  • 重发化学发光与生物发光(转载)

    化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。 一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。 化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。本产品针对辉光型化学发光反应进行检测。 生物发光(Bioluminescence)是化学发光中的一类,特指在生物体内通过化学反应产生的发光现象,主要由酶来催化产生的。如萤火虫产生的。现在我们实验中经常用到的荧光素酶报告基因系统,这些皆为生物发光。 生物发光和化学发光是自然界中一种普遍现象。至今人们已知能发光的生物,种类繁多,从低等的细菌到高等的发光鱼类,从植物幼苗、植物枝叶到人体表面经络穴位、脑、肝、血清等,其发光的主要物质几乎都是由莹光素酶、莹光素及其辅助回子所组成。随着对生物发光机制的深入研究,一些生物体的发光体系已经初步搞清并用这些体系去分析生物体和化学中的一写微量物质。生物发光分析法渐渐地被引入医学领域,诸如通过莹火虫莹光素酶发光体系测量细菌中的AT已用以确定尿路感染中的细菌数,以发光细菌的发光强度为指标去定量抗菌素的效价,标定环境的污染状况等。因此,对这一领域的研究有着重大的经济和社会效益。 工业方面:发酵工业中测量主物量,控制发酵条件;油脂、食品工业中测量油脂、食品的氧化变质程度;橡胶、塑料工业,测量产品的老化程度,检测掺入抗氧化原料的效果,医药工业,检测抗菌的效价。 农业方面:根据植物幼苗的发光强度,判断植物的抗寒性、抗热性。抗盐性及农作物营养发育生长状况等,为农业育种和栽培技术提供依据。 药学方面:测量吞噬细胞的吞噬作用相伴随的化学发光强度和使用发光免疫分析法,检查肌体的免疫功能,了解体内微量激素、微量元素、维生素及药物的含量。测量体液中的AT已判断肌体的能量代谢状况,尿路感染的程度,测量血清(血浆)的化学发光强度。间接地判断疾病的发生、发展和程度,鉴别诊断某些病思。测量自由基的反应,为抗衰老、抗肿瘤、抗辐射筛选有效的自由基药物。 环保方面:用细菌、动物、植物及化学发光体系的发光指标监测环境污染。由于发光测量具有灵敏度高、特异性强、稳定性好,反应速度快、使用方便等优点。发光分析技术的研究和应用必将在免疫学、微生物学、生物化学、临床检验、毒理学及医学、农业、工业。环保科学等领域得到广泛应用,为了促进发光分析技术的发展,我厂为社会提供高灵敏、高稳定度、线性范围宽、应用面广、有计算机控制及自动作图、自动数据处理、自动打印结果的8HO一C型全自动生物化学发光测量仪。为生物、化学发光及超微弱发光的检测提供了有效的手段,对发光分析技术的研究和应用,将作出一定的贡献。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制