透明薄膜

仪器信息网透明薄膜专题为您整合透明薄膜相关的最新文章,在透明薄膜专题,您不仅可以免费浏览透明薄膜的资讯, 同时您还可以浏览透明薄膜的相关资料、解决方案,参与社区透明薄膜话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

透明薄膜相关的耗材

  • TUBALL® INK透明导电膜改质剂
    TUBALL?INK透明导电膜改质剂 透明导电薄膜(TCFs) 被用作触摸屏、液晶显示器、太阳能电池和有机发光二极管的透明电极制造。OCSiAl的透明导电膜技术达到表面电阻110 奥姆/平方,透明度90%。我们的透明导电膜的优势是高产能的技术,低成本和导电纳米碳管薄膜的耐机械性能。TUBALL?透明导电薄膜具有以下关键的优势:? 适合于大批量生产。生产在室温下,不用真空沉积? 导电涂层优异附着性适合大部分种类的基材? 每平方公尺添加6mg的TUBALL,使透明导电膜的透明度可以达到89%,电阻达到110 OHM/SQ。TCF with TUBALL. SEM image. OCSiAl, 2014. OCSiAl在展会上展示了配备TUBALL?的透明加热器包装规格:250ml
  • Azenta 4ti 透明热封膜系列产品
    Azenta 4ti 透明热封膜系列产品可剥离热封膜,透光;适用于qPCR和光学应用热密封提供了一种 100%有效的孔板密封方法,可实现完全的密 封完整 性,此外快速且经济高效 我们的透明热封是一种光学透明的层压薄膜,可在聚丙烯、 聚乙烯、聚苯 乙烯、聚碳酸酯和环烯烃共聚物(COC)板上 形成可剥离密封 样品也可以通过刀片、尖针预穿孔或通过我们的穿孔压板(4ti-0398)拿取 该密封的光学清晰度使其适用于成像使用所需的密封板,包括荧光检测 方法,如qPCR和比色分析 透明热封在孔板上形成一个完整密封,既可用于低温用途,包括低温储 存,也可用于高温用途,如PCR(与加压加热盖一起使用时) 该密封具有中等的耐溶剂性,可用于室温下短期的化合物储存 该密封可以薄片形式提供,用于手动和半自动密封机,比如我们的半自动单片封膜机 亦可提供多种卷膜形式,兼容指定的自动封膜机,比如我们的自动卷膜封膜机 我们的密封片用纸片相互错开,用于指明哪一侧是密封侧以及方便从包 装中一次取出一张密封片 对于需要高抗拉强度的应用(如珠磨机应用),请参阅我们的透明热封增 强版主要特征 可剥离 密封完整性范围:-80℃至 80℃(配合加压加热PCR盖可达110℃) 光学透明 不含DNA 酶、RNA 酶、人类基因组DNA和内毒素/热原用途应用:成像、荧光检测和比色分析 适用于PCR和qPCR 用于密封聚丙烯、聚乙烯、聚苯乙烯、聚碳酸酯和环烯烃共聚物(COC)板选项 薄片格式:125x78mm,适用于12孔至1536孔的所有标准SBS占地面积 PCR和qPCR板、微孔板、测定板和储存板 卷膜格式:有多种卷膜尺寸可供选择,以适配您选择的自动热封设备 标准型号未经伽马射线处理,伽马射线处理可根据要求提供 亦可提供我们的FrameSeal&trade ,该技术是一种一次性硬质塑料框架,非常适合在自动化单元中与机械臂抓手一起使用产品特点&bull 光学透明, 可揭&bull 适合成像、荧光检测、多色分析&bull 推荐用于PCR 或其他包括结晶类成像技术a&bull 可提供具有3 mm狭缝的透气透明热封膜,适用于昆虫研究/种子储存
  • 手持式薄膜测厚仪配件
    手持式薄膜测厚仪配件是全球首款便携式光学薄膜厚度测量仪,可测量透明或半透明单层薄膜或膜系的薄膜厚度,薄膜的吸收率/透过率,薄膜反射率,荧光等。手持式薄膜测厚仪可测量膜层的厚度,光学常量(折射率n和k),薄膜厚度测量范围为350-1000nm,不需要电线连接,也不需要实验室安装空间,它从USB连接中获取工作电源,这种独特设计方便客户移动测量,只需USB线缆从计算机控制测量即可,采用全球领先的3648像素和16bit的光谱仪,具有超高稳定性的LED和荧光灯混合光源,光源寿命高达20000小时,手持式薄膜测厚仪配件特色USB接口供电,不需要额外的线缆供电超级便携方便现场使用超低价格手持式薄膜测厚仪配件参数 可测膜厚: 15nm-90微米;波长范围: 360-1050nm 探测器:3648像素Si CCD阵列,16bit A/D精度:1nm 斑点大小:0.5mm 光源:LED混合光源( 360-1050nm )所测样品大小:10-150mm, 计算机要求:Windows XP, vista, Win7均可,USB接口;尺寸:300x110x500mm 重量:600克手持式薄膜测厚仪配件应用用于薄膜吸收率,透过率和荧光测量,用于化学和生物薄膜测量,传感测量用于光电子薄膜结构测量 用于半导体制造用于聚合物薄膜测量 在线薄膜测量用于光学镀膜测量

透明薄膜相关的仪器

  • JULABO Itherm5A/13A/19A/29A透明加热浴槽/ 恒温循环器详细说明 外观紧凑,低噪音,内槽空间大 操作使用简单,三键式便捷操作 同时具有加热和制冷功能 PID 温度控制技术 1.5KW 的加热功率,能够快速升温到设定值 具有较强的泵功率,可以使用外循环温控,可以调节内外循环流量比 全工作温度范围内的过温安全保护功能 液位浮子提供低液位报警功能,当液位过低时,声光报警并切断电源防止干烧 待机模式及仪器自动启动模式两种工作模式可选 前置浴液排放口,方便及时更换浴液 良好的内部原件布置和宽敞的散热空间,保证设备长期稳定运行 高品质不锈钢加热盘管,耐腐蚀,不易结水垢Itherm5A/13A/19A/29A透明加热浴槽/ 恒温循环器技术参数订货号9VT1000-5A9VT1000-13A9VT1000-19A9VT1000-29A型号Itherm-5AItherm-13AItherm-19AItherm-29A温度范围室温+5~60℃室温+5~60℃室温+5~60℃室温+5~60℃温度稳定性±0.05°C±0.05°C±0.05°C±0.05°C加热功率kW1.5 1.5 1.5 1.5 泵功率压力: 0.23 bar 流量: 10 L/min浴槽开口/深度 (W x L / D)cm12 × 14/1518 × 30/1536 × 30/1543 × 30/15充液体积(L)5131929外形尺寸 (W x L x H) cm14×40/3541×33/3655×33/3662×33/36重量(kg)5.27.58.510
    留言咨询
  • JULABO 透明运动粘度及密度测量浴槽温度范围:室温 +5 ~+150℃JULABO设计透明浴槽可应用对毛细管粘度计和密度计的恒温。适合标准 ASTM D445,显示分辨率 0.01℃,温度稳定性 ±0.01℃。可方便升级为自动粘度测量浴槽,适用于内部 / 外部温度控制,标配的冷却环可以将浴液冷却至室温以下,使用 JULABO 冷却体系,浴槽可在Z低 -40℃下使用。内置的实时时钟,可以确保实时程序控制进行粘度测量,RS-232 接口,可实现自动温度控制,并可获赠温度控制软件,DT-18V 有图示 4 个测量位的盖子可供选择;DT-31A 有图示 5 个测量位的盖子可供选择;DT-18V 的两个透明观察窗 (185X245mm),由多层绝热的真空玻璃组成,可以确保在高温下不烫手,低温不结霜,方便观察测量。产品特点: 设计特别的透明浴槽可应用对毛细管粘度计和密度计的恒温 适合标准ASTM D445 显示分辨率0.01℃,温度稳定性±0.01℃ 可方便升级为自动粘度测量浴槽 适用于内部/ 外部温度控制,标配的冷却环可以将浴液冷却至室温以下 高低温报警,低液位报警及预警功能 内置的实时时钟,可以确保实时程序控制进行粘度测量 RS-232 接口,可实现自动温度控制, 并可获赠Z业温度控制软件 DT-18V 有图示4 个测量位的盖子可供选择,DT-31A 有5 个测量位的盖子可供选择 DT-18V 的两个透明观察窗(185X245mm),由多层J热的真空玻璃组成,可以确保在高温下不烫手,低温不结霜,方便观察测量 DT-18T 可配套JULABO FT900 Z低温度可达-40℃技术参数订货号型号温度范围℃稳定性℃加热功率kW泵功率L/min泵功率bar浴槽开口 / 深度WxL/D (cm)内部容积(L)标准测量位外形尺寸 W x LxH (cm)8021331CT-31A室温 +5~60±0.032100.239x9 / 3725 ~ 313 / 5* 50 x20 x 568021616CT-16G室温+5~100±0.032100.237.6x7.6 / 3113 ~ 162dia.30 x528021518CT-18V室温 +5~150±0.032100.239x9 / 27.515 ~ 182 / 4*39 x28 x55
    留言咨询
  • 一、彩谱雾度仪TH-100是一款专业应用于测定塑料、薄膜、玻璃制品、LCD面板等透明、半透明平行平面材料的雾度、透过率的仪器。适用于塑料、薄膜、玻璃、LCD面板、触摸屏等透明半透明材料的雾度、透过率一站式测量解决方案。二、彩谱雾度计TH-100应用领域:1、玻璃:AG玻璃、手机盖板、导光板、眼镜镜片、汽车玻璃、屏幕… … 2、塑胶:光学薄膜、农业薄膜、包装膜、扩散片、灯罩、塑胶板… … 三、仪器介绍:①.符合以下测试标准:GB/T 2410标准、ASTM D 1003标准、ISO 13468标准、ISO 14782标准。②.满足CIE-A、CIE-C、CIE-D65三种标准照明光源下的雾度与全透过率测量。③.满足补偿法测试,可提供更准确的测试结果。④.拥有开放式的测量区域,可以满足任意大小的样品测量。⑤.采用5.0寸TFT显示屏,拥有良好的人机交互界面。⑥.拥有竖放和横放两种放置状态,方便样品放置。⑦.采用LED光源,寿命长,十年无需更换。⑧.无需预热,开机校准后即可测试,测试用时时间短,3秒即可。⑨.体积小,重量轻,方便携带。四、产品概述  雾度的概念:雾度是透过试样而偏离入射光方向的散射光通量与透射光通量之比,用百分数表示。通常仅将偏离入射光方向2.5度以上的散射光通量用于计算雾度;雾度大的试样给人的感觉将更加模糊。  透光率的概念 光线在透过试样时还会产生损失,即穿过试样的透射光通量永远小于照射到试样上的入射光通量。两者之比,用百分数表示,国际上定义为透光率。  彩谱TH-100雾度计 透过率仪仪此仪器适用于塑料、薄膜、玻璃、LCD面板、触摸屏等透明半透明材料的雾度、透过率一站式测量解决方案。  五、售后服务承诺免费上门安装:是 保修期:3年是否可延长保修期:否保内维修承诺:免费维修更换零件报修承诺:使用期间出现任何问题影响使用,厂家提供备用机 免费仪器保养:1年一次 免费培训:售前免费培训一次 现场技术咨询:有
    留言咨询

透明薄膜相关的方案

透明薄膜相关的论坛

  • 有机透明薄膜的观测问题

    我要观察的是厚度约为数十微米的PE透明薄膜(表面附有一个微米左右厚度的硅层)的表面情况。我用的是Zeiss EVo-18电镜,在喷金与不喷的情况下都无法得到清晰的图像,甚至无法看到任何围观结构。请问这类薄膜在制样、观测参数的设置中需要注意什么才能得到清晰图像?

  • 透明薄膜样品的价带谱测试方法

    材料的价带谱既可以利用紫外光电子能谱(UPS)得到,也可以在测量 X 射线光电子能谱(XPS)时测得。透明薄膜样品在测量价带谱时存在对焦困难的问题,如果调节高度有误将导致谱峰灵敏度降低、信噪比变差,因此透明薄

透明薄膜相关的资料

透明薄膜相关的资讯

  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style="text-indent: 2em "透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。/pp style="text-indent: 2em "因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。/pp style="text-indent: 2em "最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。 /pp style="text-indent: 2em text-align: center "span style="text-align: center text-indent: 0em "img src="http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title="1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg"/ /span/pp style="text-align: center text-indent: 2em "span style="color: rgb(127, 127, 127) font-size: 14px "图1. 单根分散、具有碳焊结构的SWCNT网络。/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(A)典型TEM照片;(B)单根SWCNT的百分含量统计;/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性;/span/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "(E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。/span/pp style="text-indent: 2em "通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。/pp style="text-indent: 2em "研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。/pp style="text-align: center text-indent: 2em "img src="http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title="2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px color: rgb(127, 127, 127) "图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。/span/pp style="text-indent: 2em "span style="font-size: 14px color: rgb(127, 127, 127) "(A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。/span/pp style="text-indent: 2em "该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。/p
  • 布鲁克海文实验室与洛斯阿拉莫斯共同研发透明纳米薄膜
    美国能源部布鲁克海文国家实验室(Brookhaven)和洛斯阿拉莫斯国家实验室(Los Alamos)于近日宣称,其研究结果表明透明薄膜具有在相对较大面积内吸收光并生产电荷的能力。同时,两家实验室的专家还在《化学材料》(Chemistry of Materials) 期刊上发表了相关文章,称此材料可用于生产透明太阳能电池板或太阳能窗户,从而在实际应用中将吸收的太阳能转换至可使用电力。 六边形的边密集地排列,可吸收强烈光线,也可以方便地进行发电  据称,此种材料是在半导体聚合物中注入富含丰富碳元素的富勒烯(fullerenes)而制成的。在监控条件下,这种材料可以在数微米大的面积上进行自组装并形成如蜂窝状的可重复网格。此蜂窝薄膜是在聚合物/富勒烯混合溶液中滴入微米大小的水滴使其遍布溶液表层而制成的。随着溶剂的蒸发,此聚合物逐渐形成六角型图案,即蜂巢状外观。  “虽然这种蜂窝状图案的薄膜此前曾使用聚苯乙烯等传统聚合物进行制作,但此文章首次提出半导体及富勒烯的混合材料可以有效地吸收光线、产生电荷并进行分离电荷。”布鲁克海文国家实验中心的功能纳米材料首席科学家及物理化学家米尔恰• 科特勒特表示(Mircea Cotlet)。  “此外,由于这种材料的聚合物链只在六角形的边缘处分布稠密,而其余的中心面积则分布非常薄且相对松散,因此其具有较高的透明性。分布稠密的边角处可以更容易地吸收光线并同时促进发电,而中心地带则由于无法吸收足够光线而保持相对透明。”   据CFN材料科学家Xu Zhihua先生表示,此大面积图案可应用在许多方面用来生产能源,包括太阳能窗户、透明太阳能电池板及光显示等。  此蜂窝结构的一致性已被诸多扫描探针和电子显微镜方法验证。此外,结构中的边缘位置、蜂窝中心及网格节点处的光学性质和生产电荷,也已经过共聚焦荧光时间分辨荧光显微镜的测试。  “溶剂蒸发速率越慢,所产出的聚合物就越紧凑,电荷传输效果也就越好,” 科特勒特在讨论聚合物的形成时指出,他还表示,材料的成型程度取决于溶剂的蒸发速率,同时也就决定了材料的电荷传输速率。  科特勒特总结道:“我们的工作使我们更深入地了解了蜂窝结构的光学特性。下一步将是使用这些蜂窝薄膜来制作透明柔性有机太阳能电池及其他设备。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制