损耗因子

仪器信息网损耗因子专题为您整合损耗因子相关的最新文章,在损耗因子专题,您不仅可以免费浏览损耗因子的资讯, 同时您还可以浏览损耗因子的相关资料、解决方案,参与社区损耗因子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

损耗因子相关的耗材

  • 低损耗反射镜
    这款低损耗反射镜是欧洲进口的全球领先的激光高反镜片,又称为低损耗激光反射镜或低损耗高反镜或低损耗激光高反镜,它采用全球领先的离子束镀膜技术,提供接近于100%的反射率。Low loss HR mirrors are also referred to as IBS mirror due to ion-beam coating technology. The mirrors provide maximum reflectance at certain wavelength range and certain angle of incidence (AOI).IBS technology stands out by multiple advantages against other coating techniques. Due to fully automated control of deposition process coatings distinguish by high repeatability, sharper features, tighter tolerances. IBS thin films feature higher density, durability, high-damage-threshold, impenetrable to water vapor, which make them resistant to environmental conditions such as heat, humidity and pressure.IBS coatings distinguish by nearly all specification being supreme to the ones provided by other coating technologies. It allows to minimize scatter in the dielectric layers which is limiting factor, then reflectivity higher than 99,9% is targeted. Our selection of ion-beam sputtered coatings covers wavelength range of 343 - 1550 nm.Provide maximum reflectance at certain wavelength range and certain angle of incidence (AOI)Coatings are provided by ion beam sputtering (IBS) techniqueResistant to environmental conditionsVarious dimensions are available on requestMass production capabilities: 1’000 pieces per monthHigh repeatabilityReflectivity higher than 99,9%
  • GATTA-STED NANORULER 受激辐射损耗超分辨标准纳米尺
    GATTA-STED NANORULER作为第一种超分辨率显微镜技术,STED(受激辐射损耗技术)方法彻底改变了光学显微镜。有了GATTA-STED系列的纳米尺子,现在终于有了足够的校准探针。单色纳米尺子携带两个由高量子产率染料ATTO 647N密集排列而成的荧光标记。我们提供50纳米,70纳米,90纳米和120纳米尺寸的标记距离。此外,我们还提供了一种新的设计,包含两个不同荧光团的三个发射点,可以获得非常引人注目的图像。多色纳米尺有三个发射点,尺寸为140 nm (ATTO 647N和ATTO 594)。我们还可以根据您的要求设计特殊的解决方案。所有的纳米样品将在一个密封的玻璃载片上,你可以舒服地直接放在你的显微镜上。订购选单
  • AOI 45deg 超高低损耗反射镜 1500-1600nm
    损耗极低的激光光学器件,对于要求极低损耗的镀膜光学器件应用, 筱晓光子可提供R 99.995 %、总损失小于10 ppm的反射镜。此类超级反射镜片可用于环形激光器陀螺仪组件或光腔衰荡应用。对超抛光基材加工低吸收、低散射镀膜时,我们会采用改进型IBS镀膜机。而为了保证清洁度,此类机器会存放在专用的超清洁室内,并且与生产相关的基材预处理和后期处理流程全部在此清洁室内完成。 此外,超清洁室内还配置有多种测量设备,如检测流程所使用的白光表面光度仪和高分辨率显微镜。利用定制光腔衰荡设置可以确定反射量(精度可达小数点后四位)以及损耗。 而测定以上数值必须使用表面粗糙度小于 1 ? rms的超抛光基材。为了保证反射镜成品的品质,还会使用白光表面光度仪进行质量检测 中心波长1572nm 技术参数产品特点:低损耗可定制不同尺寸入射角:0deg/45deg可选 应用领域:TDLAS 光腔衰荡基材以及镀膜参数:材质红外级熔融石英 Infrasil形状圆形直径(?)12.7,25.4 mm ,50.8(-0.1 mm)厚度(t)6.35 mm (±0.1 mm)边缘厚度 6.35 mm平行度5? 光学参数 正面(S2)光学参数 背面(S1)形状凹面形状平面曲率半径1,000 mm (±1 %)倒角0.3 mm (±0.1 mm)倒角0.3 mm (±0.1 mm)测试区 ?e20测试区 ?e20曲面容差3/0.2(0.2) [L/10 @546.1nm]曲面容差3/-(0.2) [L/10 reg. @546.1nm]清洁度5/2x0.04 L1x0.004清洁度5/2x0.04 L1x0.004 内部测试区?e 10清洁度 5/2x0.0161st 工作范围 高反射(45°,15572nm)99.995%1st 工作范围 减反射(0°,1450-1650nm)0.2%类别:高反射率偏振:unpol.入射角 45°波长范围:1572 nm高反射 99.995 %类别 减反射偏振 unpol. 入射角 0°波长范围 1450 - 1650 nm AR / HT 0.2 %2nd 工作范围 T(0°,1550nm)~0.005% 类别:透射率偏振: unpol.入射角 45°波长范围:1550 nmHT ~ 0.005 % 镀膜曲线:HRs,p(45°,1570-1580nm)99.995%

损耗因子相关的仪器

  • 一、产品概述:介电常数测试仪采用数字液晶显示,是通过GB1409中的Q表法测试固体/液体绝缘材料介电常数及介质损耗因数的分析仪器。它以单片计算机控制仪器,测量核心采用了频率数字锁定、标准频率测试点自动设定、谐振点自动搜索、Q值量程自动转换、数值显示等新技术,改进了调谐回路,使得调谐测试回路的残余电感减至低值,并保留了原Q表中自动稳幅等技术,使得新仪器在使用时更为方便,测量时更为精确。可直读介电常数及介质损耗结果,免去人工计算的繁琐。经过新升级可通过上位机软件查看测试曲线,北京航天纵横检测仪器是代替进口设备的北京航天纵横仪器产品。仪器能在较高的测试频率条件下,测量高频电感或谐振回路的Q值,电感器的电感量和分布电容量,电容器的电容量和损耗角正切值,电工材料的高频介质损耗,高频回路有效并联及串联电阻,传输线的特性阻抗等。产地北京房山。二、技术特性:DDS数字合成信号:50KHz-160MHz;信号源频率覆盖比:1600:1;信号源频率精度:6位有效数3×10-5 ±1个字;Q测量范围/Q分辨率:1-1000自动/手动量程;4位有效数,分辨率0.1;Q测量工作误差:5%;电感测量范围/分辨率:1nH-140mH 4位有效数,分辨率0.1nH;电感测量误差:5%;调谐电容:主电容17-240pF;电容直接测量范围:1pF~25nF;调谐电容误差/分辨率:±1pF或1% / 0.1pF;谐振点搜索:自动扫描;Q合格预置范围:5-1000声光提示;Q量程切换:自动/手动;LCD显示参数:F,L,C,Q,Lt,Ct波段等;新增功能:自身残余电感和测试引线电感的自动扣除功能;新增功能:大电容值直接测量显示功能,测量值可达25nF;消耗功率:约25W;净重:约7kg;外型尺寸:(宽×高×深)mm:380×132×280。二、符合标准:GB/T1409-2006测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法;GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法;ASTM D150-11实心电绝缘材料的交流损耗特性和电容率(介电常数)的标准试验方法;GBT5594.4-2015电子元器件结构陶瓷材料性能测试方法; 三、产品特点:1、双扫描技术 - 测试频率和调谐电容的双扫描、自动调谐搜索功能。2、双测试要素输入 - 北京航天纵横检测仪器测试频率及调谐电容值皆可通过数字按键输入。3、双数码化调谐 - 数码化频率调谐,数码化电容调谐。4、自动化测量技术 -对测试件实施 Q 值、谐振点频率和电容的自动测量。5、全参数液晶显示 – 数字显示主调电容、电感、 Q 值、信号源频率、谐振指针。6、DDS 数字直接合成的信号源 -确保信源的高葆真,频率的高精确、幅度的高稳定。7、计算机自动修正技术和测试回路优化—使测试回路 残余电感减至低值,彻底根除 Q 读数值在不同频率时要加以修正的困惑。8、新增功能:电感测试时,仪器自身残余电感和测试引线电感的自动扣除功能。大大提高了在电感值(特别是小电感值)测量时的精度。此技术只有北京航天纵横仪器生产的Q表有。9、新增功能:大电容值直接测量显示功能,电容值直接测量值可达25nF(配100uH电感时)。大电容值测量一个按键搞定。此技术只有北京航天纵横检测仪器生产的Q表有。四、工作环境:1、环境温度:0℃~+40℃;2、相对湿度:80%;3、电源:220V±22V,50Hz±2.5Hz。五、配置清单:主机一台电感九只夹具一套液体杯一个电源线一根数据线一根说明书一份合格证一份保修卡一张六、适用单位:可以用于科研机关,学校,例如一些科研院所,大专院校或计量测试部门的实验室需要用介电常数仪对绝缘材料的介质损耗角正切tanδ及介电常数进行测试;北京航天纵横检测仪器同时也适用于工厂或单位,例如一些工厂对无机非金属新材料性能的应用进行研究,另外在电力、电工、化工等领域,如:电厂、电业局实验所、变压器厂、电容器厂、绝缘材料厂、炼油厂等单位对固体及液体绝缘材料的介质损耗和相对介电常数ε的质量检测等等。七、试验步骤:1、按照Q表的操作规程调整仪器,选定测量频率,测定C1和Q1的值。2、将试样放入测试电极中,并调节电容器C,使电路谐振,达到最大Q值记下调谐电容量C2和Q2的值。3、将试样从测试电极中取出,调节C或测试电极的距离,使电路重新谐振,记下C、或测试电极的校正电容值与Q值,北京航天纵横检测仪器并根据测试值计算出损耗角tanδ与介电常数ε。4、其他高频测试仪器按其说明书进行操作,北京航天纵横检测仪器通过测试值计算出损耗角tanδ和介电常数ε。八、试验条件:1、试样表面应清洁、平滑,无裂纹、气泡和杂质等,试样表面应用蘸有无水乙醇的布擦洗。2、试样应在标准实验室温度及湿度下至少调节24h。3、当试样处理有特殊要求时,可按其产品标准规定的进行。九、测试意义:1、介电常数——北京航天纵横检测仪器绝缘材料通常以两种不同方式来使用,即(1)用于固定电学网络部件,同时让其彼此以及与地面绝缘;(2)用于起到某一电容器的电介质作用。在第一种应用中,通常要求固定的电容尽可能小,同时具有可接受且一致的机械,化学和耐热性能。因此要求电容率具有一个低值。在第二种应用中,要求电容率具有一个高值,以使得电容器能够在外型上能尽可能小。有时使用电容率的中间值来评估在导体边缘或末端的应力,以将交流电晕降至最小。2、交流损耗——对于这两种场合(作为电学绝缘材料和作为电容器电介质),交流损耗通常必须是比较小的,以减小材料的加热,同时将其对网络剩余部分的影响降至最小。在高频率应用场合,特别要求损耗指数具有一个低值,因为对于某一给定的损耗指数,电介质损耗直接随着频率而增大。在某些电介质结构中,例如试验用终止衬套和电缆所用的电介质,通常电导增加可获得损耗增大,这有时引入其来控制电压梯度。在比较具有近似相同电容率的材料时或者在材料电容率基本保持恒定的条件下使用任何材料时,这可能有助于考虑耗散因子,功率因子,相位角或损耗角。3、相关性——北京航天纵横检测仪器当获得适当的相关性数据时,耗散因子或功率因子有助于显示某一材料在其它方面的特征,例如电介质击穿,湿分含量,固化程度和任何原因导致的破坏。然而,由于热老化导致的破坏将不会影响耗散因子,除非材料随后暴露在湿分中。当耗散因子的初始值非常重要的,耗散因子随着老化发生的变化通常是及其显著的。十、典型用户:沧州大化集团中国计量大学河南平煤神马聚碳材料有限责任公司温州市鹿城区科学技术局东莞初创应用材料有限公司北京航空航天大学中国科学技术大学惠州市杜科新材料有限公司宁波东烁新材料科技有限公司云南能投硅材科技发展有限公司天津科技大学十一、相关产品:ZJC-50kV电压击穿试验仪ZST-212体积表面电阻率测试仪ZJD-C介电常数介质损耗测试仪ZDH-20KV耐电弧试验仪LDQ-5漏电起痕试验仪XRW-300HB热变形维卡温度测定仪XNR-400H熔体流动速率测定仪JF-6氧指数测定仪CZF-5水平垂直燃烧试验机WDW-50KN材料电子拉力试验机一、介质损耗的基本概念1.介质损耗电介质在电场作用下(加电压后),要发生极化过程和电导过程。有损极化过程有能量损耗;电导过程中,电学性泄漏电流流过绝缘电阻当然也有能量损耗。损耗程度一般用单位时间内损耗的能量,即损耗功率表示。这种电介质出现功率损耗的过程称为介质损耗。显然,介质损耗过程随极化过程和电导过程同时进行。介质损耗掉的能量(电能)变成了热能,使电介质温度升高。若介质损耗过大,则电介质温度将升得过高,这将加速电介质的热分解与老化,最终可能导致绝缘性能的完全失去,所以研究介质损耗有十分重要的意义。2.介质损耗的基本形式(1)电导损耗。电导损耗为电场作用下由泄漏电流引起的那部分损耗。泄漏电流与电场频率无关,故这部分损耗在直流交流下都存在。气体电介质以及绝缘良好的液、固体电介质,电导损耗都不大。液、固体电介质的电导损耗随温度升高而按指数规律增大。(2)极化损耗。极化损耗为偶极子与空间电荷极化引起的损耗。在直流电压作用下,由于极化过程仅在电压施加后很短时间内存在,与电导损耗相比可忽路。而在交流电压作用下,由于电介质随交流电压极性的周期性改变而作周期性的正向极化和反向极化,极化始终存在于整个加压过程之中。极化损耗在频率不太高时随频率升高而增大。但频率过高时,极化过程反而减弱,损耗减小。极化损耗与温度也有关,在某一温度下极化损耗达最大。(3)游离损耗,游离损耗主要是指气体间隙的电晕放电以及液、固体介质内部气泡中局部放电所造成的损耗。这是因为放电时,产生带电粒子需要游离能,放电时出现光、声、热、化学效应也要消耗能量。游离能随电场强度的增大而增大。二、介质损失角正切tanδ由上可见,在直流电压作用下,介质损耗主要为电导损耗,因此,电导率γ或电阻率ρ既表示介质电导的特性,同时也表征了介质损耗的特性。但在交流电压作用下,三种形式的损耗都存在,为此需引入一个新的物理量来表征介质损耗的特性,这个物理量就是tanδ。1.并联等值电路及损耗功率的计算公式电介质两端施加一交流电压时,就有电流流过介质。有三个电流分量组成式中 ——电导过程的电流,为阻性电流,与同相位;——无损极化和有损极化时的电流。对应的等值电路如图2-9(a)所示,此等值电路可进一步简化成如图2-9(b)所示的由R和Cp相并联的等值电路。此并联等值电路的相量图如图2-9(c)所示。我们定义功率因数角θ的余角为δ角。由相量图可见,介质损耗功率越大,IR越大,δ角也越大,因此δ角称为介质损失角。对此并联等值电路,可写出介质损耗功率P的计算公式当然,图2-9(b)的电路也可以简化成由r和Cs相串联的等值电路,可以证明当tanδ 很小时, Cs≈C对于串联等值电路,同样可以推出损耗功率的计算公式2.tanδ值的意义从介质损耗功率P的计算公式看,我们若用P来表征介质损耗的程度是不方便的,因为P值与试验电压U的高低、试验电压的角频率ω(ω=2Πf)、电介质等值电容量Cp (或Cs)以及tanδ值有关。而若在试验电压、频率、电介质尺寸一定的情况下,那么介质损耗功率仅取决于 tanδ,换句话说,也就是tanδ是与电压、频率、绝缘尺寸无关的量,它仪取决于电介质的损耗特性。所以 tanδ是表征介质损耗程度的物理量,与εr、γ相当。这样,我们可以通过试验测量电介质的tanδ值,并以此来判断介质损耗的程度。各种结构固体电介质的tanδ如表2-2所示。表2-2 各种结构固体电介质的tanδ值(1MHz,20℃时)电介质结构名称tanδ分子结构非极性分子石 蜡 聚苯乙烯 聚四氟乙烯小于0.0002极性分子纤维素 有机玻璃0.01~0.015离子结构晶格结构紧密岩 盐 刚 玉小于0.0002 小于0.0002晶格结构不紧密多铝红柱石0.015晶格畸变的晶体锆英石0.02无定形结构硅酸铅玻璃 硅碱玻璃0.001 0.01不均匀结构 绝缘子瓷 浸渍纸绝缘0.01 0.01三、影响 tanδ 的因素影响tanδ 值的因素主要有温度、频率和电压。1.温度对tanδ值的影响随电介质分子结构的不同有显著的差异中性或弱极性介质的损耗主要由电导引起,故温度对tanδ的影响与温度对电导的影响相似,即tanδ随温度的升高而按指数规律增大,且tanδ较小。极性介质中,极化损耗不能忽略,tanδ值与温度的关系如图2-10所示。当温度在t1时,由于温度较低,电导损耗与极化损耗都小,电导损耗随温度升高而略有增大,而极化损耗随温度升高也增大(黏滞性减小,偶极子转向容易),所以tanδ随温度升高而增大。当温度在t1<t<t2时,温度已不太低,此时分子的热运动反而妨碍偶极子沿电场方向作有规则的排列,极化损耗随温度升高而降低,而且降低的程度又要超过电导损耗随温度升高的程度,因此tanδ随温度升高而减小。当温度在t>t2时,温度已很高,电导损耗已占主导地位,tanδ又随温度升高而增大。2.频率对tanδ的影响主要体现于频率对极化损耗的影响tanδ与频率的关系如图2-11所示。在频率不太高的一定范围内,随频率的升高,偶极子往复转向频率加快,极化程度加强,介质损耗增大,tanδ值增大。当频率超过某一数值后,由于偶极子质量的惯性及相互间的摩擦作用,来不及随电压极性的改变而转向,极化作用减弱,极化损耗下降,tanδ值降低。3.电压对tanδ的影响主要表现为电场强度对tanδ值的影响在电场强度不很高的一定范围内,电场强度增大(由于电压升高),介质损耗功率变大,但tanδ几乎不变。当电场强度达到某一较高数值时,随着介质内部不可避免存在的弱点或气泡发生局部放电,tanδ随电场强度升高而迅速增大。因此,在较高电压下测tanδ值,可以检查出介质中夹杂的气隙、分层、龟裂等缺陷来。此外,湿度对暴露于空气中电介质的tanδ影响也很大。介质受潮后,电导损耗增大,tanδ也增大,例如绝缘纸中水分含量从4%增加到10%,tanδ值可增大100倍。然而,假如tanδ值的测试是在温度低于0~5℃时进行,含水量增加tanδ反而不会增大,这是因为此时介质中的水分已凝结成冰,导电性又变差,电导损耗变小的缘故。为此,在进行绝缘试验时规定被试品温度不低于+5℃,这对tanδ的测试尤为重要,在工程实际中,通过tanδ以及tanδ=f(u)曲线的测量及判断,对监督绝缘的工作状况以及老化的进程有非常重要的意义。
    留言咨询
  • 介电常数及介质损耗测定仪以下内容为介质损耗、介电常数测试仪的部分资料及标准,详情及配置请致电咨询特点:LJD-B/LJD-C介电常数及介质损耗测定仪双扫描技术 - 测试频率和调谐电容的双扫描、自动调谐搜索功能。双测试要素输入 - 测试频率及调谐电容值皆可通过数字按键输入。双数码化调谐 - 数码化频率调谐,数码化电容调谐。介电常数及介质损耗测定仪自动化测量技术 -对测试件实施 Q 值、谐振点频率和电容的自动测量。全参数液晶显示 – 数字显示主调电容、电感、 Q 值、信号源频率、谐振指针。DDS 数字直接合成的信号源 -确保信源的高葆真,频率的准确、幅度的高稳定。介电常数及介质损耗测定仪计算机自动修正技术和测试回路化 —使测试回路 残余电感减至低,彻底根除 Q 读数值在不同频率时要加以修正的困惑。电感测试时,设备自身残余电感和测试引线电感的自动扣除功能,提高了电感值(特别是小电感值)测量的精度。此功能为北京中航鼎力公司生产的Q表D创。大电容值直接测量显示功能,电容值直接测量值可达2.5uF/25nF(配100uH电感时)。此功能为北京中航鼎力公司生产的Q表D创。主要技术特征:Q 值测量范围: 2 ~ 1023,量程分档:30、100﹑300﹑1000,自动换档或手动换档固有误差:≤ 5 % ± 满度值的 2 %( 200kHz ~ 10MHz ),≤6% ± 满度值的2%(10MHz~160MHz)工作误差:≤ 7 % ± 满度值的 2 %( 200kHz ~ 10MHz ),≤8% ± 满度值的2%(10MHz~160MHz)电感测量范围:4.5nH ~ 140mH电容直接测量范围: 1 ~ 200pF主电容调节范围:18 ~ 220pF主电容调节准确度:100pF 以下 ± 1pF 100pF 以上 ± 1 %信号源频率覆盖范围:100kHz ~ 160MHz频率分段( 虚拟 ):100 ~ 999.999kHz, 1 ~ 9.99999MHz,10 ~ 99.9999MHz,100 ~ 160MHz频率指示误差:3 × 10 -5 ± 1 个字ASTM D150-11实心电绝缘材料的交流损耗特性和电容率(介电常数)的标准试验方法1 本标准是以固定代号D150发布的。其后的数字表示原文本正式通过的年号;在有修订的情况下,为上一次的修订年号;圆括号中数字为上一次重新确认的年号。上标符号(ε)表示对上次修改或重新确定的版本有编辑上的修改。 本标准经批准用于国防部所有机构。1.范围1.1 本试验方法包含当所用标准为集成阻抗时,实心电绝缘材料样本的相对电容率,耗散因子,损耗指数,功率因子,相位角和损耗角的测定。列出的频率范围从小于1Hz到几百兆赫兹。注1:在普遍的用法,“相对”一词经常是指下降值。1.2 这些试验方法提供了各种电极,装置和测量技术的通用信息。读者如对某一特定材料相关的议题感兴趣的话,必须查阅ASTM标准或直接适用于被测试材料的其它文件。2,31.3 本标准并没有完全列举所有的安全声明,如果有必要,根据实际使用情况进行斟酌。使用本规范前,使用者有责任制定符合安全和健康要求的条例和规范,并明确该规范的使用范围。特殊危险说明见7.2.6.1和10.2.1。1 本规范归属于电学和电子绝缘材料ASTM D09委员会管辖,并由电学试验D09.12附属委员分会直接管理。当前版本核准于2011年8月1日。2011年8月发行。原版本在1922年批准。前一版本于2004年批准,即为 D150-98R04。DOI:10.1520/D0150-11。2 R. Bartnikas, 第2章, “交流电损耗和电容率测量,” 工程电介质, Vol. IIB, 实心绝缘材料的电学性能, 测量技术, R. Bartnikas, Editor, STP 926,ASTM, Philadelphia, 1987.3 R. Bartnikas, 第1章, “固体电介质损耗,” 工程电介质,Vol IIA, 实心绝缘材料的电学性能: 分子结构和电学行为, R. Bartnikas and R. M. Eichorn, Editors, STP 783, ASTM, Philadelphia, 1983.2.引用文件2.1 ASTM标准:4D374 固体电绝缘材料厚度的标准试验方法D618 试验用塑料调节规程D1082 云母耗散因子和电容率(介电常数)试验方法 D1531 用液体位移法测定相对电容率(介电常数)与耗散因子的试验方法D1711 电绝缘相关术语D5032 用饱和甘油溶液方式维持恒定相对湿度的规程E104 用水溶液保持相对恒定湿度的标准实施规程E197 室温之上和之下试验用罩壳和服役元件规程(1981年取消)53.术语3.1 定义:3.1.1 这些试验方法所用术语定义以及电绝缘材料相关术语定义见术语标准D1711。3.2 本标准专用术语定义:3.2.1 电容,C,名词——当导体之间存在电势差时,导体和电介质系统允许储存电分离电荷的性能。3.2.1.1 讨论——电容是指电流电量 q与电位差V之间的比值。电容值总是正值。当电量采用库伦为单位,电位采用伏特为单位时,电容单位为法拉,即: C=q/V (1)3.2.2 耗散因子(D),(损耗角正切),(tanδ),名词——是指损耗指数(K'')与相对电容率(K')之间的比值,它还等于其损耗角(δ)的正切值或者其相位角(θ)的余切值(见图1和图2)。D=K''/K' (2)4 相关ASTM标准,可浏览ASTM网站,www.astm.org或与ASTM客服service@astm.org联系。ASTM标准手册卷次信息,可参见ASTM网站标准文件汇总。5 该历史标准的批准版本参考网站www.astm.org。3.2.2.1 讨论——a:D=tanδ=cotθ=Xp/Rp=G/ωCp=1/ωCpRp (3)式中:G=等效交流电导,Xp=并联电抗,Rp=等效交流并联电阻,Cp=并联电容,ω=2πf(假设为正弦波形状)耗散因子的倒数为品质因子Q,有时成为储能因子。对于串联和并联模型,电容器耗散因子D都是相同的,按如下表示为:D=ωRsCs=1/ωRpCp (4)串联和并联部分之间的关系满足以下要求:Cp=Cs/(1+D2) (5)Rp/Rs=(1+D2)/D2=1+(1/D2)=1+Q2 (6) 图1 并联电路的矢量图 图2 串联电路的矢量图3.2.2.2 讨论——b:串联模型——对于某种具有电介质损耗(图3)的绝缘材料,其并联模型通常是适当的模型,其总是能和偶尔要求模拟在单频率下电容Cs与电阻Rs串联(图4和图2)的某个电容器。 图3 并联电路 图4 串联电路3.2.3 损耗角(缺相角),(δ),名词——该角度的正切值为耗散因子或反正切值K''/K'或者其余切值为相位角。3.2.3.1 讨论——相位角和损耗角的关系见图1和图2所示。损耗角有时成为缺相角。3.2.4 损耗指数,K''(ε''),名词——相对复数电容率虚数部分的大小;其等于相对电容率和耗散因子的乘积。3.2.4.1 讨论——a——它可以表示为:K''=K' D=功率损耗/(E2×f×体积×常数) (7) 当功率损耗采用瓦特为单位,施加电压采用伏特/厘米为单位,频率采用赫兹为单位,体积(是指施加了电压的体积)采用立方厘米为单位,此时的常数值为5.556×10-13。3.2.4.2 讨论——b——损耗指数是国际上协定使用的术语。在美国,K''以前成为损耗因子。3.2.5 相位角,θ,名词——该角度的余切值为耗散因子,反余切值K''/K',同时也是施加到某一电介质的正弦交流电压与其形成的具有相同频率的电流分量之间的相位角度差值。3.2.5.1 讨论——相位角和损耗角之间的关系见图1和图2所示。损耗角有时也称为缺相角。3.2.6 功率因子,PF,名词——某一材料消耗的功率W(单位为瓦特)与有效正弦电压V和电流I之间乘积(单位为伏特-安)的比值。3.2.6.1 讨论——功率因子可以采用相位角θ的余弦值(或损耗角的正弦值δ)来表示: (8) 当耗散因子小于0.1时,功率因子与耗散因子之间的差值小于0.5%。可从下式找到它们的准确关系: (9)3.2.7 相对电容率(相对介电常数)(SIC)K'(εr),名词——相对复数电容率的实数部分。它也是采用某一材料作为电介质的某一给定形状电极等效并联电容Cp与采用真空(或空气,适用于多数实际用途)作为电介质的相同形状电极电容Cv之间的比值。K'=Cp/Cv (10)3.2.7.1讨论——a——在普遍的用法,“相对”一词经常是指下降值。3.2.7.2 讨论——b——从经验来看,真空在各处必须采用材料来替代,因为其能显著改变电容。电介质等效电路假设包含一个电容Cp,该电容与电导并联。 3.2.7.3 讨论——c——Cx视为图3所示的等效并联电容Cp。3.2.7.4 讨论——d——当耗散因子为0.1时,串联电容大于并联电容,但是两者差值小于1%,而当耗散因子为0.03时,两者差值小于0.1%。如果测量电路获得串联部分的结果,在计算修正值和电容率之前,并联电容必须由公式5计算得出。3.2.7.5 讨论——e——干燥空气在23℃和101.3kPa标准压力下的电容率为1.000536(1)。6其从整体的背离值K'-1与温度成反比,同时直接与大气压力成正比。当空间在23℃下达到水蒸气饱和时,电容率增加至为0.00025(2,3),同时随着温度(单位为℃)从10到27℃近似发生线性变化。对于局部饱和,增加值与相对湿度成正比。4.试验方法摘要4.1 电容和交流电阻测量在一个样本上进行。相对电容率等于样本电容除以(具有相同电极形状)真空电容计算值,同时很大程度上取决于误差源分辨率。耗散因子通常与样本几何形状无关,同时也可以依据测量值计算得出。4.2 本方法提供了(1)电极,装置和测量方法选择指南;和(2)如何避免或修正电容误差的指导。4.2.1 一般的测量考虑:边缘现象和杂散电容 受保护电极 样本几何形状 真空电容计算边缘,接地和间隙修正4.2.2 电极系统—接触式电极电极材料 金属箔片导电涂料 烧银喷镀金属 蒸发金属液态金属 刚性金属水4.2.3 电极系统—非接触式电极固定电极 测微计电极液体置换法6 括号里的粗体字参阅这些试验方法附属的参考文献清单。4.2.4 电容和交流损耗测量装置和方法选择频率 直接和替代方法两终端测量 三终端测量液体置换法 精度考虑 5.意义和用途5.1 电容率——绝缘材料通常以两种不同方式来使用,即(1)用于固定电学网络部件,同时让其彼此以及与地面绝缘;(2)用于起到某一电容器的电介质作用。在种应用中,通常要求固定的电容尽可能小,同时具有可接受且一致的机械,化学和耐热性能。因此要求电容率具有一个低值。在第二种应用中,要求电容率具有一个高值,以使得电容器能够在外型上能尽可能小。有时使用电容率的中间值来评估在导体边缘或末端的应力,以将交流电晕降至小。影响电容率的因子讨论见附录X3。5.2 交流损耗——对于这两种场合(作为电学绝缘材料和作为电容器电介质),交流损耗通常必须是比较小的,以减小材料的加热,同时将其对网络剩余部分的影响降至小。在高频率应用场合,特别要求损耗指数具有一个低值,因为对于某一给定的损耗指数,电介质损耗直接随着频率而增大。在某些电介质结构中,例如试验用终止衬套和电缆所用的电介质,通常电导增加可获得损耗增大,这有时引入其来控制电压梯度。在比较具有近似相同电容率的材料时或者在材料电容率基本保持恒定的条件下使用任何材料时,这可能有助于考虑耗散因子,功率因子,相位角或损耗角。影响交流损耗的因子讨论见附录X3。5.4 相关性——当获得适当的相关性数据时,耗散因子或功率因子有助于显示某一材料在其它方面的特征,例如电介质击穿,湿分含量,固化程度和任何原因导致的破坏。然而,由于热老化导致的破坏将不会影响耗散因子,除非材料随后暴露在湿分中。当耗散因子的初始值非常重要的,耗散因子随着老化发生的变化通常是及其显著的。6.一般测量考虑6.1 边缘现象和杂散电容——这些试验方法是以电极之间的样本电容测量,以及相同电极系统的真空电容(或空气电容,适用于多数实际用途)测量或计算为基础。对于无保护的两电极测量,要求采用两个测定值来计算电容率,而当存在不期望的边缘现象和杂散电容时(它们将包含在测量读数中),变得相当复杂。对于测量用所放置样本之间的两个无保护平行板电极场合,边缘现象和杂散电容见图5和图6所述。除了要求的直接电极之间电容Cv之外,在终端a-a'看到的系统包括以下内容: 图5 杂散电容,无保护电极图6 无保护电极之间的通量线 Ce=边缘现象或边缘电容, Cg=每个电极外表面的接地电容,CL=连接导线之间的电容,CLg=接地导线的电容,CLc=导线和电极之间的电容。只有要求的电容Cv是与外部环境无关,所有其它电容都在一定程度上取决于其它目标的接近度。有必要在两个可能的测量条件之间进行区分,以确定不期望电容的影响。当一个测量电极接地时,情况经常是这样的,所述的所有电容与要求的Cv并联,除了接地电极的接地电容及其导线之外。如果Cv放入一个试验箱之内,同时试验箱墙壁具有保护定位,连接到试验箱的导线也受到保护,则接地电容可以不再出现,此时在a-a'处的电容看起来只包括Cv和Ce。对于某一给定电极布置,t-family:KaiTi_GB2312 "北京中航鼎力仪器设备有限公司相关产品:LJC-50KV电压击穿试验仪LST-121体积表面电阻率测试仪LJD-C介电常数介质损耗测试仪JF-3氧指数测试仪CZF-5水平垂直燃烧试验仪
    留言咨询
  • 介质损耗因数测量仪 400-860-5168转6231
    补充:电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数介电常数,用于衡量绝缘体储存电能的性能.它是两块金属板之间以绝缘材料为介质时的电容量与同样的两块板之间以空气为介质或真空时的电容量之比。介电常数代表了电介质的极化程度,也就是对电荷的束缚能力,介电常数越大,对电荷的束缚能力越强。电容器两极板之间填充的介质对电容的容量有影响,而同一种介质的影响是相同的,介质不同,介电常数不同介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角δ称为介质损耗角。损耗因子也指耗损正切,是交流电被转化为热能的介电损耗(耗散的能量)的量度,一般情况下都期望耗损因子低些好。概念:电介质在外电场作用下,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,或简称介质损耗(diclectric loss)。介质损耗是应用于交流电场中电介质的重要品质指标之一。介质损耗不但消耗了电能,而且使元件发热影响其正常工作。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。形式各种不同形式的损耗是综合起作用的。由于介质损耗的原因是多方面的,所以介质损耗的形式也是多种多样的。介电损耗主要有以下形式:1)漏导损耗实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为“漏导损耗”。由于实阿的电介质总存在一些缺陷,或多或少存在一些带电粒子或空位,因此介质不论在直流电场或交变电场作用下都会发生漏导损耗。2)极化损耗在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。  一些介质在电场极化时也会产生损耗,这种损耗一般称极化损耗。位移极化从建立极化到其稳定所需时间很短(约为10-16~10-12s),这在无线电频率(5×1012Hz 以下)范围均可认为是极短的,因此基本上不消耗能量。其他缓慢极化(例如松弛极化、空间电荷极化等)在外电场作用下,需经过较长时间(10-10s或更长)才达到稳定状态,因此会引起能量的损耗。若外加频率较低,介质中所有的极化都能完全跟上外电场变化,则不产生极化损耗。若外加频率较高时,介质中的极化跟不上外电场变化,于是产生极化损耗。电离损耗
    留言咨询

损耗因子相关的方案

损耗因子相关的论坛

损耗因子相关的资料

损耗因子相关的资讯

  • 极低损耗研究嫦娥五号月壤样品
    如何尽可能降低损耗,测试嫦娥五号月壤样品的粒度和矿物组成?7月4日,记者从中国地质大学(武汉)获悉,该校佘振兵、汪在聪教授科研团队在月壤研究中取得了新进展:该团队开发了一种样品消耗极低的新技术,可同时测定月壤的粒度和矿物组成,对于解释月球深空探测轨道遥感光谱数据、理解月球岩浆活动和空间风化过程具有重要意义。《中国科学:地球科学》杂志中英文版同时在线发表该研究成果,第一作者为该校地球科学学院博士生曹克楠,佘振兵教授为通讯作者,汪在聪教授等为合作作者。去年7月,该校地球科学学院教授汪在聪领衔的团队申请到嫦娥五号首批月球样品,共200毫克。汪在聪介绍,“这批样品非常珍贵,我们获取的样品极为有限,可允许的损耗量仅为50毫克,要出更多研究成果,需要我们尽可能降低损耗。”自1970年代以来, 科学家开始使用各种手段来研究月壤样品,但前人所采用的方法通常需要消耗较多样品,并且难以同时获得矿物组成和粒度、形貌等多方面的信息。该研究团队基于拉曼光谱微颗粒分析技术,开发了以极低的样品损耗量,同时测定颗粒样品粒度和矿物组成的新方法,并成功运用到嫦娥五号月壤样品的研究,这一研究技术在月壤研究中的应用在世界上尚属首次,以往的技术通常只能开展粒度或矿物组成其中一项研究。该研究每次仅需约30微克样品,在获取多维度信息的同时,将样品损耗降到最低,并且样品制备简单,极大地降低了该流程可能带来的样品污染问题。另外,该方法可在短时间内快速建立一个矿物粒度和组成的多元化信息数据库,有助于发现稀有矿物相。该方法的进一步发展,将为未来火星和小行星等其他天体返回的微颗粒样品,进行快速分析提供关键技术支撑。该研究发现嫦娥五号月壤样品平均粒度为3.5微米,且呈单峰式分布,表明其具有较高成熟度,即受到的太空风化强烈。“矿物粒度是指颗粒的直径,最细的面粉平均粒度超过100微米,嫦娥五号月壤样品比面粉还细几十倍”,汪在聪表示,月壤粒度的测定对于研究太空风化过程具有重要作用。此外,研究团队还建成了一个月壤矿物的光谱数据库,并用它所分析的颗粒进行自动识别,获得每一种矿物相的粒度和体积等信息,计算得出不同粒径下矿物的模式丰度。研究人员发现在1-45微米粒度范围内的矿物组成为:辉石、斜长石、橄榄石、铁钛氧化物、玻璃等。该研究还识别出月壤中的一些微量矿物相,例如磷灰石、石英、方石英和斜方辉石等,其中斜方辉石的发现为首次报道,这表明嫦娥五号月壤中可能含有极少量的月球高地物质。上述成果为解译嫦娥五号着陆区的风暴洋北部地区光谱遥感数据,提供了地面实况信息,并为理解该区域深部和表面演化历史提供了新视角。该研究使用的样品由中国国家航天局提供,分析测试由地大生物地质与环境地质国家重点实验室完成,研究得到了国家航天局民用航天技术预研究项目、国家自然科学基金和生物地质与环境地质国家重点实验室的支持。
  • 电子探针丨带您走进光纤的微观世界-低损耗光纤
    导语信息关乎一切,为满足信息化数字化支撑新质生产力的创新发展目标和要求,国家层面在算力枢纽、大数据和云计算集群、“东数西算”等工程作了资源调配和长远的规划。用户层面对高质量视频和数据传输需求、对低时延的更苛刻要求、5G技术使用的接入,以及千兆光纤入户规划,对超高速互联网接入的追求似乎永无止境。低损耗光纤的研究正是为了满足高质量的数据接入需求。岛津电子探针通过搭配52.5°高取出角和全聚焦晶体波谱仪,具有高分辨率和高灵敏度的特征,可以为光通信企业及研究院的产品生产、研发、技术突破等方面,如未来的多芯或空芯的研究提供坚实的数据支持。光纤损耗小科普光纤损耗是指每单位长度上的信号衰减,单位为dB/km。光纤损耗的高低直接影响了传输距离或中继站间隔距离的远近,对光纤通信有着重要的现实意义。光纤之父高锟博士提出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。之后,科研人员和光通信企业开始致力于光纤损耗降低的课题研究。根据光纤损耗,把光纤大致分为普通光纤、低损耗光纤、超低损耗光纤三类,其中,&bull 普通光纤衰减为0.20dB/km左右,&bull 低损耗光纤衰减小于0.185dB/km、&bull 超低损耗光纤的衰减小于0.170dB/km。长久以来,国外厂商在低损耗和超低损耗光纤的研究中保持领先地位。现在国内新建主干网络以及骨干网的升级改造中已有大规模低损耗光纤的部署。岛津电子探针的特点岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。【注:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。】【注:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。】在远距离传输中,由于光纤材料的吸收(材料本征的紫外和红外吸收以及金属阳离子和OH-等杂质离子吸收)和散射、光纤连接以及耦合等方面造成的衰减问题难以避免,低损耗光纤的推出则为解决这一难题提供了新的思路。在骨干网改造、超高速宽带网络的建设过程中,低损耗(Low-loss optical fiber, LL)、超低损耗(Ultra-low-loss optical fiber, ULL)光纤已有大规模部署。我们使用岛津电子探针EPMA-1720测试了两种低损耗光纤。&bull 第一种光纤为单模光纤,纤芯直径10μm,掺杂Ge+F。低损耗光纤元素分布情况测试结果如下:&bull 第二种光纤纤芯为比较高纯度的SiO2,在包层区掺氟降低折射率,未掺杂常规元素Ge。定量元素线、面分布特征分析见以下系列图。超低损耗光纤元素分布情况测试结果如下:结语信息通信是重要的国家级基础设施,通信光纤建设也是重要的民生工程,对高质量数据通信要求都在不断提高。目前骨干超高速400G、800G乃至1T的工程规划都给光通信企业带来机遇和挑战,研发和生产亦是永无止境。岛津电子探针有着高灵敏度和高元素特征X射线分辨率的特性,能够为光通信企业及研究院的产品开发、技术突破等方面提供可靠的检测和分析手段。本文内容非商业广告,仅供专业人士参考。
  • Advanced Materials: 可调谐低损耗一维InAs纳米线的表面等离激元研究
    亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。可喜的是:近期,由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。图1 neaspec超高分辨散射式近场光学显微镜neaSNOM图2 InAs纳米线中表面等离激元的红外近场成像研究a) s-SNOM实验测量示意图;b) InAs纳米线的AFM形貌图;c) InAs纳米线的红外(901 cm?1)近场光学成像;d) 相应的模拟结果;e) c和d相应区域的界面分析;f) InAs纳米线的红外(930 cm?1)近场光学成像;g) InAs纳米线的红外(950 cm?1)近场光学成像;h) InAs纳米线的红外(930 cm?1)近场光学成像。该研究小组通过neaspec公司的散射型近场光学显微镜(s-SNOM)配合901–985 cm?1可调谐中红外QCL激光器,采用neaspec公司具有的伪外差近场成像技术的neaSNOM近场光学显微镜,对约为104 nm长的InAs纳米线的表面等离激元进行了研究。从近场成像图(图2 c)中可以看出,在930 cm?1红外光及AFM探针的激发下,表面产生的等离激元沿InAs一维纳米线传播,并从纳米线边缘反射回来产生相应的驻波图形。另外,可以通过定量分析表面等离激元传播的相邻的两个节点((λp/2)的空间距离来推断表面等离激元传播的波长(λp)。同时,作者也在不同的红外波长下(930, 950, 和985 cm?1,图2 f, g, h)对InAs纳米线的表面等离激元进行了纳米尺度近场光学成像研究,结果显示出相似的驻波图形。上述研究结果证实作者通过neaspec公司的散射型近场光学显微镜对InAs纳米线的近场成像研究成功观察到了InAs纳米线中的一维等离激元。该研究在通过s-SNOM红外近场光学显微镜展示了在InAs纳米线中等离激元的真实空间成像。作者的进一步研究表明其等离激元的波长以及它的阻尼都可以通过改变InAs纳米线的尺寸和选择不同基底来调控。研究显示半导体的InAs纳米线具有应用于小型光学电路和集成设备的巨大潜力。作者的发现开辟了一条设计与实现新型等离激元和纳米光子设备的新途径。同时,该研究也展示了neaspec公司的散射型近场光学显微镜在半导体一维或二维材料纳米光学研究中的广阔应用前景。截止目前为止,以neaspec稳定的产品性能和服务为支撑,通过neaspec国内用户不断的努力,neaspec国内用户2018年间发表了关于近场光学成像和光谱的文章共14篇:其中包括4 篇Advance Materials; Advance Functional Materials;Advance Science;Advanced Optical Materials和Nanoscale等。伴随更多的研究者信赖和选择neaspec近场和光谱相关产品, neaspec国内群的不断的持续增加,我们坚信neaspec国内用户将在2018年取得更加丰厚的研究成果。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551 https://doi.org/10.1002/adma.201802551相关产品及链接:1、 超高分辨散射式近场光学显微镜 neaSNOM:https://www.instrument.com.cn/netshow/C170040.htm2、 纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 太赫兹近场光学显微镜 THz-NeaSNOM:https://www.instrument.com.cn/netshow/C270098.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制