当前位置: 仪器信息网 > 行业主题 > >

核磁共振变析仪

仪器信息网核磁共振变析仪专题为您提供2024年最新核磁共振变析仪价格报价、厂家品牌的相关信息, 包括核磁共振变析仪参数、型号等,不管是国产,还是进口品牌的核磁共振变析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核磁共振变析仪相关的耗材配件、试剂标物,还有核磁共振变析仪相关的最新资讯、资料,以及核磁共振变析仪相关的解决方案。

核磁共振变析仪相关的资讯

  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
  • 韩国研发超高分辨率单次测定“核磁共振分析法”
    韩国科学技术研究院(KIST)开发出仅需单次测量就可获得超高分辨率碳原子核磁共振信息的分析法,可用于分析分子结构复杂的天然物质结构。研究结果刊登在《Angebante Chemi》上。  这种“超选择性异种核分极传达法(UHPT)”可在短时间内选择性分析碳、氢原子及它们之间的连接信息,仅需一次测量即可在碳原子核NMR信号中找出与特定氢原子核连接的碳,实现数赫兹(Hz)水平分辨率的碳原子信号。与传统分析法相比,该分析法具有快速、准确和经济性。与超高磁场NMR设备相比,仅用约为五分之一的检测时间,即可获得同等水平的NMR信号解析能力。在天然物质生物产业领域,该技术可用作查明新材料有效成分及规格化的标准分析技术。  本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 年度巨献,林崇熙核磁共振波谱仪系列公益讲座
    2014年4月的喜讯:林崇熙老师为仪器信息网网友贡献核磁共振波谱仪(NMR)系列讲座,已确定三期报告,公益讲座,会议名额有限,请尽快报名。 系 列时 间主 题 第一讲 2014-04-28 14:30 核磁共振谱仪的设备或零配件的功能解析 第二讲 2014-05-27 14:30 谱图处理软件Mestrec 与 MestreNova操作实例 第三讲 2014-06-24 14:30 NMR 谱图解析范例专家介绍:林崇熙 博士后 北京大学化学与分子工程学院副教授研究领域和兴趣(部分):核磁共振的应用利用核磁共振的 2D、变温、多种核素检测技术研究化学反应的机理 探讨简易核磁碳谱在各种溶液体系中定性与定量分析的应用 科技部十五科研攻关项目&mdash &mdash 以NMR检测手性化合物e.e.值与绝对构型的研究;国家自然科学基金科研项目&mdash &mdash 氮叶立德化学三苯基吡啶叶立德的化学研究以及官能基团转换反应的应用探讨。系列讲座详细介绍:讲座名称:核磁共振谱仪的设备或零配件的功能解析时间:2014-04-28 14:30课程介绍:核磁共振NMR设备的功能与小故事,磁体、探头,、液氦液氮添加管路, 气路_空压机,电脑软件硬件, 联网, 变温配件, 转子-样品管。如:磁体方面, 介绍其作用与原理, 生产磁体的公司,永久磁铁/电磁铁/超导磁铁三种磁铁的比较 顺便叙述磁场对生物的影响情况。探头方面: 介绍多种探头的不同功能, 有二核/四核探头, 宽带探头, 低频探头, 低温探头, 微量探头, 反相探头, 正相探头, 二合一探头等. 顺便叙述碎管情况的探头处理。讲座名称:谱图处理软件Mestrec 与 MestreNova操作实例时间:2014-05-27 14:30课程介绍:重点范例介绍: Mestrec470 与 MestreNova8.0;以及打开此二种软件程序和实例操作演示谱图的处理步骤;操作内容包括: 氢谱的完整处理, 放置结构图与标定归属, 安插放大图, 拷贝到 words 文档用MestrecNova 处理多种二维谱的演示;备注:参加本次讲座人员, 可以下载获得此二软件。讲座名称:NMR 谱图解析范例时间:2014-06-24 14:30课程介绍:1、本次报告首先花几分钟时间快速回顾 part 1 的 "正确的解谱步骤", 和一些代表性谱图.2、提供了上百个不同化合物具有特色的谱图范例3、叙述与讨论几套含有完整的 H/ C/ 多种二维谱的范例4、实例进行几个复杂化合物的谱图解析步骤会议报名方式:点击链接马上报名或搜索讲座名称进行报名。
  • 寰彤核磁发布寰彤核磁 90M核磁共振波谱仪新品
    HT-PNMR12-9HC 90MHz 核磁共振谱仪(H,C系统)核磁共振在众多领域应用越来越广泛,核磁共振简称NMR,是一种用来研究物质的分子结构及物理特性的光谱学方法,它是众多光谱分析法中的一员。其中“高分辨率核磁共振谱仪”主要用途是有机化学碳氢结构的表征,是化学结构分析的重要工具。NMR(核磁共振)是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,目前市场主要有永磁NMR和超导NMR两大类型。超导NMR成本较高、维护费用高、维护复杂,因此我公司推出永磁90M核磁共振波谱仪。 90M核磁共振谱仪,有效提高化学位移分辨率、从中得到化学结构信息,具有维护费用低(无需液氮、液氦)、可应用于有机化学结构分析合成的检测以及普通的科研工作。主要用于有机化学结构分析和精细化工的现场检测。可以运用于化学合成药物分析等领域。主要实验功能1、观察1H,13C谱的超精细结构和化学位移2、化学结构分析以及分子结构分析3、小分子化学物的结构确定4、药物分析和化学鉴定5、简单结构的聚合物特性测定6、药物工艺开发,新药研发,药品工艺过程确认主要仪器参数1、H共振频率: 90MHz 2、1H\13C谱测量(超精细结构J-J耦合测量和化学位移测量)3.分辨率0.5HZ(0.0055ppm)4、磁极直径:10cm 5、均匀度:1Hz(0.011ppm) 6、灵敏度10000:1(以98%酒精CH3峰为准)7、恒温控制稳定度:0.001K/h 开机后 4 小时 8、信噪比 10000:1,(以98%酒精CH3峰为准) 9、旋转边带 1000:1(旋转频率100周每秒) 10、旋转频率:10-200Hz 11、谱对比系统12、质子宽带去耦13、碳谱测量部分:①、13C共振频率: 22.5MHz ②.分辨率0.2HZ(0.011ppm)③、信噪比 10:1累加1000次,(以85%二甲苯准为准) ④、1H宽带噪声去偶功率3W 14、可以观察NOE效应及去耦效应仪器尺寸重量1、磁 铁尺寸:0.7m × 0.7m × 0.8m 2、电气控制尺寸:0.5m × 0.5m × 1.2m 重量:HT-PNMR12-9 220Kg 创新点:可观察1H,13C谱的超精细结构和化学位移,特别是13C的快速采集寰彤核磁 90M核磁共振波谱仪
  • 十五正当年!纽迈分析与低场核磁共振一同奔跑
    " _ue_custom_node_="true"十五正当年!纽迈分析与低场核磁共振一同奔跑 [15周年回顾] 2018注定是难忘而又不平凡的一年。这一年纽迈分析成立正好15年。1年365天,8760个小时,525600分钟,每一时刻对于纽迈而言都在发生不同的故事。这一年纽迈的市场活动尤其丰富,线下会议与线上活动交替进行,感恩回馈活动和核磁宣传鳞次栉比,15年可能不算长,而纽迈的15年创业之路走得艰辛而坚实。回顾是一场仪式,为了更好的前行,透过15周年庆诸多活动和宣传的背后,你会发现纽迈对低场核磁共振专注而坚持的美好初心,2019纽迈分析与您一起积攒力量、心怀美好、继续前行!纽迈分析董事长创始人杨培强先生曾说:“这15年来我用6个字概括:感动、感谢、感恩。”感恩回馈是纽迈15周年系列活动的主旋律。15周年系列一:15周年感恩回馈 2018.10月-12月 全国低场核磁研讨会 2018.11月-12月第二届服务万里行 2018.08月-09月 15周年|论文评选 2018年03月15周年|晒照片讲故事2018.10.26日 15周年庆典晚会:情聚纽迈 共振未来15周年系列二:核磁科普2018.03月-06月 全国低场核磁研讨会2018.07月15周年|典型用户采访2018.09月磁共振公益网络研讨会15周年系列三:履行社会责任 传播正能量2018.07月-10月儿童公益画征集2018.04月-09月15周年献跑15周年系列四:技术研发 联合共建2018.11月磁共振冻融成冰过程动态分析联合实验室挂牌成立2018.04核磁共振纤维上油率分析仪荣获2017年度优秀新品15周年感恩回馈:十年之约▲第十届全国低场核磁共振技术与应用研讨会15周年感恩回馈:第二届“服务万里行”▲第第二届服务万里行长春站、天津站2018年,为了更好的服务客户,本着 “用户至上,服务第1”的精神,提高客户满意度,继续更多用户提供新的科研思路和方向,第二届“服务万里行”于2018年11月正式开启,目前已经相继在长春、天津圆满举行,来自长春工程学院、吉林大学、吉林建筑大学、天津科技大学、天津农学院的老师和学生亲临现场。与纽迈分析研发工程师一起交流核磁共振技术在多孔介质、食品材料领域的新应用和研究成果,并针对仪器在使用过程中遇到的问题与工程师深入交流探讨。2019年我们还将陆续在全国4座城市开展“服务万里行”活动,为纽迈分析的每一个客户答疑解惑,带来新的科研进展,将继续用实际行动践行“用户至上,服务第1”的宗旨。15周年感恩回馈:15周年“论文评选”2018年, 第二届“论文评选”于8月份正式启动,面向纽迈分析的用户征集近三年发表的论文。自活动开始以来收到各行各业的用户使用不同的核磁共振仪器发表的SCI文章共计20余篇,经过专家外审+公司内审,录取6篇作品,除了奖品奖励之外,入选作品还参加纽迈15周年晚会现场展示,供其他相关客户学习参考。15周年感恩回馈:晒照片讲故事2018年,为了更了解科研人员实验工作日常,纽迈分析面向所有使用纽迈低场核磁共振仪器的用户发起一个“晒照片、讲故事”的活动,活动得到了全国10多所高校实验室老师同学的积极参与,共收到参赛作品20个,通过投票方式选出6名分别作为一、二、三等奖。15周年庆典:情聚纽迈 共振未来2018年10月26日,纽迈分析在苏州太湖万豪酒店举行了15周年庆典活动。庆典以“情聚纽迈 共振未来”为主题,邀请了一直以来支持纽迈分析的政府领导,行业和学会嘉宾、客户,与在场的100多位纽迈员工,以“感动、感谢、感恩、”之情相聚太湖之滨,一起回首过去,展望未来。纽迈人也向在场的每一位来宾展示了牛马哥的决心和信心:以低场核磁共振技术引领国产分析仪器新未来。核磁科普纽迈分析一直致力于低场核磁共振技术的推广和研发,这个初心15年一直未变。2018年纽迈推出一系列的低场核磁技术的科普活动,让更多的人了解低场核磁共振技术,让核磁共振仪器走进千家万户。——专注于低场核磁共振技术的研发和推广2018纽迈分析成立15周年,为了给更多的客户提供新的科研思路和方向,“核磁探秘,你我同行”纽迈推出的第1届“科普万里行”活动,纽迈分析相继在广州、武汉、西安、兰州、海南五座城市举办科普万里行,共计约200名专家、教授、实验室人员亲临现场,不仅可以聆听到核磁共振的技术应用,还可以与核磁专家一起交流核磁的新技术进展,为核磁技术所推动的新发展方向提供思路。15周年|典型用户采访为了让更多的科研人员了解低场核磁共振的应用,仪器信息网采访了纽迈分析的一个用户——中国农业科学院农产品加工研究所魏益民教授。魏益民教授从事食品水分分析技术平台及智能物料干燥分析系统,魏教授为仪器信息网编辑讲述了他与纽迈分析以及金沙河面业的合作三方合作的故事,对于低场核磁共振技术,魏教授给出了合理的评价:“核磁技术在食品领域大的意义就是区分水分存在的状态,看到水分的运移过程,能提供的不仅仅是含量,而且能够在分子水平上观察水分子的运动规律,这项研究非常有价值。”15周年|磁共振公益网络研讨会除了有用户的声音,在低场核磁共振技术的宣传和科普上,纽迈分析身体力行,根据客户实际需求,纽迈特别邀请五位来自各个领域的重量级专家教授,借助仪器信息网网络讲堂平台,进行低场核磁共振技术的公益讲座。实时在线人数达到195人,37个网友参与提问,并对100多个问题进行在线答疑和公众号答疑。履行社会责任 传播正能量作为国产低场核磁共振技术领导品牌,纽迈分析一直心怀“感动、感谢、感恩”之情用心做企业,对内以“牛马哥”的勤劳、奉献、坚持作为企业文化,对外不忘履行社会责任,爱心献血、支教助学,以自己的力量回报社会以温暖和正能量。——专注于低场核磁共振技术的研发和推广15周年儿童公益画征集及拍卖作为高新技术企业,纽迈更明白教育对于一个人、社会、国家的重要性,2018年7-8月,举办“儿童公益画征集活动”面向全国征集12岁以下小朋友的绘画作品,共收到52幅作品,入选12幅。入选作品在纽迈分析15周年庆晚会上拍卖,共筹到善款一万一千八百元,全部交给上海交大安泰爱心社对口的贫困山区孩子们的爱心助学。15周年献跑2018年,为了让员工健康工作,快乐生活。纽迈分析提出“每天锻炼半小时,健康工作每一天,幸福生活一辈子”口号,纽迈举办了以个人150天,150km的15周年献跑活动,经过150天的坚持,共有111名同事参加活动,其中22名完成本次活动目标。跑步不是目的,跑步的意义在于:敢于起跑,敢于去迈出第1步,你就是自己的超级英雄。技术研发 合作共赢2018年是一个非常不平凡的一年,在发生的诸多大事件中你会发现,无论是个人还是企业乃至国家,提高核心科技能力,才是制胜的法宝。——专注于低场核磁共振技术的研发和推广技术研发 攻坚克难2016年,纽迈分析进军工业核磁领域,面对工业核磁的高标准高精度的要求,纽迈分析研发团队迎难而上攻坚克难,经历数次修改和反复的验证,并于2017年正式推出工业核磁新品——核磁共振纤维上油率分析仪,这是一款纤维企业专用小核磁,已成熟应用于纤维含油率的分析测试,此外,除了含油率分析,还可以用于粘胶、锦纶等材料的回潮率测试,以及工业锦纶、涤纶等的化纤工业丝的附胶量测试。凭借快速、精确的突出优势,该仪器在市场上备受客户关注,并获得2017年度科学仪器优秀新产品。联合共建 合作共赢2018年11月23日,纽迈分析携手冻土工程国家重点实验室联合共建“磁共振冻融成冰过程动态分析联合实验室”在甘肃兰州正式挂牌成立。双方明确联合实验室战略定位和发展方向,充分利用双方优势,突出融合交叉创新,快速形成合力,为冻土科学关键问题地破解、科学仪器的创新优化提供科技支撑。2018年已经接近尾声,转眼间即将迎接2019年的到来,新的一年,“牛马哥”团结一致,奋发向前!创造纽迈分析2019年更大的成绩。 15周年专题
  • Bruker核磁共振波谱仪最新技术进展
    核磁共振(NMR)波谱仪作为一种重要的分析仪器,广泛应用于物理学、化学、生物、药学、医学、农业、环境、矿业、材料学等学科,越来越多的科研单位和企业装备了核磁共振波谱仪。Bruker公司一直站在核磁共振波谱技术的最前沿,秉承“持续创新”的理念,借助50 多年的丰富经验和对产品的热情与执着,将最新技术融入核磁共振波谱仪,近年来开发出了许多新产品和新功能,本文将Bruker核磁共振波谱仪最新技术进展进行简要介绍。 1.最新的磁体技术 现代核磁共振超导磁体需要液氮液氦提供的低温条件来维持磁体的超导状态,需要定时补加液氮和液氦,这无疑增加了仪器操作人员的工作负担,而且国际市场上液氦价格的波动和供应的不确定性也对超导磁体的维护产生了非常不利的影响。Bruker 最新推出的AscendTM Aeon系列磁体(见图1)则让仪器操作人员不再担忧液氮液氦的补加问题。 图1. Ascend Aeon系列磁体 Ascend Aeon系列磁体在磁体杜瓦上直接集成了制冷冷头,Bruker完美解决了靠近磁体的压缩机带来的振动和影响磁场等问题,它能将磁体内挥发出的氦气直接液化重新加注回磁体,完成氦气的循环。Bruker先进的磁体制造技术保证了Ascend Aeon系列磁体一如既往优秀的性能、极佳的磁场均匀度和最小的漏磁场,同时大大提高了Ascend Aeon系列磁体的易用性和安全性。 400MHz和500MHz的标准腔Ascend Aeon磁体无需再添加液氮,而液氦的维持时间提高到18个月,对于600MHz和700MHz的标准腔Ascend Aeon磁体,则可做到无需添加液氮并将液氦的维持时间大幅延长至8年。 Ascend Aeon系列目前提供从400MHz - 700MHz的54mm标准腔磁体,800MHz - 900MHz的54mm标准腔磁体和400MHz - 800MHz的89mm宽腔磁体则即将推向市场。 对于目前市场上常见的新一代AscendTM磁体,Bruker则提供了磁体液氮回收单元,可以将磁体挥发出的氮气收集、压缩液化后重新加注回磁体,避免了重复添加液氮的麻烦,极大地简化了磁体的维护工作,这使得核磁共振波谱仪变得更易用。 由于CryoProbes?超低温探头配备了压缩机平台,Bruker在超低温探头压缩机平台上实现了磁体液氮回收功能,这就是BSNL(Bruker Smart Nitrogen Liquefier)单元,如图3所示。 图3. BSNL单元 为了给没有配备超低温探头的仪器提供磁体液氮回收功能,Bruker最新推出了BNL(Bruker Nitrogen Liquefier)单元,如图4所示,这使得普通用户在没有超低温探头的情形下也能实现磁体液氮的回收,无需增加很大的成本即可极大简化磁体的维护工作。BNL适用于Ascend 400-700标准腔磁体。 图4. BNL单元 2. 革命性的CryoProbeTM Prodigy探头 Bruker的超低温CryoProbeTM探头由于其在提高灵敏度方面的卓越表现,在学术界和工业界都得到了广泛的应用。超低温探头把低温技术与先进的射频硬件设计和制造技术结合起来,用压缩低温氦气来冷却探头检测线圈和前放电子线圈到20K附近,最大程度降低了可检测到的电子热噪声,探头检测灵敏度提高4倍以上。目前Bruker新推出了一个革命性的低温探头方案:CryoProbeTM Prodigy探头。图5所示为安装有Prodigy探头和SampleXpress自动进样器的AVANCE III HD 400 MHz谱仪实例。 Prodigy探头几乎延续了传统氦气超低温探头的所有优点,但其购买费用和维护费用大为降低,安装、使用和维护也变得更加简单。Prodigy探头把低温氦气冷却换为液氮冷却,探头检测线圈和前放电子线圈的工作温度为80K附近,这样可以提高探头氢的灵敏度2倍左右,杂核灵敏度提高2 - 3倍。 图5. AVANCE III HD 400 MHz谱仪,安装有CryoProbeTM Prodigy探头和SampleXpress自动进样器。3. 先进的自动进样器 核磁共振波谱仪的探头一次只能容纳一个样品进行检测,当一个样品检测完成后就需要更换样品以进行下一次检测。样品的更换可由人工操作,也可由自动进样器按照预设的程序自动完成,因此自动进样器也被称为自动换样器(Auto Sample Changer)。 自动进样器已成为现代核磁共振波谱仪的一个重要部件,它不仅减轻了谱仪操作人员的体力劳动强度,也由于它能按照预设的程序自动完成大量样品的高通量实验而备受用户的青睐。 Bruker在自动进样器的研发方面有着悠久的历史。目前 Bruker提供了一系列满足不同需求的液体样品自动进样器,其中有SampleXpress Lite、SampleCase、SampleXpress、以及SampleJet,见表1。Bruker还提供一种专为高场仪器设计的液体样品换样辅助设备SampleMail。 表1. Bruker液体样品自动进样器的参数 SampleXpress Lite(见图6)提供16个带转子的样品位,取代了较老的24位NMR Case自动进样器,减少了活动机械部件,使用可靠性更高。其主要由一个可旋转的圆形样品架组成,置于磁体中心管之上。样品架可轻松取下以更方便地放置样品。 图6. SampleXpress Lite自动进样器 SampleCase(见图7)提供24个带转子的样品位。样品架为桌面高度,这使得对于高场谱仪的进样更为方便,无需再攀登梯子进样。Bruker还提供一种低温功能配置——Cooled SampleCase,通过与低温附件配合,可使样品架上的样品处于低温状态,如保存生物样品常用的6℃,特别适合生物样品的测试。 图7. SampleCase自动进样器 SampleXpress(见图8)提供60个带转子的样品位,取代了B-ACS自动进样器,减少了活动机械部件,使用可靠性更高。SampleXpress设计非常紧凑,极大提高了其与各类型磁体的适配度;配备了触摸屏式控制面板,控制更加方便;样品架可轻松取下,放置样品更加方便。 SampleXpress还可安装条码扫描设备,可实现更加复杂的程序化自动进样。样品架取下后可直接在中心管中插入固体转子导管或CryoFit,轻松支持固体探头和超低温探头-液相色谱-固相萃取-核磁联用的切换。 图8. SampleXpress自动进样器 SampleJet(见图9)是一种前所未有的方便快捷地实现高通量核磁实验的自动进样器。它有5个可放置96根核磁管的样品架,另可在外圈放置96根样品。机械手可自动完成将样品管插入转子并换样的动作。此外它还有若干带转子的样品位,总共可放置6x96个样品。SampleJet也可安装条码扫描设备,亦可实现低温功能,使样品架上的样品处于低温状态。 图9. SampleJet自动进样器 由于高场仪器的磁体都较高,人工进样时需要仪器操作人员爬上很高的梯子才能操作,SampleMail(见图10)就是一种专为高场仪器设计的液体样品换样辅助设备,它使用了SampleCase的样品传送系统,使操作人员在桌面高度就可以完成高场仪器的单次换样。 图10. SampleMail换样辅助设备 除此之外,Bruker还提供了固体样品自动进样器(7毫米20位样品,4毫米40位样品)。对半固体(HR-MAS)样品可以提供自动进样器SamplePro,可放置96个HR-MAS半固体样品转子,SamplePro还可以提供低温选件(48位样品),最低温度可到-16摄氏度,如图11所示。 图11. HR-MAS半固体样品转子自动进样器SamplePro 4. 样品变温单元 变温核磁共振实验在物质结构分析和化学反应跟踪等应用中有着重要的作用,因此,样品变温单元是现代核磁共振波谱仪中必不可少的一部分,例如Bruker最新型核磁共振波谱仪AVANCE III HD系列谱仪中集成了BSVT (Bruker Smart multichannel Temperature Control System)温控单元,其与Bruker BBFO SMART探头搭配,在不增加其他附件的情况下实现对样品温度从室温到150℃的变温控制,控温精度达+/-0.1℃。此外,Bruker还为控温提供了革命性的NMR ThermometerTM技术(选件),第一次使得在NMR实验过程中测量样品的准确温度成为了可能。 NMR Thermometer技术通过检测两种氘共振的化学位移差值来实现完全自动化温度控制,与传统的热电偶检测法相比,NMR Thermometer直接测量样品实际温度,不再依赖于热电偶,从而避免在去偶实验或控温气流变化时外部热电偶测温导致温度偏差(如图12所示)。 图12. NMR Thermometer技术的效果:上图为没有使用NMR Thermometer条件下测得的NMR谱图,化学位移偏移表现出很强的温度依赖性,下图为使用NMR Thermometer的条件下所得谱图,化学位移偏移得到了很好的补偿。 如果搭配Bruker提供的其他高温或低温附件,将可以实现更宽的样品温度控制范围。BSVTB 3500加热功率增强单元可以使得加热温度的上限提高到400℃,适用于10mm液体探头(该探头温度上限为200℃)、WVT固体探头及MASCAT固体探头的高温实验。 在低温方面,Bruker提供了更多样的选择,主要分为两大类:非液氮制冷单元和液氮制冷单元。非液氮制冷单元采用压缩机致冷剂方式制冷,可进行长时间工作,其中BCU I制冷单元可将5毫米液体样品温度冷却至0℃左右,而BCU II制冷单元可将5毫米液体样品温度冷却至-40℃左右。 液氮制冷单元则是通过液氮杜瓦中的液氮致冷,又可分为两种类型,其一是热交换式,来自压缩机的气体经过浸泡在液氮中的螺旋管而获得低温,进而冷却样品;其二是挥发式,它不需要气体供应,而是通过浸泡在液氮中的小型加热器的加热使液氮挥发为低温氮气来冷却样品。两类液氮制冷单元的分别搭配不同类型的探头。两类液氮制冷单元的气体传输管可采用不同材质制造,采用PUR材料气体传输管的液氮制冷单元可将样品温度冷却至-80℃左右,而采用不锈钢材料气体传输管的液氮制冷单元可将样品温度冷却至-120℃左右。 5. 液相色谱-核磁共振(LC-NMR)联用组件 将色谱分离技术与核磁共振技术以及其他技术进行在线的联用,使色谱分离与谱学结构确证成为一个连续的过程,这是对于复杂有机混合物成分分析的一种非常有效的方法。 Bruker是LC-NMR在线联用方法的先驱者,提供了完善的LC-NMR在线联用解决方案。作为液相色谱与核磁共振联用的最重要的部分,Bruker独家研发了多种适合两者的在线联用接口单元,并开发了集成式控制分析软件HyStar。 BSFU-HP(Bruker Stop-Flow Unit - High performance)接口单元提供了两种检测工作模式:连续流动模式(on-flow)和停流模式(stop-flow)。 BPSU-36/2接口单元不仅支持连续流动模式(on-flow)和停流模式(stop-flow)这两种检测工作模式,还配备了loop环,可实现色谱峰的捕捉、暂存和转移至核磁共振谱仪中检测等一系列在线联用功能。 LC-SPE-NMR单元(如图13所示)是Bruker公司联合Spark公司开发的一种独有的LC-NMR联用接口单元,一经问世便广受用户的欢迎。其核心部分是拥有192个柱子的SPE(固相萃取)系统,配合精密的流路设计和其他组成部分,LC-SPE-NMR单元可完成色谱峰的捕捉、进行多次富集、氘代试剂洗脱进入核磁共振谱仪中检测等一系列在线联用功能。 图13. LC-SPE-NMR单元 Bruker支持多种市面流行的液相色谱仪与核磁共振联用并实现对其完全控制;在核磁共振谱仪端,Bruker不仅提供传统的流动探头(Flow Probe),还特别为CryoProbesTM超低温探头和CryoProbesTM Prodigy液氮低温探头提供了CryoFitTM插件(如图14所示)。CryoFitTM可以直接让CryoProbesTM超低温探头和CryoProbesTM Prodigy液氮低温探头转变为具有类似流动探头的功能,可与液相色谱联用。CryoFitTM插件安装时只需将其从磁体中心管上部插入5mm探头中即可,转变过程无需拆卸更换探头。 图14. CryoFitTM插件 除此之外,Bruker的LC-NMR联用组件还可以实现与质谱仪的进一步联用,即LC-NMR-MS联用。Bruker支持多种市面流行的质谱仪的联用。HyStar软件同样可完成对三个仪器的同时控制与结果分析。Hystar软件可在同一屏幕上同时显示色谱图、指定峰的核磁共振图及对应的质谱图,这些信息足够进行复杂混合物的分析和确定被分析物的结构。 6. Assure - Raw Material ScreeningTM解决方案 在制造原料药药品和化学产品时杂质和掺杂物可能会带来责任风险。目前对全球供应链的日益依赖的现状加大了对生产所用原料和最终产品进行质量控制检测的需求。有效地检测何处出现未知掺杂物需要使用化合物特异性和非靶向方法。为此,Bruker提供了一套完整、易用的全自动化解决方案:Assure - Raw Material ScreeningTM原料检验系统。使用Assure - Raw Material ScreeningTM(Assure-RMS)可以在在合成最终产品之前检测含杂质和不纯的样品,从而减少责任风险、降低生产成本、减少可能带来的生产延误。Assure-RMS方法适用于GLP(优良实验室规范)或非GLP环境,能提供样品分析过程和结果的可溯源记录,可应用于医药和化工生产以及分析参考标准。 Assure-RMS方法只需几毫克的原料用于分析,经一次性测量即可完成原料检验,几分钟内就能得到结果和报告(如图15、图16所示),它专为生产实验室技术人员设计,能自动校准仪器性能并对仪器进行相应的维护。 图15. Assure结果示例 图16. Assure报告示例 Assure-RMS的结果可选绝对摩尔数或绝对质量数以及相对百分含量,它提供一份质量检测通过/未通过的报告,并可根据现场具体要求灵活选择报告结果,另外还提供对已知杂质和掺杂物定性和定量的专家报告,并显示存在的任何未知成分。 Assure-RMS的客户还可通过Bruker获得额外的定制和GLP认证
  • 全球首个微型核磁共振波谱仪问世
    2010年11月10日,picoSpin公司宣布推出全球首款微型核磁共振波谱仪picoSpin-45 NMR。与以往的核磁共振波谱仪相比,picoSpin-45 NMR体积小了100倍左右,价格便宜近90%。picoSpin-45 NMR是一个强大的化学分析工具,分辨率可达100ppb,其可以应用在食品制造、医药、石油化工、法医、生物燃料、化妆品及化学教育等行业,主要用于分析液体样品。picoSpin-45 NMR  picoSpin-45 NMR装置只有鞋盒大小,其消除了核磁共振波谱仪成本和规模的障碍,极大地扩大了核磁共振波谱仪的应用范围。 45兆赫(MHz)的picoSpin NMR可以在不足40微升的样本中解决质子化学转移问题。新仪器是一个完整的液相质子核磁共振系统,包括永磁体、发射器、接收器、数据采集、可编程脉冲序列发生器、以太网接口和直观的基于Web的控制软件。  picoSpin 公司总裁兼首席执行官Price博士表示,“核磁共振波谱仪是最强大的化学分析工具.我们设计的产品,真正改变了核磁共振波谱仪的前景。凭借低价格和紧凑的外形,picoSpin -45 NMR可以应用在过去认为不可能应用的领域。现在,您可以在您的实验室台上就拥有一台核磁共振波谱仪。您可以在工厂内设置多个单元,通过一个鼠标就可以持续监测和控制过程流体。您的学生可以在化学实验室和研究项目中实际操作核磁共振波谱仪。”
  • 上海有机所欲采购6台大型核磁共振谱仪
    2011年07月01日,中国政府采购网发布中国科学院上海有机化学研究所核磁共振谱仪采购项目招标公告,共采购6台核磁共振谱仪,频率从400兆到800兆,涉及金额超千万,详情如下:  日 期: 2011年7月1日  招标编号: OITC-G11030156  1.东方国际招标有限责任公司受中国科学院上海有机化学研究所(招标人)的委托,就中国科学院上海有机化学研究所核磁共振谱仪采购项目(以下简称项目)所需的货物和服务,以公开招标的方式进行采购。  2.现邀请合格的投标人就下列货物及有关服务提交密封投标。有兴趣的投标人可从招标代理所在地址得到进一步信息和查看招标文件。  3.本次招标货物分为 1 个包,每个投标人可对其中一个包或多个包进行投标,投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。包号品目号货物名称数量(台/套)11-1800兆液相核磁共振谱仪1套1-2600兆核磁共振谱仪升级(不含磁体)1套1-3500兆核磁共振仪1套1-4600兆核磁共振仪1套1-5400MHz傅立叶变换核磁共振谱仪1套1-6400MHz傅立叶变换核磁共振谱仪1套  4.投标人资格条件:  符合《中华人民共和国政府采购法》第二十二条要求   按本投标邀请的规定获取招标文件。  5.有兴趣的投标人可从2011年7月1日至2011年7月21日每天上午9:00至下午17:00(北京时间)在东方国际招标有限责任公司(地址:北京市海淀区阜成路67号 银都大厦15层)1507室查阅或购买招标文件,本招标文件售价为500元/包,如需邮寄另加100元的邮资费用,邮寄过程中产生的任何问题由购买标书人自己负责,招标代理机构不负责任。售后不退。  6.所有投标文件应于2011年7月21日下午1:30时(北京时间)之前递交至北京市海淀区阜成路67号银都大厦15层,并须附有不低于投标金额1%的投标保证金,以招标机构为承受人。  7.兹定于2011年7月21日在北京市海淀区阜成路67号银都大厦15层公开开标。届时请投标人派代表出席开标仪式。  8. 招标机构名称:东方国际招标有限责任公司  地  址:北京市海淀区阜成路67号 银都大厦15层  邮  编:100142  电  话:68729912/ 68725599-8442  传  真:68458922  电子信箱:qzhao@osic.com.cn  联 系 人:赵倩戴龙  开户名(全称):东方国际招标有限责任公司  开户银行:招行西三环支行  帐号:862081657710001  备注:以电汇方式购买招标文件、递交投标保证金、支付中标服务费须在电汇凭据附言栏中写明招标编号及用途。
  • 纽迈申报核磁共振弛豫分析重大科学仪器专项
    2013年8月8日上午,科技部条财司吴学梯副司长及省厅、市局的领导来到纽迈科技开展考察工作。纽迈团队的核心成员同吴副司长一行分享了纽迈的成长历程、低场核磁共振仪器的开发经历及未来几年的发展规划,汇报了纽迈拟承担的重大科学仪器设备专项-高性能核磁共振弛豫分析仪的申报工作进展情况,并安排了现场实地参观。  吴副司长等领导对纽迈的仪器研发方向给予了充分的肯定,并对专项预算等工作提出了非常好的建议,鼓励纽迈在现有基础上再接再励,研发更好的国产核磁共振分析仪器,做好进一步的应用推广工作。
  • 高精度核磁共振仪器为页岩油评价提供依据
    斯伦贝谢公司推出高精度核磁共振仪器CMR-MagniPHI,主要针对有机页岩和非常规页岩,上限温度177℃,共振频率2MHz,可以从非常小的孔隙中获取高清核磁共振数据,提高对不同流体类型的识别。该仪器在回波间隔只有200μs的情况下,进行连续的T1纵向弛豫时间测量,确定出页岩孔隙度和储层流体类型和体积,用于求解可动油和不可动油、高黏度碳氢化合物、游离水、毛细管束缚水和黏土束缚水。除了在储量计算方面有更大的确定性外,还为页岩气储层侧向钻井钻遇点的选择、设计工程完井和压裂作业提供了新技术。测量原理与CMR(PLUS)一维核磁共振测井仪器不同,CMR-MagniPHI高分辨核磁共振测井仪在测量得到更加精确的孔隙度信息的同时,能够对T1和T2谱进行测量,从而提供T2-T1二维谱信息。通过T1差异,可以识别出可动油、不可动油、高粘度烃、自由水、毛管束缚水和粘土水。在页岩油气储层勘探开发中,将T2、T1弛豫谱结合,可以从有机质页岩最小孔隙度中获取高分辨核磁共振数据,以提高对不同流体类型的识别能力。CMR-MagniPHI 服务采用质子计数来利用 NMR 对氢原子的敏感性与服务的短回波间隔相关。这种评估 GIP 的方法提供了对整个页岩的直接和连续测量,独立于压力、温度或其他常用模型参数,而不管气体是游离的还是被吸附的,也不需要岩心。测量技术指标输出参数纵向弛豫时间(T1)和横向弛豫时间(T2)分布的连续测量;总孔隙度;高清测绘图和连续测井曲线;可动和不可动油;高黏度烃;游离水、毛细管束缚和黏土束缚水;多种渗透率相关性;MRF核磁共振流体识别油、气、水体积测井曲线及油黏度;水和油T2分布;校正后的含烃渗透率;油水测井均值T2分布。测井速度/(mh-1)束缚流体模式:549;长T1 环境:244;T1 T2 模式:137; 测量范围孔隙度:0~100p.u. 最小回波间隔:200μmT2 分布:0.3ms~8.0s标称的原始信噪比:32dB垂直分辨率/cm静态:测量孔径15.24动态(高精度模式):三级平均垂直分辨率22.86动态(标准模式):三级平均垂直分辨率45.72动态(快速模式):三级平均垂直分辨率76.20精度/p.u.总NMR孔隙度标准偏差:温度为24℃时,三级平均为±1.0NMR游离流体孔隙度标准差:24℃时,三级平均为±0.5探测深度/cm盲区(2.5%):1.27;中值(50%):2.84;最大值(95%):3.81机械技术指标 实践应用2021年第二季度,斯伦贝谢的新技术在全球各国得到越来越多的采用。以中国为例,斯伦贝谢首次部署了CMR-MagniPHI 高清核磁共振服务,完成了中国石油最大的页岩油勘探项目在大庆油田的测井作业。CMR-MagniPHI服务孔隙度和流体测绘数据,结合FMI-HD高清地层显微成像仪和Litho Scanner高清光谱服务数据,使中国石油能够确定可动油的存在,这成为页岩油评价的关键。
  • 固体核磁共振:第N感“看”世界
    【科学人说科学】固体核磁共振:第N感&ldquo 看&rdquo 世界  主讲人:孔学谦 浙大化学系研究员 国家青年千人计划入选者  让我们把日历调到2050年,展望一下未来人的生活:如果一个人感到身体不适,他只需掏出一个手机大小的仪器对自己快速扫描一番,人体器官影像、血液生化指标、新陈代谢状况等全面的医学信息便一目了然,然后通过网络传输给医生做出诊断。医生呢,也可以随时利用这个仪器监测药物的作用部位和治疗效果。一个小小的仪器协助人们实现了精准医疗、远程医疗的理想。当然,这只是我的一个科学&ldquo 狂&rdquo 想,但最有可能将此仪器变为现实的就是核磁共振技术(Nuclear Magnetic Res-onance,NMR)。  核磁共振怎么&ldquo 看&rdquo ?  提到核磁共振,你或许马上想到医院里巨大的圆筒形的核磁共振成像仪(MRI)。的确,核磁共振从最初作为一个物理现象被认知,到医用的核磁共振成像仪协助人类进行医疗诊断,已大大造福人类,当然我们还期待它有更广泛的应用。这一领域经过70多年的发展,已经诞生了5次诺贝尔奖,7位诺奖获得者。它究竟有多神奇呢?  &ldquo 核磁共振&rdquo 中的&ldquo 核&rdquo 是指原子核,&ldquo 磁&rdquo 是指磁场。理解核磁共振的原理需要相当的量子力学基础,但不妨碍我们对它有个感性的认识:原子核就像小磁铁一样具有磁性,在外界磁场中,原子核会像陀螺一样旋转。而原子核的旋转可以吸收和释放特定频率的电磁波,它与调频广播FM的频率相当,我们把这个现象称为核磁共振。核磁共振不但能用来分辨物质的空间分布例如可以形成人体器官组织的影像,也可以帮你精确鉴定化学成分&mdash &mdash &mdash 每种化学或生物物质都有其特征的核磁共振谱线,例如分析药物的化学组成配方。  与人类发明的光学、X射线、电子成像等诸多技术相比,核磁共振的优势很明显,第一,核磁共振技术只用到低能量的电磁场,不损伤被测物体,人畜无害 所以核磁共振成像在医学上是肿瘤诊断、脑科学研究的重要手段 第二,具有极高的化学分辨率。核磁共振技术在生物和化学领域被用来鉴定化学分子结构和研究蛋白质结构和功能。核磁共振技术就像给人附上了第N感,让人透过表象&ldquo 看&rdquo 到各种微观和内部的世界。  把材料&ldquo 看&rdquo 个究竟  在各种不同的研究对象中,我最想&ldquo 看&rdquo 到的是固体材料中内部结构和化学反应机理,从而为新型功能材料,新能源材料的研发提供指导。在加州大学伯克利分校从事博士后研究期间,我加入了美国能源部资助的重点研究团队,团队正在为解决发电厂的碳排放问题,开发新型材料用来捕捉收集燃烧排放的二氧化碳。课题组的负责人OmarYaghi教授,是一位材料课题组金属有机框架材料(MOF)领域的创始人,他发明了一种全新的非常有前途的MOF材料,它布满纳米级别的微小孔道,可以像海绵一样选择性、高容量地吸附二氧化碳气体。那么问题来了,这种高性能的吸附机理是怎样的?Yaghi教授很想知道,这种材料内部的化学官能团,是聚集在一起呢,还是分散的排列?  要解决这个关键问题,我们必须&ldquo 钻&rdquo 到材料内部去&ldquo 看&rdquo 个究竟。这就好像要区分口袋里不同颜色的玻璃球&mdash &mdash &mdash 如果我把MOF材料三维结构比作玻璃球,而官能团则是它们的颜色。常见的X光衍射,电子显微镜等手段,可&ldquo 摸&rdquo 出球的大小、位置,但无法区别球的颜色。我设计了一种特别的核磁共振方法,不但可以&ldquo 看&rdquo 到球的颜色,而且可以看到色彩的图案。最终我的方法解开了有序晶体结构中不同化学官能团的排布谜题,深入阐释了材料纳米结构对二氧化碳吸附功能的影响。相关成果陆续在《科学》,《自然》等杂志上发表,这让更多人认可了核磁共振对材料结构认知的突破性贡献。  期待&ldquo 看&rdquo 到更多  2014年9月,我辞去美国硅谷的工作,正式入职浙江大学化学系,组建全新的具有世界水平的固体核磁共振实验室。我们实验室的根本目标是提升核磁共振技术应用的深度和广度。一方面,我希望核磁共振能使材料学科研究水平由单纯的结构表征提升到对整个工作体系的全面认知。这其中的关键有赖于原位表征技术的突破&mdash &mdash &mdash 即在反应进行过程中对物质进行直接研究,从而得到全面、准确、实时的信息。我们实验室正在着手构建这样的原位核磁共振系统,将具备流动态,变温,光照等多种特殊功能。另一方面,我希望核磁共振成为学术界、工业界乃至日常生活中可以大规模应用的技术。我们正在致力于推进核磁共振技术的小型化、便携化,让小型核磁系统能够媲美巨大且昂贵的超导核磁共振仪,在科学研究中发挥更大的作用。  核磁共振是一个持续快速发展的学科,新的技术不断出现。超导磁场的强度正在不断突破极限 新型的脉冲序列不断推出,将核磁共振的功能不断拓展 新型的超极化方法正在研制之中,可将核磁共振灵敏度提升成千上万倍 在医学上,新的核磁造影剂可以标记病变细胞组织,提升成像精度 在物理学上,核磁共振被用作量子计算的载体 传统的能源行业也在应用核磁技术勘探石油天然气&hellip &hellip 毋庸置疑,核磁共振必将在未来的科学研究和人民生活中扮演越来越重要的角色,我希望我的实验室能在核磁共振技术的进化过程中发挥推动作用,并期待有一天开文所描绘的情景变为现实。
  • “低场核磁共振仪器近几年异军突起”
    仪器信息网讯 为进一步促进我国低场核磁共振技术研究工作的开展和学术交流,并推进低场核磁共振技术在各领域中的应用,2013年10月12日,由上海理工大学主办、纽迈电子科技有限公司协办的&ldquo 第五届全国低场核磁共振技术及应用研讨会&rdquo 在上海理工大学召开,150余名来自不同专业领域的专家和学者出席了会议,仪器信息网应邀参加了此次会议。本次大会主席上海理工大学医疗器械与食品学院院长刘宝林教授主持了会议,上海理工大学副校长刘平发表了演讲,王欣博士代表庄松林院士宣读了贺词。会议现场上海理工大学教授医疗器械研究所所长聂生东教授  代表本次会议主办方,上海理工大学的聂生东教授围绕磁共振技术中的二维谱做了主题报告,聂生东教授谈到:&ldquo 二维谱的出现是核磁共振(NMR)检测技术的一次飞跃,从二维谱中可以快速、精确地对不同组分进行区分,因而在测录井和常规实验中被广泛采用。&rdquo 聂生东教授从实验采集数据中反演出二维谱的过程,比一维反演需要解决更多、更复杂的问题. 聂生东教授带领的团队通过研究罚函数正则化和子空间正则化两大类方法,分析了不同二维反演算法的优点和不足. 根据对近年来国内外相关文献的深入分析可知,虽说目前已有的二维反演算法都存在一定的局限性,但其仍然具有很大的发展空间。中国石油大学地球物理与信息工程学院院长肖立志  作为我国核磁共振测井的开创者之一,肖立志围绕核磁仪器的发展历程做了报告,肖立志教授表示:&ldquo 目前,全球核磁共振仪器及耗材市场规模上百亿美金,其中占份额比较高的产品有液体高分辨核磁波谱仪、固体核磁波谱仪、医用核磁成像仪,而多孔介质核磁分析仪、井下油气核磁探测仪、地表资源核磁探测仪等低场核磁共振仪器近几年则异军突起。&rdquo   &ldquo 因高场核磁共振仪器因体积大、价格昂贵,低场化、小磁铁、便携式、低成本、个性化和掌上化成为了核磁共振技术的发展趋势。低场核磁共振仪器的第一应用是医学诊断,第二是化学研究,第三则是方兴未艾的&lsquo 多孔介质&rsquo 领域。如果说高场核磁共振仪器是医学诊断、化学研究的实验室里的&lsquo 阳春白雪&rsquo ,那么低场核磁共振仪器将成为每个实验室里的&lsquo 下里巴人&rsquo 。&rdquo   最后,肖立志指出:&ldquo 技术知识的普及、价格和速度的限制、解决方案的精细化要求、行业样品的多样性和丰富性是当前核磁共振仪器面临的挑战。&rdquo 上海交通大学纳米生物医学研究中心主任古宏晨  上海交通大学的古宏晨教授做了关于磁共振在生命科学领域应用的主题报告,古宏晨教授介绍说:&ldquo 磁共振成像成果(MRI)是八十年代发展起来的一项先进医学成像诊断成果,其性能比已有的其他成像诊断成果如X射线CT优越,主要用于软组织的检测与早期诊断,可以提高疾病早期诊断准确度。&rdquo   &ldquo 我目前的研究方向主要是磁共振成像造影剂。它是用来缩短成像时间,提高成像对比度和清晰度的一种磁性纳米材料。由于磁性纳米材料具有粒径小和强的可操纵性而被成功地应用于疾病的诊断与治疗以及生物物质的分离等方面,尤其是其作为造影剂在磁共振成像方面具有非常好的应用前景。&rdquo 海外华人磁共振协会主席、哈佛大学教授宋一桥  宋一桥主要介绍了核磁共振的基本原理以及核磁共振技术在多孔介质中测量流体信息的物理机制。之后,宋一桥针对生物医学、石油工业以及食品工业等不同研究领域中常见的多孔介质,如红细胞、骨骼组织、储层岩石及奶酪等特定对象,如何利用核磁共振技术有效地测量出人们所关心的物理信息,利用大量的实验谱图进行了详细的阐述,并说到:&ldquo 核磁共振技术在测量奶酪等多孔介质的流体信息有着自身的独到之处。&rdquo 分会场掠影  本次会议除了主会场主题报告外,还设置了食品农业、生命科学、地球物理与多孔介质、橡胶/材料/高分子4个分会场,来自不同专业领域的与会专家围绕着当前低场核磁共振技术发展中的一些关键问题,如短弛豫时间、微弱信号测量、分子扩散运动研究、提供成像分辨率等进行了广泛和深入的交流,并针对当前国内低场核磁共振技术应用及国产低场核磁共振仪器的发展提出建议。上海纽迈电子科技有限公司总经理杨培强  作为此次会议的协作方负责人,杨培强表示:&ldquo 纽迈科技自第一届全国低场核磁共振技术及应用研讨会起坚持与主办方展开紧密合作,到现在已经连续合作了5届。现在这个会议的规模越来越大,从最初的50人发展到了现在的150余人,吸引了越来越多从事低场核磁共振技术开发与应用研究的国内外专家学者。随着核磁共振用户数量的扩大,我们应该吸引更多的低场核磁厂家一起推动技术的推广与应用,厂家、高校、研究院所、学会、政府等通过合作共同参与到推广应用中,使核磁共振技术能够广泛地为用户和社会创造应用和研究价值才更有意义,为此中国仪器仪表学会分析仪器分会同意成立核磁共振分析仪器专业委员会,今后将由专委会担当起主办方的职责。&rdquo   &ldquo 目前低场核磁共振技术的发展趋势主要有三点,一是能够测量更微弱的信号;二是对核磁信号有更快捷的有效响应速度;三是能够获得更多的有用信息。低场核磁共振仪器则主要表现在由实验室科研用发展为现场便携式、工业在线式等。作为一家专注于低场核磁共振技术及仪器开发的公司,我们希望在低场核磁共振仪器&lsquo 快弛豫、弱信号&rsquo 方面,开拓出更多的应用领域,为国内外用户创造更多的应用价值。&rdquo 合影留念
  • 我国自主研发的核磁共振仪器研制成功,开始量产
    核磁共振仪器被誉为“尖端医疗设备皇冠上的明珠”,对于心脑血管、神经和肿瘤等多种重大疾病影像诊断有重大意义,但生产技术长期被国外封锁。不久前,我国自主研发的核磁共振仪器研制成功,开始量产。它的成像质量如何?是否达到相关标准?国产核磁共振仪器实现量产医疗检查费用正在逐步降低记者在中国科学院深圳先进技术研究院看到,生产线上生产的是我国自主研发的核磁共振仪器,画面中白色的圆柱体就是正在生产中的仪器,经过一系列复杂精密的程序之后,它将出现在医院的检查室里。北京大学深圳医院医学影像科副主任技师张辉介绍,我国自主研发的核磁共振仪器图像质量不逊色于国际先进的核磁共振仪器生产厂家,但价格比以前大大地降低,医院的医疗检查费也在逐步地降低。最新一代的国产核磁共振仪器已完全达到医院提出的相关要求北京大学深圳医院里,我国自主研发的核磁共振仪器正在工作。仪器工作的情况,实时传输到十五公里外的中国科学院深圳先进技术研究院。 记者了解到,这款仪器可以获得人体的全身影像,不仅分辨率更高,还加速了成像速度。总台记者 朱慧容:在分辨率不是很高的核磁共振机器做出来的影像,看不出来具体的病灶在哪里。在分辨率很高的核磁共振提供的影像上,明显看出这里可能是一个肿瘤的所在位置。中国科学院深圳先进技术研究院医工所副所长李烨介绍:“以前我们的核磁共振就像拍照片一样,你一动,照片就糊了。我们现在有了快速成像技术,就像拍电影一样,组织动也不怕,可以看到它动的过程。”据了解,第一批国产核磁共振仪器上市不久,科研团队将临床上出现的问题总结出来,逐步攻关。目前,最新一代的国产核磁共振仪器,已经完全达到了医院提出的图像质量要求。
  • 核电共振!一次实验事故或将颠覆核磁共振
    p style="text-align: justify "  新南威尔士大学研究团队 3 月 11 日在《自然》发文,报告成功实现了核电共振,仅使用电场改变单个原子核的量子态。这一构想最初由诺奖得主尼古拉斯· 布隆伯根(Nicolaas Bloembergen)在 1961 年提出,但此前从未有人实现。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 317px " src="https://img1.17img.cn/17img/images/202003/uepic/4b750993-05f6-4d24-9512-c7009275d9d1.jpg" title="2020-0314-2befe86bj00q76e8a001cd200fn00b1g00fn00b1.jpg" alt="2020-0314-2befe86bj00q76e8a001cd200fn00b1g00fn00b1.jpg" width="450" height="317" border="0" vspace="0"//pp style="text-align: center "strong莫莱罗教授、穆尔瑞克博士以及阿萨德博士。图片来源:UNSW/strong/pp style="text-align: justify "  如果核电共振能够得到广泛应用,它或许将动摇磁共振在科研和应用中的“垄断”地位,甚至对量子计算机的研发产生重要作用。/pp style="text-align: justify "  对于研究团队而言,这个成果完全是个意外惊喜。据悉,一次实验室事故差点烧毁了他们的仪器,却也让他们实现了诺奖得主尼古拉斯· 布隆伯根在 58 年前提出的一个设想:用电场操纵单个原子核。/pp style="text-align: justify "  半个多世纪以来,整个核电共振领域几乎一直处于休眠状态,因为第一次尝试证明它太具挑战性了。研究人员最初打算对单个锑原子进行核磁共振,锑是一种具有很大核自旋的元素。研究的第一作者阿萨德博士介绍说,我们的最初目标是探索量子世界和经典世界之间的边界,这是由核自旋的混沌行为设定,这纯粹是一个好奇心驱动的项目,没有考虑到应用,然而开始实验后,研究人员就意识到有些不对劲。/pp style="text-align: justify "  另一位主要作者文森特· 穆里克博士说:这种核的行为非常奇怪,拒绝在某些频率上做出反应,但在其他频率上表现出强烈的反应,这让我们困惑了一段时间,直到有了一个‘尤里卡时刻’,意识到我们做的是电共振,而不是磁共振。事情是这样的:研究人员制造了一个包含锑原子和特殊天线装置,优化后产生了一个高频磁场来控制原子核。实验要求这个磁场相当强,所以给天线施加了很大的功率,然后研究人员却把它炸毁了!/pp style="text-align: justify "  通常情况下,对于磷这样较小的原子核,当炸毁天线时‘游戏结束了’,所以必须扔掉这个装置。但对于锑核,实验继续进行,事实证明:在损坏之后,天线产生了一个强大电场,而不是磁场,故而让研究人员‘重新发现’了‘核电共振’。在展示了用电场控制原子核的能力之后,研究人员使用复杂的计算机模型来了解电场究竟是如何影响原子核自旋的。这一研究证明了核电共振是一种真正的局部微观现象:电场扭曲了原子核周围的键,迫使它转向。/pp style="text-align: justify "  用磁场和电场控制原子自旋,有怎样的差异?莫莱罗教授用桌球台进行比喻,他说:“磁共振就像举起整张桌子摇晃它,来控制某一个球。我们确实移动能那个球,但同时也会移动其他的球。而电共振是一个突破,这相当于给你一支台球杆,你能用它精确地把某个球打到期望的地方。”/pp style="text-align: justify "  如今磁共振技术已经被广泛应用于医学、化学、采矿等领域,而论文作者们指出,如果要在纳米尺度上进行应用,电共振的优势远大于磁共振。磁场的产生通常依靠大型线圈和强大的电流,并且磁场很难被约束在小范围内 相比之下,一个小型电极的尖端就可能产生很强的电场,并且电场更容易被约束或屏蔽。/pp style="text-align: justify "  研究作者们认为,如果将能够用电场控制的原子核用量子点连接起来,并实现规模化,或许有助于开发出基于原子核自旋和电子自旋的硅量子计算机,且不依靠共振磁场运行。/pp style="text-align: justify "  “这一发现意味着我们找到了一种方法,能够利用单原子自旋制造不依靠共振磁场运行的量子计算机,”莫莱罗教授说,“我们还能利用原子核作为精度极高的传感器,用于探测电场和磁场,甚至回答量子科学中的基本问题。”/pp style="text-align: justify "  相关论文:/pp style="text-align: justify "  Asaad, S., Mourik, V., Joecker, B. et al. Coherent electrical control of a single high-spin nucleus in silicon. Nature579, 205–209 (2020). https://doi.org/10.1038/s41586-020-2057-7/ppbr//p
  • 核磁共振波谱仪问卷调研开奖啦!
    为更好地了解当前核磁共振波谱仪技术及市场需求,仪器信息网对使用过核磁共振波谱仪的相关人员进行了问卷调研。本次调研共收到236份问卷,其中有效问卷139份,每人将获得10元话费,话费将于1-3个工作日发放。如有疑问可扫描文章结尾的二维码,添加小编微信沟通。核磁共振市场调研获得话费人员信息.xlsx另外,本次调研有主观题,经小编审核后共有70份问卷可参与抽奖。奖品设置:一等奖200元京东卡 5份;二等奖30元话费 10份;三等奖10元话费 20份。现公布中奖名单如下:一等奖:200元京东卡姓名电话张*158****6105李*159****1836贾*亮139****6630计*柱185****5100蔡*136****7925二等奖:30元话费姓名电话姓名电话赵*150****0633徐*136****0396刘*150****2550张*贤199****8846任*188****9825顾*苹189****8429吴*峰139****8762魏*158****6940初*旭132****2509蒋*刚150****0679三等奖:10元话费姓名电话姓名电话王*155****5631孙*玉139****8507徐*军139****1779赵177****4586崔*华187****8815白*飞156****2293王*豪156****1950秦*秋158****1109吕*137****1231张*186****4368马*珺199****7362宇文*然136****8268孙*林134****1326董*丽137****7782卫*青176****0091谢*东137****937袁*151****4682李*月180****8423王*津130****9573张*雨189****5961扫描二维码添加小编微信。
  • 我国首台引进的7T核磁共振仪开机
    近日,我国第一台7T(特斯拉)西门子人体全身磁共振成像系统开机仪式暨国际高场磁共振系统高峰研讨会在京举行,来自全球20多个国家和地区的代表出席。  此次引进的我国首台、亚洲第二台7T核磁共振成像系统,是目前世界上最强大的成像设备之一,日前已在中国科学院生物物理研究所安装调试完成,它将用于对脑功能成像的科学研究。  据中科院生物物理所认知实验室副主任卓彦介绍,衡量磁共振系统能力的最关键因素是信噪比,仪器的磁场越大,其对应的信噪比就越高。人们熟悉的医疗用核磁共振仪磁场强度大约只为1.5T,而生物物理所此前使用的是3T系统。由于敏感度低,已不适用于科学研究的进一步展开。  此次引进的7T系统可以探测到过去无法探测到的功能信号,成为研究诸如抑郁症、老年痴呆症、毒品成瘾、网瘾等疾患的重要手段。更具意义的是,7T系统进行频谱成像的分辨力高,加之它是多核成像,对生理和代谢中的核成像起到十分重要的作用,将大大扩展大脑的认知功能和疾病防治研究范围。  卓彦表示:“这台装置的强磁场可以使成像更加锐利,观测脑部的细微结构更加清晰。”  其实,引进7T核磁共振成像系统并不意味着“万事俱备,只欠使用”。科研人员还需要对这台新进口的设备进行创造性衔接、连通和整合,找到这台仪器适用的最佳条件,以使其更加完美地应用于脑成像研究。  另外,7T及更高超高场系统上的发射、接收系统及相关线圈的研究,一直是各国科学家竞争的焦点。目前,我科学家已具备该课题研发、改造和调试的能力。  卓彦告诉记者,生物物理所在视觉刺激呈现和反应信号同步记录系统、高磁场下32导同步脑电记录系统、猴类功能磁共振实验系统以及中央数据处理和储存系统等方面,已取得不小的成绩。
  • 核磁共振波谱仪常见问题解答
    p  1.元素周期表中所有元素都可以测出核磁共振谱吗?/pp  不是。首先,被测的原子核的自旋量子数要不为零 其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂) 第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。/pp  2.关于样品管,要注意什么?/pp  对于 5mm 探头来说,其中探头内部隔离样品和线圈的石英管内径只有5.4mm,如果样品管过粗或者弯曲,很容易卡在探头里甚至挤碎石英管 如果样品管过细或者有裂纹,很容易造成样品管在探头内破碎,污染探头。因此在使用样品管前,首先要在平面上滚动,确定平直 然后对灯光仔细检查有无裂纹 插入转子时要注意是否过紧过松。探头故障是我们遇到最多的问题,损坏探头可能造成数百到数万欧元的维修费用,建议谱仪管理员确保所有的送样人员了解这些细节,并检查样品管质量。/pp  3.溶剂的用量多少为合适?/pp  在我们的定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm 即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。/pp  4.高场的核磁共振仪和低场的核磁共振仪测出的谱有什么区别?/pp  首先,高场的核磁共振仪比低场的核磁共振仪灵敏度高,如果样品浓度低,低场的核磁共振仪测出的谱图信噪比低,改用高场的核磁共振仪信噪比会改善。其次,高场的核磁共振仪比低场的核磁共振仪测出的峰分得更开,谱图的解析更容易些。但是,需要准确的偶合常数时,用低场的谱仪测更好些。/pp  5.核磁共振仪有几种探头?/pp  从所测原子核的种类分,有:碳氢探头、碳氢磷氟四核探头、多核探头。还可以分为正向探头(测碳谱的灵敏度高)、反向探头(测氢谱的灵敏度高)、普通探头(每测四次完成一个循环得一个结果)和梯度场探头(不需要相循环,测一次得一个结果)。/pp  6.如果样品吹不出来,应该怎么处理?/pp  首先查看各个气压表示数,检查压缩空气是否正常。如果压缩气没问题,很可能是样品卡在探头里了。可以将探头的固定螺丝拧开,下沉约5厘米,然后装回,(或者说把探头拆下再装回去)再吹一次。一般可以吹出。/pp  7.lockdisp窗口中锁线的意义是什么?/pp  时间轴折叠的氘信号强度谱/pp  8.测试核磁共振需要多少样品量?/pp  不同场强需要的样品量不同,如300兆核磁、分子量是几百的样品,测氢谱大约需要2mg以上的样品,测碳谱大约需要10mg以上。600兆核磁测氢谱大约需要几百微克。/pp  9.配制样品为什么要用氘代试剂?怎样选择氘代试剂?/pp  因为测试时溶剂中的氢也会出峰,溶剂的量远远大于样品的量,溶剂峰会掩盖样品峰,所以用氘取代溶剂中的氢,氘的共振峰频率和氢差别很大,氢谱中不会出现氘的峰,减少了溶剂的干扰。在谱图中出现的溶剂峰是氘的取代不完全的残留氢的峰。另外,在测试时需要用氘峰进行锁场。/pp  由于氘代溶剂的品种不是很多,要根据样品的极性选择极性相似的溶剂,氘代溶剂的极性从小到大是这样排列的:苯、氯仿、乙腈、丙酮、二甲亚砜、吡啶、甲醇、水。还要注意溶剂峰的化学位移,最好不要遮挡样品峰。/pp  10.测试样品是否必须家TMS?/pp  测试样品加TMS(四甲基硅烷)是作为定化学位移的标尺,也可以不加TMS而用溶剂峰作标尺。/pp  11.怎样做重水交换?/pp  为了确定活泼氢,要做重水交换。方法是:测完样品的氢谱后,向样品管中滴几滴重水,振摇一下,再测氢谱,谱中的活泼氢就消失了。酰胺类的氨基氢交换得很慢,需要长时间放置再测谱。/pp  12.用哪些氘代溶剂测出的氢谱上看不到活泼氢的峰?/pp  甲醇、水、三氟醋酸都有重水交换作用,看不到活泼氢的峰。/pp  13.可以使用混合氘代试剂吗?/pp  可以。但是化合物在混合溶剂中由于溶剂效应,峰的化学位移和一种氘代溶剂的不同。/pp  14.为什么氘代丙酮、氘代DMSO(二甲亚砜)的溶剂峰为五重峰?/pp  溶剂峰的裂分是由于氘对氢的耦合,根据2n+1规律,两个氘对一个氢耦合裂分成五重峰。/pp  15.位移试剂有什么用途?/pp  当样品峰相互重叠时,可以用位移试剂把这些峰拉开,便于谱解析。/pp  16.不锁场可以测样品吗?/pp  为了使磁场稳定,测试样品时要进行锁场 如果不锁场也可以测试样品,但因为磁场稳定性差,测出的谱图分辨率较低。/pp  17.设置参数时,观察偏置表示什么意思?/pp  在测图谱时,我们不能同时观察0到几百兆赫的范围,所以我们先设置一个谱宽,以这个谱宽为窗口去观察共振的某一范围。设置观察偏置就是定了观察位置。所以改变观察偏置,谱中各峰的位置就会改变,实质也是观察范围改变了。/pp  18.为什么同一碳上的两个质子会有不同的化学位移?/pp  因为同碳上的这两个质子表现出了磁不等价。如有些难翻转的环上的碳位置固定,不能旋转,它上面的两个质子处于环的不同位置,受到的磁屏蔽不同,所以化学位移不同。还有的碳虽然不在环上,但是连接了两个大的集团,旋转受阻,两个质子收到的磁屏蔽不同,化学位移也不同。/pp  19.化学位移可以给出哪些结构信息?/pp  氢谱中各种基团的化学位移变化很大,不容易记忆,但只要牢记住几个典型基团的化学位移就可以解决很多问题。如:甲基0.8~1.2ppm,连苯环的甲基2ppm附近,乙酰基上的甲基2ppm附近,甲氧基和氮甲基3~4ppm,双键5~7ppm,苯环7~8ppm,醛基8~10ppm,不接氧的亚甲基1~2ppm,接氧的亚甲基3~4ppm。/pp  20.偶合常数可以给出哪些结构信息?/pp  可以从偶合常数看出基团间的关系,邻位偶合常数较大,远程偶合常数较小。还可以利用Kapulus公式计算邻位氢的二面角。对于有双键的化合物,顺式的氢之间偶合常数为6~10Hz,反式的氢之间偶合常数为12~16Hz。/pp  21.NOE效应与去偶作用有什么不同?/pp  偶合是解决氢基团之间相邻的关系,它们之间的能量是通过键传递的。NOE效应是解决氢之间的空间相近,它们之间的能量是通过空间磁场传递的。/pp  22.质子偏共振去偶可以用来确定碳的类型,为什么现在常用DEPT谱,而不同质子偏共振去偶谱?/pp  质子偏共振去偶区分伯、仲、叔、季碳的方法是根据裂分成四重、三重、二重和单峰,如果峰离得近会产生重叠,不容易解析,而DEPT区分伯、仲、叔、季碳的方法是根据峰向上或向下,峰不会重叠,并且质子偏共振去偶的灵敏度比DEPT法的灵敏度低得多,所以现在常用DEPT谱区分碳的类型。/pp  23.门控去偶和反门控去偶法有什么不同? ./pp  门控去偶和反门控去偶之间的区别是工作时去偶门和接收门打开的时间不同。门控去偶谱可以从峰的裂分计算碳-氢偶合常数,反门控去偶是使分子各碳峰的强度相同以便定量。/pp  24.DEPT谱有几种表示方法?/pp  DEPT谱有两种表示方法:一种是DEPT135° 谱,伯碳向上,仲碳向下,叔碳向上,季碳消失,DEPT90° 谱只有叔碳峰,DEPT45° 谱季碳消失 另一种是把上面的谱编辑后,一个谱只有伯碳峰,另一个谱只有仲碳峰,还有只出叔碳峰或只出季碳峰。/pp  25.都有哪些二维核磁共振谱?/pp  有:1H-1H相关COSY谱、1H-1H相关NOESY谱、13C-1H相关COSY谱、远程13C-1H相关谱、同核J分解谱、相敏COSY、与NOESY谱类似的ROESY谱(NOESY谱解决大分子效果好,ROESY谱解决中等分子效果较好)、TOCSY谱(自旋系统里所有的氢之间都出相关峰)以及HSQC谱(异核单量子相干)等。/pp  26.什么是三维谱?/pp  三维谱是一个立体图,它的相关峰是立体中间的点,用平面切开这个立体所得的平面图就是二维图。/pp  27.解析合成化合物的谱、植物中提取化合物的谱和未知化合物的谱,思路有什么不同?/pp  合成化合物的结果是已知的,只要用谱和结构对照就可以知道化合物和预定的结构是否一致。对于植物中提取化合物的谱,首先应看是哪一类化合物,然后用已知的文献数据对照,看是否为已知物,如果文献中没有这个数据则继续测DEPT谱和二维谱,推出结构。对于一个全未知的化合物,除测核磁共振外,还要结合质谱、红外、紫外和元素分析,一步步推测结构。/pp  28.用X射线晶体衍射确定蛋白质的结构与核磁共振法有什么不同?/pp  用X射线晶体衍射确定蛋白质的结构需要先把蛋白质制成晶体,在固体条件下测。核磁共振法要把蛋白质溶解在溶液中,在液体条件下测试。这两种条件测得的结果是不一样的。因为蛋白质在生物体中多以溶液状存在,所以核磁共振法测得的结果更接近实际状态。/pp/p
  • 核磁共振、顺磁共振、磁共振成像......你想要的都在这里
    p style="text-align: justify "  磁共振指的是自旋磁共振(spin magnetic resonance)现象,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。人们日常生活中常说的磁共振成像(Magnetic Resonance Imaging,MRI),是基于核磁共振现象的一类用于医学检查的成像设备。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong那么,你真正了解核磁共振(NMR)、磁共振成像(MRI) 及电子顺磁共振(EPR/ESR)吗?/strong/span/pp style="text-align: justify "  strong核磁共振波谱(NMR)/strong/pp style="text-align: justify "  核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR )研究的是原子核对射频辐射(Radio-frequency Radiation)的吸收。1945 年布洛赫(Bloch )和伯塞尔 (Purcell) 证实了原子核自旋的确实存在, 他们为此共同获得了1952 年诺贝尔物理奖。1991年诺贝尔化学奖授予了R.R.Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖的授予,充分说明了核磁共振的重要性。/pp style="text-align: justify "  自1953年出现第一台核磁共振商品仪器以来,核磁共振在仪器、实验方法、理论和应用等方面有着飞跃的进步。目前,NMR不仅是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析,其所应用的学科已经从化学、物理扩展到了生物、医学等多个学科。/pp style="text-align: justify "  strong磁共振成像(MRI)/strong/pp style="text-align: justify "  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。/pp style="text-align: justify "  MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。经常为人们所利用的原子核有: sup1/supH、sup11/supB、sup13/supC、sup17/supO、sup19/supF、sup31/supP。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。/pp style="text-align: justify "  strong电子顺磁共振(EPR/ESR)/strong/pp style="text-align: justify "  电子顺磁共振(Electron Paramagnetic Resonance 简称EPR),或称电子自旋共振 (Electron Spin Resonance 简称ESR),是研究电子自旋能级跃迁的一门学科,是直接检测和研究含有未成对电子的顺磁性物质的现代分析方法。/pp style="text-align: justify "  自1945年物理学家Zavoisky首次提出了检测EPR信号的实验方法至今,电子顺磁共振技术的理论、实验技术和仪器结构性能等诸多方面都有了很大的发展,特别是20世纪70年代随着计算机和固体器件等电子技术的发展及其推广应用,使EPR实验技术有了许多重大的突破。随着现代科学技术的发展,EPR已经在物理学、化学、材料学、地矿学和年代学等许多领域获得了越来越广泛的应用。/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202006/uepic/675b0ee9-ba73-4bfb-892b-46b308191a24.jpg" title="ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" alt="ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" width="600" height="131" border="0" vspace="0"//a/pp style="text-align: justify "  自20世纪40年代以来,磁共振技术的持续发展对生命科学、医药、材料等多学科的发展起到了巨大的推动作用。而相关学科的快速发展,对磁共振技术也提出了更高的要求。在多方需求的碰撞下,核磁共振(NMR)、电子顺磁共振(EPR/ESR)、磁共振成像(MRI)等不同分支的磁共振技术也逐渐“百花齐放” DNP、超高转速固体核磁、液相色谱核磁联用等各种新的技术和应用层出不穷,为磁共振的发展提供了强劲的动力,其应用范围跨越了物理、化学、材料、生物等多个学科。/pp style="text-align: justify "  为了促进和加强国内外磁共振工作者的学术交流与合作,仪器信息网、北京波谱学会、《波谱学杂志》将于2020年6月9-10日联合举办“第四届磁共振网络会议”(iConference on Magnetic Resonance,简称iCMR 2020)”。本次会议开设了磁共振(MR)新技术及其应用、核磁共振(NMR)技术及其应用、顺磁共振(EPR/ESR)技术及其应用、磁共振成像(MRI)技术及其应用四个专题,更大范围涵盖了波谱相关技术及应用,共计安排了11位专家报告,并吸引了布鲁克、日本电子、国仪量子、纽迈分析、青檬艾柯等国内外的知名企业参与。/pp style="text-align: justify "  而且,特别值得一提的是,本次会议邀请到了清华大学宁永成教授分享其八本书的故事。非物理专业出身,如何深入理解和应用磁共振波谱?届时,宁永成教授和杨海军高工的专家对话环节或将让您醍醐灌顶。span style="color: rgb(255, 0, 0) "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"立即报名》》》/a/strong/span/pp style="text-align: center "strong报告日程/strong/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"strong磁共振(MR)新技术及其应用(6月9日)/strong/a/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "09:20-09:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target="_blank"开幕致辞—非物理专业出身,如何深入理解和应用磁共振波谱?/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target="_blank"杨海军(清华大学)/a/p/td/trtrtd width="14%"p style="text-align:center "09:30-10:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target="_blank"多核人体磁共振成像(MRI)新仪器及应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target="_blank"周欣(中国科学院精密测量科学与技术创新研究院)/a/p/td/trtrtd width="14%"p style="text-align:center "10:00-10:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target="_blank"基于量子技术的单分子磁共振谱学和成像/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target="_blank"石发展(中国科学技术大学)/a/p/td/trtrtd width="14%"p style="text-align:center "10:30-11:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target="_blank"布鲁克固体核磁新技术简介/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target="_blank"王秀梅(布鲁克(北京)科技有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "11:00-11:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target="_blank"“非常见”原子核的固体核磁共振研究/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target="_blank"徐骏(南开大学)/a/p/td/tr/tbody/tablep style="text-align: center "br//pp style="text-align: center "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"核磁共振(NMR)技术及其应用(6月9日)/a/strong/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "14:00-14:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target="_blank"基于磁共振技术的蛋白质动态调控机制研究/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target="_blank"姜凌(中国科学院精密测量科学与技术创新研究院)/a/p/td/trtrtd width="14%"p style="text-align:center "14:30-15:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target="_blank"日本电子特有核磁技术简介/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target="_blank"叶跃奇(JEOL(Beijing))/a/p/td/trtrtd width="14%"p style="text-align:center "15:00-15:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target="_blank"核磁共振仿真波谱仪开发与教育应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target="_blank"汪红志(华东师范大学上海市磁共振重点实验室)/a/p/td/trtrtd width="14%"p style="text-align:center "15:30-16:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target="_blank"Bruker液体核磁新进展/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target="_blank"徐雯欣(布鲁克(北京)科技有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "16:00-16:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target="_blank"基于密度泛函理论的高精度有机分子化学位移计算在线系统构建及其在有机分子核磁谱图指认及结构确证中的应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target="_blank"李骞(中国科学院化学研究所)/a/p/td/tr/tbody/tablep style="text-align: center "br//pp style="text-align: center "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"顺磁共振(EPR/ESR)技术及其应用(6月10日)/a/strong/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p09:00-09:30/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target="_blank"若干血红素衍生物的电子自旋顺磁共振研究/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target="_blank"李剑峰(中国科学院大学)/a/p/td/trtrtd width="14%"p09:30-10:00/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target="_blank"电子顺磁共振在研究青蒿素激活机制中的应用/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target="_blank"刘国全(北京大学药学院)/a/p/td/trtrtd width="14%"p10:00-10:30/p/tdtd width="48%"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target="_blank"光合作用水裂解催化中心的仿生模拟/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target="_blank"张纯喜(中国科学院化学研究所)/a/p/td/trtrtd width="14%"p10:30-11:00/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target="_blank"顺磁共振仪器——从系综到单自旋/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target="_blank"许克标(国仪量子(合肥)技术有限公司)/a/p/td/trtrtd width="14%"p11:00-11:30/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target="_blank"利用电子顺磁共振(EPR)指导有机合成/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target="_blank"蒋敏(杭州师范大学)/a/p/td/tr/tbody/tablep style="text-align: center "br//pp style="text-align: center "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"磁共振成像(MRI)技术及其应用(6月10日)/a/strong/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "14:00-14:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target="_blank"心脏磁共振成像中的黑血技术/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target="_blank"丁海艳(清华大学)/a/p/td/trtrtd width="14%"p style="text-align:center "14:30-15:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target="_blank"低场核磁成像在临床前科研中应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target="_blank"丁皓(苏州纽迈分析仪器股份有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "15:00-15:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target="_blank"智能集成化磁共振成像系列仪器及应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target="_blank"刘化冰(北京青檬艾柯科技有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "15:30-15:40/p/tdtd width="48%"p style="text-align:center "现场讨论环节/p/tdtd width="37%"p style="text-align:center "杨海军主持/p/td/trtrtd width="14%"p style="text-align:center "15:40-16:10/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target="_blank"我的八本书/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target="_blank"宁永成(清华大学)/a/p/td/trtrtd width="14%"p style="text-align:center "16:10-16:40/p/tdtd width="48%"p style="text-align:center "专家对话/p/tdtd width="37%"p style="text-align:center "杨海军@宁永成/p/td/trtrtd width="14%"p style="text-align:center "16:40-17:00/p/tdtd width="48%"p style="text-align:center "现场答疑/p/tdtd width="37%"p style="text-align:center "全体参会人员/p/td/tr/tbody/tablep span style="color: rgb(255, 0, 0) "strong 特别惊喜:/strong/span为了提高磁共振工作者工作和学习的热情,鼓励大家积极参与会议交流环节,本次会议还特别安排了抽奖环节,将从积极提问的参会者中抽取幸运者,送出主办方精心准备的礼品(小度智能音箱、京东卡)!/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/aff21f8a-cd43-40a2-bb8d-8fa2d2012782.jpg" title="二维码图片_6月3日17时44分31秒.png" alt="二维码图片_6月3日17时44分31秒.png"//pp style="text-align: center "strong扫码报名,免费参会/strong/p
  • 布鲁克公布1.2 GHz高分辨率蛋白质核磁共振(NMR)数据
    德国柏林——2019年8月26日——布鲁克公司(纳斯达克代码:BRKR)在Euroismar 2019(https://conference.euroismar2019.org)上公布了1.2GHz高分辨率蛋白质核磁共振(NMR)数据。布鲁克2台1.2GHz超导磁体已在布鲁克瑞士磁体工厂达到目标场强,创造了稳定、均匀的NMR磁体的世界纪录,可用于高分辨率和固态蛋白质NMR在结构生物学中的应用,以及用于研究固有无序蛋白质(IDPs)。在EUROISMAR 2019上,布鲁克及其科学合作者展示了1.2 GHz高分辨率NMR数据,这些数据是使用新的1.2 GHz 3 mm三通道反向TCI低温探头获得的。布鲁克独特的1.2GHz超高场核NMR磁体采用了一种新的混合设计,高温超导体(HTS)在里层,低温超导体(LTS)在外层,这两者一起为高分辨率蛋白质NMR提供了极其苛刻的稳定性和均匀性。一旦进一步的系统开发和工厂测试完成,意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授有望成为第一批获得1.2 GHz NMR谱仪的客户,这一过程预计还需要几个月的时间。在1.2 GHz系统上对CERM测试样本进行初始数据采集后,他们表示:“在布鲁克瑞士超高场设备上,已经获得了突触核蛋白的高分辨率谱图数据,突触核蛋白是一种与阿尔茨海默氏症和帕金森氏症等疾病相关的固有无序蛋白质。此外,我们还能对与多种癌症相关的蛋白质的第一个1.2 GHz NMR谱图数据进行了审查。毫无疑问,1.2 GHz仪器分辨率的提高——由于在高磁场中色散的增加而成为可能——将有助于推动结构生物学等重要研究领域的研究。一旦最终开发和工厂评估完成,我们期待在实验室收到1.2 GHz NMR谱仪。"布鲁克 BioSpin集团总裁Falko Busse博士表示:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场NMR客户对我们的信任,并且我们为在1.2 GHz频率下生成世界上第一个高分辨率蛋白质核磁共振(NMR)数据而感到自豪。虽然我们尚未完全完成新1.2 GHz系统的所有开发,但我们最近的快速进展证明了我们致力于创新,并致力于与客户合作开发有利的科学能力。”与先前宣布的Ascend 1.1 GHz磁体类似,Ascend 1.2 GHz混合HTS/LTS磁体是一个标准孔(54 mm)的双层磁体系统,其漂移和均匀性规格与布鲁克现有的900 MHz和1 GHz超高场NMR磁体相似,确保与一系列NMR探头类型和谱仪附件兼容。布鲁克公司的Ascend™ 1.2 GHz NMR磁体利用了先进的导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性,这些技术是为ENC 2019宣布作为产品的Ascend 1.1 GHz磁体成功开发的。1.2GHz 1H-15N 2D BEST-TROSY(左)和1.2GHz 3D 15N编辑的NOESY-HSQC 2D平面,500μM泛素样品,13C/15N标记,溶解在90%H2O和10%D2O溶液中。两个实验均使用3mm TCI低温探头进行记录。
  • 全球首款微型核磁共振仪 中科科尔获得代理权
    2010年11月10日,PicoSpin宣布推出全球首款微型核磁共振光谱仪PicoSpin-45 NMR, 此前该产品设计已获2011爱迪生最佳新产品奖提名,并于2011年2月7日获得自然科学和医学领域2011爱迪生最佳新产品奖,颁奖典礼将于2011年4月5日在纽约举行。 PicoSpin-45 质子核磁共振光谱仪是化学仪器领域一个新的突破。相对于传统核磁共振光谱仪,占用面积更小,价格更实惠,液体样品分析分辨率高达100ppb,可用于食品制造、医药、石油化工、生物燃料、化妆品及化学教育等行业。 PicoSpin-45 NMR系统包括:永磁体、发射器、接收器、数据采集、可编程脉冲序列发生器、以太网接口和直观的基于Web的控制软件。通过前面板装置,液体样品可方便地注入到内部毛细管里,仅需20微升液体就可获得一个光谱。高稳定性温度控制的永磁铁确保免维护运行,无需液体制冷剂,操作无需专业知识和培训。 PicoSpin 公司总裁兼首席执行官Price博士表示:&ldquo 核磁共振波谱仪是最强大的化学分析工具。我们设计的产品,真正改变了核磁共振波谱仪的前景。凭借低价格和紧凑的外形,PicoSpin -45 NMR可以应用在过去认为不可能应用的领域。现在,您可以在您的实验室台上就拥有一台核磁共振波谱仪,您可以在工厂内设置多个单元,通过一个鼠标就可以持续监测和控制过程流体,您的学生可以在化学实验室和研究项目中实际操作核磁共振波谱仪。&rdquo 北京中科科尔仪器有限公司提供流体处理系统,实验室设备,分析仪器,电化学仪器,安全防护,温度设备等优质产品,以及为您供最为专业的技术服务与支持。
  • 第一届核磁共振分析仪技术创新论坛圆满召开
    由纽迈科技主办的“第一届核磁共振分析仪技术创新论坛”于10月13日在上海理工大学圆满召开,本届论坛主题为“先追赶,后超越”。  本届论坛有40多位国内核磁共振仪器专家参加。其中:中国石油大学长江学者肖立志教授,厦门大学闽江学者特聘教授陈忠教授, 中海油服有限公司范伟工程师,东南大学陆荣生博士,深圳市贝斯达医疗器械有限公司罗会俊高工等等均做特邀报告。   东南大学陆荣生博士   厦门大学陈忠教授  本届论坛重点讨论核磁共振仪器技术所面临的机遇、挑战及未来发展方向,致力于加强核磁仪器研发与工程化同行之间的技术交流,促进国产核磁仪器未来更好的发展。论坛研讨内容涉及以下多个方面:  (1)国产核磁共振仪器的发展方向与趋势   (2)国产核磁共振仪器的质量控制与提升   (3)国产核磁共振仪器的标准化   (4)国产核磁仪器亟需突破的技术瓶颈   (5)国产核磁仪器的研发与推广   (6)核磁共振技术与仪器的优势与劣势分析   (7)成熟领域应用的新方法   (8)未知领域的探索与进展   (9)低场核磁应用新方向的展望。
  • 这段文字告诉你:布鲁克核磁共振波谱仪有多强悍
    p  众所周知,在化学化工、生命科学及医药研究等领域,对物质结构的分析和鉴定是开展科研工作最基本的要求。核磁共振波谱分析是确定小分子有机化合物、药物、聚合物以及生物分子结构最常用的分析方法,并可应用于混合物的纯度分析和鉴定,在化工、制药、材料、环境、生物和医学等各学科得到了广泛使用。/pp  目前,河南科技大学化工与制药学院正承担“国家自然科学基金”、“国家863计划”、“国家973计划”及河南省科技攻关项目等各级各类科研项目数十项,相关课题组在新型有机材料、新型药物载体、野生植物药材提取、高分子复合材料、环境污染物等方面开展了大量的研究工作,这些研究工作的顺利开展和进行都离不开核磁共振波谱分析的大力协助和密切配合,没有核磁共振波谱仪,这些研究工作的时间进度和完成质量将受到极大的影响。/pp  经充分调研,河南科技大学化工与制药学院拟以单一来源方式购买布鲁克公司生产的AVANCE III HD 400型号核磁共振波谱仪。这是因为:该仪器主要由超导磁体、射频系统、二合一宽带观察探头、计算机工作站等组成。操作软件具有强大的数据管理功能,可保证数据的完整性和安全性 原始数据、仪器条件和处理参数等关联信息由软件自动建立,采用检索方式可方便地从在数据库中调取和使用 仪器使用维护成本较低,开展分析性价比高 并为未来的谱仪升级奠定基础。该仪器的购置可满足河南科技大学化学化工、材料科学、环境科学、生物制药等学科平台的科学研究、人才培养及社会服务。/pp  1. 布鲁克公司是世界上生产NMR谱仪的最专业化厂家,在超导材料制备、电子控制、用户软件开发等方面有着雄厚的实力,其span style="color: rgb(255, 0, 0) "最新产品Avance 系列核磁共振波谱仪性能卓越、运行稳定、自动化程度高、用户界面友好,在全球占有超过70%市场份额,在中国国内拥有非常高的用户认可度,有超过80%的市场份额。/span在中国的售后服务团队技术力量雄厚,工程师拥有多年的波谱仪安装和维修经验。在北京办公室有液体和固体探头维修中心,可以在国内修理大部分常见探头故障,这样缩短了探头维修时间,节省了费用。现有技术力量雄厚的核磁应用专家和专职核磁维修工程师队伍,先进齐全的安装维修工具,在上海建有保税库,充足的零配件备份。专职应用工程师在北京应用实验室或者上海周边定期开展多层次的培训班。/pp  2. 核磁共振波谱仪的探头用于激发检测核并探测核磁共振信号,其性能对核磁共振实验至关重要。由于河南科技大学本次拟购置的核磁共振波谱仪主要为化学化工、材料科学、环境科学、生物制药等相关学科的化合物分子结构及分子之间相互作用研究提供服务,需要配备灵敏度较高的探头,并且具备检测H、P、C、F图谱的功能。在调研中发现:布鲁克公司提供的BBFO SmartProbeTM宽带二合一探头,检测范围:1H、19F及31P-15N,具有非常高的1H、19F、13C、31P灵敏度。该探头配备全自动调谐/匹配附件,极大方便了检测核之间的切换。同时,该探头的梯度场强度为50 G/cm,是同类产品中梯度场强度最高的产品。由于目前大多数核磁实验都是基于脉冲梯度场的实验,梯度场强度越高,对实验效率帮助越高。/pp  3. 布鲁克公司提供的BBFO SmartProbeTM二合一宽频探头能够提供1H/19F去偶功能。1H/19F的耦合引起的19F谱裂分将会对19F的分析造成很大困难,19F/13C去偶对含氟化合物研究意义不大,而1H/19F去偶实验对于含氟化合物的研究有很大帮助意义。目前只有布鲁克公司生产的BBFO系列探头具备具有1H/19F去偶功能。/pp  4. 超导磁体的作用是提供一个稳定均匀的高强度磁场,其稳定性和均匀性对核磁共振谱仪至关重要。在调研中发现:布鲁克400MHz核磁共振谱仪的磁场漂移 6 Hz/小时,配备36组匀场线圈保证磁场高度均匀性, 液氦消耗量 13 ml/h,液氦保持时间大于300天,配备的EDSTM外部干扰抑制系统对外部电磁干扰抑制效率超过99%。span style="color: rgb(255, 0, 0) "在磁场的稳定性和均匀性方面,布鲁克公司的400MHz核磁共振谱仪性能都要优于其他公司产品。/span并且,液氦消耗作为核磁共振谱仪日常维护最重要的一部分,布鲁克公司的产品液氦消耗量要小于一般的进口设备。因此,从超导磁体的稳定性、均匀性以及日常维护来讲,布鲁克公司产品的性能都更加优越。/pp  5. 软件支持。布鲁克除了功能强大的谱仪控制软件和数据分析软件TopSpin外,还能提供种类丰富地辅助分析软件,如:CMC-Assist辅助分析软件:能够对1H的谱峰归属、多重峰分析、定量分析、图谱与已知结构的一致性进行辅助确认;CMC-se小分子结构辅助分析软件:能够对未知结构的小分子根据测得的图谱进行结构辅助推导;NUS非均一采样软件:能够极大缩短多维谱的采样时间 /pp  6. 从今后的谱仪升级来看,布鲁克可以提供适用于半固体(凝胶、组织等)样品研究的高分辨魔角旋转探头(HR-MAS),独家生产的多种氦气超低温探头、液氮低温探头(灵敏度高,购买和使用成本较低)及全套液相-固相萃取-核磁-质谱联用附件可供升级做微量样品,天然产物或代谢产物,而且所有更高灵敏度探头都可以具备独家生产的全自动调谐功能。/pp  学校组织行业内技术专家对该项目进行了论证,一致认为AVANCE III HD 400型号核磁共振波谱仪能够满足河南科技大学化学化工、材料科学、环境科学和生物制药等学科研究的的需求且仅能从唯一供应商采购,建议进行单一来源采购。/pp  最终,布鲁克AVANCE III HD400核磁共振波谱仪中标该项目,仪器报价为205万元,产品供应商为河南朗恩仪器有限公司。/p
  • Bruker公司核磁共振波谱仪落户昆明学院
    在各级领导的关心支持下,昆明学院2014年经公开招标购置的大型分析检测仪器---400M核磁共振波谱仪,经过近一个月的安装、调试,近日已检测完毕,所有性能指标都已达到或超过仪器出厂参数要求。 目前云南省内只有少数几家院所拥有核磁共振波谱仪,这台仪器的投入使用,填补了学校有机检测仪器的一个空白,使昆明学院科研硬件实力更上一个台阶,为昆明学院化学、生物、农学、医学等相关学科的发展提供了更好的科研平台,也为昆明学院更好地服务社会创造了条件。 该设备采用Bruker公司推出的第三代磁体技术,可以完成1H, 13C, 15N, 19F, 31P等多种核的一维实验;DEPT(区别伯仲叔季碳)实验、COSY(氢氢近程相关)、TOCSY(氢氢全相关)、NOESY(氢氢空间相关)、 ROESY(旋转坐标系氢氢空间相关)、HSQC(碳氢直接相关)、HMBC(碳氢远程相关)、J-Resolved(耦合常数分辨谱)等多种二维实验; 以及变温核磁等六百多种实验。测试结果对有机物结构的确定具有决定性作用。目前,该核磁仪安装在惟真楼3109。
  • 布鲁克 2018 核磁共振 NMR 培训计划 (核磁共振高级培训课程)
    布鲁克 2018 核磁共振 NMR 培训计划详情请前往以下网址下载http://www.instrument.com.cn/netshow/SH100343/down_880258.htm布鲁克 2018 核磁共振 NMR 培训计划布鲁克 2018 核磁共振 NMR 培训计划核磁共振 NMR Avance 1D/2D (Avance 谱仪操作培训)核磁共振 NMR Advanced NMR Methods(高级 NMR 方法培训)核磁共振 NMR Avance Service and Maintenance(Avance 谱仪维护)核磁共振 NMR Avance Solid State NMR Methods(Avance 固体核磁操作培训)
  • 纽迈分析网络讲堂“低场核磁共振新技术的应用介绍”即将开讲
    纽迈分析网络讲堂“低场核磁共振新技术的应用介绍”即将开讲随着深入的研究,市场对低场核磁共振技术的需求不断提高,如高分辨率、超短弛豫分析等,对此纽迈分析研发出数个新的采样及成像序列,开发出了相应领域新的解决方案,并将于9月8日在仪器信息网的网络讲堂开讲“低场核磁共振新技术的应用介绍”,届时,纽迈分析将会同特邀嘉宾-同济大学佘安明老师向新老客户介绍低场核磁共振的新技术与新应用。内容主要:1、无损测量多孔介质的孔径大小及分布(2nm-500nm); 2、颗粒表面特性分析(比表面积);3、清醒小动物体成分分析及脂肪分布成像; 4、水凝胶分离机理研究;5、致密砂岩的孔隙度分析; 6、高聚物等致密样品的弛豫分析;7、基于低场核磁共振技术的水泥基材料特性研究。网络讲堂时间:2016年9月8日 10:00-11:30报名方式:1、点击以下链接,登录仪器信息网报名参与在线听讲并提问:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2031 2、您还可以微信回复留下您的姓名、单位、邮箱和联系电话,我们会派专人和您联系,邀请您加入网络讲堂。此次网络讲堂主讲人是纽迈分析应用方法研发经理高杨文先生,他主要负责低场核磁新方法的研发及应用,近两年其团队协助成功推出多个新产品,在市场上取得不俗的销售成果。纽迈分析还有幸邀请到了同济大学佘安明老师,佘老师主要研究水泥基材料荷载-环境耦合作用下细观损伤劣化、水泥基材料防护与自修复技术等,在水泥孔隙结构研究方面积累了丰富的经验。通过本次网络讲座,相信您将会对低场核磁共振有一个全新的认识!新的技术、新的解决方案、专业技术人员在线答疑,精彩纷呈,纽迈分析网络讲堂热忱期待各位网友共同参与!届时,我们还会从线上抽取8名幸运观众,赠送精美礼品。更多信息请关注纽迈分析公司网站
  • 给地球做个核磁共振 助力油井勘探
    科学日报报道,地球磁场,作为人们熟悉的长距离方向指示器,常在从地理学到考古学的一系列应用中受到研究调查。现在,它提供了一种新技术的基础,后者或可以用于定义自然环境里流体混合物的化学组成成分。核磁共振检测化学组成成分所需的异常敏感性 美国能源部(DOE)劳伦斯伯克利国家实验室的研究人员进行了一项概念验证的核磁共振(NMR)实验,也就是利用高度敏感的磁强计和可以与地球 磁场相比拟的磁场分析碳氢化合物和水的混合物。这项实验是在世界上最重要的核磁共振权威人士之一亚历山大· 派因斯(Alexander Pines)教授的核磁共振实验室内进行的。这项研究是美国加州大学伯克利分校的物理学家德米特里· 布德科尔(Dmitry Budker)教授与国家标准和技术研究所(NIST)的其它研究人员进行的长期合作的一部分。研究结果被发表在期刊《应用化学》并作为封面展示。研究联席作者有派因斯实验室的博士研究生保罗· 甘瑟尔(Paul Ganssle)。 &ldquo 这个基础研究项目旨在解答一个更宽泛的问题:我们是否能够在无需采样或者包封物体的前提下,远距离感知这个物体的内部化学和物理特性?&rdquo 美国 加州大学伯克利分校派因斯研究小组的首席调查员维克拉姆· 巴贾杰(Vikram Bajaj)这样说道。&ldquo 核磁共振的一个尤为美妙的方面在于它能够温柔地窥探完整物体内部,但从远距离窥探则相对比较困难。&rdquo 高场和低场核磁共振 核磁共振检测化学组成成分所需的异常敏感性,以及它在医疗应用方面所能提供的空间分辨率等都要求大型精确的超导磁体。这些磁铁非常昂贵且是不可 移动的。此外,研究样本必须放置在磁铁内部,使得整个样本能够暴露在均匀磁场内。这种完好发展的方法被称为高场核磁共振,而它的敏感性与磁场强度成正比。 然而,对于无法放置在磁铁内部的物体而言,对它进行化学特性描述则要求另一种不同的方法。在非原位核磁共振测量中,一个典型高场实验的几何原理 被翻转使用,探测器探测到样本表面,然后磁场被投射到这个物体上。这种情景的一个重大挑战在于在足够大的样本区域里产生均匀磁场:产生足够的磁场强度以进 行传统的高分辨率核磁共振测量是不可行的。 因此,放弃选择超导磁体,磁场核磁共振测量可以依赖地球的磁场,前提是有一个足够敏感的磁强计。&ldquo 地球磁场的一个优势在于它是均匀的,&rdquo 甘瑟尔解释道。&ldquo 而地球磁场被用于诱导检测的核磁共振成像(MRI,是NMR技术的一个同类)的问题在于你需要一个足够强且均匀的磁场,因此你需要将整个 物体包裹上超导线圈,这在某些应用领域,例如石油测井,是不可能实现的。&rdquo &ldquo 磁共振的敏感性取决于磁场,因为磁场会导致被检测到的旋转略微对齐。应用的场越强,信号越强,它的频率也越高,这些都有助于检测的敏感性。&rdquo 巴贾杰解释道。地球的磁场的确很弱,但光学磁强计可以作为没有任何永久磁铁的背景场里进行超低场核磁共振测量的探测器。这意味着非原位测量会仅因磁场强度 就丢弃化学敏感性,但这种方法也具有其它优势。 弛豫和扩散 在高场核磁共振里,样本的化学特性是从它们的共振光谱里确定的,但如果没有超高场或者极其长久的一致信号(这两种情况都需要永久磁铁),这也是不可能的。相比之下,低场核磁共振的弛豫和扩散测量对于确定散装材料特性来说绰绰有余。 &ldquo 低场(你可以使用永久磁铁或者地球磁场)的方法便是测量自旋弛豫,&rdquo 甘瑟尔解释道。弛豫是指极化的自旋回归均衡的速率,这是基于系统的化学和物理特性。此外,核磁共振实验会基于化合物的不同扩散系数而溶解它,而扩散系统取决于分子的大小和形状。 这种实验和传统实验的一个关键区别在于弛豫和扩散特性是通过光学探测的核磁共振来确定,而后者即使在较低磁场里也能敏感的操作。&ldquo 我们之前取得 的合作成果便是发展了检测核磁共振的磁强计,&rdquo 巴贾杰说道。&ldquo 这个实验代表了磁强计首次被用于对多成分混合物的弛豫和扩散测量。&rdquo 弛豫和/或扩散测量已经被广泛应用于石油工业的地下核磁共振测量,尽管传统的探测会使用永久的磁铁以增强本地磁场。早在20世纪50年代就曾有人试图用地球背景场进行石油测井,但探测性敏感度不足导致不得不引入磁铁,后者现在各种测井工具里普遍存在。 &ldquo 现在概念的新颖之处在于利用了磁强计,我们终于具备一定的科技以满足地球磁场有效探测所需的敏感性,这可能最终有助于实现远距离探测,&rdquo 研究合作作者斯考特· 塞尔泽尔(Scott Seltzer)解释道。 科学家们对这一设计在实验室内进行了测试,首先测量不同碳氢化合物和水的弛豫系数,然后测量均匀混合物的弛豫系数,以及利用磁强计和代表地球磁 场的外加磁场进行二维相关性实验。&ldquo 这一概念的证据或可以大量应用于石油工业,&rdquo 甘瑟尔说道。&ldquo 我们将碳氢化合物与水相混合,利用磁铁将它们先极化,然后外加一个类似地球磁场的磁场。随后我们利用磁强计进行测量,继而基于弛豫光谱我们 可以确定是否具备足够的敏感性以分离油和水的组成部分。&rdquo 这一技术可以帮助石油工业定义岩石里的流体,因为水和油的弛豫速率是不同的。其它应用领域还包括测量输油管里流过的水和油的容量,这主要是通过 测量随着时间的推移输油管里的化学组成成分来实现;以及检测食物的质量以及任何类型的聚合物固化过程,例如水泥固化和干燥。下一步则涉及理解地质构造的深 度,后者可以利用这种技术进行成像。&ldquo 我们的下一项研究将专门回答这个问题,&rdquo 巴贾杰说道。&ldquo 我们希望这种技术能够穿透1米甚至更多以了解地质构造并阐明内部的化学特性。&rdquo 最终探测器可以用于定义整个钻孔环境,而目前的设备只能够对几英尺深处进行成像。将地磁学和通用的感知技术相结合将提供更好的解决办法。这项研 究的其他合作作者还包括申铉栋(Hyun Doug Shin)、迈卡· 莱德贝特(Micah Ledbetter)、斯文亚· 克纳佩(Svenja Knappe)和约翰· 苛金(John Kitching)。这项研究得到了美国能源部科学办公室的支持。
  • 低场核磁与磁共振成像技术撞上科研灵感,专家这样讲成果
    低场核磁共振(LF-NMR)技术具有检测速度快、对样品无损伤、无需预处理、实时获得数据等特点,同时还能够反映样品中水分子的存在形式及分布状态,目前,该项技术在多种领域取得了广泛应用;磁共振成像(MRI)是根据有磁距的原子核在磁场作用下,能产生能级间的跃迁的原理而采用的一项新检查技术,此项技术在医学领域对于人类有着长远的帮助。在第六届磁共振网络会议(iCMR2022)中的低场核磁(LFNMR)与磁共振成像(MRI)技术,仪器信息网共邀请了六位来自不同高校及科研机构的专家,为大家深度解析低场核磁(LFNMR)与磁共振成像(MRI)技术。 (点击报名)中国科学院生物物理研究所正高级工程师 胡一南《基于光泵式原子磁力计的非接触检测方法》 (点击报名)胡一南,中科院生物物理所研究员,高级技术专家,主要从事基于高灵敏原子磁力计的非接触检测方法研究,在中科院生物物理所任工程师期间,参加了搭建SQUID脑磁系统,对脑磁图技术及其临床应用有了深入了解。并发现原子磁力计在脑磁图仪上的巨大潜在应用价值。带领团队从事基于原子磁力计的可穿戴脑磁图系统研究,研发面向脑磁图的高精度高稳定性原子磁力计,承担并完成了基于主动磁补偿线圈的稳场等科研项目。如何快速地高精度地对锂电池的电量(SoC)和健康状况(SoH)进行检测是锂离子电池大规模应用以及循环使用的瓶颈问题,胡一南工程师提出基于使用原子磁力计测量电池磁化率的检测方案,通过突破背景磁场以及环境磁场强度对原子磁力计的灵敏度限制实现了毫秒级的电池非接触检测。牛津仪器应用科学家 文祎《如果核磁有了光》 (点击报名)文祎2011年于中国科学院上海药物研究所获得药物化学专业结构生物学方向博士学位,主要工作是以异核多维核磁共振技术研究生物大分子的结构、功能、相互作用以及基于弛豫的蛋白质动力学分析。2017年加入牛津仪器任磁共振应用科学家,主要负责低场台式核磁的应用开发以及售前售后技术支持。本次文祎科学家的报告题目为《如果核磁有了光》,具体将聚焦台式核磁。牛津仪器台式核磁共振波谱仪X-Pulse,具备宽带多核、流动化学、自动进样、变温和数据库等功能特性,在现场即可完成研发、质控和教学中多样的核磁分析任务。本次研讨会文祎科学家将分享台式核磁与光相结合,在实验室中实现光催化过程的原位分子水平监测技术。西湖大学副教授 孙磊《基于金属有机框架中电子自旋的锂离子量子传感》 (点击报名)孙磊,2021年10月加入西湖大学理学院组建分子量子器件和量子信息实验室。孙磊实验室致力于设计分子材料以研究量子现象,并通过器件实现分子级别的量子操控。研究主要围绕以下三个方向展开:(1)制备单分子自旋电子学和量子信息处理器件;(2)开发基于分子电子自旋量子比特的量子传感器,探索其在能源和生物领域中的应用 (3)制备单层二维金属有机框架材料及其异质结,探索量子输运现象。孙磊实验室设计合成了含有稳定自由基的金属有机框架,利用电子顺磁共振技术实现了室温下、溶液相中的锂离子鉴定和定量检测,并验证了多种离子并行传感的可行性。青岛腾龙微波科技有限公司技术支持工程师 杜婧雯《Spinsolve台式核磁用于在线反应监测》 (点击报名)杜婧雯,硕士毕业于中国科学院上海药物研究所药物分析专业,硕士期间主要从事基于核磁共振技术的蛋白质-小分子相互作用研究。目前在青岛腾龙微波科技有限公司担任技术支持工程师,主要致力于向不同行业的核磁用户推广Spinsolve台式核磁共振波谱仪和MestreNova软件产品的多种应用,同时根据用户的不同需求提供个性化解决方案及技术服务。化学反应的实时监测便于化学家们及时了解反应动力学、反应机理和反应进程,本次杜婧雯工程师将结合台式核磁共振波谱仪的技术及应用优势,介绍Spinsolve台式核磁针对于在线反应监测的应用,包括硬件装置和软件系统,以及数据的采集、处理、导出。清华大学博士后 李文郁《低场核磁共振技术在水泥基材料中的理论模型及应用》 (点击报名)李文郁,清华大学土木工程系博士后。研究领域:水泥基材料,水泥水化机理,低场核磁,固体核磁,核磁方法。低场核磁共振技术以水为探针来表征水泥基材料。相比水泥基材料研究中的压汞、氮吸附等传统测孔方法,低场核磁具有快速、原位、无损、预处理要求低等特殊优势。除广泛认可的孔结构表征外,低场核磁还具有物相定量和水分动力学研究的能力。李文郁博士后将各应用中所用到的理论模型归纳为四种,重点指出了各理论模型中的本征限制条件,为目前应用中的问题进行归类并分别提供了有效解决方案。此外,以多项水泥水化研究为例,通过低场核磁及其与X射线衍射、热重、量热仪等技术的结合,展示了低场核磁用于缓凝机理研究的可行性。山东职业学院教授 赵晓丽《植物特有插入序列诱导膜融合机制的核磁共振研究》 (点击报名)赵晓丽,博士毕业于北京大学北京核磁共振中心,主要研究内容为利用核磁共振技术解析蛋白结构,并联合其他技术对膜融合蛋白诱导膜融合的机理进行研究。本次赵晓丽教授将就《植物特有插入序列诱导膜融合机制的核磁共振研究》进行报告。会议报名链接: https://www.instrument.com.cn/webinar/meetings/icmr2022/
  • 破解“薛定谔的化学反应”新型核磁共振方法来了
    p style="text-align: justify text-indent: 2em "strong什么是“span style="color: rgb(227, 108, 9) "薛定谔的化学反应/span”?/strong/pp style="text-align: justify text-indent: 2em "strong薛定谔的猫是奥地利著名物理学家薛定谔提出的一个思想实验,/strong是指将一只猫关在装有少量镭和氰化物的密闭容器里。镭的衰变存在几率,如果镭发生衰变,会触发机关打碎装有氰化物的瓶子,猫就会死;如果镭不发生衰变,猫就存活。根据量子力学理论,由于放射性的镭处于衰变和没有衰变两种状态的叠加,strong猫就理应处于死猫和活猫的叠加状态。这只既死又活的猫就是所谓的“薛定谔猫”/strong。但是,不可能存在既死又活的猫,则必须在打开容器后才知道结果。strong很多化学反应需在避光或密闭容器内完成,有些反应也无法直接监测,只有在反应后检测,才知道结果。所以,在容器打开前,或在检测结果出来前,谁都不知道化学反应是否成功,那么化学反应就理应处于既成功又失败的叠加状态,或可以把这种状态称为span style="color: rgb(227, 108, 9) "“薛定谔的化学反应”/span。/strong/pp style="text-align: justify text-indent: 2em "strong但近日,一种新型核磁共振方法破解了这种状况。/strong/pp style="text-align: justify text-indent: 2em "strong约翰内斯· 古腾堡大学美因茨大学(JGU)和亥姆霍兹研究所美因茨大学(HIM)的科学家与来自俄罗斯新西伯利亚的访问研究人员合作,开发了一种观察化学反应的新方法。/strong该技术负责人Dmitry Budker教授说:“strong这项技术有两个优点。首先,我们能够分析金属容器中的样品,同时可以检查由不同类型的成分组成的更复杂的物质。/strong”基于美因茨的小组。“我们认为我们的概念在实际应用中可能非常有用。”/pp style="text-align: justify text-indent: 2em "核磁共振(NMR)被广泛应用。在化学领域,核磁共振光谱法通常用于分析目的,而在医学领域,磁共振成像(MRI)用于观察体内的结构和新陈代谢。作为化学技术,NMR光谱用于分析物质的组成并确定其结构。经常使用高场NMR,它可以对样品进行无损检查。但是,该方法不能用于观察金属容器中的化学反应,因为金属可以起到屏蔽作用,从而防止较高频率的穿透。因此,NMR样品容器通常由玻璃,石英,塑料或陶瓷制成。此外,含有一种以上组分的异质样品的高场NMR光谱往往很差。有一些更高级的概念,但是这些概念通常具有以下缺点:它们无法对反应进行原位监视。/pp style="text-align: justify text-indent: 2em "strong提出使用零场至超低场磁共振作为解决方案/strong/pp style="text-align: justify text-indent: 2em "因此,由德米特里· 布德克(Dmitry Budker)教授领导的研究小组建议使用零场至strong超低场核磁共振(ZULF NMR)/strong来解决这些问题。在这种情况下,strong由于没有强外部磁场,金属容器将不会产生屏蔽作用。该研究小组在实验中使用了钛试管和常规玻璃NMR试管进行比较。/strong在每种情况下,将富含对位氢的氢气鼓入液体以引发其分子与氢气之间的反应。/pp style="text-align: justify text-indent: 2em "结果表明,使用ZULF NMR可以轻松监测钛管中的反应。在连续鼓入对氢气体的同时,可以高光谱分辨率观察正在进行的反应的动力学。“我们预计ZULF NMR将在操作和原位反应监测的催化领域以及在现实条件下化学反应机理的研究中得到应用,”研究人员在发表在领先科学期刊Angewandte Chemie上的文章中写道。/p
  • 布鲁克宣布世界上首个1.2 GHz高分辨率蛋白质核磁共振数据
    p style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "8月26日,布鲁克公布世界上第一个1.2 GHz高分辨率蛋白质核磁共振(NMR)数据。两块1.2千兆赫的超导磁体现已在布鲁克的瑞士磁体厂达到全磁场,创造了稳定、均匀的核磁共振磁体的世界纪录,用于高分辨率和固态蛋白质核磁共振在结构生物学中的应用,以及用于研究本质无序蛋白质。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "在Euroismar 2019上,Bruker及其科学合作者展示了1.2 GHz高分辨率核磁共振数据,这些数据是使用新的1.2 GHz 3 mm三反TCI低温探针获得的。Bruker独特的1.2 GHz超高场核磁共振磁体采用了一种新型的混合设计,在先进的低温超导体(LTS)外插入高温超导体(HTS),这一设计共同为高分辨率蛋白质提供了极其苛刻的稳定性和均匀性。核磁共振1.2 GHz 1h-15n 2d Best-Troy和1.2 GHz 3d 15n的2d平面编辑了500μm泛素样品的noesy-hsqc,13c/15n标记于H2O:d2o 90%:10%。两个实验都是用3毫米TCI低温探针记录的。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授预计将成为第一批接收1.2 GHz核磁共振波谱仪的客户,一旦进一步的系统开发和工厂测试完成,这一过程将需要几个月的时间。在对1.2 GHz系统中的一个进行了CERM测试样品的初始数据采集后,他们说:“在瑞士的Bruker的超高频设施中,已经在α-突触核蛋白上获得了高分辨率光谱,这是一种与阿尔茨海默病(alzheime)等疾病相关的固有紊乱蛋白质。此外,我们还能够回顾与几种癌症相关的蛋白质的第一个1.2 GHz核磁共振波谱。毫无疑问,1.2千兆赫仪器的分辨率的提高——通过在高磁场中增加分散度而得以实现——将有助于推进重要的研究领域,如结构生物学。我们期待在完成最终开发和工厂评估后,在实验室接收1.2 GHz核磁共振波谱仪。”/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "Bruker Biospin集团总裁Falko Busse博士说:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场核磁共振客户对我们的信任,并且我们很自豪地实现了在1.2 GHz下生成世界上第一个高分辨率蛋白质核磁共振数据的进一步里程碑。虽然我们还没有完全完成新1.2 GHz系统的所有开发工作,但我们最近的快速进展证明了我们对创新的承诺,以及与客户合作开发使人信服的科学能力。”/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "与先前宣布的Ascend 1.1 GHz磁铁类似,Ascend 1.2 GHz混合HTS/LTS磁铁是一个标准孔(54 mm),两层磁铁系统,具有与Bruker现有900 MHz和1 GHz超高场NMR磁铁类似的漂移和均匀性规格,确保与一系列核磁共振探针类型和光谱仪附件。Bruker的Ascend™ 1.2 GHz核磁共振磁体采用了与在ENC 2019上宣布为产品的Ascend 1.1 GHz磁体相同的先进导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性。/p
  • 中科院团队成功研制电化学-液体核磁共振联用装置
    p  近日,中科院大连物化所能源研究技术平台核磁技术研究组(DNL2004)自主研制一套电化学-液体核磁共振联用装置,已成功实现二氧化碳电还原、乙醇和葡萄糖电氧化的核磁共振原位表征,现向所内外开放检测服务。/pp  核磁共振是一种无损的检测方法,不会对测量体系产生干扰,同时核磁共振具有极高的能量分辨率,可以分辨被检测原子周围微小的化学环境变化,因此十分适合用于原位检测。但其局限在于其质量灵敏度低,测量信号时要求样品的量较多。电化学-核磁共振(EC-NMR)是一类结合电化学和核磁共振方法、可实现亚赫兹谱分辨率或微米范畴空间分辨率(磁共振成像)的原位光谱电化学检测技术。其中,电化学-液体核磁共振通过恒电位仪监测调控电化学反应中电势电流的变化,同时通过液体核磁共振提供电化学反应中间体和产物、反应动力学等信息,实现电化学和核磁共振数据的平行采样。电化学-液体核磁共振原位检测可广泛用于评价电催化剂、辅助了解电催化反应机理和实时监测反应动力学等,在燃料电池、二氧化碳电催化转化和平台化合物制高值化学品等方面有广阔的应用前景。/pp  电化学与核磁联用最大的挑战在于电化学中必不可少的电流会严重降低核磁共振检测回路的品质因素,使得核磁共振的质量检测灵敏度进一步降低。同时,电化学体系中导电的电极材料也会降低核磁共振的灵敏度,体系的均匀性也会受到影响。/pp  在研制过程中,物化所该团队通过屏蔽线缆和低通滤波器等措施,解决了核磁共振和恒电位仪之间的相互干扰;通过三电极和核磁管的特殊设计,提高了检测灵敏度和谱峰分辨率。该装置具备二氧化碳/氮气等气氛下电催化核磁共振原位检测和电催化剂低温反应监测与评价能力。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/7b286222-a7e5-4076-b33c-da6c4d034fa6.jpg" title="W020200723347476254754.jpg" alt="W020200723347476254754.jpg"//pp style="text-align: center "strong利用自研电化学-液体核磁共振联用装置获得的原位表征谱图/strong/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制