当前位置: 仪器信息网 > 行业主题 > >

海藻在线监控仪

仪器信息网海藻在线监控仪专题为您提供2024年最新海藻在线监控仪价格报价、厂家品牌的相关信息, 包括海藻在线监控仪参数、型号等,不管是国产,还是进口品牌的海藻在线监控仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合海藻在线监控仪相关的耗材配件、试剂标物,还有海藻在线监控仪相关的最新资讯、资料,以及海藻在线监控仪相关的解决方案。

海藻在线监控仪相关的资讯

  • 海藻酸钠在食品业中的应用
    说到可以提升食品的味道很多人都会想到味精(谷氨酸钠)却很少想到同样来自海藻类植物中产生的海藻酸钠。这两种元素可谓是现代吃货的法宝,谷氨酸钠负责把食物中的鲜味提炼出来,海藻酸钠负责把食物的质感提升上一个等次,对于味精我们都很熟悉,下面就由小编为大家介绍海藻酸钠出现,发展,和怎么才能做高品质的海藻酸钠。 1什么是海藻酸钠 海藻酸钠在1881年,英国化学家E.C.Stanford首先对褐色海藻中的海藻酸钠提取物进行科学研究。他发现该褐藻酸的提取物具有几种很有趣的特性,它具有浓缩溶液、形成凝胶和成膜的能力。基于此,他提出了几项工业化生产的申请。但处在即将到来的第一次世界大战中这项提议被搁浅,海藻酸钠直到50年之后才进行大规模工业化生产。商业化生产始于1927年,多用于食品工业,剩下的用于其它工业,制药业和牙科。 2海藻酸钠在食品中的应用 海藻酸钠改造食物最成功的案例莫过于冰激淋,100多年前的冰激凌企业可比现在苦得多了,那时候的冰激凌只要离开冰箱34分钟就彻底融化,造型也不堪入目如同浆糊一般但聪明的吃货发现冰激凌加了海藻酸钠后发现冰激凌不仅比以前的融化速度变慢了也比以前好塑形,海藻酸钠放在面粉上做出来的面条非常有劲道而且不容易发生断裂,海藻酸钠是做出果冻比不可少的的材料因为海藻酸钠具浓缩溶液、形成凝胶和成膜的能力,我们能吃上美味的果冻这都要归功于海藻酸钠。 3怎么才能做出高品质的海藻酸钠 海藻酸钠简单的来说其实就是一个植物胶,胶状物粘度是审核海藻酸钠好坏,那问题来了凭肉眼的观察很难评定粘度,博勒飞(Brookfield)的DV2TLV-低粘粘度计就完美的解决了这个问题他具有以下几个优点 一 操作简便的5英寸全彩色触屏显示 二 自动回零及范围转换,超限警报,编程控制定时测量,数据比较屏幕,PG Flash自动化操作 三 200种转数选择, USBPC界面可选电脑控制和程序步骤状态,自动搜集数据功能可Rheocalc T 链接软件进行数据分析,PG Flash软件可联机下载客户自定义程序测试 四 内建RTD温度探头实时监控样品温度
  • “地空一体化”扬尘在线监控系统
    扬尘是由于地面上的尘土在风力、人为带动及其他带动条件下而进入大气的开放性污染源,是环境空气中总悬浮颗粒物的重要组成部分,也是雾霾形成的主要原因之一。城市扬尘源具有开放性、空间多源性、广泛性、排放随机性等特征。当前城市区域扬尘来源分为一次扬尘和二次扬尘。一次扬尘是在处理散状物料时,由于诱导空气的流动,将粉尘从处理物料中带出而污染局部地带。二次扬尘是由于流动空气及设备部件转动生成的气流,把沉落的粉尘再次扬起而导致的。城市扬尘种类  工地扬尘主要成分粒径分布排放特点影响程度矽尘、水泥厂、木屑粉尘、石膏粉尘、岩棉泡沫尘等粒径10um的颗粒物约占65%;粒径1um的颗粒物约占95%面源排放25%~40%市区施工工地对城市环境空气质量影响较大     交通扬尘主要成分粒径分布排放特点影响程度块、沙土、垃圾、废物、生物碎屑、路面老化破损、尾气排放、机动车刹车片、轮胎磨损等粒径10um的颗粒物约占47%;粒径1um的颗粒物约占95%线源排放25%~35%;主干交通车流、人流量大,对城市环境空气质量影响较大。   工业粉尘、烟尘主要成分粒径分布排放特点影响程度金属粉尘、木材粉尘,水泥粉尘、生物粉尘、金属融粒,木油煤不完全燃烧产生的烟尘等粒径分布范围广,机械加工和粉碎产生的粉尘粒径较大,不完全燃烧产生的烟尘和冶金产生的金属融粒粒径较小。室内排放为主,封闭性较好,烟尘主要通过点源对外排放15%~30%一般离市区比较远,封闭性较好,对城市环境空气质量影响较小。 城市扬尘监控现状  当前城市扬尘在线监测手段可进行颗粒物浓度、噪声、视频、温湿压、风等多重参数综合监测,但由于城市扬尘排放具有无组织排放、排放源类型复杂、易扩散及存在偷排、漏排现象等特点,导致城市扬尘监控仍面临以下问题:  监控难:工地多、无组织,扬尘布点监控难,监测人力少;  分析难:局地以及外源传输的一次、二次粗、细颗粒物混杂,扬尘监控网络未建立,数据积累不足,监测数据简单堆积,需要逐一甄别,效率低;近地面点式监测,难以说清楚区域内扬尘的来源、分布和变化趋势;  追责难:收集证据难,且未建立明确的评价指标、体系以及依法追责制度,难以实现追责和有效管理。 “地空一体化”扬尘在线监控系统   中科光电“地空一体化”扬尘在线监控系统由扬尘噪声在线监控系统和颗粒物扫描激光雷达两大部分组成。  扬尘噪声在线监控系统  扬尘噪声在线监控系统智能化地集成了颗粒物、噪声、云台摄像机、风速风向传感器,温湿度传感器等监测设备,可全面布设在区域内各主要建筑工地、道路、码头、混凝土搅拌站、重点工业工矿企业等颗粒物污染排放源附近,实时获得tsp、pm10、pm2.5、噪声、视频、温度、湿度、风速风向等近地面数据;  颗粒物扫描激光雷达  颗粒物扫描激光雷达不断扫描,通过监测区域内的消光系数,退偏振度、边界层高度、能见度等信息,获得区域立体空间内扬尘分布,沉降情况,还可以识别粗细粒子,判断是二次源还是一次源,了解区域间扬尘的输送,从而实现对整个城市区域内扬尘来源、现状、发展变化趋势的掌握。  应用“地空一体化”扬尘在线监测系统,微观上可进行浓度数据和视频实时查看、报警抓拍;宏观上可实现对城市区域空间内的扬尘污染作全天候监控,为巡查人员监控取证、行政干预、应急响应、纠纷处置,为管理部门确定扬尘来源、了解扬尘减排治理措施的效果,为政府制定政策规划、空气质量改善行动计划,为各部门信息联网共享、协同管理提供了技术支撑和依据。 “地空一体化”扬尘在线监控系统 “地空一体化”扬尘在线监控系统平台  “地空一体化”扬尘在线监控系统平台包括实时监测、工地管理、设备管理、历史查询、统计分析、视频观看、报警处理、评价方法等多项功能,同时,系统平台将颗粒物扫描激光雷达的垂直监测、垂直扫描、水平扫描、一定仰角(如45°)探测、走航观测等探测模式进行高度集成,实现了区域内扬尘分布、来源、变化趋势的全方位立体化监测。高效、精细的实时监控,为政府监察部门的多维取证、依法追责提供有效数据支撑。登录页面实时监测——近地面数据实时监测——水平遥感污染源监测实时监测——走航道路交通监测历史查询设备管理“地空一体化”扬尘在线监控系统系统优势  基于物联网思维的智能联动技术,云台摄像机除了预置位抓拍之外,还可以根据颗粒物和噪声报警信息,风速风向信息、智能判断方向进行抓拍,更加准确获取污染源头的位置信息,满足实时性与精细化监管的需求。  近地面监测和立体监测的集成创新。多要素多手段综合监测,不仅有量化数据,视频图像取证,还有区域立体空间的颗粒物分布现状、发展变化趋势分析,微观和宏观结合,证据丰富有力,结论一目了然,突破无组织排放监控的技术难题。  基于大数据挖掘、分析的环保云应用平台。可以实现海量扬尘监测数据、环境空气监测站数据的多角度统计分析和比较,满足大数据的价值挖掘和应用,实现监测系统的云端运营、大数据的云端分析,为政府、企业提供环境治理的技术咨询,同时手机app的应用能让公众随时掌握所在地的颗粒物、噪声等环境指标。  核心设备采用行业标杆公司顶级产品,成熟稳定可靠,使用寿命长。该产品内置了加热器控制湿度水平,不仅保护电子和光学系统,还可以排除湿度对测量结果的影响,测量更加准确;  海量数据的高速存储,本地数据存储容量大于等于1t,通讯接口具备可扩展。  停电后可长期保存系统设置参数,电源恢复后可自动启动,进入工作状态。  “地空一体化”扬尘在线监控系统实现了建筑工地扬尘污染在线监测、管理一体化,提升了科学管理的效率和能力。该系统对掌握建筑工地扬尘污染现状的真实状况,以及采取控尘措施的效果具有权威性。该系统可用定量化、可视化的数据反映扬尘污染治理的水平,是建设智慧环保的有效手段。
  • 哈希在线水质分析仪器为山东省环境自动检测监控联网系统助力
    日前,山东省内所有的重点污染源都已经安装了全省联网的环境自动检测监控系统。 该类系统在山东省共设立了1300多个,覆盖全省100多家城镇污水处理厂、1047家重点监管企业,城市主要水源地、60条河流的116个河流断面、17个城市的空气质量也全部被纳入到监测系统中,这意味着山东省90%以上的污染源排污情况和水气环境质量都得到了实时监控。与此同时,依托省、市、县三级数据传输网络,监测数据可以直接传输到省环境监控中心,接受各级环境监管部门的监督检查。 哈希公司的水质分析仪器在中国已经有超过20年的成功应用,此次作为在线水质分析仪器的供应厂家, 共向山东省各个环境监测点提供了数百套符合国家标准方法的CODmax铬法COD分析仪、AmtaxTM Compact 氨氮分析仪等在线水质分析仪器产品。系统运行以来,凭借运行可靠、运营成本低、测量精确、操作简单的优良性能得到了众多环境监测站好评。 在很多大型项目中,各个环节都是紧密相连,如有一个环节出现问题,将可能会导致整个项目停滞。这就要求在线水质检测仪器的安装、调试乃至培训都必须要做到快速响应,按照客户要求在最短的时间内解决问题。哈希公司本地化服务模式在此次山东省环境自动检测监控联网系统项目中&ldquo 再显身手&rdquo 。以&ldquo 快速响应,高质高效&rdquo 的服务标准,在规定时间内完成了项目要求,赢得了客户的满意。 哈希公司将凭借着最先进的水质监测解决方案以及完善的服务和技术支持网络,在各个行业中扮演着不同的角色,为各行业用户的应用提供最佳的解决方案,守护着水质与人类的健康! 关于哈希 哈希公司是美国财富500强企业之一&mdash &mdash 丹纳赫集团下属的一级子公司,总部位于美国科罗拉多州的拉夫兰市。哈希公司是致力于设计和制造水质分析、监测仪器及其试剂的科研生产企业,产品涵盖实验室定性/定量分析、现场分析、流动分析测试、在线分析测试,能够广泛应用于自来水、市政污水、工业循环水、污染源排放口、地表水、地下水、半导体超纯水、制药、电力及饮料等多个领域。生产线分别分布于美国、瑞士、德国、法国和英国。
  • 油烟在线监控系统实现全面覆盖监控已成为必然趋势
    由于历史遗留问题,绝大多数城市餐饮服务业缺乏科学规划,布局不合理。一方面,城市建设大量开发了沿街商住楼,使得商住楼底层开设饭店现象随之产生 另一方面,许多餐馆建在居民密集区,与居民楼混为一体,房店功能不分,形成楼下开店、楼上住人的格局因此,油烟污染严重影响了居民的生活。特别是近年来随着经济的快速发展和城市化步伐的不断加快,第三产业在国民生产总值中的比重越来越大,增长速度越来越快,有关资料显示,除机动车尾气、工业废气外,餐饮行业对当地空气质量污染已上升到第三位。因此加强餐饮业油烟治理和日常运行管理,消除对周围居民的影响,已成为环保工作的一项迫在眉睫的大事。但是,由于餐饮企业数量多而且分散单靠人力是难以达到监控效果的,所以,利用科技手段建立油烟在线监控系统,实现全面覆盖监控已成为必然趋势。 北京博创诺信科技基于多年的数据采集经验,和对油烟监控系统的深入理解,经过大量的实验和测试,最终研制出了BCNX-YY08 油烟数据采集器,采用全新的技术,可检测油烟管 道内的油烟浓度、颗粒物、非甲烷总烃三项参数,并将数据信息进行实时上传,也可扩展监控风机及净化器的状态,在平台及设备液 晶屏上实时显示监测各项信息,为环保局提供了真实有效的油烟数据,从而真正达到油烟在线监控的目的。 BCNX-YY08 油烟数据采集器集成 GPRS 无线通信模块 (可选 CDMA),采用实时在线、自动上报的方式工作。采 集器带有油烟探头专用接口,用于连接探头。采集器通过控制探头采集油烟原始数据,读取探头采集到的原始数据,并进行综合计算,最终得到油烟浓度值。 由于油烟成分复杂,所以 BCNX-YY08 的油烟探头采用 了特殊的技术,能对多种油烟成分进行综合分析,从而得到最准确的油烟排放数据。 针对餐饮业油烟排放的实际情况和烟道的实际情况,以及实时采样的要求,我们将探头设计成安装方便,稳定可靠。由于油烟极易污染传感器,所以 BCNX-YY08 的探头采用了特殊的设计,能有效过滤大直径颗粒烟尘,使得探头能有效抵抗油烟污染,延长探头的使用寿命,设备的维护简单,维护成本低。
  • 国内首条油烟在线监控设备检测线建成
    武汉市环境监测中心站继获批饮食业油烟净化设备检测机构资质后,又于今年9月建成油烟浓度在线监控设备检测线。油烟浓度在线监控设备可以将油烟净化设备的净化效能、运行情况等信息经过数字转换,直接传送至相关监管部门,大幅提高油烟污染监管能力。  武汉市站按照中环协认证中心颁布的环保产品认证实施规则,在已建成的油烟净化设备检测实验室基础上进行升级,建成油烟在线监控设备检测线,是目前中国环保产业协会在全国认定的首个油烟在线监控设备认证机构。该检测线现在已有全国各地多家在线监控设备生产厂家联系产品认证事宜。今后,武汉市站将按照环保产品认定实施规则,对油烟浓度在线监控设备进行严格认定,确保油烟浓度在线监控设备切实发挥监管作用。
  • 智易时代发布车载OBD远程在线监控终端新品
    车载OBD远程在线监控终端 ZWIN-OBD-06是一款重型柴油车OBD远程排放管理终端。采用车规级设计,集J1939 CAN总线协议数据、国密SM2加密、4G蜂窝网络、GPS+北斗卫星定位、G-SENSOR及FLASH存储等功能为一体,安装应用在重型车上用于采集、存储和传输车辆OBD信息和发动机排放数据。集合车辆0BD总线数据采集、位置信息、无线通讯技术,适配国内部分国三及所有国四以上柴油车品牌。通过智能自动适配技术无需对不同品牌车辆进行协议的破解及适配,可以高效便捷完成项目实施。并且通过行业应用案例的检验,符合政府和行业对柴油商用车辆在大气环境治理、能耗统计、安全监管、时效提升等项目的需求。建立全覆盖的重型货车在线监控网络,加强实际道路监测,实施高排放柴油车技术改造。具体措施包括:规划建设全国重型机动车污染在线监控平台,实现全覆盖、全天候的排放监控功能 对重型柴油车开展精细化管理,建立一车一档的环保电子档案 以车载诊断系统(OBD)远程监控为技术手段,严格监控车辆实际排放。了解车辆运行态势,为污染源头地区实施应急措施提供技术保障,为京津冀、汾渭平原、长三角地区等重度污染区域和项目区域等其他区域的尾气污染源排放的治理提供数据支撑。 1.2产品规格产品名称:车载OBD远程在线监控终端产品型号:ZWIN-OBD-06产品规格:L130.0*W78.0*H30.5MM执行标准:GB17691-2018、GB/T32960.2-2016 1.3产品实物图 1.4产品设计原则①先进性和实用性使用先进、实用和具有良好发展前景的技术,使得各个子系统具有较长的生命周期,不盲目追求档次,既能满足当前的需求,又能适应未来的发展。②安全性和稳定性高效稳定的系统,能提供全年365天,一天24小时的不停顿运作。对于安装的车载远程通讯装置能适应严格的工作环境,以确保系统稳定性。③实时性和高效性设备和终端必须反应快速,充分配合实时性的需求。注重信息共享,提高整个系统高效率传输与运行能力。提供与各种外界系统的通信功能,确保信息的完整性并充分利用在整体系统的运作上。提供易于使用的数据存储功能,满足记录至少7天的数据要求,网络恢复时应自动上传。④可扩展性把系统有机结合起来,充分考虑将来需求的发展空间,所提供的技术将充分配合未来功能及扩充项目的需求,以避免将来重复的投资。标准化、结构化、模块化的设计思想贯彻始终,奠定了系统开放性、可扩展性、可维护性、可靠性和经济性的基础。以保证我们的硬件设备端可以满足未来拓展需求,对于机动车污染防治工作起到推进作用。 创新点:ZWIN-OBD-06是一款重型柴油车OBD远程排放管理终端,安装应用在重型车上用于采集、存储和传输车辆 OBD信息和发动机排放数据。当车载终端采集到车辆状况信息后将其上传至服务器,管理员登录相应平台,可实现远程车辆监控、报警提醒,异常情况远程抓获和车辆行车日志等广泛功能,极大的节省了人力、物力。车载OBD远程在线监控终端
  • 青岛国家重点纺织实验室做出海藻布 抗菌防辐射
    薄如绢,亮如丝,软如棉,拿在手里,与纯棉布没有任何区别。这是记者日前在山东青岛大学纤维新材料与现代纺织国家重点实验室培育基地看到的用海藻纤维织出的海藻布。随着海藻类纤维项目的研发成功,人类继开发棉花、大麻、种桑养蚕等生物基纤维和石油基纤维之后,又开辟了纺织纤维第三来源——海藻纤维。  海藻纤维研发的领军人、青岛大学纤维新材料与现代纺织国家重点实验室培育基地副主任夏延致教授对记者说,海藻纤维研发团队马上就要完成科技部年产50吨海藻纤维生产线项目,小批量生产就可实现,已为下一步海藻纤维产业化做好技术储备,同时也为后续生产提供科研用材料。他说,今年下半年将全部完成“海藻育种——养殖——加工——纺织品”全过程的中试生产,未来两三年即可实现大规模工业化生产。  夏延致介绍,海藻纤维具有许多传统纤维没有的新特性,它的阻燃性超出国际标准10个百分点,在空气中不会起明火。海藻纤维有一定的防辐射、抗菌、保湿效果,在生物医学、高档服装、环保等领域具有广阔的应用前景。与传统的陆地纤维、合成纤维相比,海藻纤维可节约土地、净化环境,生产过程完全低碳绿色,具有可降解、可再生、无污染等优点。  山东半岛是海藻生产大区,具有优越的地理位置和技术优势。目前,我省海藻纤维生产技术已完全成熟,海藻纤维将人类获取纤维的领域从陆地扩展到了海洋。海藻纤维的产业化,将使山东构筑以海藻纤维为主体,以海藻养殖加工业和以海藻纤维材料为原料的纺织加工业为两翼,形成一个从海洋开始的新产业链,形成新的经济增长点。  山东省科技厅副厅长、青岛国家海洋科学研究中心主任李乃胜在接受记者采访时说,海藻纤维技术的成功突破是我省海洋科技储备的一个范例。打造半岛蓝色经济区战略实施以来,我省海洋科技领域迅速行动,到沿海第一线做了大量调研,形成了6份大的战略性新兴产业发展计划书。在技术储备方面,我省大院大所立足国际海洋科技前沿,瞄准十二五发展目标,突出山东特色,开展了一系列科技创新和产业技术建设。目前我省在海洋低碳技术、海洋生物制品、新型海水产业、海洋装备制造、海洋建筑工程、海洋可再生能源等方面已有了批量成熟的技术储备。投资5个亿的海洋科学综合考察船建设项目、海洋低碳技术示范工程、海水灌溉农业等项目正顺利进行。
  • 中山投资3600万在线监控尾气水质空气
    摘要:国家环保部专家考察团的成员包括国家环保总局原副局长、党组副书记祝光耀、环境保护部生态司副巡视员侯代军、广东省环保厅副厅长陈敏等10人。李启红在汇报中表示,中山正计划投入3600万元建设机动车尾气、河流水质、空气质量在线监控系统,将于2010年底完成。  ■热闻快读   本报讯 国家环保部专家考察团的成员包括国家环保总局原副局长、党组副书记祝光耀、环境保护部生态司副巡视员侯代军、广东省环保厅副厅长陈敏等10人。李启红在汇报中表示,中山正计划投入3600万元建设机动车尾气、河流水质、空气质量在线监控系统,将于2010年底完成。  2008年底,中山已经通过省环保厅的考核以及国家环保局的技术核查,此次国家环保总局考察团将对各项生态建设工作进行全面的考核。据了解,该考察组此次来到广东,除了对中山生态建设示范区进行考核外,还将奔赴深圳对福田区生态建设示范区工作进行考核。  整改责任分解明确到各单位  在去年的国家技术核查中,专家组提出中山应该在加强林相改造、提高森林质量、加强外来入境五种防治、发展循环经济、提高服务业比重等方面继续改进。现在一年过去了,各项这几方面的改进工作进展如何呢?  昨天下午,李启红在汇报中表示,去年通过省环保局的验收和国家环保总局的技术验收后,中山市针对专家组提出的改进意见,制订了落实整改方案,并将整改责任分解明确到各个相关单位。经过一年的努力,各个方面都取得了不错的进展并获得多项殊荣。据了解,去年中山的环保责任考核连续五年排名全省前列、2008年度节能减排全省第一、珠江综合整治考核全省第一。  8成污水可接受在线监控  针对国家环保总局的考核要求,早在2004年中山便制定了生态建设工作的具体实施方案,随后又纳入到政府工作报告当中去。据了解,近些年来中山先后组织投入100亿元推进内河整治、污水处理、立即处理、废物处置、绿化美化、生态保护、湿地恢复、矿山复绿、生态农业、食品检测、污染监控、优美乡镇等12项生态环保工程。经自查,中山已经达到国家要求的5项基本条件和19项建设指标。  以内河综合整治为例,目前中山投入了8.7亿元整治1227公里主要内河,清拆违章建筑25万平方米,堤岸绿化30万平方米,治理直排式厕所3952个,治理率达到100%。此外,污染源在线监控方面,中山投资了4800万元建成全省第一批污染源在线监控系统,对300多家重点污染企业和重点污染源实行在线实时监控,占全市污水污染负荷的80%。  成绩公布  岐江河部分河段可游泳了  针对去年技术考核组提出的意见,李启红介绍一年来的整改成效  在昨日的国家生态建设示范工作考核验收时间,针对去年技术考核组提出意见,中山市长李启红在昨日汇报时表示,中山认真落实制定整改方案,经过一年多努力,整改成效突出。  1 污水处理率已达88%  去年意见:  中山部分镇区生活污水管网建设还没到位,生活污水收集还存在困难,中山应继续巩固和深化创建成果,进一步提高农村生活污水处理率。  李启红回复:  中山仍在继续建设污染源在线监控系统,投资4800万元建成全省第一批污染源在线监控系统,对300多家重点排污企业和重点污染源实行在线实时监测,占全市污水负荷80%。中山正计划投入3600万元建设机动车尾气、河流水质、空气质量在线监控系统,将于2010年底完成。  而对于农村生活污水处理率,投入了38亿元建设了20个生活污水处理厂以及配套管网,全市污水处理能力现在已达到每日75.5万吨。  (中山市环保局局长罗焯添:现在污水处理率现在已经达到88%,全市每个镇都建设一个污水处理厂,这在全国是唯一的。)  2 三产占GDP比重上升明显  去年意见:  唯一一个暂时未达到要求的参考性指标是第三产业增加值占GDP比例。考核指标要求大于等于40%,2007年中山为36.1%,预计2008年达到36.5%。  李启红回复:  中山现在正在大力发展现代服务业,相继出台了《关于加快中山市现代服务业发展的意见》、《加快中山市中介服务业发展的意见》等文件,设立服务业发展引导资金,重点发展金融、物流、会展、旅游、信息等现代服务业。今年前三季度全市服务业投资增长15.9%,服务业增加值增长 11.9%,占生产总值比重已达到37.3%。  3 岐江河水质已达国家四类  去年意见:  中山应进一步加大河涌水环境保护力度,体现水乡特色。  李启红回复:  中山按照“水安全、水环境、水景观、水文化、水经济”理念,以节水减污为重点,明确了内河岸堤保护范围,投入8.7亿元整治主要内河1227公里,清拆违章建筑25万平方米,堤岸绿化30万平方米,治理直排式厕所3952个,治理率达100%。中山母亲河岐江河水质已经恢复到国家地表水四类水质标准,部分河段已经达到三类水质标准(可以下河游泳)。  4 生活污水处理后或再用  去年意见:  去年技术考核时,省环保局副局长陈敏建议中山应创新发展模式,发展循环经济和清洁生产,以水为切入点在企业、工业园区开展循环经济,污水处理厂中水回用。从源头控制污染,减排工作方面争取走在全省乃至全国前列。  李启红回复:  中山目前已出台了《中山市加快推进清洁生产实施方案》,目前正在编制《中山市清洁生产中期规划》,计划用5年时间完善技术法规体系、技术创新体系、评价指标体系和激励约束机制。中山近几年拒绝了近1000亿元规模的污染项目投资。目前,中山也正在探索生活污水处理厂建设水回用系统,用作绿化、道路洒水和工业用水等。  而对于清洁生产,中山安排了250万元,对获得“广东省清洁生产企业”称号的企业一次性补助8万元,目前,中山全市自愿性清洁生产企业达11家,31家企业自愿报名纳入清洁生产达标规划。  考察现场  岐江河:“水变清了,周边的楼盘贵吧?”  昨天下午,李启红市长汇报完毕后,考察团一行驱车来到岐江公园考察岐江河的综合整治成效。  祝光耀组长对岐江河的整治方法颇感兴趣,并向工作人员详细询问了岐江河的径流、长度、沿岸人口数量等信息。据了解,90年代初的岐江河水质很差,曾一度被认定为劣五类黑臭水。经过修剪东西水闸、清淤、截污等综合治理方法,目前水质已经达到四类城市景观用水。  曾经的粤中船厂被改建为风光美丽的岐江公园,引起了考察团的浓厚兴趣。听完工作人员的介绍后,祝光耀看了看旁边正在建的一个楼盘,然后饶有兴致地问邓小兵常务副市长说,“这岐江河水变清,还建了岐江公园,这周边的楼盘是不是也挺贵的啊?”  “那当然,这边的楼盘被带旺了。”邓小兵笑呵呵地回答。“但中山现在的总体的楼价是四千多,大部分老百姓还是买得起房子的。”李启红市长在旁边插了一句。  污染源在线监控:每5分钟向省厅传送一条数据  考察团又来到中山市环境监察分局。在检测分局的在线室内,工作人员向考察团现场演示如何利用监控系统监控企业的污染物排放情况。  祝光耀提出察看小榄镇的污水排放情况。工作人员即可在系统中找到小榄镇的监控点,然后用鼠标点击即可查看,大屏幕上即显示小榄某企业的排污画面。  工作人员点击小榄镇,然后再点击实时监控数据,画面上即刻显示最近一个小时内小榄镇的排污总量和CO D等各项数据。当听说,该系统可以联网广东省的在线监控系统,并且每5分钟就向省厅系统传送一条数据时,祝光耀组长笑着对广东省环保厅副厅长陈敏说,“这样广东省的污染源都可以一目了然了。”  离开前监察分局前,监察分局蔡局长还向考察组介绍了企业排污费的征收公示情况。祝光耀组长问,监察分局共有多少行政编制工作人员。当蔡局长回答有60名工作人员时,旁边的广东省环保厅副厅长陈敏开玩笑说,“你比我们还要‘威水’啊,我们负责监测的工作人员才50个。”  数字说话  对300多家重点排污企业和终点污染源实行在线实时监测,占全市污水负荷80%。  全市每个镇都建设一个污水处理厂,这在全国是唯一的  今年前三季度全市服务业投资增长15.9%,服务业增加值增长11.9%,占生产总值比重已达到37.3%
  • 环保部发文加强八大行业在线监控
    环境保护部日前发布《关于实施工业污染源全面达标排放计划的通知》(以下简称《通知》),要求到2017年底,钢铁、火电、水泥、煤炭、造纸、印染、污水处理厂、垃圾焚烧厂等8个行业达标计划实施取得明显成效,污染物排放标准体系和环境监管机制进一步完善,环境守法良好氛围基本形成。到2020年底,各类工业污染源持续保持达标排放,环境治理体系更加健全,环境守法成为常态。  《通知》要求,地方各级环保部门要结合日常监管、违法案件查处、污染源在线监控等情况,对本行政区域工业污染源排放情况进行深入分析。鼓励各地探索引入第三方机构对企业污染物排放情况进行评估。  《通知》要求,规范和加强在线监控的运行和监管。各地要根据区域污染排放特点与环境质量改善要求,逐步扩展纳入在线监控的企业范围,推动实现对所有工业污染源的全覆盖。企业应依法依规安装和运行污染源在线监控设备,地方各级环保部门要通过在线监控系统及时发现超标排放行为,环保部将自2017年督办。
  • 新一代二氧化碳纯度在线监控解决方案
    新一代二氧化碳纯度在线监控解决方案用于测量CO2气体中O2的新解决方案安东帕(Anton Paar)推出了新的二氧化碳纯度监测仪,用于监测发酵产生的二氧化碳气体中的氧气。在线氧气传感器Oxy 5100与集成的压力传感器相结合,可在线监测发酵后加压CO2中的O2含量,带自动压力补偿功能,使二氧化碳纯度监测仪成为紧凑,且精确的独立解决方案。此仪表无需气体调节。而对于非加压的测量点,Oxy 5100和其灵巧的传感器盖在气体调节系统之后即可安装。二氧化碳纯度监测仪的组成:一台Oxy 5100&用于自动压力补偿的压力传感器主要特性功能:• 为了快速启动,独特的Toolmaster™ 技术可确保轻松更换瓶盖。所有必需的校准参数都存储在传感器盖中。盖上盖子后,所有校准参数都会自动传输,并且可以立即开始在线测量。• 内置先进的寿命估算器估算光学帽的寿命,并连续监控剩余寿命(以天为单位)。当需要更换时,Oxy 5100便会提示您。Oxy 5100是作为独立解决方案开发的,用于测量啤酒,CSD和DAW等液体中的溶解氧。安东帕在技术上向前迈进,通过增加气相中的O2浓度来扩大覆盖流体的范围。此外Anton Paar特定的适配器或调节系统还可满足用户的定制化需求。适用行业+啤酒厂和苹果酒制造商在啤酒厂中,发酵产生的二氧化碳(CO2)会被收集和纯化,以提高啤酒的可持续性并确保CO2的自给自足。用于O2在线测量的二氧化碳纯度监测器可提供有效处理和高质量CO2的关键信息。在CO2回收工厂中,将发酵产生的CO2收集,过滤,压缩,干燥并从诸如氧气(O2)和氮气(N2)的气体中纯化。在回收的CO2中,O2含量不应超过〜5ppmv。为了减少O2摄入量,确保啤酒稳定性和较长的保质期,必须对O2含量进行可靠且准确的监控,以确保回收的CO2的高纯度且经济性。测量解决方案+用于CO2回收工厂中的O2监测方案全新的二氧化碳纯度监测仪可进行准确可靠,连续的氧气含量和温度在线监测。如果发酵产生的CO2进入限值以内,全自动的O2监测可提供关键信息,以确保高质量和有效的CO2回收。工艺压力的影响会得到补偿, 测量并不受外来气体和湿度的影响。在去除泡沫之后和压缩之前,可安装二氧化碳纯度监测器(上图)。这样可以避免液体完全覆盖传感器的风险,确保测量结果的准确性。使用Pico 3000的CO2纯度监测仪(VARIVENT法兰直接安装在管线中)二氧化碳纯度监测器由一个Oxy 5100在线溶氧传感器和一个压力传感器组成,二氧化碳纯度监测仪符合国际卫生标准并获得EHEDG认证。特定于应用程序的计算由mPDS 5或Pico 3000评估单元执行。一个mPDS 5最多可以连接8个CO2纯度监控器,结果可以显示并传输到PLC或通过Davis 5数据采集和可视化软件在电脑上读取。另外,也可以将二氧化碳纯度监测仪连接至Pico 3000 RC外壳,以进行远程控制。带有Toolmaster™ 的传感器盖Oxy 5100的所有传感器帽均配备了Toolmaster™ 技术,可自动检测每个帽的所有所需配置和校准参数。无需通过HMI进行手动干预,从而减少了停机时间和人为错误,从而可以快速轻松地更换光学帽。产品优势+可靠,准确的二氧化碳纯度监测仪可实现• 实时在线监测氧气含量• 改善了CO2处理的质量和效率• 检测任何违规行为并实时控制过程• 可预测,快速且容易地更换传感器盖• 选择性测量(不受湿度影响)
  • 污染源在线监控数据采集技术要求的公告
    关于发布国家环境保护标准《污染源在线自动监控(监测)数据采集传输仪技术要求》的公告  为贯彻《中华人民共和国环境保护法》,保护环境,防治污染,规范污染源在线自动监控(监测)系统建设和运行工作,现批准《污染源在线自动监控(监测)数据采集传输仪技术要求》为国家环境保护标准,并予发布。  标准名称、编号如下:  污染源在线自动监控(监测)数据采集传输仪技术要求(HJ 477-2009)  该标准自2009年10月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。  特此公告。
  • 环标《污染源在线自动监控(监测)数据采集传输仪技术要求》发布
    为贯彻《中华人民共和国环境保护法》,规范污染源在线自动监控(监测)系统建设工作,实施国家环境保护标准《污染源在线自动监控(监测)系统数据传输标准》(HJ/T 212),统一性能指标,确保现场监测数据准确传输,制定本标准。本标准规定了污染源在线自动监控(监测)系统中数据采集传输仪的技术性能要求和性能检测方法。本标准适用于数据采集传输仪的选型使用和性能检测 对于污染源在线自动监控(监测)系统中具有数据采集传输功能的现场监测仪表,只规定其用于数据采集传输功能部分的性能指标和校验方法。  附录:污染源在线自动监控(监测)数据采集传输仪技术要求(HJ 477-2009)
  • 明华电子发布青岛明华电子MH3102-2型油烟在线监控仪新品
    本仪器是一款集多项油烟检测技术、物联网感知技术、GPRS无线通信技术于一体的多功能在线式油烟监控设备。可同时完成油烟浓度、颗粒物浓度、非甲烷总烃浓度的在线监测。执法人员可通过本仪器及时、动态、准确地掌握全市的餐饮企业油烟排放情況,从而加强辖区内的环境监管工作,提高对突发事件的反应能力、处理能力。 执 行 标 准GB18483-2001《饮食业油烟排放标准》HJ212-2017《污染物在线监控(监测)系统数据传输标准》DB11/1488-2018《餐饮业大气污染物排放标准》SZDB/Z 254-2017《饮食业油烟排放控制规范》DB41T-1604-2018《餐饮业油烟污染物排放标准》DB12-644-2016《餐饮业油烟排放标准》CCAEPI-RG-Y-020-2011《饮食业油烟浓度在线监控仪》主 要 特 点高灵敏度油烟检测单元,检测精度高,数据重复性好;泵吸式采样法测量烟道污染物排放浓度,PID算法精准控制采样流量,避免烟道流速变化影响测量结果;可伸缩式采样探头,适应不同尺寸烟道;皮托管及前端采样管插拔式设计,方便运维时的清洗及更换;主机内部实现电、气分离,方便后期保养维护;采样气路与浓度测量模块全部动态加热控温,避免烟道水汽对测量数据的影响;全天候油烟浓度检测,无需现场采样、实验室分析;实时监测油烟、大气压、烟温、动静压、流速、排放量等数据;实时监测净化器和风机运行参数以及监控仪器自身的运行参数,并以日志形式发送至监控中心;内置GPRS无线通讯,检测数据实时远程传输;支持与平板电脑数据互联互通,方便现场源头数据直接调取取证;支持远程升级功能,支持用户核心重要参数远程调整设置功能;具有油烟浓度超标报警和油烟检测仪拆除报警功能,并自动上报至监控中心;现场采集数据在未联网情况下至少可以连续存储6个月(不低于50000组),通讯正常后自动上传缓存数据;可搭配油烟在线监测软件平台;电路输入、输出接口工业级光电隔离,提高系统在强静电环境中的抗干扰能力;监控主机一体化设计,将浓度采样测量模块与数采远传模块合二为一,方便现场的安装施工。 创新点:和传统油烟在线监测仪相比,本仪器除了可以监测油烟浓度,还可以对颗粒物浓度、非甲烷总烃浓度进行在线监测,一机多用。青岛明华电子MH3102-2型油烟在线监控仪
  • 葫芦岛32家企业安装污染源在线自动监控设备
    12月15日,记者在葫芦岛市环保部门获悉,葫芦岛市已完成所有国控重点污染源企业环保自动在线监控安装,这也是葫芦岛市“十一五”期间环境保护方面实施的重点项目。  据了解,葫芦岛市重点污染源自动监控设备安装涉及32家企业、68套监控设备。14家水污染源企业安装19台自动检测设备,主要监测流量、PH、化学需氧量和氨氮指标 21家大气污染源企业安装49台自动检测设备,主要监测二氧化硫、烟、氮氧化物、流速、压力、氧、温度指标。  从2004年开始,葫芦岛市逐步在国控重点污染源上安装自动在线监控仪器,今年4月成立自动监控室,自动监控室能力建设日前通过省环保厅验收。至此,葫芦岛市已按计划完成所有国控企业重点污染源自动在线监控设施的安装和联网,坐在监控中心就可以全面掌握详细的污染数据,可实时监控全市32家重点企业排污情况,全程监控企业污染排放。建设项目严格执行国家环保部标准,集成地理信息系统、12369环境应急指挥系统及综合业务系统等。
  • 食品品质实时监控,尽在步琦在线近红外
    NIR-Online ——帮您实现实时质量控制近红外作为一种快速,无损,简单,高效的检测方法已经应用于多个行业,特别是在食品工业中,已经成为不可或缺的质量检测手段。为了实现食品生产中的在线检测,从原料到成品进行质量控制,步琦 NIR-Online 在线近红外凭借丰富的技术和经验,制定了完整的食品行业实时质量控制方案。在食品行业生产过程中,往往出现一些对于生产不利的问题,首先接收原料入仓时,无法快速检测原料质量,原料入库慢,产生积压,其次在生产过程中,传统检测方法滞后,无法快速的给出产品指标,调节原料配比,不能保证产品的稳定,容易产生不合格产品,导致生产上的浪费。根据目前的情况,采用 NIR-Online 在线近红外技术,可以从原料入库,到生产过程,最终到成品进行实时监控,以最低的投入,实现最高的效益。(点击查看大图)结合实际的生产过程,NIR-Onlie 在线近红外在不同的工段提供相对应的解决方案,实现高效的生产控制:(点击查看大图)1在控制室中实时总览生产过程,以便及时采取纠正措施NIR-Online 在线近红外分析仪提供关于产品或中间产品的实时信息,并将这些信息传输到控制室以用于可视化和过程控制。自动实时操作可以优化安全公差余量或者减少报废或返工。2对生产线上的所有批次进行分析,避免出现错误的结果及时纠正偏差,最大限度提高生产效率和产品质量。直接在机器内部同时监测水分、蛋白质或脂肪等,从而实现高效的过程控制,确保质量并最大程度提高产量。3采用方便的 NIR 检测,并利用丰富的参数进行分析几乎任何种类的样品都可以直接扫描,不需要任何测量前的样品准备工作,例如在传送带上或管道中可直接测量,只需几秒即可完成。近红外光工艺集成简单直接,可以同时定量测定多种物理化学性质。4快速投资回报通常情况下,实验室方法不会分析整个批次,而是依赖于抽检程序,但这种方式会带来更多误差。如果没有内部实验室,还必须将样品送至第三方实验室进行检测。对此,NIR-Online 在线近红外分析仪的投资回报与第三方实验室收取的样品量以及单次分析价格直接相关。
  • 北京启用施工工地扬尘在线监控系统
    p  日前,由北京市环保局购买第三方服务,北京城市建设研究发展促进会负责运营维护的北京市施工工地在线监控系统正式启用。/pp  为加强扬尘污染控制,推动空气质量持续改善,北京市环保局利用财政资金,通过公开招标方式安装及运行扬尘在线监测系统,对扬尘污染行为进行抓拍,实现24小时监控,及时掌握重点扬尘源单位的颗粒物浓度排放情况,督促扬尘源单位做好扬尘控制工作。截至目前,全市已在各区和北京经济技术开发区的多个重点工地安装监控,涉及水务类、交通类、房建和市政基础设施、城市副中心、新机场建设工地及预拌混凝土搅拌站等扬尘源单位。/pp  系统的监测内容主要包括:全天候监控扬尘源单位,在线巡检施工工地扬尘行为,及时提醒现场负责人及主管部门,编制数据报表, 合理布置监测点位,对重点扬尘源单位进行现场巡检督查等。该系统实时监测施工工地扬尘排放情况,通过视频摄像头对施工单位进行在线巡检并针对曾经被提醒过的工地和被通报的工地进行重点监测。发现扬尘问题后,值班员通过短信和电话提醒的方式,及时督促施工单位做好降尘措施。/pp  截至2018年1月,三个多月时间内,该系统电话互动次数761次,检查视频9072次,摘抄数值2991次,形成周、期报,空气重污染期间日报等各类报告23份。/pp  为加强扬尘污染控制,北京市环保局于1月18日印发的北京市大气污染综合治理领导小组办公室关于建筑施工工地扬尘在线监控情况相关通报要求,督促各区落实属地责任、加大督查检查力度,促使相关扬尘源单位对扬尘行为及时整改,促进建设施工单位行业自律。/p
  • 重庆市成功研制农村饮用水安全在线监控系统
    近日,由重庆工业自动化仪表研究所承担的市级重大科技攻关项目&ldquo 农村饮用水安全在线监控系统关键技术研究及示范&rdquo 通过验收。  针对我国村镇集中供水的实际需要,重庆工业自动化仪表研究所联合重庆市应用技术有限公司合作开展技术攻关,从可靠、耐用、廉价、易控入手,成功研制自动投加絮凝剂、消毒剂的CIAIS-SK200自动控制器样机、CIAIS-SK201远程水泵控制器样机和CIAIS-WR200远程水位监测仪样机 成功开发饮用水水质安全在线监控及管理软件并在长寿区投入应用 建立饮用水水质安全在线监控信息管理示范平台和生活饮用水在线监督监测示范平台。该项目已获专利授权3项,软件著作权登记2项。通过项目的实施,为重庆博通水利信息网络有限公司等50多家企业和单位提供技术咨询和服务100多次,服务长寿区50个村镇约20000人次,产生直接经济效益300万元。项目成果的转化,直接向全市广大农村服务,对改善农村用水环境,提高农村人居生活质量和健康水平,促进新农村建设和民生工程建设具有重要意义。
  • 吉林22家炼化企业实现集中式在线监控
    11月1日,中国石油炼油与化工分公司环境在线监控中心在吉林石化正式成立运行。中心将对污染源实现在线监控及预测预警,可最大限度地削减环境风险,为实现清洁、安全生产发挥积极作用。  据介绍,该中心在22家炼化企业的全力配合和支持下,22家企业的124个监测点已经全部实现了上线运行,各企业的排放出口数据从即时到日均、月均、年均都一目了然 18家企业三级防控的自动监控工作也已完成,为中国石油炼化企业实现清洁安全生产发挥了重要作用。任何一个点的数据超标时,都可以被快速、便捷地找到是哪个装置出现了问题。  据了解,在线监测依托中国石油吉林数据中心,实现内网运行,安全性、保密性均得到了保障。下一步,该中心将重点加强异常数据的快速反应,使任意一点的数据异常都能得到短信、电话等多种技术手段的自动通知,最大限度地保障安全生产。
  • 罗湖推广油烟监测系统 650家企业在线监控
    一边是监测数据显示达标排放,一边是居高不下的信访投诉,深圳市环境执法人员面临着这样的管理难题。如何摆脱这一尴尬局面?深圳市罗湖区环境保护和水务局似乎找到了出路。  困境:油烟信访量占总量的35%,监管难度大  中国环境科学研究院研究表明,餐饮业油烟是深圳大气污染的主要污染源之一,餐饮业油烟占大气污染的比例接近8%。罗湖是深圳的餐饮娱乐旺区,第三产业比重高达92%。根据统计数据,2008年、2009年、2010年、2011年油烟污染投诉占辖区信访案件总量均接近35%。  一个不得不正视的问题是,餐饮业油烟监管存在一定难度。比如油烟处理设施维护不当,处理效果难以长久持续 油烟污染规模小、污染源分散,监管需投入的人力、物力大 油烟污染随时间变化大、动态范围广,对监管时效性要求高。  突围:大面积实时监测系统,突破监测困局  面对这些现实问题,罗湖区环境保护和水务局积极探索解决之道。首先,他们根据企业规模及污染物排放强度等因素,将辖区650家企业纳入在线监控范畴(其中餐饮企业550家,珠宝企业50家,汽修企业30家,医疗机构20家)。项目投入240多万元,于2012年4月建成。  系统主要设备由检测终端、无线传输和中心数据平台组成。其中检测终端分布在各排污企业污染处理设施的最终排污口,无线传输设备将检测终端采集的各排污企业的排污实时浓度值、污染处理设施运行状态参数24小时不间断传输到中心数据平台。中心数据平台记录、储存、分析各排污企业处理设施运行情况、油烟排放浓度,同时提供查询和预警。  “一旦数据显示超标,系统可自动发送短信到企业经营者手机,进行提醒和警告,以便及时处理,有效控制污染。”罗湖区环境保护和水务局相关负责人在介绍系统时强调。  据介绍,这个项目实现了两个率先:一是在国内率先实现餐饮业油烟排放浓度的在线监控 二是在国内率先实现大面积餐饮业油烟浓度在线监控。  简单地说,这个项目以较少的投入(项目总投入240多万),用较少的人力,实现对餐饮企业的较为有效的监管。油烟净化设施安装率、正常运行率、处理达标率均有提升。  待解:法律法规亟待完善,监测标准尚需修订  据了解,油烟监管问题不是深圳一地问题。因为,执法缺少法律法规支撑,监测数据不能作为处理依据。原来,目前存在与油烟有最直接关系的法规条框就是2000年修订《中华人民共和国大气污染防治法》第四十四条和2001年颁布的环境空气质量标准GB18483-2001《饮食业油烟排放标准》。  在实际工作中,GB18483-2001成为餐饮油烟相关的唯一可具体操作执行的国家层面的法律依据。因此,修订和新增相关法律法规的社会需求极其强烈。  油烟净化技术与其他技术不同,由于中式烹饪与西式烹饪油烟废气状况完全不同,西方国家对油烟净化技术的需求程度远远小于中国。因此国内的油烟净化开发生产没有国外先进技术可以借鉴,各种油烟净化技术几乎都是由本土发展起来的。  一个可喜的消息是,深圳市环境监测中心站的专家和油烟监测行业正在积极致力于标准的修订。
  • 智易时代车载OBD远程在线监控终端通过两项检验报告
    智易时代车载OBD远程在线监控终端通过两项检验报告 日前,智易时代送检至国家轿车质量监督检验中心的ZWIN-OBD-06车载OBD远程在线监控终端先后通过了功能性能及电磁兼容两项检验报告,表明此产品符合GB 17691-2018《重型柴油车污染物排放限值及测量方法(第六阶段)》的规定。这两项检测报告的取得,标志着智易时代研发创新的ZWIN-OBD-06车载OBD远程在线监控终端成功进入远程OBD市场的门槛,为以后OBD领域市场份额的扩大奠定了坚实基础。 《重型车国六标准》指出:在欧六车载诊断系统(OBD)的基础之上,参考美国OBD法规提出了YONGJIU故障码等反ZUOBI的要求;并首次将远程放管理车载终端(远程OBD)的要求应用到国家标准。 OBD是一种为车辆故障诊断而延伸出来的一种检测系统,从轻型车国三、重型车国四阶段开始,每一辆新车上都强制要求加装OBD系统,但由于常规OBD系统信息的BUGONG开性,致使监管部门对车辆排放情况了解匮乏,车辆的实际道路排放很难被有效控制。因此,为了更充分地发挥OBD的作用,《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(简称重型车国六标准)首次要求车辆必须装有远程排放管理车载终端(远程OBD),通过远程接收车载OBD远程终端发送的监测数据信息,及时判断车辆的实际排放状况和维修情况,大大提升了在用车监管的效率。 产品介绍:ZWIN-OBD-06是一款重型柴油车OBD远程排放管理终端。采用车规级设计,集J1939 CAN总线协议数据、国密SM2加密、4G蜂窝网络、GPS+北斗卫星定位、FLASH存储等功能为一体,安装应用在重型柴油车上,可在车辆运行过程中实时监测发动机电控系统及车辆的其它功能模块的工作状况,并将采集的监测数据按照指定的通讯协议实时远程上传至监控平台系统,实现对重型柴油车全天候、QUANFANGWEI的排放监控。 当发现工况异常,本产品还会根据特定的算法判断出具体的故障,并以诊断故障代码(DTC,Diagnostic Trouble Codes)的形式进行内部存储,当车辆进行维修时,可DIYI时间协助维修人员对故障进行快速定位,以便于对车辆的修理,减少人工诊断的时间。
  • 【瑞士步琦】在线近红外——食用油生产在线监控产品质量
    步琦在线近红外食用油生产在线监控把控产品质量近红外应用”毛油在经过脱胶、脱酸、脱色、脱臭之后,对油脂质量有不良影响的磷脂、FFA、色素等一些杂质与油脂分离,等到较为纯净的甘三酯,此时油脂的组成成分与成品油接近。油脂在脱臭过程中主要去除了引起臭味的低分子醛、酮、游离脂肪酸、碳氢化合物等。利用油脂中的臭味物质和甘三酯挥发度差异大的特性,通常在高温和真空条件下借助水蒸气蒸馏脱除臭味物质。油脂脱臭不仅可以去除油中的臭味物质,提高油脂的烟点,改善食用油的风味,还能使油脂的稳定度、色度和品质有所改善。成品油的检测指标主要是酸价、颜色、碘值、含磷量等化学参数,采用实验室化学法测定这些参数往往会耗费大量的时间和人力资源,同时颜色的测定主要依靠检测人员的视觉感受,可能存在误差。在使用 BUCHI NIR-Online 后,可以将近红外分析仪安装在脱臭工艺之后,用于监控成品油中各组分的含量,对多个参数实现连续不断的监控。及时调整生产参数使其在一定的范围内,保证产品质量的稳定,同时降低了实验室的检测频率,减少了实验误差,降低了任务量。1介绍设备及附件选取特定的测量附件流通池X-cell,确保毛油在流通池内平稳的流动,降低测量的误差。主机探头采用固定光栅型近红外,无可移动部件,检测速度快,适用于工业生产车间。现场安装图如图3所示。▲ 图 1. 主机探头▲ 图 2. 流通池 X-cell ▲ 图 3. 现场安装图2实验内容采集样品,建立酸价的定标模型,预测脱嗅油中游离脂肪酸的含量。随机选取豆粕样品并扫描样品,得到样品近红外吸收光谱。▲ 脱嗅油近红外光谱图模型建立及模型评价▲ 酸价的化学值与预测值的相关关系图▲ 碘价的化学值与预测值的相关关系图▲ 色泽的化学值与预测值的相关关系图脱嗅油中酸价,碘价及色泽的实际测量值和预测值具有较好的相关性,碘价和色泽相关系数 R2 都达到 0.8 以上,分别达到了 0.976 和 0.844,酸价相关系数 0.756,三个指标的偏差值 SEC 分别为0.007,0.29,0.03。3结论从结果来看,在线近红外作为一种快速的测量方法,其定标模型显示较高的精确度,稳定性,并且可以代替化学方法测定油脂中多个参数。可实时的为生产提供数据,优化工艺参数,助力油脂精炼。
  • 智易时代车载OBD远程在线监控终端,顺利通过天津市市场监管委检验!
    3月22日,天津市市场监督管理委员会发布了2021年车载导航设备等4种产品质量监督抽查情况的通报,市市场监管委严格按照《中华人民共和国产品质量法》、《产品质量监督抽查管理暂行办法》、《天津市产品质量监督抽查实施办法(试行)》等规定重点对机械振动项目进行了检验,我司的车载OBD远程在线监控终端(型号ZWIN-OBD-06)产品凭借过硬的研发实力、卓越的产品质量顺利通过了抽查。天津智易时代科技发展有限公司成立于2013年,由南开大学博士陈涛创立,目前注册资金1240万,公司长期致力于各类环境要素在线监测,在线服务,成为集研发、生产、销售、服务为一体的环境监测行业的产品供应商。此次通过抽查的是ZWIN-OBD06重柴在线监测仪,ZWIN-OBD06是一款安装在重型柴油车上通过用车通讯协议,获取车辆及排放系统相关数据的设备。支持SAEJ1939及IS015765标准协议,可选TCP协议,支持基于DBC的CAN总线配置、GPRS/3G/4G网络通讯、支持远程固件升级、支持多路数据采集、SD卡离线数据记录,支持多种休眠模式 ,待机长,故障码解析功能。我司的重型柴油车尾气排放在线监控系统,集成了数据采集、数据储存、数据远程传输以及监控报警等多种功能,并且通过先进的氮氧传感器、颗粒物传感器技术直接监控柴油车尾气中的No及颗粒物等污染物浓度。可以对市面上各种柴油车车型进行排放实时监控以及分析,并通过采集原车辆发动机信息对数据进行分析。建立全覆盖的柴油车在线监控网络,可以对车辆实现精细化的管理,严格监控车辆实际排放,了解车辆运行态势,为污染源头实施应急措施提供技术保障和大数据分析,为环境管理纳入环境保护监控和监控执法系统贡献一份力量。其他车载设备ZWIN-CFH08道路积尘负荷快速走航监测终端,是对大气中颗粒物、道路车辆扬起的尘土进行在线实时监测,将采集的数据信息传递到智能云平台进行处理,给予客户包括航路线图,点位的颗粒物数值等多方面的监测信息。该车载仪器的路面积尘负荷测量系统,包括测试车辆、两个颗粒物检测设备、摄像头模块,输出单元等。检测轮胎旁车顶与车底的颗粒物数值,上传到平台,关联走航的点位,速度进行计算,得出积尘负荷的数值。ZWIN-AQMSC06车载式微型空气质量在线监测仪是一款用于搭载汽车监测污染物实时准确数据的产品,集成“四气两尘”(SO2、NO2、CO、O3、PM2.5.、PM10)及气象(温度、湿度、风速、风向、噪声)传感器,搭载视频监控设备,结合无线通讯技术,通过车载地图及GPS实时定位系统把监测数值及视频监控汇集到“云平台”,视频监控叠加现场实时监测数据,为环境监测提供大数据和决策。ZWIN-YCC08车载式扬尘在线监测仪是一款高度集成各传感器,采用抽屉式安装方式,颗粒物采样光散射法原理、配置GPS定位模块,监测过程中可将车辆轨迹回传至平台进行数据集成分析。集成视频监控设备可叠加现场监控视频画面及实时数值,适用于建筑工地,智慧城市、数字城管、工业园、交通码头及拆迁工地等固定监测设备无法覆盖的区域颗粒物监测。资质公司产品定位于中高端市场,快速响应客户需求,及时推出符合实际应用的产品及解决方案,先后获得CMMI能力成熟度模型集成体系认证、ITSS(三级)运行维护服务能力成熟度模型体系认证、两化融合管理体系认证、知识产权贯标体系认证;同时我司获得了国家天津市科技型中小企业认证、天津市市级高新技术企业认证、国家高新技术企业认证、天津市雏鹰企业认证以及多项软件、专利认证。智易时代全面助力国家生态文明建设,为打赢污染防治攻坚战提供专业技术支撑,“以科技助力环保,以行动成就客户”,向信息化、自动化、智能化方向不断发展,开拓创新。
  • 《电子招标投标办法》发布 电子评标须监控下在线进行
    国家发改委、工业和信息化部、监察部、住房城乡建设部、交通运输部、铁道部、水利部、商务部联合制定的《电子招标投标办法》及相关附件2月20日发布,自2013年5月1日起施行。办法规定,电子评标应当在有效监控和保密的环境下在线进行。  办法同时规定,根据国家规定应当进入依法设立的招标投标交易场所的招标项目,评标委员会成员应当在依法设立的招标投标交易场所登录招标项目所使用的电子招标投标交易平台进行评标。  办法明确,电子招标投标交易平台运营机构不得以任何手段限制或者排斥潜在投标人,不得泄露依法应当保密的信息,不得弄虚作假、串通投标或者为弄虚作假、串通投标提供便利。不得以技术和数据接口配套为由,要求潜在投标人购买指定的工具软件。相关文件:《电子招标投标办法》
  • 中国新版GMP实施要点暨在线尘埃粒子和浮游菌监控应用讲座(重庆)
    国际标准 安装实例 认证典范 完美方案 欧洲和北美的医药和生物企业在线尘埃粒子和浮游菌监控系统解析稳定的软件系统对于数据的收集的重要性GAMP 5 认证文件的特点 本次研讨会根据中国新版(2010年修订) GMP的实施细则,重点阐述在线尘埃粒子和浮游菌监控系统的实际安装准则,旨在协助中国的医药和生物企业通过中国新版GMP,EUGMP和FDA的认证。 演讲专家介绍 Tim Russell先生在生命科学领域25年的工作生涯中,共设计,安装,认证和维护了近100套在线尘埃粒子监控系统,其中包括大量无菌生产线粒子监控系统。所有这些系统均通过了美国FDA,cGMP和EUGMP的验证。 Russell先生曾参与编写了EUGMP标准。Russell先生曾成功主持了多次生命科学软件的审查。 Russell先生多次受邀在ISPE,BSI,UK PHSS上演讲EUGMP之粒子及环境监控系统议题题。 日程安排8:30-9:00 前台签到9:00-10:30 专家演讲10:30-10:45 茶歇10:45-12:00 专家演讲12:00-13:30 中餐13:30- 14:30 互动14:30- 14:45 茶歇14:45-16:30 专家演讲 时间与地点时间:2011年6月15日(周三)地点:重庆欧瑞锦江大酒店 重庆市渝北区西湖路6号我们诚挚地邀请您拨冗莅临美国TSI公司和金牌分销商北京耀泰科技有限公司联合举办
  • 中国新版GMP实施要点暨在线尘埃粒子和浮游菌监控的应用讲座(深圳)
    国际标准 安装实例 认证典范 完美方案 欧洲和北美的医药和生物企业在线尘埃粒子和浮游菌监控系统解析稳定的软件系统对于数据的收集的重要性GAMP 5 认证文件的特点 本次研讨会根据中国新版(2010年修订) GMP的实施细则,重点阐述在线尘埃粒子和浮游菌监控系统的实际安装准则,旨在协助中国的医药和生物企业通过中国新版GMP,EUGMP和FDA的认证。 演讲专家介绍 Tim Russell先生在生命科学领域25年的工作生涯中,共设计,安装,认证和维护了近100套在线尘埃粒子监控系统,其中包括大量无菌生产线粒子监控系统。所有这些系统均通过了美国FDA,cGMP和EUGMP的验证。 Russell先生曾参与编写了EUGMP标准。Russell先生曾成功主持了多次生命科学软件的审查。 Russell先生多次受邀在ISPE,BSI,UK PHSS上演讲EUGMP之粒子及环境监控系统议题题。 日程安排8:30-9:00 前台签到9:00-10:30 专家演讲10:30-10:45 茶歇10:45-12:00 专家演讲12:00-13:30 中餐13:30- 14:30 互动14:30- 14:45 茶歇14:45-16:30 专家演讲 时间与地点时间:2011年6月17日(周五)地点:深圳明华国际会议中心(蛇口) (深圳市南山区蛇口龟山路8号)我们诚挚地邀请您拨冗莅临美国TSI公司和金牌分销商北京耀泰科技有限公司联合举办
  • 哈希水质在线实时监控系统应用在承德市自来水出厂水端口
    近日,哈希水质在线实时监控系统经过近一个月时间的安装、调试,现已正式在承德市自来水厂投入使用。它标志着该市供水可以实施五项水质自动监测、实时连续监测、超标报警,实现了每一分钟采集、上传、更新一组PH值、电导率、余氯、浊度、温度的监测数据,使市水务局指挥中心和市自来水供水调度中心第一时间掌握水质情况,确保安全供水。 承德市自来水六个水厂的出厂水端口均安装了美国哈希公司水质实时监测设施:在线浊度仪、数字化在线PH测定仪、在线余氯/二氧化氯测定仪、数字化在线电导率测定仪、在线温度测定计。此项系统是目前世界上最大的水质测试集团核心企业的产品,运用国内先进的无线传输技术,实时上传各项水质数据,先进的技术设备为实施在线实时综合监控提供了精良的设备保证。 另外,配合在线实时监测系统,承德市自来水公司还添置了哈希便携式水质毒性分析仪。一旦出现水质污染事故或投诉,就可以协同相关部门第一时间出现场,监测污染总量,立刻采取相应措施,起到了对水质异常预警报警的作用。 据悉,承德市执行的水质标准是2007年7月1日开始实施的《生活饮用水卫生标准》,为了提高实验室检测能力,更好地监测本地区水质状况,2008年自来水公司在举债经营的情况下,投入资金、引进人员,进行实验室能力建设,目前水质检测项目已扩至87项,不重复检测项目达到124 项。先进的实验室检测仪器可以准确的评判水质和进行深层次的水质研究,但其所报结果大多是静态的、非直接的现场数据,不能适时地反映供水过程中的水质状况,因此,在原水、出厂水及管网水配备在线水质检测仪器并实施在线监测,对供制水过程水质控制和指导生产工艺的改进很有必要,特别是环境污染已经成为我国目前所面临的重大问题之一,甚至对人民群众的生活饮用水带来了很大的威胁,因此,及时有效地发现有毒污染物的泄漏或排放有着十分重要的意义。
  • 单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例
    Hendriks L., Skjolding L. M., Robert T., 确定细胞中金属元素的生物利用率的传统方法一般需对细胞进行酸消解,然后利用溶液进样电感耦合等离子体质谱(ICP-MS)进行后续分析。这种方法的缺点是需要大量的细胞,并且只能为给定的细胞群体提供平均值1。众所周知,千人千面,不同群体以及同群体细胞的特异性在文献中也多有报道2。基于这个大前提,使用特定的分析方法对不同群或同群细胞进行逐序单个分析,获取与单个细胞特异性有关的大数据就尤其重要(见图1)。本文中介绍的单细胞-电感耦合等离子体质谱法(sc-ICP-MS)与之前介绍过的单颗粒ICP-MS(sp-ICP-MS)基本类似(微信公共号:粒粒皆信息:什么是单颗粒物ICP-MS质谱分析法?)。事实上,上述两种技术都依赖于相同的基本原理和icpTOF瞬时事件全谱多元素测量能力,从而可以获得由单一个体产生的微秒时间区间内的瞬时信号,例如单个纳米颗粒(NPs)或单个细胞。(译者注:这等同在拍一段有很多快速武术对打的电影场景,需要使用高速摄像机来捕捉每一个武打动作细节和变化,同时也不漏过颜色,声音等关键信息,这样才能最终呈现出高清120Hz的作品。) 单颗粒ICP-MS方法的基础概念和硬件构架3源于2003年Degueldre等发表的第一篇论文。在过去的二十年间,通过进样系统,数据采集硬件和数据处理专用软件的进一步发展和商业化,不断增加的科研文献见证了该技术领域的迅速成熟。在单颗粒ICP-MS上投入的研究和应用开发同样的也使单细胞ICP-MS分析受益。 在单细胞ICP-MS中,细胞悬浮液经超声波雾化后形成的液滴被带入ICP-MS等离子体中。细胞在等离子体中依次被汽化、原子化和最终离子化。每个细胞产生一个含有多种元素的离子云,在仪器上被检测为高于背景的时长几百微秒的单个信号峰。与单颗粒ICP-MS类似,记录到的尖峰频率与细胞数量浓度成正比,这些尖峰的强度则与细胞中该元素质量有关。这种技术已经成功的应用在测定海藻中的镁元素含量4,并进一步用于纳米颗粒物毒理学研究中评估细胞对纳米颗粒物的摄取情况5,6,7。 虽然单细胞ICP-MS的测量方法看起来很简单,但要获得真实可靠的数据,实施起来需要注重的细节很多。除了需要额外注意来自培养基的可能高背景信号和细胞在样品导入系统中的潜在破损,在单细胞研究中反复报道的一个主要瓶颈是细胞进样装置的低运输效率,这是因为与纳米颗粒物相比,细胞的尺寸更大,在传输过程中也更容易损失。事实上,传统的系统通常包括一个旋风式雾化室,是专为引入较小的溶液液滴而设计的,导致细胞传输效率低于10%。而用于单细胞导入的定制系统,包括改进的雾化器或全消耗喷雾室8,9,以及其他创新设计10,11,经过多年反复测试,已被验证可以高效传输单细胞进入ICP-MS。 另一个瓶颈在于质谱仪器质量分析器的性能:传统的ICP-MS仪器具有单四极杆或扇形场质量分析器,在进行单细胞分析时最多只能同时检测一到两种元素信息(只能拍黑白影片)。而在常见的单颗粒分析场景中,比如在纳米毒理学研究中,在试图量化纳米颗粒物(特征金属元素)和细胞(蛋白固有元素)的关联时,需要同时获得单细胞事件内多种元素浓度信息。为了获得微秒级事件信息全貌,快速且广谱分析的质量分析器,如飞行时间质量分析器等高精尖‘摄影器材’是必不可少的(译者注:例如,等同于可提供高清彩色120Hz影片给观众更加真实的IMAX观影体验)。图1:a)在对细胞进行酸消解后,通过传统的雾化法将溶液样品引入ICP-MS,并记录仪器获得的稳态信号。这种整体分析法对初始样品中所包含的数千个细胞获得一个平均值。然而这种实验是基于细胞是均匀的假设,而忽略了细胞具有多样性的事实。因此,少数细胞群(用绿色和紫色表示),在元素组成上虽与主类细胞有差异,却没有被体现在结果中,这完美的诠释了辛普森悖论。b)在单细胞ICP-MS方法中,将细胞悬浮液稀释后,在单位时间内仅有一个细胞个体被引入ICP-MS等离子体。每个细胞产生一个独立的离子云,作为信号峰被ICP-MS仪器记录。这种方法允许检测每一个单独的细胞,从而保证了细胞特异性信息的无损获取和保存。简单来说,在单细胞ICP-MS中,细胞是以个为单位进行分析的,可以根据它们不同的分析物含量识别出不同的群体,而不是仅仅产生一个平均值。icpTOF飞行时间质谱法 在飞行时间质谱法(TOF-MS)中,其基本原理是根据离子到达检测器前通过固定长度的飞行管的飞行时间来精确分辨离子。离子束在脉冲加速电压后具有相同的动能,但轻的离子会比重的离子获得更高的速率,进而更早到达检测器。测量所有离子的陆续到达时间可以得到一个连续时间谱,经过简单的校准和换算后可以得到一张全质谱谱图(一般6-280 Th)。TOF质量分析仪的主要优点是:对分析的元素及同位素的数量没有限制,而且全谱数据采集速度快(通常几十微秒就可以获得一张全元素谱图)。这样的快速全谱数据采集能力在处理单一实体(如单细胞)检测时尤其重要,因为单细胞产生的瞬时事件长度很短,一般在200-500微秒区间。 飞行时间技术在单细胞分析领域并不是一个新概念,最初是由Bandura在2009年提出的,其原型机12用于单个细胞的时间分辨分析13,从而为众所周知的 "质谱流式 "领域打开了大门。这项应用使用稳定的稀土金属同位素来标记细胞,从而允许通过其金属标记物来检测相应细胞14。除了展现了生物研究和药物筛选应用中的巨大潜力,质谱流式也被用于检测细菌细胞中的银纳米颗粒15。然而,由于质量检测范围有限(80 Da)和涉及染色的样品制备程序,质谱流式细胞技术无法检测许多固有元素。 与质谱流式不同的,如图2a) 所示的ICP-TOF (TOFWERK AG, 瑞士) 可以测量从质荷比6到280的全谱图16,从而可以覆盖轻质元素,如Na, Mg, P, S, K, Ca, Mn, Fe, Cu, Zn等。这些元素是活细胞的固有元素,它们的分布(也被称为细胞离子组17)可以作为细胞发育状态的指标18。例如,磷存在于核酸(DNA和RNA)中,也是ATP、CTP、GTP和UTP等能量化合物的重要成分。钠和钾在电信号的传输中起作用,而锌被不同的生物过程中的多种酶用作催化剂。由于ICP-TOF-MS的同时多元素检测能力,可以在多种元素的相关分析基础上进行指纹识别19。如图2b) 所示,镁、磷、锰、铁、铜和锌被鉴定为被分析藻类的本征指纹元素。不需要标记或染色,即可依据细胞的 "天然 "元素指纹来进行单细胞分析20,21。通过测量特定细胞类型的金属微量元素,则可以获得更细致的指纹信息。例如,海藻细胞富含镁等金属微量元素,镁是叶绿素的核心组成部分,对光合作用至关重要。因此,金属微量元素的组成可以作为一种独特的指纹来明确识别不同的细胞种类。通过测量单细胞的金属元素组分,可更好地了解由金属蛋白和金属酶调节的基本生物过程,从而解密细胞生命周期不同状态22。尽管细胞的生物化学并不完全反映在其离子组上,但通过监测其金属含量的变化,可以确定地获得对细胞状况和生物过程的更深入了解。 通过使用TOF质量分析仪作为检测器,可以动态系统地获得完整的质谱数据,从而可以对发现特定实体本身及其所处环境进行连续或高通量表征。因此在纳米毒理学背景下,人们可以很容易地确定纳米颗粒物是否与细胞相关联。图2:a) icpTOF仪器(TOFWERK AG, Thun, Switzerland)的示意图:在iCAP Q(Thermo Scientific, Bremen, Germany)的框架上搭配一套高分辨率飞行时间质量分析器。因此,ICP-TOF受益于与iCAP Q相同的ICP离子源、离子光学、碰撞/反应池技术和样品引入设备。b) 用48 µ s时间分辩率采集的淡水藻类细胞raphidocelis subcapitata的瞬时信号速率。c) 藻类细胞通常用于毒理学风险评估研究,这里在暴露于金纳米颗粒一段时间后进行分析,以调查其摄取情况。在ICP-TOF的全质量数范围内,可以根据检测细胞的本征元素指纹对细胞进行追踪,并能直接定量测量纳米颗粒物-细胞的关联。icpTOF单细胞分析应用实例 单一实体分析,与批量样品测量相比,能产生信号的质量相对有限,这对仪器灵敏度要求更高。下面的应用案例研究展示了icpTOF S2仪器(TOFWERK AG,瑞士)的性能指标:具有与单四极杆ICP-MS类似的高灵敏度,又可同时快速检测全谱信号,特别适合分析单一实体,如单细胞或纳米颗粒(NPs)等。随着工业和日常生活中纳米颗粒物的广泛使用,纳米安全和纳米毒理学在过去20年一直是深入研究的课题。纳米颗粒物的安全评估研究中的一个重要参数是其在细胞摄取的分析和量化。 透射电子显微镜(TEM)和扫描电子显微镜(SEM)具有高空间分辨率,它们经常被用于细胞内纳米颗粒物的分析23,24。尽管有令人印象深刻的成像能力,基于电子显微镜方法的一个主要缺点是对样品制备的繁琐要求。此外,由于没有额外的元素定量或自动图像分析,获得的图像是定性的且结果较难被解读25,26。如前所述,单细胞ICP-MS也可用于量化细胞对纳米颗粒物的摄取,根据观察到的信号峰的强度大小,提供与细胞相‘关联’的纳米颗粒数量的信息5,6。这类实验通常有以下三个明显的观察结果: 只检测到纳米颗粒物中的特征元素,表明溶液中存在纳米颗粒物 只检测到细胞固有元素而没有任何纳米颗粒物中的元素,表明细胞并没有与纳米颗粒物相关联 同时检测到细胞固有元素和纳米颗粒物中的元素,意味着两者有关联 根据观察到的相关联的纳米颗粒/细胞峰的频率和幅度,可以确定摄取了纳米颗粒物的细胞的百分比以及与每个藻类细胞相关的纳米颗粒数量的估计值。在理想的情况下,可以根据浓度和暴露时间动态地对海藻细胞和纳米颗粒数量的相关性的进行评估。 在本案例研究中,将海藻细胞暴露在BaSO4(NM-220)溶液中72小时,接着按照Merrifield等人提出的程序进行清洗5,去除未与细胞结合的纳米颗粒。在暴露后并在ISO8692藻类培养基中进行冲洗后27,样品中预计只包含与藻类细胞相关联的纳米颗粒物。随后,样品被储存在15毫升的试剂管中,用锡纸包裹,等待分析。 在使用四极杆ICP-MS进行单细胞的初始研究中,我们发现清洗后的细胞悬浮液中仍存在BaSO4纳米颗粒,如图3a所示。有学者认为未关联的纳米颗粒已经去除,而这些检测到的纳米颗粒是与海藻细胞相关联的。然而由于只测量了一种元素138Ba,并不能完全证实这一猜想。 我们使用单细胞ICP-TOF-MS(见图2a)重复了一个类似的实验。从图2b中我们可以知道被分析的藻类细胞的本征元素指纹,即只有同时检测到Mg、P、Mn和Fe等元素时才被认为检测到了藻类细胞。令人惊讶的是,即使暴露72小时后,BaSO4 纳米颗粒与水藻细胞的指纹信号没有显著关联(图3b)。可以看到,Ba仅与Mg和Fe的信号同时被检测到,而没有水藻的其他指纹信号同时出现。虽然缺失的元素信号强度有可能是低于仪器检测极限,但至少这说明检测到的元素与藻类细胞的本征元素指纹不一致。然而在检测到藻类细胞的指纹信号中,没有观测到Ba元素信号。综上所述,如果没有icpTOF瞬时多元素检测能力,在清洗后细胞悬浮液中检测到的纳米颗粒的Ba信号很容易被误解为是与藻类细胞相关联的颗粒物。图3:a)实验流程图。在样品暴露于纳米颗粒物72小时后,细胞被清洗以去除上清液中游离态的纳米颗粒物。b) 通过使用飞行时间质谱仪重复单细胞测量,可以跟踪细胞的元素指纹,以验证纳米颗粒物信号和细胞信号的是否同时出现。结果显示虽然纳米颗粒物和细胞没有直接关联,但Ba信号与Mg和Fe信号是一起出现的。 这些结果导致了对可能引发该现象的机制的讨论。一个合理的解释是海藻细胞通过释放胞外聚合物物质(EPS)来清除粘附在细胞表面的纳米颗粒物。EPS被认为是影响藻类细胞对纳米颗粒的生物利用率的关键因素28,29。EPS产量的增加可使藻类细胞主动脱落纳米颗粒,从而减轻摄取或吸附到细胞外部,而纳米颗粒仍然以被包含在EPS中的形式存在于溶液中。虽然缺乏关于这种行为的定量数据,但足以解释BaSO4纳米颗粒信号与Mg和Fe信号的契合。当然Fe与Ba信号的同时出现还可以被解释为溶解的Ba与ISO 8692培养基中的EDTA络合在了一起,而EDTA被添加在溶液中以保持Fe的生物可利用率。要回答这个问题,我们使用TEM观察到EPS聚集体中包裹有纳米颗粒(图4)。由于TEM局限于定性分析,再加上EPS结构微妙,这种包裹的确切机制和发生频率很难被量化。然而单细胞ICP-TOF-MS则可以直接对这一现象进行定量分析,而不需要对样品进行复杂的制备,同时还可以在较短的时间内分析更多的藻类细胞及EPS聚集体,提供更可靠的统计数据。此外,单细胞ICP-TOF-MS可以动态地从藻类悬浮液中不间断取样,评估这种清除行为的发生频率与样品浓度和时间的关系,进一步了解藻类细胞和纳米颗粒之间的相互作用。这种利用ICP-TOF研究动态摄取和清除行为的研究思路不仅限于藻类细胞,还可以扩展到纳米医学或纳米生物技术的其他类型细胞,如哺乳动物细胞或细菌。图4:一个藻类细胞(Raphidocelis subcapitata)的透射电子显微镜图像,该细胞之前暴露在银纳米颗粒物中,脱落的细胞外聚合物物质(EPS)含有银纳米颗粒。(由Louise H. S. Jensen和Sara N. Sø rensen提供)。 正如本研究强调的那样,尽管传统的四极杆质谱(sc-ICP-Q-MS)可以测量单细胞,但它最多只能同时测量一种或两种元素或同位素,所以即使检测到纳米颗粒信号也不能100%确定其与细胞直接关联。另外还需要TEM来确定颗粒物是否被藻类吸收在内部或简单附着在细胞外部。然而使用ICP-TOF-MS可以将被暴露在纳米颗粒物中藻类的离子组与对照藻类的离子组进行比较,从而评估它们的状况。这些信息对于从机理上理解海藻细胞与纳米颗粒物的相互作用非常有价值,并可以进一步促进开发以生理学为基础的纳米颗粒物风险评估工具。icpTOF结论与展望 单细胞ICP-TOF-MS是一个新兴的、令人兴奋且快速发展的研究领域。虽然尚需数年时间才能达到质谱流式技术在单细胞多参数分析方面的水平,但ICP-TOF-MS得益于灵敏度的提高和同时全谱检测能力,能够基于元素指纹检测未被标记的细胞,从而为新的实验设计创意提供可能性。例如,除了测量纳米颗粒物和细胞的相关性外,ICP-TOF-MS记录的多元素数据可用于评估细胞在纳米颗粒介导毒性影响下的不同状态。 除了液体样品引入方法之外,也可以使用激光剥蚀(LA)-ICP-TOF-MS进行单细胞分析30,31。通过将制备有细胞的载玻片放在样品台上并使用激光扫描,可以产生单个完整细胞层面上的元素分布二维图像,其中每个像素包含一个完整的全元素谱图。LA-ICP-TOF-MS成像的高空间分辨率对纳米毒理学研究特别有意义,因为它可以观察和定位纳米颗粒物在亚细胞结构中的聚集,以进一步了解和解释各种现象(如摄取、积累和释放纳米颗粒)。 此外,所生成的大量数据可以通过降维技术进行处理,如主成分分析(PCA)或机器学习工具,并提取与细胞状态和类型有关的信息,从而使细胞的分类变得更容易。这在质谱流式工作流程中是常见的处理方法。这项技术不仅限于纳米毒理学研究,还可以扩展到金属组学和细胞生物学中。无论如何,我们将继续努力改进飞行时间质谱ICP-TOF-MS技术,使其在更广阔的应用领域发挥作用。icpTOF致谢作者感谢Olga Meili和Aiga Mackevica校对本文并提供反馈。Lars M. Skjolding得到了PATROLS – Advanced Tools for NanoSafety Testing项目资助(760813)。感谢Louise Helene Sø gaard Jensen和Sara Nø rgaard Sø rensen允许使用图4中的TEM图像。最后特别感谢Robert Thomas邀请在Spectroscopy杂志中的 "原子视角专栏 "刊登此文。原文链接:Hendriks L., Skjolding L. M., Robert T., Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint, Spectroscopy, 2020, Volume 35, Issue 10, Pages 9–16https://www.spectroscopyonline.com/view/single-cell-analysis-by-inductively-coupled-plasma-time-of-flight-mass-spectrometry-to-quantify-algal-cell-interaction-with-nanoparticles-by-their-elemental-fingerprint (请点击左下角“阅读原文”跳转)本文由TOFWERK中国-南京拓服工坊科技编译,结论以英文原文为准。参考文献1 S. J. Altschuler and L. F. Wu, Cell, 2010, 141, 559–563.2 W. M. Elsasser, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 5126–5129.3 C. Degueldre and P. Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.4 K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114–1122.5 R. C. Merrifield, C. Stephan and J. R. Lead, Environ. Sci. Technol., 2018, 52, 2271–2277.6 F. Abdolahpur Monikh, B. Fryer, D. Arenas-Lago, M. G. Vijver, G. Krishna Darbha, E. Valsami-Jones and W. J. G. M. Peijnenburg, Environ. Sci. Technol. Lett., 2019, 6, 732–738.7 I. L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. Huang, N. Jakubowski, J. Tentschert and A. Haase, J. Nanobiotechnology, 2016, 14, 1–13.8 A. S. Groombridge, S. I. Miyashita, S. I. Fujii, K. Nagasawa, T. Okahashi, M. Ohata, T. Umemura, A. Takatsu, K. Inagaki and K. Chiba, Anal. Sci., 2013, 29, 597–603.9 M. Corte-Rodríguez, R. Á lvarez-Fernández García, P. García-Cancela, M. Montes-Bayón, J. Bettmer and D. . Kutscher, Curr. Trends Mass Spectrom., 2020, 18, 6–10.10 K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann and N. Jakubowski, J. Anal. At. Spectrom., 2013, 28, 646–656.11 P. E. Verboket, O. Borovinskaya, N. Meyer, D. Günther and P. S. Dittrich, Anal. Chem., 2014, 86, 6012–6018.12 D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. E. Dick and S. D. Tanner, Anal. Chem., 2009, 81, 6813–6822.13 K. R. Atkuri, J. C. Stevens and H. Neubert, Drug Metab. Dispos., 2015, 43, 227–233.14 S. D. Tanner, V. I. Baranov, O. I. Ornatsky, D. R. Bandura and T. C. George, Cancer Immunol. Immunother., 2013.15 Y. Guo, S. Baumgart, H. J. Stä rk, H. Harms and S. Müller, Front. Microbiol., 2017, 8, 1–9.16 L. Hendriks, A. Gundlach-Graham, B. Hattendorf and D. Günther, J. Anal. At. Spectrom., , DOI:10.1039/c6ja00400h.17 M. Malinouski, N. M. Hasan, Y. Zhang, J. Seravalli, J. Lin, A. Avanesov, S. Lutsenko and V. N. Gladyshev, Nat. Commun., , DOI:10.1038/ncomms4301.18 D. E. Salt, I. Baxter and B. Lahner, Annu. Rev. Plant Biol., 2008, 59, 709–733.19 A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann and F. Von Der Kammer, Environ. Sci. Nano, 2017, 4, 307–314.20 O. Borovinskaya, S. Aulakh and R. Markus, Tofw. appilcation note, 2019, 1–3.21 M. von der Au, O. Borovinskaya, L. Flamigni, K. Kuhlmeier, C. Büchel and B. Meermann, Algal Res., 2020, 49, 101964.22 L. Mueller, H. Traub, N. Jakubowski, D. Drescher, V. I. Baranov and J. Kneipp, Anal. Bioanal. Chem., 2014, 406, 6963–6977.23 F. Piccapietra, C. G. Allue, L. Sigg and R. Behra, Environ. Sci. Technol., 2012, 46, 7390–7397.24 F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias and R. Popovic, Chemosphere, 2012, 87, 1388–1394.25 L. H. S. Jensen, L. M. Skjolding, A. Thit, S. N. Sø rensen, C. Kø bler, K. Mø lhave and A. Baun, Environ. Toxicol. Chem., , DOI:10.1002/etc.3697.26 C. Brandenberger, M. J. D. Clift, D. Vanhecke, C. Mühlfeld, V. Stone, P. Gehr and B. Rothen-Rutishauser, Part. Fibre Toxicol., , DOI:10.1186/1743-8977-7-15.27 ISO, International Organization for Standarization. ISO 8692. Water quality - Fresh water algal growth inhibition test with unicellular green algae., 2012.28 J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, J. C. White and B. Xing, Nanotoxicology, , DOI:10.1080/17435390.2016.1206149.29 F. Chen, Z. Xiao, L. Yue, J. Wang, Y. Feng, X. Zhu, Z. Wang and B. Xing, Environ. Sci. Nano, 2019, 6, 1026–1042.30 S. Theiner, A. Schoeberl, S. Neumayer and G. Koellensperger, J. Anal. At. Spectrom., 2019, 34, 1272–1278.31 S. Theiner, A. Schweikert, C. Haberler, A. Peyrl and G. Koellensperger, Metallomics, , DOI:10.1039/d0mt00080a.
  • 南京市高淳大型餐饮场所在线监控油烟浓度 明年实现全覆盖
    p  南京市高淳区餐饮专项整治行动中,对120多家机关食堂和1000多家餐饮企业的厨房加装油烟净化装置,预计明年实现全覆盖。同时,引入第三方对规模以上餐饮场所的油烟浓度进行在线监控,破解部分地方“只装不用”的问题。/pp  近日,有记者在南京市高淳区固城湖南路一处餐馆的后厨看到,厨房排风口通往街道路边,中午12点半就餐高峰期,厨房里煎炒煮炸,热火朝天,但排出的气体油烟味并不重。厨房工作人员介绍,这是因为厨房排风口加装了油烟净化装置,不仅如此,厨房的下水道也加装了简单净化设施。在工作人员指引下,记者看到,两个洗碗池排水口连接一个油水分离器,打开分离器盖子可以看到,里面分为三格,第一格是沉渣,第二格隔油,第三格为简单净化后的厨房污水,“有了这个装置,就不用倒开水融化管道上的油块了,只需要定期清理油水分离器。”餐馆管理人员邢小冬说。/pp  “由于餐饮油烟主要集中在城市核心区、商业区、居民区等人口集中区域,而且是低空排放,对人们生活影响较大,”南京市高淳区环保局相关负责人说,该区从去年6月起,在全区开展餐饮专项整治行动,要求所有餐饮服务业安装油烟净化装置、建立隔油沉渣设施,实现油烟、污水达标排放。经排查梳理,高淳区目前约有1160家餐饮企业,其中,面积达500平方米的规模以上企业约有30多家。今年5月,该区又将120多家企事业单位的食堂纳入整治范围。/pp  高淳区以“谁污染谁治理”原则,要求餐饮经营方负责加装油烟和污水净化装置,同时,引入第三方,对规模以上的餐饮企业和就餐人数超过50人的企事业单位食堂加装油烟排放浓度监控设施,实时在线监控排放浓度,破解有的企业“只装不用”的问题。/pp  记者在高淳区城乡建设局食堂的后厨看到,厨房排风管道加长了5米多,不仅增设了油烟净化器,还加装在线监控设备和一个约1立方米大的风柜。高淳区环保局的工作人员曹伟拿出手机现场展示,在手机终端应用上,可查看这处油烟排放的浓度。“只要装置有效运行,排放浓度低于每立方米2毫克的现行国家油烟排放标准,如果未处理直排,油烟浓度可达每立方米8毫克以上。”曹伟说。/pp  南京市高淳区环保局相关负责人说,该区秉承生态立区理念,区委、区政府高度重视污染治理,不达排放标准的场所将被严查。据悉,目前高淳已有多家单位的食堂因不达标而不得不关停,整治工作已完成约65%,预计明年底将实现所有餐饮企业和企事业单位食堂净化装置全覆盖。/p
  • 【瑞士步琦】在线近红外实时监控维生素类饲料添加剂的品质
    实时监控维生素类饲料添加剂的品质维生素类饲料添加剂主要是由化学合成来生产。快速而准确的检测其中的维生素如β—胡萝卜素含量和水分含量,对于节约企业生产成本,减少产品次品率,提高产量有着重要的作用。1介绍在维生素类饲料的生产过程中,首先将工业原料按配方进行配比调制,形成了维生素溶液,然后经过喷雾干燥将维生素溶液变成颗粒状的样品,然后经过三层筛选,形成标准化的粒径,最后将不同维生素含量的产品进行混合,将最终的维生素含量控制在标准范围内,如 10.0-10.5%,水分 6-8%。因此,产品的主要组成是类胡萝卜素,水分,和淀粉底物等。类胡萝卜素的含量需要严格控制在 10-10.5 的水平,而水分含量太低会导致原料的浪费,因此最重要的指标是类胡萝卜素和水分。然而,用户在实际生产过程中,由于无法实时调整类胡萝卜素和水分的含量,只能将产品先生产出来,然后等待传统分析的结果后,再将含量高低的产品进行混合,最终达到相应的含量标准。将 BUCHI NIR-Online 安装在喷雾干燥之后和过筛后的位置,能在3秒内测出维生素的含量和水分,且多个参数同时的连续的监控。用户依据实时结果,能实时控制产品的含量至标准范围,从而混合步骤可以省略,且平均结果比取样的某一点的结果更有代表性,因此提高了生产效率,减少了产品的次品率。2配置BUCHI NIR-Online 在线近红外 X-Three波长范围:400-1700 nm(检测类胡萝卜素必须)测量方式:漫反射▲安装示意图3结果已经证明 BUCHI 在线近红外能快速准确的测定维生素类饲料添加剂的各个成分:表1:模型参数参数范围(%)偏差β-胡萝卜素7.8-11.80.22水分5.9-8.90.14结果证明步琦在线近红外能够准确的分析产品中的多个指标。在线分析手段提供了实时的结果,能保证产品品质的稳定性,减少次品率,实时的水分控制,节省了企业成本,并节省了品控的工作量和试剂消耗,降低了人员成本。
  • 1台液相同时在线监控6套生物反应器,岛津生物药领域专利技术厉害了!
    其实无需做大量调研,只要关注“岛津应用云”公众号就可以了解到很多相关信息。 现在就让小编带您深入了解岛津在线液相实时监控系统。该套系统通过对传统液相的自动进样器进行改造,可以同时和多个灌流培养生物反应器(发酵罐)相连(图1),实时监控多个生物反应器在细胞培养过程中各个化合物的变化趋势,方便在第一时间发现问题,紧急采取应对措施,及时止损,该套在线液相监控系统已在2021年8月获得专利授权(中国实用新型,专利号:ZL202023017774.5)。 其中后端检测器,可以根据实际情况进行搭配。如果只需要监控细胞培养上清液中的氨基酸组分,可以选择紫外检测;如果想同时监控多类化合物的变化趋势,例如同时分析氨基酸类、糖类、维生素类、核苷类等,可以选择三重四极杆质谱配套岛津细胞培养上清液分析方法包。 案例分享1:在线监控氨基酸类化合物(在线液相实时监控系统+紫外检测器)自动在线取样器定时吸取细胞上清液后,根据软件设定的程序,对样品进行自动柱前衍生,无需人为干涉,衍生完成后触发自动进样器进样分析,下图为检测到的氨基酸色谱图。图2. 氨基酸自动柱前衍生色谱图 注:不同的培养方案监控的氨基酸不一样,此图仅为举例。 案例分享2:同时在线监控100多种化合物(在线液相实时监控系统+三重四极杆质谱+细胞上清液方法包)当需要同时检测细胞上清液多类化合物时,可以在在线液相实时监控系统后端配置三重四极杆质谱仪,结合已获得专利授权的细胞上清液分析技术(中国发明专利,专利号:ZL201610888146.3),17分钟可以同时快速分析细胞上清液中125种化合物,包括4种糖、60种氨基酸及其代谢物、31种核苷及其代谢物、15种维生素类以及15种其他类化合物(图3)。图3. 同时分析细胞上清液中100多种化合物LC-MS/MS色谱图 案例分享3:多个生物反应器在线监控在线液相实时监控系统可以连接多个生物反应器,依次进行分析(表1)。通过软件设置不同生物反应器的采样时间,例如,第一天早上,9点,1#生物反应器采样并进行分析;10点,2#生物反应器采样并进行分析… … 以此类推;第二天同一时间点进行同一生物反应器的第二次取样,以此类推,直至细胞培养结束。 表1. 一套在线液相实时监控系统监控6个生物反应器时间表软件采集的数据经过Multi-omics Analysis Package软件进一步处理后生成归类趋势图。图4. 某细胞上清液中检测到的化合物相对含量变化趋势图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制