当前位置: 仪器信息网 > 行业主题 > >

光源特性试验仪

仪器信息网光源特性试验仪专题为您提供2024年最新光源特性试验仪价格报价、厂家品牌的相关信息, 包括光源特性试验仪参数、型号等,不管是国产,还是进口品牌的光源特性试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光源特性试验仪相关的耗材配件、试剂标物,还有光源特性试验仪相关的最新资讯、资料,以及光源特性试验仪相关的解决方案。

光源特性试验仪相关的资讯

  • 中国首次完成高海拔地区光谱类油中溶解气体在线监测装置特性试验
    记者从国网青海电科院获悉,该院于8日成功完成“光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验”,该试验是中国首次在海拔2000米以上地区进行的该类在线监测装置的特性试验,试验结果可有效解决在高海拔环境下,光谱类油中溶解气体在线监测装置可靠性差和现场运维难题。图为试验人员开展光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验。何炳勋 摄据悉,通过在线监测装置实时监测大型充油电气设备绝缘油中溶解气体含量,反馈主设备运行状态、实现故障主动预警,是当前强化变压器(高抗)状态管控、对设备开展早期故障检测和诊断最有效的手段之一。光谱类油在线装置因其无需分离单元、监测周期短等特点,正广泛运用于750千伏及特高压变电站。据悉,由于该类装置研发和出厂应用主要集中在中国东部地区,在高海拔地区存在油气分离度、气体检测准确度不足等应用瓶颈,导致在装置入网过程中,质量管控标准难以统一。“我们搭建测试平台验证激光与红外热辐射光源的环境适应性,提出数据校正方法,可提高高海拔地区油在线装置的入网质量管控质量,突破高海拔环境下装置可靠性差、缺乏科学评价标准的难题。”国网青海电科院设备状态评价中心周尚虎介绍说。未来,国网青海电科院将开展系列研究,形成高海拔环境因素对光谱类在线装置的影响规律及数据抑制校正方法,并将研究结果应用至光声光谱在线装置的入网及现场运维,解决现场运维技术瓶颈,保障电网设备安全稳定运行。
  • 您的“微流控”理想光源——来自各地权威实验室的案例介绍
    您的“微流控”理想光源——来自各地权威实验室的案例介绍什么是微流控?微流控,又被称作芯片实验室或者微全分析系统。您可以想象在化学、医学以及生物研究中涉及到的样品制备、反应、分离、检测等操作步骤都集中在一块微米尺度的芯片上自动完成吗?微流控技术是指在至少有一维为微米甚至纳米尺度的低维通道结构中控制体积为皮升至纳升的流体进行流动并传质、传热的技术。由于通道尺寸很小,样品的消耗量很少,节约了能源的同时也提高了反应速度,实现微型化、自动化、集成化以及便携化的同时也具有高通量的特点。而来自Lumencor的LED白光光源SOLA系列,也在这个微“舞台”上占有一席之地。实验案例1:同时激发四种荧光蛋白酶底物,用于检测多重基质金属蛋白酶(MMP)活性来自新加坡—麻省理工学院研究与技术联盟以及新加坡国立大学的Ee Xien Nga , Myat Noe Hsua , Guoyun Sunb 和 Chia-Hung Che发表了一篇名为”Single-cell assays using integrated continuous-flow microfluidics”的文章。一种可用于生成和检测含有单细胞和FRET底物液滴的交叉结构微流控芯片在这篇文章中被构建。为细胞检测提供了高通量并且非侵入式的全新可能性。在微流控芯片的光学检测系统中,Lumencor的LED白光光源SOLA SE-II型被用于同时激发和测量四种不同波长的荧光信号。并通过多荧光检测单元以及PMT模块转化为电压信号,输出电脑后对多种蛋白的活性进行分析。实验案例2:表征高速脉动流体流动的粒子条纹测速法莫格里奇研究所的科学家Tongcheng Qia, Daniel A. Gil, Emmanuel Contreras Guzman等开发了一种结合了高速微流控的可调节泵(Adapt-Pump)平台,并发表论文“Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction”。内皮细胞(EC)在体内持续暴露于血液流动的机械微环境中,而流体剪切应力在EC行为中起着重要作用。通过定量成像的信号转导从人多能干细胞衍生的心脏球体(CS)中生成脉动流。该脉动流可以复制独特的CS收缩特性,准确地模拟对临床相关药物的反应,以及脉动流对EC分化和形态的影响。作者巧妙地通过荧光珠来表征流体剖面和剪切应力,以Lumencor的LED白光光源SOLA FISH(Ex/Em 480/520nm)作为荧光显微镜的照明以及激发光源。并zui终通过条纹测量提供流体在不同深度和压力下的瞬时速度和剪切应力,从而更好地模拟内皮细胞在体内所受到的机械刺激。实验案例3:利用三色荧光编码法在纳升液滴中鉴定微生物菌株由麻省理工的科学家们Jared Kehea, Anthony Kulesaa, Anthony Ortizc等的文章 “Massively parallel screening of synthetic microbial communities”介绍了一种名为kChip的液滴微流控平台,可以快速、大规模地构建和筛选合成微生物群落。其中整套荧光图像采集系统是由尼康的Ti-E的倒置荧光显微镜、Lumencor的LED白光光源SOLA以及滨松的ORCA-Flash 4.0 cmos相机。Lumencor的LED光源不仅仅起到对液滴进行照明作用,也同时起到荧光激发作用,图像可以在多达四个荧光通道上拍摄,为高通量下评估不同微生物菌株组合的功能性。实验案例4:基于链长的细菌微流控分选延时成像来自隆德大学Jonas O. Tegenfeldt教授课题组的这篇发表于Analytica chimica acta的论文“Separation of pathogenic bacteria by chain length”介绍了一种利用确定性侧向位移分选(DLD)的微流控技术来分离具有不同致病性的人类细菌病原体链球菌肺炎的方法。对于人类细菌病原体肺炎链球菌,细菌链长度和荚膜的存在是已知的毒力因素,具有引起严重疾病的能力。在实验中Lumencor的LED白光光源SOLA与尼康Eclipse Ti以及TS2倒置显微镜搭配使用,在GFP荧光蛋白的帮助下,对有荚膜肺炎链球菌D39 (血清型2)和无荚膜肺炎链球菌R6细胞的运动轨迹进行观察,并通过荧光和明场图像进行对比与识别。实验案例5:光谱编码的镧系纳米粒子(LNP)的成像斯坦福大学Polly M. Fordyce教授课题组发表在Nature methods上的文章“A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation”介绍了一种名为BATTLES的新技术。该技术利用了生物机械力来启动T细胞触发的方法,进一步筛选能够诱导强烈T细胞反应的pMHC复合物。而这提供了一种简单、高通量、可调节的方法来模拟生理条件下T细胞识别抗原的过程,并为研究T细胞机械生物学和T细胞为基础的免疫治疗提供了新的工具。在筛选过程中通过光谱编码来标记与展示不同的pMHC复合物,可以在一个实验中同时检测多种pMHC复合物对T细胞的影响。光谱编码是一种利用镧系元素发出的不同波长的荧光来标记珠子的方法,每种pMHC复合物都对应一个特定的光谱编码。文中选择了Lumencor的LED白光光源SOLA作为光谱编码的镧系纳米粒子的成像的照明以及激发光源。SOLA能带给你什么?Lumencor的SOLA系列的LED白光光源可以很好满足在微流控中的多种运用。SOLA系列的LED白光光源容易集成,方便匹配主流品牌的显微镜。SOLA系列的LED白光光源具有高亮度与高稳定性,高效照明有助于形成高对比度与分辨率的图像,照亮您高通量测试下的每一处细节,保证实验的一致性。SOLA系列的LED白光光源具有多种型号可选,针对DAPI、GFP/FITC、YFP、Cy3、mCherry、Cy5 等光谱相似的荧光团起到激发作用。同样也有针对细胞遗传学检测实验中荧光原位杂交(fluorescence in situ hybridization,FISH)对475-600nm区域进行输出的SOLA FISH型号。以及提供zui广泛光谱覆盖范围,用于激发荧光团(Cy7和ICG)近红外输出的LED白光光源SOLA V-nIR 和 U-nIR。满足您各种所需波长的需求。Lumencor的LED白光光源拥有精确控制的快速调节,可以对光源的输出功率进行调节。LED光源所产生的热辐射较低,不会对于微流控反应器产生过多的热量影响,从而保证反应的精度和稳定性。SOLA系列的LED白光光源耗电量较低,即开即用,较长的使用寿命可以助您实验屡创突破。相关文献:1.Ng E X, Hsu M N, Sun G, et al. Single-cell assays using integrated continuous-flow microfluidics[M]//Methods in Enzymology. Academic Press, 2019, 628: 59-94.2.Qian T, Gil D A, Guzman E C, et al. Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction[J]. Lab on a Chip, 2020, 20(20): 3744-3756.3.Kehe J, Kulesa A, Ortiz A, et al. Massively parallel screening of synthetic microbial communities[J]. Proceedings of the National Academy of Sciences, 2019, 116(26): 12804-12809.4.Beech J P, Ho B D, Garriss G, et al. Separation of pathogenic bacteria by chain length[J]. Analytica chimica acta, 2018, 1000: 223-2315.Feng Y, Zhao X, White A K, et al. A bead-based method for high-throughput mapping of the sequence-and force-dependence of T cell activation[J]. Nature Methods, 2022, 19(10): 1295-1305.关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 上海光源通过验收 总投资超过14亿
    上海光源外景   1月19日下午,总投资超过14亿元的上海光源(SSRF)国家重大科学工程通过国家验收,意味着这个第三代同步辐射光源大科学装置,历经10年立项和52个月建设,即将正式对国内外科研用户开放。   无论是投资还是规模,上海光源都是国内目前最大的大科学工程,它能做什么?其科学地位和作用是什么?是不是自主研制?……记者为此专访了上海光源工程总指挥、中国科学院副院长江绵恒等专家。   “它是一个多学科开放共享的实验平台”   上海光源犹如一台功能强大的“超级X光机”和“超级显微镜”,其亮度是最强的X光机的上亿倍,具有波长范围宽、高强度、高亮度、高准直性、高偏振与准相干性、高纯净并可准确计算等一系列比其他人工光源更优异的特性,是继电光源、X光源、激光光源之后第四次为人类文明带来革命性推动的一个新光源。   由30多位院士和专家组成的国家验收委员会认为,上海光源以世界同类装置最少的投资和最快的建设速度,实现了优异的性能,成为国际上性能指标领先的第三代同步辐射光源之一,是我国大科学装置建设的一个成功范例。   “它的用处太多了,是一个多学科开放共享的实验平台。”江绵恒说,“它提供性能非常优异的光——从红外线到高能X射线(硬X射线)宽广波段、光谱连续的光,为我国及全世界诸多学科的前沿基础研究和高新技术开发应用,提供了一个很先进又不可替代的工具。”   利用它,可从事生命、材料、环境、医学、药学、地质学等多学科的前沿基础研究,以及微电子、医药、石油、化工、生物工程、医疗诊断等高技术开发应用的实验研究。   中科院上海药物所沈旭研究员告诉记者,使用上海光源,他研究晶体结构的效率提高了数十倍,“以前用普通X光衍射,要做几天的工作,现在只需要20分钟左右的时间,可以说实现了质的飞跃。”   “将同时容纳上千名科学家一起工作”   从空中俯瞰,上海光源仿佛一个美丽的巨型“鹦鹉螺”。这个巨大“鹦鹉螺”内部,有一台周长180米的增强器,一台周长432米的电子储存环,还有首批建设的7条光束线和实验站。   让人难以想象的是,这个“鹦鹉螺”是由2100根48米深的混凝土的桩基撑起来的。江绵恒说,这个建筑内部,科学实验的要求很高,比如振动不能超过1微米。在隧道内部,温度的要求是27摄氏度,正负不超过0.2摄氏度,而上海光源做到了正负不超过0.1摄氏度。52个月的建设周期,也创造了世界纪录。   自2009年5月6日,上海光源对用户开放试运行,至2010年1月13日,累计提供用户机时15436小时,用户已超过1000人,执行了101个科研院所和大学的用户课题432个,涵盖生命科学、材料科学、环境科学等十几个学科,取得了一批很好的实验结果。   “第一批,我们建成了7条光束线和实验站,可同时容纳近百名科学家开展实验。”江绵恒说,“我们计划在2020年左右再建成约30条光束线站,到2030年建满达到60条光束线站,到那时将同时容纳上千名科学家一起工作。”   “完全是我们自己的科技队伍做出来的”   上海光源已进入国际上性能指标领先的第三代同步辐射光源的行列,其中不少指标处于国际最好水平之列,且性价比高,自主研制的设备超过70%,形成了一系列具有自主知识产权的高新技术储备。   “上海光源从建筑、装置到设备,它完全是我们自己的科技队伍做出来的,安装也是我们自己的技术工人队伍完成的,达到了非常高的工艺水平。”江绵恒说,比如180米的增强器,用于修正电子束流轨道的56块校正磁铁,1块也没用就调通了,说明我们的设计、加工、安装都几乎没有偏差,在世界加速器界可能是“空前”了。   江绵恒还介绍说,上海光源是中科院和上海市完美合作的结晶,其主要参建、参研单位有上百家。国际先进的定位,对这些单位提出近乎苛刻的要求,需要他们“跳一下”才有可能达到。而就是在这个“跳一下”的过程中,在工程科研团队的指导与合作下,相关单位和企业的技术能力都获得了提升、飞跃。   “我们需要更先进光源的前瞻部署”   上海光源的建成,标志着我国在建设大科学工程实验装置方面,具备了高水平的自主创新和技术集成的能力,进入了世界先进行列。   “但是也应该看到,世界上最早的第三代的光源是1991年建成的。”江绵恒说,“尽管我们有自己的创新,但在时间上落后了将近20年。而且,新光源——自由电子激光光源,已在国际上加速发展起来,美国SLAC的X射线自由电子激光去年已经出光,德国、日本、韩国等也已起步。”   江绵恒因此强调:“我们也需要同时进行更先进光源的前瞻部署。”他透露,中科院已经向国家建议,在上海光源的北面,建设一台软X射线自由电子激光试验装置,开展短波长自由电子激光装置的预先研究 希望在这之后,再向国家申请建设硬X射线的用户装置,把我国与先进国家在光子科学领域的发展差距缩短到10—15年左右。
  • 从实验室到生产线:固态光源技术在生物成像与工业检测中的性能提升
    从实验室到生产线:固态光源技术在生物成像与工业检测中的性能提升生物医学成像和工业计量的照明系统规格通常集中在光谱、空间和时间的光输出特性上。Lumencor的技术支持总监Iain Johnson和我们分享了固态光源阵列——LED、发光管和激光器组合成的固态光引擎如何实现规格定制,以满足特定应用的照明要求。固态光引擎是一个集中控制的固态光源阵列,其输出合并到一个共同的光学传输系统中(图1)。光源的输出可以并行激活以产生白光(图2),或在需要分离的波长时,也可按顺序进行激活(图3、图4)。光源本身可以采用一种固态照明技术,即LED、光导管或半导体激光器,也可以对这些光源技术进行组合。这可以根据zui终用户的应用对亮度、角度分布和辐照度的要求进行定制。根据这一定义,光引擎输出的光谱分布可以通过加法组合,而这与传统的宽光谱照明设备(电弧放电和白炽灯)形成鲜明对比。传统的照明设备产生的光谱分布在物理上是不变的,只能通过选择性的阻挡和衰减来调整。从工程学的角度来看,固态光源的第二个主要优点是,它的输出可以在强度(图2、图4)和时间(图4、图5)方面进行精确控制。因此,光谱输出单元件的差异很小(图2),这使得光引擎应用于不同成像系统时,所获得的数据质量能保持一致。图1.固态光引擎及其输出光谱的概念图。四个固态光源的输出被合并入一个共同的光路,并通过光导耦合进入纤维及或者图像扫描仪。在实际操作中,光源可以是2-21个,具体数量取决于应用要求。光源可以是LED、光导管或半导体激光器其中的一种或组合。它们的输出可以经过滤波(F)以细化光谱。输出光的一部分会被分离出来,并导向参考光电二极管(rPD),以提供控制反馈。在大多数生物医学成像应用中,不需要持续照明,甚至在某些情况下,会起到反效果,影响实验数据。通常情况下,照明与相机曝光会同步进行。这里有两个重点:首先是光源间的切换速度,其次是脉冲间隔的复现性。相比和机械滤光轮耦合的白光照明器(约50ms的切换时间),光引擎可以做到小于1ms的光源间切换(图4),缩短了获取多色图像Z轴堆叠或者玻片扫描所需的时间。脉冲间的积分不变形(图5)是决定延时图像序列保真度的关键因素。每个脉冲的积分量化了在延时序列中每次曝光所需的照度。脉冲之间的照度差异越小,样品动态行为的敏感度就越能增加,这在图像帧到帧的变化间可以体现。图2.28台SOLA V-nIR光引擎(Lumencor, Inc., Beaverton OR)的光谱输出曲线叠加。光引擎的总光输出由光谱曲线所包围的区域来量化。所有28台光引擎的平均输出功率为4558mW,标准差(n=28)为91mW,相当于2%的方差系数(CV)。图3.SPECTRA光引擎(Lumencor, Inc., Beaverton OR)的光谱输出,包括LED、发光管或激光器。发光二极管和光导管的波长规格(nm)代表了中心波长(CWL)/半高全宽(FWHM),已经通过内置的滤光片来改进光源输出。功率(mW)是在光导(连接到显微镜或光学扫描仪)的远端测量得到的。集成三种不同类型的固态光源,可以在整个可见光和近红外波段内提供均匀的功率输出。图4.由TTL触发,AURA光引擎(Lumencor, Inc., Beaverton OR)交替输出485nm(约0.5ms宽)和560nm(约3ms宽)的脉冲(示波器记录)。图中显示了两条叠加的示波器轨迹,其中485nm的强度通过RS232串行命令从100%调整到55%,而560nm的强度保持不变。485nm和560nm的脉冲时间间隔为0.25ms。图5.模拟光电二极管(APD)检测来自一台5光源的AURA光引擎(Lumencor, Inc., Beaverton OR)发出的5ms光脉冲。图中展示了10个脉冲序列,代表了每次数据采集中记录的150个连续脉冲。计算了150个脉冲序列中每个脉冲的积分光输出。对于555/28 nm输出,150个脉冲的方差系数(CV)在555/28 nm脉冲串中为0.23%,在635/22 nm脉冲序列中为0.20%。其他三个源通道的CV值相似(0.15-0.25%)。除了光谱带宽(图3)以外,固态LED、光导管和激光器之间的主要区别在于其光输出的角度分布;LED和激光器之前的zui大区别如表1所示。对于宽场显微镜应用,LED光源配置为科勒照明产生的均匀照明,辐照度范围为1-100mW/mm2。然而,单分子定位显微镜(SMLM)需要更高的辐照度,通过链接到显微镜临界落射照明器(critical epilluminator)的CELESTA光引擎(Lumencor, Inc., Beaverton OR),可以在样品表明提供10^4mW/mm2的辐照度(图6)。临界照明的使用是由科勒照明在光学上的低效率所决定的,因为科勒照明并没有覆盖整个光源表面或者发射光的全部角度分布。在临界照明中,光源被直接成像到样品平面上,这种方法更为高效,但对光源输出中的任何空间不均匀性也更为敏感。临界落射照明器的作用是均匀化任何空间上的不均匀性,以产生与典型scmos相机传感器尺寸(~200mm2)相匹配的高辐照度照明场。Light SourcePower(mW)①light guide②Light Guide Cross SectionArea(mm2)NA③Etendue (mm2 sr)④LED500Liquid light guideCircle,3mm dia7.070.302.00Laser800multimode fiberSquare, 0.4*0.4mm0.160.220.02表1. 光源比较①输出功率是在指定光导的远端测量的②使用光导将光源输出耦合到显微镜或光学扫描仪③光导的数值孔径④光通量积决定了光学检测系统有效利用光源输出的能力。当光源的光通量积与光学系统的光通量积紧密匹配时,可以获得zui佳性能。sr=球面弧度。 针对光驱动生物技术以及工业应用,优化光源的选择性需要全面考虑仪器的光谱、空间和时间要求,这些正是需要照明光源来支持的。通常一种技术尽可以满足其中的部分要求,所以zui佳策略即是混合多种技术来满足全部需求。复杂的光引擎可以提供这样一种集成的方法来混合光源,并克服任何给定技术的基本限制,例如,在荧光分析中,LED在500-600nm的光中由于臭名昭著的“绿色间隙”功率和亮度往往无法满足;或者相对于毫秒级的切换时间,任何弧光灯的开/关不稳定性;又或者广谱光源进行多路复用研究时,谱宽也带来了限制。如今各种固态光源各有优劣,只有仔细评估它们的优点与局限性,才能为光驱动生命和材料科学应用的广泛领域找到zui合适的照面解决方案。图6.使用CELESTA光引擎(Lumencor, Inc., Beaverton OR),通过一根直径800um的光纤耦合到安装在尼康Ti/Ti2显微镜的临界落射照明器上,并产生均匀的荧光玻璃成像。使用尼康60/1.4 NA Plan Apo物镜和Andor的 Zyla 5.5 (2560 x 2160 pixels) scmos相机进行图像捕捉。图表显示了相机沿着标记为红色的对角线所记录的灰度值。右上角的插图展示了使用尼康10X/0.3 NA Plan Apo物镜成像的同一样品。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 沈阳科仪:正参与同步辐射装置、先进光源等大科学装置建设
    近日,上交所表示,终止半导体设备厂商中国科学院沈阳科学仪器股份有限公司(以下简称“沈阳科仪”)发行上市审核。在沈阳科仪得招股说明书中显示,其正参与同步辐射装置、先进光源等大科学装置建设。招股书显示,沈阳科仪主要从事干式真空泵、真空仪器设备的研发、生产和销售,并提供相关技术服务。干式真空泵是半导体制造工艺设备的核心附属设备,为集成电路、光 伏、LED、平板显示、锂电池等行业的生产设备提供所必需的高度洁净真空环境。沈阳科仪得真空仪器设备产品主要包括大科学装置、真空薄膜仪器设备、新材料制备设 备三大类。其中大科学装置指用于基础科学研究的国家重大科学工程的大型科研 装置与设施;真空薄膜仪器设备主要包括用于科研的PVD、CVD设备;新材料制备设备主要包括晶体材料制备设备、真空冶金设备等。在招股书的发行人的主营业务经营情况部分中显示,发行人正在参与北京高能同步辐射光源、上海同步辐射装置、合肥先进光源、大连相干光源等国家重大科学基础设施的建设,发行人已成为国内大科学装置真空技术及真空科研仪器设备领域领先的产品与服务提供商。资料显示,合肥先进光源(HALS)是基于衍射极限储存环的第四代同步辐射光源,其发射度及亮度指标的设计目标为世界第一,建成后将是全世界最先进的衍射极限储存环光源。合肥先进光源(HALS)设计定位世界唯一、位于中低能区、“具有鲜明衍射极限及全空间相干特色”的第四代同步辐射光源,将应用于动态世界的观测,为能源与环境、量子材料、物质与生命交叉等领域带来前所未有的机遇。图源 大连相干光源大连相干光源是一台采用高增益谐波放大运行模式的极紫外自由电子激光用户装置,是一种以相对论高品质电子束作为工作介质,在周期磁场中以受激发射方式放大电磁辐射的新型强相干激光光源。该装置是我国第一台自由电子激光大型用户装置,是世界上唯一工作在极紫外波段的自由电子激光用户装置,也是世界上最亮的极紫外光源。自由电子激光是近年来国际科技界飞速发展的一类重大科技基础设施,被称为“第四代先进光源”,具有超高亮度、超短脉冲、全相干等优异特性,大大提高了实验研究的时间和空间分辨率。
  • 填补全省光源驱动仪量值溯源技术空白!湖南省市场监管局公开征求意见
    光源驱动仪主要驱动的超辐射发光二极管,是一种利用半导体超辐射发光的宽带半导体光源,性能介于激光二极管和发光二极管之间的半导体光电器件, 简称SLD光源。SLD光源是一种宽带半导体激光器,同样具备以上特性。其温度控制准确度、驱动电流的准确度和稳定度直接影响半导体激光器输出光波长的稳定性、光功率的准确性和稳定性。为规范湖南省光源驱动仪的量值溯源工作,明确其计量特性,确保其量值的准确可靠,填补全省光源驱动仪量值溯源的技术空白,保障全省半导体激光器的准确性、稳定性和可靠性,近日,湖南省市场监管局发布关于征求湖南省地方计量技术规范《光源驱动仪》(征求意见稿)意见的函,面向社会公开征求意见。详情如下:关于征求湖南省地方计量技术规范《光源驱动仪》(征求意见稿)意见的函各有关单位:根据《湖南省市场监督管理局关于下达2024年度湖南省地方计量技术规范项目计划的通知》(湘市监计量函〔2024〕50号)的要求,由湖南航天机电设备与特种材料研究所组织制定的《光源驱动仪》湖南省地方计量技术规范已完成征求意见稿,现面向社会公开征求意见。欢迎提出宝贵意见并填写《征求意见反馈表》。请于2024年11月6日前将意见反馈至湖南航天机电设备与特种材料研究所。感谢您的参与和支持。联系地址:湖南省长沙市岳麓区青山路89号。联系人:管鹏举。联系电话:19310025280。电子邮箱:158230023@qq.com。附件:1.&ensp 征求意见稿2.&ensp 编制说明3.&ensp 征求意见反馈表4.&ensp 试验报告5.&ensp 不确定度评定报告附件1:征求意见稿.docx附件2:编制说明.docx附件3:征求意见反馈表.docx附件4:试验报告.docx附件5:不确定度评定报告.docx湖南省市场监督管理局计量处2024年10月30日《光源驱动仪校准规范》(征求意见稿)编制说明一、任务来源经湖南省市场监督管理局同意,根据2024年2月下达的《湖南省市场监督管理局关于下达2024年度湖南省地方计量技术规范项目计划的通知》(湘市监计量函〔2024〕50号)要求,由湖南航天机电设备与特种材料研究所制订《光源驱动仪校准规范》。归口单位:湖南省市场监督管理局。起草单位:湖南航天机电设备与特种材料研究所、湖南省计量检测研究院。二、必要性分析半导体激光器具有单色性好、体积小、重量轻、功耗低、效率高、可靠性好等特点,广泛应用于光电通信、医疗健康、材料加工、武器装备等领域。半导体激光器是温度敏感器件,环境温度变化或工作发热导致结温变化不但会引起激光功率的变化,而且会影响到其输出波长的变化。在某一特定的结温下,当半导体激光器的驱动电流大于阈值电流时,半导体激光器的输出光功率与驱动电流成正比关系。驱动电流的准确性和稳定性直接影响半导体激光器输出光功率的准确性和稳定性。本校准规范所校对象光源驱动仪主要驱动的超辐射发光二极管,是一种利用半导体超辐射发光的宽带半导体光源,性能介于激光二极管和发光二极管之间的半导体光电器件, 简称SLD光源。SLD光源是一种宽带半导体激光器,同样具备以上特性。其主要由长时间保持高准确度、高稳定度,具备恒温控制的恒流源组成。其温度控制准确度、驱动电流的准确度和稳定度直接影响半导体激光器输出光波长的稳定性、光功率的准确性和稳定性。本项目拟制订地方计量技术规范,旨在规范全省光源驱动仪的量值溯源工作,明确其计量特性,确保其量值的准确可靠,填补我省光源驱动仪量值溯源的技术空白,保障全省半导体激光器的准确性、稳定性和可靠性,为半导体激光器生产厂家产品质量提升提供有力的技术支撑。根据国家计量技术规范全文公开系统查询结果,目前国内尚无统一、规范的国家计量技术规范作为驱动仪量值溯源的技术依据,经调研和互联网搜索,也未发现有相关的行业、部门计量技术规范。光源驱动仪提供了稳定的光源驱动电流,精准的光源管芯温度控制,是开展激光二极管研究、制造、检测的重要手段,广泛应用于我省光电通信、医疗健康、材料加工、武器装备等领域。结合我省半导体激光技术及应用产业链需求,有必要针对应用最为广泛的基于热电制冷器的光源驱动仪制订统一的计量技术规范,规范其量值溯源工作,保障其量值的准确可靠。三、现状分析(1)国内外生产情况:经调研,对于光源驱动仪,国内主要有北京浦丹、北京康冠、苏州波弗等;各厂家生产的主要型号及技术指标如表 1所示。(2)国内外使用情况:光源驱动仪广泛应用于光电通信、医疗健康、材料加工、武器装备等行业。据不完全统计,现服役于湖南省各光电通信、材料加工、军工等企事业单位的光源驱动仪已达100余台套。随着技术的发展和产能的提升,其数量还在不断增加。由于光源驱动仪缺乏统一的国家、部门计量技术规范,不利于光源驱动仪量值溯源工作的有效开展。四、参考标准/规范1. GB/T 15313-2008 《激光术语》2. GB/T 15651.4-2017 《半导体器件 分立器件 第5-4部分:光电子器件半导体激光器》3. GB/T 31358-2015 《半导体激光器总规范》4. GB/T 31359-2015 《半导体激光器测试方法》5. SJ/T 2749-2016 《半导体激光二极管测试方法》6. JJF 1001-2011 《通用计量术语及定义》7. JJF 1059.1-2012 《测量不确定度评定与表示》8. JJF 1071-2010 《国家计量校准规范编写规则》表 1 各厂家生产的主要型号光源驱动仪及技术指标五、编制的主要内容光源驱动仪校准规范主要用于基于热电制冷器的光源驱动仪的校准,对仪器的计量特性指标和试验方法作了明确说明。编制校准规范主要内容如下:1 范围和概述本规范适用于基于热电制冷器的光源驱动仪的校准。仪器工作原理示意图如图 1所示,简述如下:光源驱动仪主要由可调恒流源、TEC控温系统、内置安全启动与微型计算机、整机供电电源及面板控制机构、连接适配器和测试电缆等组成,其内置可调恒流源可根据激光二极管输出光功率的要求输出稳定的直流电流维持激光二级管的工作电流,TEC控温系统实现对激光二极管芯片的精密恒温控制,从而实现激光二级管输出稳定的光源信号。图 1 光源驱动仪工作原理示意图2 计量特性本规范规定的计量特性参考了国家标准GB/T 31359-2015 《半导体激光器测试方法》。选择北京浦丹光电股份有限公司、苏州波弗光电科技有限公司等厂家生产的该类光源驱动仪进行了校准项目和试验方法的可行性验证,验证结果见试验报告。本规范制定的计量特性主要包括工作电流示值误差、工作电流短期稳定性、控温桥路电阻偏差、最大TEC驱动电流、温度控制偏差,GB/T 31359-2015 《半导体激光器测试方法》中规定的工作电流采用电流表进行测试,波长-温度漂移系数主要采用温度调控装置进行试验。由于GB/T 31359-2015规定的输出光功率、光波长、脉冲能量、电光转换效率、光强分布等参数与半导体激光器本身性能相关,因此未被列入本规范校准项目中。2.1 工作电流示值误差测量方法:按光源驱动仪使用说明书要求对仪器进行预热稳定。驱动仪预热稳定后,按照覆盖被校光源驱动仪工作电流的输出范围并兼顾均匀性,可根据实际情况或送校单位的要求均匀选取5个校准点。将被校光源驱动仪工作电流输出端口连接至直流电流表,分别记录被校光源驱动仪工作电流输出示值和直流电流表的实测值,两者差值即为工作电流示值误差,除以实测值为工作电流相对误差。参考各厂家的规定的基本误差及规范试验报告,将驱动仪工作电流示值相对误差建议指标设置为±1.0%。试验结果表明,所有驱动仪示值相对误差均控制在±1.0%以内。2.2 工作电流短期稳定性测量方法:测试方法同2.1,输出稳定后,在被校光源驱动仪说明书规定时间间隔内,记录直流电流表的最大值Imax和最小值Imin,取两者差值的绝对值除以两者的平均值为被校光源驱动仪工作电流短期稳定性。参考各厂家的规定的稳定性及规范试验报告,将驱动仪工作电流短期稳定性建议指标设置为≤0.50%。试验结果表明,所有驱动仪的稳定性均控制在0.50%以内。2.3 控温桥路电阻偏差测量方法:将被校光源驱动仪激光器热敏电阻采样端口连接至直流电阻箱,直流电压表连接至直流电阻箱。直流电阻箱阻值预设为9.50kΩ,接通电源,观察直流电压表示值,待示值稳定后,以0.01kΩ的步进阻值增加电阻值,同时观察直流电压表示值变化情况,直到直流电压表示值向相反的方向改变(如:直流电压表示值从增加变为减少或从减少变为增加),停止改变直流电阻箱阻值,该阻值为被校光源驱动仪控温桥路电阻的实测值,则控温桥路电阻偏差为控温桥路电阻的实测值减去被校光源驱动仪控温桥路电阻预设值。参考各厂家的规定的稳定性及规范试验报告,将驱动仪的控温桥路电阻偏差建议指标设置为±3%。试验结果表明,所有驱动仪的控温桥路电阻偏差均控制在±3%以内。2.4 最大TEC驱动电流测量方法:将被校光源驱动仪激光器TEC驱动电流输出端口连接至直流电流表。直流电阻箱阻值预设为2.26kΩ(模拟热敏电阻阻值,对应光源驱动仪温度控制范围的最高温度70℃),在接通电源的3秒内读取直流电流表的示值I1;关闭电源开关,将直流电阻箱的阻值预设为325.00kΩ(模拟热敏电阻阻值,对应光源驱动仪温度控制范围的最低温度-45℃),在接通电源的3秒内读取直流电流表的示值I2;则最大TEC驱动电流为I1和I2中绝对值较大者。参考各厂家的规定的最大TEC驱动电流及规范试验报告,将驱动仪的最大TEC驱动电流建议指标设置为大于1A。试验结果表明,所有驱动仪的控温桥路电阻偏差均大于1A。2.5 温度控制偏差测量方法:将含内置热电制冷器和热敏电阻的半导体激光器置于高低温试验箱中,高低温试验箱设定到校准温度,开启光源驱动仪和高低温试验箱,在温度变化过程中,TEC控温指示灯应持续点亮。高低温试验箱达到设定的校准温度后,保温30min,直流电阻表测得的激光器热敏电阻阻值所对应的温度值为半导体激光器当前的工作温度Ts, 该温度值与半导体激光器工作温度设置值之差为温度控制偏差。参考各厂家规定的温度控制偏差及规范试验报告,将驱动仪的温度控制偏差建议指标设置为±1℃。试验结果表明,所有驱动仪的温度控制偏差均控制在±1℃以内。3 校准用标准装置校准用标准装置见表1。表1 校准用标准装置及推荐技术指标序号校准用标准装置测量范围技术指标校准参数1直流电流表(1~1000)mA最大允许误差:±0.1%工作电流示值误差及其短期稳定性,最大TEC驱动电流2直流电压表10mV~10V最大允许误差:±0.1%控温桥路电阻偏差3直流电阻表1kΩ~500kΩ最大允许误差:±0.1%温度控制偏差4直流电阻箱1kΩ~500kΩ准确度等级:0.01级;最小步进阻值:≤10Ω。控温桥路电阻偏差5高低温试验箱-50℃~+80℃温度偏差:±2.0℃;温度波动度:±0.5℃;温度均匀度:2.0℃。温度控制偏差6半导体激光器/内置热电制冷器和热敏电阻温度控制偏差六、总结在本规范的制订过程中,编制组以国内外技术资料及相关标准、大量试验数据为技术依据,本着科学合理、易于操作和普遍适用的原则,按照相关法律法规及项目进度要求制订《光源驱动仪校准规范》。
  • 首个超亿元重大科学仪器研制项目大连光源结题
    p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/113dd848-00a1-4627-99bc-cf9daef10e9c.jpg" title=" 20181126513598550.jpg" alt=" 20181126513598550.jpg" / /p p style=" text-indent: 2em text-align: center " 大连光源项目负责人、中科院院士杨学明 /p p style=" text-indent: 2em text-align: justify " 今年,由自然科学基金委资助、中国科学院大连化学物理研究所和上海应用物理研究所联合研制的“基于可调极紫外相干光源的综合实验研究装置”(即“大连光源”一期项目)通过专家验收,进入正式运行阶段。 /p p style=" text-indent: 2em text-align: justify " 该项目负责人、中科院大连化学物理研究所研究员、中科院院士杨学明指出,项目通过验收以后,光源装置运行情况良好,吸引了众多国内知名科学家团队前来寻求合作。对大气化学中性团簇、地下水和冰川样品测年、发动机燃烧过程中复杂机理等能源化学相关领域重大科学问题的研究,即将在这里展开。 /p p style=" text-indent: 2em text-align: justify " 这是自然科学基金委国家重大仪器专项资助的第一个经费过亿项目。 /p p style=" text-indent: 2em text-align: justify " 最近,“大连光源”迎来了首个国际用户,英国皇家学会院士、英国布里斯托大学教授Mike Ashfold带领团队前来开展星际化学相关实验数据采集。“这是一个非常独特的科学实验研究装置,具有很好的性能。”Mike Ashfold评价说。 /p p style=" text-indent: 2em text-align: justify " 科学目标驱动 /p p style=" text-indent: 2em text-align: justify " 随着科学发展,许多重要自然现象本质上都是原子和分子过程,这已经成为科学界的共识。那么,研究这些过程涉及的原子和分子反应机制,便成为科学家关注的重大前沿问题。 /p p style=" text-indent: 2em text-align: justify " 类比人眼通过可见光反射看到物体,那么,用什么样的光才能“看到”原子和分子的变化过程呢?从事物理化学研究的杨学明一直受困于反应中间体的探测难题。当时,他意识到,一定要发展新的科学仪器,才有希望继续深入推动物理化学的发展。为此,杨学明找到中科院上海应用物理研究所所长赵振堂。双方一拍即合:这是我国打造新一代光源的绝佳契机。 /p p style=" text-indent: 2em text-align: justify " 接受媒体采访时,赵振堂曾表示,大连光源是以解决能源化学领域重大科技问题为驱动,由上海应物所按照科学家团队的需要“定向研制”的。此前,光源装置基本都是先建好装置,然后再去寻找用户,看它能为谁的研究提供服务。 /p p style=" text-indent: 2em text-align: justify " 科学家们把目光集中在“极紫外光”上。在整个光谱中,极紫外光是一段能量极高的紫外光,一个光子所具备的能量就足以电离一个原子或分子而又不会把分子打碎。 /p p style=" text-indent: 2em text-align: justify " 杨学明说:“这正是探测物质的分子、原子和外壳层电子结构最重要的区域,对探索物质化学转化的本质具有重要意义。” /p p style=" text-indent: 2em text-align: justify " 一年多来,科研人员对水分子在极紫外波段的光解动力学开展了研究,发现了罕见的三体解离过程和高振转分布的产物,有望帮助人类理解星际中这类物质的产生和能级分布。同时,结合红外光谱技术获得水分子的团簇结构信息,研究人员还深入解析了水中氢键构成,对理解空气中水分子的聚集过程(即雾的形成过程)具有重要意义。 /p p style=" text-indent: 2em text-align: justify " 最近,德国哥廷根大学教授兼马普研究所所长Alec Wodtke已经在德国获得200万欧元资金,计划在大连光源建立表面化学研究实验站,有望深入揭示分子与表面之间的化学反应及传能机理,推动新催化机理的产生。 /p p style=" text-indent: 2em text-align: justify " 联合团队首次携手 /p p style=" text-indent: 2em text-align: justify " 2011年,由杨学明、赵振堂、王东等科学家领导的大连化物所和上海应物所联合研发团队,提出在我国率先建设基于国际上新一代极紫外高增益自由电子激光综合实验装置的计划。很快,经过中国科学院推荐申请和层层严格评审,该项目于2012年获得自然科学基金委立项资助,专项经费1.033亿元。 /p p style=" text-indent: 2em text-align: justify " 2014年10月,“大连光源”正式在大连长兴岛开工建设。项目启动后,联合研发团队仅用了两年时间,就完成了基建工程以及主体光源装置研制。2016年9月24日22点50分,超过300兆伏能量的高品质电子束流依次通过自由电子激光放大器的全部元件,第一束极紫外光从总长18米的波荡器阵列发出。 /p p style=" text-indent: 2em text-align: justify " “大连光源”成为我国第一台大型自由电子激光科学研究用户装置,也是当今世界上唯一运行在极紫外波段的自由电子激光装置。 /p p style=" text-indent: 2em text-align: justify " 杨学明介绍,它可以工作在飞秒或皮秒脉冲模式,每一个激光脉冲可产生超过140万亿个光子,单脉冲亮度是世界上所有极紫外光源中最亮的,波长可在整个极紫外区域连续可调,具有完全的相干特性。 /p p style=" text-indent: 2em text-align: justify " 这些指标构成了“大连光源”在极紫外波段最亮的“闪光灯”和超快的“快门”,帮助科学家在研究化学反应动力学时,捕捉到分子、原子在化学反应中的动态影像,给分子原子“拍电影”。 /p p style=" text-indent: 2em text-align: justify " 在科研人员看来,打破研究所之间的藩篱,让不同学科真正交叉融合,集各家之长来建大科学装置,是投入产出比最小、效率最高的一种方式。 /p p style=" text-indent: 2em text-align: justify " 对于大连光源,时任中国科学院副院长王恩哥给予了极高的评价:“大连光源是中科院乃至我国又一项具有极高显示度的重大科技成果。装置中90%的仪器设备均由我国自主研发,标志着我国在这一领域占据了世界领先地位,为我国未来发展更新一代的高重复频率极紫外自由电子激光打下了坚实的基础。” /p
  • 日本用新型光源实现量子加密长距离传输
    日本冲电气(OKI)公司成功开发了一种在理论上不可能泄密的量子加密方式,并可以在城市间实现长距离通信。该公司利用光的&ldquo 量子纠缠&rdquo 特性在验证试验中实现了140公里无中继信息传输。这一研究成果将在2015年投入使用。日本和欧洲都在进行关于量子加密通信的研究,但通信距离短一直是这一课题的难点。新的研究成果使这一技术的实用性得到大幅度提高。 量子加密通信是在被称为光子的光粒子上载荷密码的加密方式,冲电气公司为此开发了能够产生光子的新型激光光源。这种新型光源不但比现有的量子加密通信光源成本更低,而且能够兼容现有光通信系统中的光器件,有较好的实用性。冲电气公司以2015年为目标,计划首先在金融机关和医院等保密性要求较高的专用线路上应用。然后逐步向公众通信网普及。 冲电气公司在实验系统中,有效利用了两个一组的光子特有的&ldquo 量子纠缠&rdquo 特性。在进行加密通信时,将处于纠缠状态的两粒光子分别送到相距140公里的收、发两端,收发两端各取一粒光子作为双方使用的通用密匙。发送端利用光子的物理特性,在&ldquo 看到&rdquo 光子的某一瞬间决定密匙的形式,接收端会使用这一密匙解密所收到的信息。在传输过程如果中遭到窃密,会残留&ldquo 光痕迹&rdquo ,系统能够立刻发现。 在现有的光通信系统中,由于激光光源强度较弱,无中继通信距离仅能达到100公里左右,新型光源技术使得长距离通信成为可能,冲电气公司将与其他企业和大学协作,研发新型光通信系统。 【量子加密通信方式】 光具有&ldquo 波&rdquo 和&ldquo 粒子&rdquo 的两重性,从粒子的角度看被称为光子。上述研究的主要方向是利用光子载荷密匙,发送者和接收者通过共有密匙实现量子加密通信。根据物理学定律,光子在被第三者&ldquo 看到&rdquo 的瞬间,其物理状态会发生变化并留下&ldquo 痕迹&rdquo ,因此在该加密系统理论上是不可能失密的。 上海和呈仪器制造有限公司Shanghai Hasuc Instrument Manufacture Co.,Ltd主营:电炉、电阻炉、马弗炉、恒温摇床、净化台、洁净工作台、高温炉、生物安全柜、恒温振荡器、箱式电阻炉、恒温培养摇床。 http://www.hasuc.cn http://www.hasuc.cc http://www.shlab17.com http://www.4008806667.com http://www.shhasuc.com http://www.dryexpo.com http://www.5911718.com http://www.dry17.com http://www.5921718.com 办公地址:上海市奉贤区南桥镇翡翠国际广场1号楼1020 工厂地址:上海浦卫公路6955号 总机电话:021-51688813 直线电话:021-67186861/57188687 /60457408 /60457409 总机传真:021-51686613 直线传真:021-57188687-806 自动传真:021-51686613 人工传真:021-57188687-806 企业QQ:400-880-6667
  • 中国迄今最大科学工程“上海光源”宣布建成
    4月29日,中国最具规模、世界瞩目的重大科学工程——中国科学院上海同步辐射光源竣工典礼在其实验大厅举行。中共中央政治局委员、国务委员刘延东,中共中央政治局委员、上海市委书记俞正声,全国人大常委会副委员长、中国科学院院长路甬祥,中国工程院院长徐匡迪共同启动竣工装置,并为上海光源国家科学中心(筹)揭幕。上海市市长韩正,中科院常务副院长白春礼,中科院副院长、工程总指挥江绵恒,陈森玉院士,科技部副部长曹健林分别致辞。   新华网上海4月29日电 题:中国迄今最大科学工程“上海光源”宣布建成   新华社记者 张建松 刘丹 杨金志   经过长达16年的孕育、52个月的紧张施工,中国迄今最大的大科学装置和大科学平台“上海光源”29日宣布建成,并同时宣布对国内外用户开放共享。   这标志着中国大科学装置建设跨上一个新台阶,不仅为中国科学界和工业界提供了一个与世界同步的大科学实验平台,带动中国科技创新和相关工业的发展,同时也表明中国在建设国际先进水平的大型科学实验装置方面,具备了高水平的技术集成和创新能力。   总投资约12亿元人民币的“上海光源”工程坐落于上海浦东张江高科技园区,占地面积约20万平方米。从空中俯瞰,整座建筑如一座巨大的银灰色“鹦鹉螺”——其设计理念是体现光的闪亮与柔美,吸引公众对科学的关注和兴趣。   工程的主体建筑是三大加速器——一台150MeV(1.5亿电子伏特)的电子直线加速器、一台能在0.5秒内把电子束能量从150MeV提升到3.5GeV(35亿电子伏特)的全能量增强器,以及一台周长432米的3.5GeV高性能电子储存环。   作为目前世界上性能最好的第三代同步辐射光源之一,“上海光源”的建成还将与中国台湾地区和日本、韩国、印度的第三代同步辐射光源一起,形成堪与美欧媲美的“光源群”,成为面向世界的同步辐射实验平台。   根据设计,“上海光源”具有建设60条以上光束线和上百个实验站的能力。目前首批建成了七条光束线站,分别是:生物大分子晶体学线站、XAFS光束线站、硬X射线微聚焦及应用线站、X射线成像与生物医学应用光束线站、软X射线谱学显微光束线站、X射线衍射光束线站和X射线小角散射光束线站。   所谓“同步辐射”,是由以接近光速运动的电子在磁场中作曲线运动改变运动方向时所产生的一种电磁辐射。同步辐射光源被科学家称之为继电光源、X光源和激光光源之后,第四次为人类文明带来革命性推动的新光源。其高准直性、高极化性、高相干性、宽频谱范围、高广谱亮度、高光子通亮等优良特性,为人们开展科学研究和应用研究带来了广阔前景。   这是3月16日拍摄的“上海光源”高性能电子储存环旁的部分实验站。科学家要研究比“可见光”波长更短的物体,要“看清”病毒、蛋白质分子甚至金属原子等微观物体,必须选用与这些微观物体大小相近或更短的波长的光束,来照射微观物体,利用光束在物质中的衍射、折射、散射等能够检测到的特性,或者利用光束与物体相互作用产生的光激发、光吸收、荧光、光电子发射等特性,来探究未知的微观世界。新华社记者 裴鑫 摄   目前,全球建成和在建的同步辐射光源装置共有60余座,其中第三代同步辐射装置13台。上海光源属于世界上性能最好的第三代中能同步辐射光源之一,能量居世界第四,仅次于日本的SPring-8(8 GeV)、美国的APS(7 GeV)和欧洲的ESRF(6 GeV)。   与中国已有第一代同步辐射光源——北京正负电子对撞机和第二代同步辐射光源——合肥国家同步辐射实验室相比,上海光源具有高亮度、高强度、高稳定等优点,强度是X光机的上万倍,亮度是最强的X光机的上亿倍,可同时提供从远红外线、紫外线,到硬X射线等不同波长的高亮度光束,每年供光机时将超过5000小时。   上海光源工程由中国科学院和上海市政府共同申请建造,由中科院上海应用物理所承建,于2004年12月25日正式破土动工。   上海光源工程指挥部总指挥、中国科学院副院长江绵恒说,上海光源是一项极其复杂的大科学工程,工程包含了众多系统,涉及超导高频及低温技术、超高真空技术、高精度数字化电源技术,以及先进光束线技术等多项先进技术,部件研制及系统集成难度极高。   在建设过程中,中国工程人员攻克了软土地基微振动控制、消防性能化设计等诸多技术难题,90%的关键技术和设备实现了国产化,直接带动了中国现代高性能加速器、先进电工技术、超高真空技术、高精密机械加工等先进技术和工业的发展。   “上海光源工程是全国大协作的结晶,代表了中国工业发展的最先进水平,彰显了中国综合科技实力。”上海光源工程最早的倡导者之一、中国科学院杨福家院士说。   截至目前,中科院上海应用物理所已经收到来自全国78所高等院校和科研院所的301份申请材料,各地科研人员计划在“上海光源”的七条光束线站上开展生命科学、医学与制药、新材料、物理、化学、石油化工等方面的研究和开发工作。   上海光源工程座落在上海浦东著名的张江国家级高科技园区,地块位于张江高科技园区的杨桥村南部,工程用地范围约20万平方米,上海张江(集团)有限公司以零地价转让给上海光源工程使用。   上海光源将对有巨大产业前景的微电子、微机械等高新技术的开发,起到极大的推动作用,在科学界和工业界有着广泛的应用价值。由于在长三角地区特别是张江高科技园区已存在微电子与光电子工艺、先进复合材料、红外光电材料和器件、再生能源等多个领域中的上千家高科技开发商,均是上海光源的潜在用户。   上海光源工程一期拟建约45000平方米,东西长分别为588至615米,南北宽为333米,总面积约为20万平方米,一期建筑面积为50857平方米。上海光源是中国迄今为止投资最大的国家重大科技基础设施建设项目,总投资约12亿元,在一座银灰色、如鹦鹉螺外形万人体育场大小的圆形建筑内,建有一台能量为150M电子伏特的电子直线加速器,一台周长为180米、能量为3.5G电子伏特的增强器,以及一台周长达432米、能量为3.5G电子伏特的电子储存环,还有沿电子储存环外侧依次分布的多条光束线和实验站等。   上海光源工程由中国科学院和上海市政府共同建造,由中央政府和上海地方政府共同出资,开中国重大基础科学研究之先河。上海光源的建设将为构建科研新体制增添一份宝贵的经验。   同步辐射光源被科学家称之为继电光源、X光源和激光光源之后,第四次为人类文明带来革命性推动的新光源,为人类认知世界提供了更有力的工具。它具有常规光源不可比拟的优良性能,如高准直性、高极化性、高相干性、宽频谱范围、高光谱耀度和高光子通量等,好比一台多用户的超级显微镜,是照亮微观世界的“神奇之光”。它所能照亮的学科之众多,应用领域之广泛,都是空前的。像普通的X光胶片只能模糊地看到骨骼,但是同步辐射光透射的影像就能探测分子级甚至亚分子级结构,如蛋白质和DNA等等,而且轮廓非常清晰。   高性能的同步辐射光源将为生命科学、材料科学、环境科学、信息科学、凝聚态物理、原子分子物理、团簇物理、化学、医学、药学、地质学等多学科的前沿基础研究,以及微电子、医药、石油、化工、生物工程、医疗诊断和微加工等高技术的开发应用,提供不可替代的先进实验平台。   为保持光束流的高度稳定,光源轨道的垂直稳定度须控制在1微米以内。上海光源是极其复杂的大科学工程,包含有众多系统,它们分别涉及超导高频及低温技术、超高真空技术、高精度数字化电源技术、高性能磁铁及机械准直技术、高性能束流诊断技术、先进控制技术,以及先进光束线技术等多项先进技术,部件研制及系统集成难度极高 特别是须在保证各系统性能的前提下达到很低的故障率,以实现提供十几到几十小时的稳定束流、年运行5000小时以上供光时间的预定目标。   上海光源的建设将直接带动中国现代高性能加速器、先进电工技术、超高真空技术、高精密机械加工、X射线光学、快电子学、超大系统自动控制技术以及高稳定建筑等先进技术和工业的发展。大科学工程的实践证明,这种带动作用的间接效应所带来的社会和经济效益是非常大的。 艾滋病毒   仅以生命科学为例,生命科学已进入了后基因组时代,蛋白质科学已成为各发达国家竞相抢占的制高点,而以蛋白质结构和功能研究为主要目标的结构基因组学研究,其中80%以上的工作需要在第三代同步辐射光源上进行,利用高强度和高亮度的同步辐射光,科学家可以很清晰地“看见”生物大分子(如蛋白质、病毒等)的三维结构,掌握它们在生化反应过程中,结构随时间变化的动态过程,所以上海光源将成为中国生命科学前沿研究不可或缺的大科学设施。   同步辐射X射线衍射方法是当前测定生物大分子结构的最有力手段,是研究生命现象与生物过程的利器。研究清楚致病病毒分子及周围人体生物组织分子的三维结构,弄清病毒的致病机理与过程至关重要,然后进行计算机模拟,有针对性地设计出能对致病分子进行屏蔽或抑制的药物分子结构,再合成新药,这比传统的筛选法周期短得多,成本也低得多。利用这种方法,国外已成功研制出用于抑制艾滋病的药物,对于降低艾滋病的死亡率起到了良好的作用。   在2003年中国出现SARS疫情后不及,中国科学家就利用同步辐射光成功测定了SARS病毒主蛋白酶的结构,为研制抵御SARS病毒的药物提供了重要信息。   在石化及化学工业中,催化剂起着核心作用,对石油化工的效率产出有重要影响。中国在某些催化剂和高分子材料的研究方面有着相当好的基础和科技积累,但放眼世界,各大石油公司均已在同步辐射光源上建有专用的光束线站,研究催化机理和催化剂的特性。   假如没有高性能的第三代同步辐射光源先进技术的支持,中国企业将面临十分被动的局面。上海光源将是新型催化剂研发中不可或缺的工具。   此外,基于第三代同步辐射光源的微细加工技术已成为发展微电子机械系统的主要支撑技术,微细加工将在不长的时间内形成具有相当规模的产业。随着业界对集成电路的集成度要求越来越高,科学界估计,对线度在几十纳米及以下的集成电路,第三代同步辐射光刻技术有可能将成为主要的光刻手段。   材料科学是支撑高技术经济发展必不可少的基础,未来的技术革命将在很大程度上取决于新型材料的发明,例如半导体、高分子聚合物、合金、陶瓷、超导材料、复合材料、金属玻璃以及纳米材料等,这些具有异乎寻常性能的新型材料将在计算机、信息、通讯、航空航天、机器人、医药、微机电和能源等新兴产业中获得越来越广泛的应用。   利用上海光源所产生的高亮度同步辐射光束,可以揭示材料中原子的精确构造和得到有价值的电磁结构参数等信息,它们既是理解材料性能的"钥匙",也隐含着发明新颖材料的原理来源。   移动通讯和便携式电脑市场的迅猛发展导致对质轻、价低、续航时间长的可充电电池的需求激增,未来的新能源汽车对全新机理的高性能电池研究需求更是世界瞩目的焦点,各国的制造商正在为掌握新的电化学反应以开发高性能的电池而陈兵鏖战,而同步辐射光正是他们手中的新式武器。   “上海光源”的用户并不仅限于高科技机构,还包括众多与民生紧密相关的企业。比如,著名化妆品公司欧莱雅已经多次采用同步辐射光源来研究毛发角蛋白的分子结构,开发更高性能的产品。   上海光源包括一台约40米长、把电子枪产生的10万电子伏特电子束加速到1.5亿电子伏特的电子直线加速器(在模型中心位置,红色直线段)、一台周长180米、能在0.5秒内把电子束从1.5亿电子伏特加速到35亿电子伏特全能量的增强器(红色小环)和一台周长432米、35亿电子伏特的高性能电子储存环(外圈蓝色大环)和诸多的引出光束线(青色曲线)。   其电子束能量为35亿电子伏特,仅次于日本的SPring-8 (80亿电子伏特)、美国的APS(70亿电子伏特)和欧洲共同体的ESRF(60亿电子伏特),居世界第四。   上海光源的设计建造符合中国国情,投资适中,在宽广的光子能区具有好的性能价格比。上海光源可同时提供从“硬X射线”到“远红外”全波段的高亮度光束,性能被优化在用途最广泛的X射线和硬X射线能区。利用近年来技术的新进展,在5~20keV光谱区间可产生性能趋近前述美日欧三套大而昂贵的高能量光源所产生的高耀度硬X光 在1~5keV光谱区间可产生目前世界最高耀度的同步辐射光。   其将在亚洲地区与日本SPring-8 (80亿电子伏特)、韩国PLS (25亿电子伏特)、印度Indus-II (25亿电子伏特)和中国台湾TLS (15亿电子伏特)等第三代同步辐射光源一起形成能量和性能分布合理的光源群,成为面向世界的同步辐射实验平台。   沿着周长432米、35亿电子伏特的高性能电子储存环的切线方向可以引出光束线,建立试验站。上海光源总共将建设近60条以上光束线和上百个实验站。上海光源首批建设的7个光束线实验站居国际先进水平,目前每天可容纳几百名不同学科领域或公司企业的科学家、工程师,夜以继日地在各自的实验站上使用同步辐射光。   上海光源的二期工程——再建22至24条光束线的计划,也已经递交。上海光源圆形建筑内具有建设60多条不同光束线的能力,能日夜不断为环绕四周的上百个实验站供光,几十条光束线和上百个实验站全部建成后,同时容纳的研究人员可达上千名。如此之多的研究人员同时使用上海光源,就创造了特有的科研氛围,为不同学科间的学术交流提供了天然的优良条件,使上海光源自然而然成为综合性的大型前沿研究中心,为萌发新思想、创造新方法和开辟新学科提供极为有利的环境条件。   中国第一代同步辐射光源——北京正负电子对撞机。第一代同步辐射光源是寄生于高能物理实验专用的高能对撞机的兼用机,如北京光源(BSR)就是寄生于北京正负电子对撞机(BEPC)的典型第一代同步辐射光源,目前世界上已建成的第一代同步辐射光源有17台。   中国第二代同步辐射光源——合肥国家同步辐射实验室(HLS)。第二代同步辐射光源是基于同步辐射专用储存环的专用机,目前世界上已建成的第二代同步辐射光源有23台。 合肥国家同步辐射实验室内景   第一代、第二代、第三代同步辐射光源之间的最主要的区别,是在于作为发光光源的电子束斑尺寸或电子发射度的迥异。例如第二代的合肥同步辐射光源,其电子束发射度约150纳米弧度,而第三代的上海光源,其电子束发射度约4纳米弧度,光源点水平束斑尺寸约150微米、垂直束斑尺寸仅约10微米。二者相差近40倍,结果得到的光亮度差1600倍,近三个量级!  目前世界上已建成的第三代同步辐射光源有13台,正在建造和设计的第三代同步辐射光源有12台。   上海光源作为先进的第三代同步辐射光源,本身具有很高的现代高科技的融合度和集成度,因此它将成为中国显示综合科技实力的标志性重大科学装置,并为提升国家知识创新能力和综合科技实力做出不可替代的重要贡献。   中国科学院正计划筹建以上海光源等大型设施为依托的上海应用物理国家实验室。该国家实验室在发展光源物理与技术的同时,还将大力开展相关学科的交叉融合性研究,如空间技术向小型化和微型化发展中所需要的新型信息功能材料与器件研究与研制、健康领域中疾病的新型诊断技术和新药的设计与遴选技术研究、结构与功能材料研究、强光技术研究、有机化学领域前沿问题研究等。这个计划组建的国家实验室将成为在国际上占有一席之地的综合性高科技研发中心。
  • LED 照明与爱色丽光源评估工具—标准光源箱解决方案
    随着全球对可持续发展和环境保护意识的不断增强,绿色照明技术正逐步成为现代社会关注的焦点。LED(发光二极管)照明技术凭借其出色的节能表现和环保特性,正在引领照明行业的绿色工业。LED灯具不仅能显著降低能耗,还能减少有害物质的排放,是实现低碳经济的理想选择。随着技术的不断创新,LED照明正在被广泛应用于家庭、商业和公共场所,为我们的生活带来更加绿色和可持续的未来。荧光灯因其类似日光的光源特性,被广泛应用于家庭、商场和办公室等场所。然而,它们的使用寿命有限,且在灯管破裂时会释放汞元素,对环境和人体健康造成危害。为了应对这些问题,国际社会达成了《关于汞的水俣公约》,旨在控制和减少汞的排放和使用,推动全球向更环保的照明技术过渡。这一公约反映了全球对环境保护的日益重视。在全球对可持续发展和环保日益关注的大背景下,LED 照明技术凭借自身众多的优势,成为了照明领域的焦点。LED 灯因其高效节能、长寿命、发光效率高以及设计灵活性强等特点而备受青睐。和传统的白炽灯与荧光灯相比,LED 灯的能耗大幅降低,仅仅是白炽灯的十分之一,是节能灯的四分之一,其使用寿命能够达到 3 万至 8 万小时,是其他灯具的好几倍。另外,LED 灯具不含有汞等有害物质,可以提供定向光源,能够减少光污染,对环境更加友好。其小巧紧凑的设计以及多样化的应用场景,让 LED 灯在住宅、商业及公共领域的应用越来越广泛。随着技术不断进步以及成本逐渐下降,LED 照明会在全球范围内持续引领行业创新,助力实现更绿色、更可持续的未来。爱色丽公司,作为颜色视觉评估领域的先锋,凭借其在色彩管理技术方面的深厚专业积累,为全球客户提供了稳定而高品质的辨色光源。其产品Judge QC 标准光源箱和SpectraLight QC 标准光源箱,以其卓越的光源稳定性和色彩准确性,已经成为印刷、纺织、涂料等多个行业内公认的光源评估工具。Judge QC 标准光源箱Judge QC标准光源箱是爱色丽公司推出的一款专业级光源评估工具,专为满足印刷、包装、纺织和涂料行业的高标准颜色评估需求而设计。这款光源箱采用了先进的LED技术,确保了光源的稳定性和色彩的准确性,为用户提供了一个可靠的颜色评估环境。特点:多种光源选项:提供包括D65、D50、U30、Horizon等在内的多种国际标准光源,以适应不同的颜色评估需求。LED技术:采用LED光源,具有更长的使用寿命和更低的能耗,同时保证了光源的一致性。色彩准确性:光源箱设计确保了色彩的准确性和一致性,减少了颜色评估过程中的误差。灵活性和便携性:设计紧凑,便于携带和移动,适合在不同环境中使用。SpectraLight QC 标准光源箱SpectraLight QC标准光源箱是爱色丽公司的另一款高端光源评估工具,它提供了更为广泛的光源选项和先进的技术,以满足更为复杂的颜色评估任务。特点:广泛的光源选择:除了提供国际标准的光源外,还支持用户自定义光源,以适应特殊颜色评估需求。高级LED技术:采用最新的LED技术,提供更均匀、更稳定的光源,确保了在各种条件下的颜色准确性。多角度观察:设计允许用户从不同角度观察样品,以评估颜色在不同光照条件下的表现。智能控制:配备智能控制系统,用户可以轻松切换光源和调节亮度,提高工作效率。Judge QC和SpectraLight QC标准光源箱是爱色丽公司在颜色视觉评估领域的创新成果,它们代表了行业内光源箱技术的前沿。这两款产品不仅提高了颜色评估的准确性和效率,而且通过采用LED技术,也体现了爱色丽对环保和可持续发展的承诺。关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 杨福家院士带你看“上海光源”
    这是3月16日拍摄的“上海光源”高性能电子储存环旁的部分实验站。 新华社记者 裴鑫 摄   今天,“上海光源”正式竣工。这项总投资约12亿元、历经4年零4个月建设的国家重大科学工程,终于成功绽放出七彩的春光。   “上海光源”有何奥妙?它和我们普通人的生活有啥关系?带着这些疑问,本报记者独家采访了中国科学院院士杨福家。杨福家院士不仅是该领域的专家,而且早在1995年,他曾和谢希德等科学家一起,在市政协相关会议上提出“在上海建造第三代同步辐射光源”的提案,为“上海光源”的故事写下了一个精彩开头。转眼14个年头过去,从上海到全国,各级领导、科学家、工程技术人员为上海光源工程殚精竭虑,也理应让更多人知道“上海光源”、了解“上海光源”。杨福家院士欣然应邀,带领本报读者一起“神游”上海光源。   它是一个“光的博物馆”   新闻视点:平心而论,大多数人恐怕直到现在还不是很明白,“上海光源”究竟是个什么东西,能派什么用场。您能否用简单的语言先给大家做一下科普?   杨福家:“上海光源”的学名叫“上海同步辐射光源”。严格来说,它不是用来制造我们肉眼可见的“光”,而是发出从远红外到硬X射线的不同波长的电磁波。与可见光相比,这些“看不见的光”波长更短,能量更高。   简单来说,“上海光源”的工作原理,是让接近光速运动的电子在磁场中作曲线运动,因为改变运动方向而释放的能量,将转换成各种波段的电磁波。其本质与我们日常接触的可见光和X光一样,都是电磁波。电磁波又叫电磁辐射,由于这种现象最先是1947年在高能物理实验用的同步加速器上发现的,因而被命名为同步辐射(Synchrotron radiation)。   “上海光源”坐落于张江,距地铁二号线终点站不算太远。这幢圆盘形的地标建筑,一直被人们形容为巨型鹦鹉螺。其实,这只“海螺”足有上海体育场那么大,是我国迄今最具规模的重大科学工程,并至少具有30年科学寿命。   根据上海光源工程的平面图,“螺壳”内部的主体结构分为三部分:外圈为432米周长的一个大环———储存器 与之相切的内圈,是一个180米周长的小环———增强器 小环还连着一根40米长、直直的尾巴———直线电子加速器。在这条有直道、有弯道的“光电隧道”中,能量传送方向为“直线—小环—大环”。   出光的具体过程是这样的,高压电从直线加速器扣动“电子枪”,发射出无数个电子。它们在直线隧道内的真空电磁场中疾行,加速至接近光速水平,能量达到150兆电子伏特(150M eV)。接着,这股低能光束线便打弯“注入”内圈小环隧道———增强器,能量在转圈的瞬间被提升22倍左右,变成35亿电子伏特(3.5G eV)的高能光束线,最后“注入”外圈大环隧道———比400米跑道还长的储存器。高能光束线昼夜不停地高速穿行,并沿着大环不断“转圈”,在不同切线方向上“条分缕析”,引出数十束不同波长的形形色色的光,覆盖从远红外线到硬X射线的所有波段,供外围大厅内成百上千的实验站科研人员进行多学科研究。   因此,“上海光源”这只鹦鹉螺可谓“光芒”齐放,使不同学科的科学家能在同一个“光的博物馆”内各取所需。   能给蚂蚱触角拍X光片   新闻视点:“上海光源”有哪些具体用途呢?   杨福家:它可以产生不同波长的电磁波,能为各领域的科学家做研究提供条件。例如对医学专家来说,可能在这里找到一种新的射线,成像效果比现在的X射线更好,也许今后医院里就不用X射线拍片了———这就和普通人的生活有很近的关系了。   以X射线为例,“上海光源”所发出的X射线,品质绝对是世界一流的。目前,国际上的X射线成像技术越来越高精尖,不仅趋向于更高的空间分辨率(纳米量级),同时趋向于更快的时间分辨率(1毫秒或更短)。“上海光源”即将对外开放的X射线成像及生物医学应用光束线站,正朝这些方向努力。打个比方,这座光束线站,若为一只活体蚂蚱拍X光照片,包括蚂蚱触角里面的微细管道、呼吸器官等都可一览无遗,这是传统X光机无法办到的。   用途还有很多。在材料科学领域,利用“上海光源”产生的高亮度同步辐射光束,可以揭示材料中原子的精确构造,得到有价值的电磁结构参数。它们既是理解材料性能的“科学钥匙”,也隐含着发明新颖材料的原理来源   在地球科学领域,利用X射线作为微探针,能深入了解地壳深处和地幔中矿物的演变和转化,对于矿床地质、矿物、岩石、探矿以及地球化学研究起着重要作用   在微细加工技术领域,利用X射线深度光刻技术,可以“搞定”线宽在几十纳米以下的高度集成电路   在石化及化学工业领域,可以研究催化机理和催化剂特性,有助于发明新型催化剂,直接影响到石油化工的效率和产出   在产品研发与检测方面,可进行飞机发动机和航天器疲劳测试、纸浆无氯漂白工艺改进、化妆品效果分析等 ……   “上海光源”计划下月正式对国内外科研用户开放的光束线,共有7条。7束光各配套一座实验站,供课题单位及专家们进行科学实验。目前已收到78所大学、科研院所的用户课题申请242份,累计2868个机时,首批课题正在评审中。   这还只是“小试牛刀”的一期工程。据专家估计,整个上海光源总共能建约60条光束线,每条线上可建1—2个实验站。每条光束线的投资,相当于一个国家级重点实验室的规模。可以想象,今后在这个鹦鹉螺里,将诞生多少令世人惊叹的科学奇迹!   总能量居世界第四   新闻视点:“上海光源”目前在国际上的地位如何?   杨福家:我可以很肯定地说,参观“上海光源”,你会打心眼里为中国人感到自豪。它的性能超过同能区现有的第三代同步辐射光源,是目前世界上正在建造或设计中的性能最好的中能光源之一。今后,它将与日本、韩国、中国台湾和印度等地的第三代同步辐射光源一起,在亚洲形成可以与欧美同类装置媲美的、能量和性能分布合理的光源群,成为面向世界的同步辐射实验平台。   同步辐射光源是世界主流的高能物理装置之一。据了解,自1947年科学家首次观察到同步辐射现象,这类光源装置迄今已发展出第三代。第一代同步辐射光源是“附生”于高能物理实验专用对撞机的兼用机 第二代同步辐射光源是基于同步辐射专用储存环的专用机 第三代同步辐射光源是基于性能更高的同步辐射专用储存环的专用机,如“上海光源”。据悉,“上海光源”电子束总能量已跻身世界四强,仅次于日、美、欧的同类装置。   目前,全球各个国家和地区有一、二、三代同步辐射光源50多台,其中像“上海光源”这样的第三代光源,已建成10多台,而在建和设计中的至少也有13台。预计2010年前后,全球每天都有上万名科学家和工程师,利用这些光源产生的不同波长的光,从事前沿学科研究和高新技术开发。   微观层面的“发射卫星”   新闻视点:“上海光源”究竟有多难造?   杨福家:“嫦娥”工程大家比较熟悉,其实“上海光源”的工作原理,有点像微观层面的“发射卫星”———就是要通过施加外力,让电子在一个个指定轨道上运行,其精度要求,比发射卫星高100万倍。当然,我们也有容易的地方,就是万一把电子搞丢了不要紧,把卫星搞丢了可不行。上海光源工程进展速度之快、质量之高,在国际上都是数一数二的。   国外有不少投资比我们高、建造时间比我们长的同类装置,质量却不如我们理想。我在很多场合都会跟人提起“上海光源”,因为我们做得真是太漂亮了!参与其中的许多年轻人,原本在学术界默默无闻,“上海光源”的成功,也令国际同行立马注意起他们来,真可以说是学术界难得的“一夜成名”。   建“上海光源”有多难?举个例子,为保持光束流的高度稳定,光源轨道的垂直稳定度须控制在1微米以内。   控制这1微米有多难?要知道,各种干扰因素实在不少:施工的地基会有不均匀的沉降,储存环隧道和实验大厅的地板会扭曲和变形,储存环隧道内空气的温度甚至冷却水的温度都在变化,还有各种意料之中或意料之外的振动源……任何一个细节出问题,都无法保证实现这个“1微米以内”的目标。所以工程人员随时随地都在严密监测,用一系列手段使光源稳定性达到世界一流水平。   承建单位中国科学院上海应用物理所的技术人员分成不同班组,从早8点到晚5点,从晚5点到早8点,24小时都能在工程现场见到他们。即便在严格控制的25摄氏度恒定室温下,这些专家有时还是会憋出一身汗。在那几百米长的“光之隧道”内,必须像列车编组一样,将一段段光电设备拼接安装到位。精贵的单件设备,有的达上吨重,却要求工程师屏气凝神、小心轻放。正是有无数工程技术人员的兢兢业业,“上海光源”的光束流轨道稳定度达到国际一流水准。   还有,10万多个信号点,没有接错一根电缆 国际上通常要2至3个月完成的工程环节,“上海光源”只用了两个星期……在前几天进行的专家测试中,国内外同行一致认为“建设质量达世界一流”。   也许就像杨福家院士所说,这些成功,还都是“前奏”。随着“上海光源”的对外开放,以后将有更多看点。在这个大平台上进行的多种实验,每一个都可能给我们带来惊喜。我们姑且拭目以待。
  • 肉类病害检测仪芯片光源一样吗
    肉类病害检测仪芯片光源一样吗,肉类病害检测仪的芯片和光源并不完全相同。虽然它们都是检测仪的重要组成部分,但各自的功能和特性有所不同。芯片是检测仪的核心部分,决定了仪器的运算能力和处理速度。在肉类病害检测仪中,芯片的作用主要是处理和分析检测数据,以快速、准确地判断肉类是否存在病害。而光源则是检测仪用于照射样品的部分,它的主要作用是提供稳定、均匀的光线,以便于观察和分析样品的特征。在肉类病害检测仪中,光源通常采用冷光源设计,以保证长时间连续工作时光源无温漂现象,同时提高检测的稳定性和准确性。此外,不同的肉类病害检测仪可能采用不同型号和规格的芯片和光源,以适应不同的检测需求和应用场景。因此,在选择肉类病害检测仪时,需要根据具体的检测需求和场景来选择合适的型号和规格。
  • 上海光源线站工程建设获进展
    10月29日至30日,上海光源线站工程中的能源材料线站(E-line)软X射线分支和硬X射线分支、稀有元素分析线站通过了中国科学院条件保障与财务局组织的工艺测试。  本次工艺测试以线上线下相结合的方式进行。测试专家组由中科院物理研究所、高能物理研究所、上海应用物理研究所,以及中国科学技术大学、苏州大学、浙江大学、上海科技大学、上海市辐射环境安全技术中心的专家组成(其中,11位现场、5位线上),麦振洪研究员为现场测试组长,胡天斗研究员任总组长(线上)。中科院条财局重大设施处樊潇潇参加会议,工程经理赵振堂院士及副经理、高研院副院长邰仁忠研究员分别致辞。  专家组听取了项目总工程师王劼作的上海光源线站工程总体报告以及各测试项目负责人作的自测报告,审定了工艺测试大纲,并分组进行现场实测。根据实测结果,专家组一致认为能源材料线站的软X射线分支和硬X射线分支、稀有元素分析线站的各项指标全部达到验收指标,部分优于设计指标。  能源材料线站是一条软、硬X射线结合的复合型线站,其硬X射线分支为国内首条通过工艺测试的硬X射线高能量分辨谱学线站,具备了高能量分辨X射线发射谱和高能量分辨X射线荧光吸收谱(HERFD-XANES)等实验方法,可有效解决传统吸收谱方法能量分辨低以及无法识别因轨道间电荷转移导致的关键性能变化的瓶颈。实验站关键设备“基于球面晶体的高分辨发射谱仪”在国内属首次研制。上海光源团队通过开展联合攻关,自主设计机械运动结构、自主开发运动控制与数据采集模块,克服了精密光学、机械稳定、谱学数据处理与信号采集与反馈等方面的难题,利用条纹分析晶体研制出硬X射线七晶发射谱仪(XES)(图1)。经专家组现场工艺测试,能量范围覆盖3.2-19.5 keV,能量分辨优于2 eV(图2),可有效识别轨道间电荷转移。  能源材料线站软X射线分支线可为用户提供共振X射线发射谱(RXES)、共振弹性X射线散射谱(REXS)等实验方法。RXES适用于揭示电池材料体相及固液界面氧化还原过程中电荷转移等电子特性。REXS可应用于探索量子灵巧材料中的电荷、轨道及自旋等长程序,并可用于研究有机材料(如有机太阳能电池、光刻胶等)中的相分离及相畴大小分布。在该分支线在建设过程中,科研人员设计并研制了迄今为止世界上首套双联、互穿光栅单色器(图3),巧妙解决了局促空间下软、硬X光并行通过的难题;研制出国内首台中分辨率超高真空共振发射谱仪(图4),同时,关于该谱仪系二期关键预研设备,项目组在充分调研国际上已有发射谱仪的基础上,基于能源材料研究的科学需求与特点,设计和优化谱仪各方面参数(光栅类型、数目、优化能量点、长度、曲率半径、变线距、出入射臂长、CCD像素阵列、倾角),在测试中能量分辨率达65meV(图5),优于设计指标90meV;研制出国内同步辐射首台软X射线散射仪(图6),在超高真空环境下集成样品的六轴自由度运动及探测器臂的三轴自由度,采用散射仪直接坐地与腔体振动解耦,样品分体铜辨冷却,测试转角分辨率达0.005度(优于设计指标0.01度),冷却温度达15K(优于设计指标20K)。  稀有元素分析光束线站面向我国核能领域研究的重大需求,以U-Pu和Th-U循环中存在关键科学和技术问题为目标,建立了基于同步辐射X射线的放射性样品先进实验手段。线站建立了样品检测监测、储存室和通风系统等放射性样品实验环境(图7),可进行固体(粉末压片)和液体的放射性样品实验,α和β放射样品的放射性活度可达1.85 GBq/Sample,γ放射样品的放射性活度可达185MBq/Sample。线站光子能量可覆盖5-50keV,实验方法以高分辨衍射和高分辨发射谱为特色,高分辨衍射实验测得20keV的X射线,LaB6的(110)面衍射峰(12.11o)半高宽达到0.0087o的高分辨能力(图8),高分辨发射谱学在光束线使用Si(111)晶体时在U L3边的发射线13.618keV的弹性散射峰半高宽达2.8eV的分辨率(图9)。此外,实验站(图10)还覆盖了常规性X射线衍射(散射)、谱学和成像等同步辐射表征技术,并提供微束实验表征方法。稀有元素分析线站已获得辐射安全许可证,成为国内第一条可进行放射性样品实验研究的综合性线站,将在我国的核科学研究领域中发挥重要的推动作用。  上海光源线站工程属于国家“十二五”重大科技基础设施建设项目,于2016年11月20日正式开工。该工程建设内容包括新建16条性能先进的光束线站、实验辅助系统、光源性能拓展、建安工程及配套公用设施。上海光源线站工程通过创新的设计,将实现第三代同步辐射光源近乎极限的时间、空间以及能量分辨能力,全面提升上海光源科技策源能力,更好地服务于世界科技前沿与国家战略需求。截止目前,已有12线23站完成工艺测试投入试运行。图1.硬X射线七晶发射谱仪图2.发射谱仪的能量分辨率图3.双联、互穿光栅单色器图4.中分辨率超高真空共振发射谱仪图5.谱仪能量分辨率65meV@445eV图6.软X射线散射仪图7.样品检测监测、储存和通风系统图8.高分辨衍射角分辨测量结果图9.发射谱能量分辨率测试结果图10.稀有元素分析实验站
  • 上海光机所小型化自由电子相干光源研究取得进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室院士李儒新和研究员田野团队在小型化自由电子相干光源研究领域取得进展。研究团队实验探索飞秒激光驱动的超短电子脉冲泵浦表面等离极化激元(surface plasmon polariton,SPP)的动力学过程,通过对自由电子脉冲泵浦SPP相干放大的动态过程观测,阐述了自由电子与SPP作用过程中的受激放大机理。该研究采用超快光学技术探测了自由电子受激辐射放大的全过程,指明了采用自由电子泵浦SPP实现其相干放大的全新途径,对发展小型化/集成化的相干光源具有重要意义。11月3日,相关研究成果于发表在《自然》(Nature)上。回顾激光器的发展历程,提高激光的辐射功率、追求更宽可调谐的频谱,以及实现体积更小、成本更低的光源一直都是激光科学领域的不懈追求。常见的激光装置,如红宝石激光器等一般需要依赖光学晶体等增益介质来实现激光的输出。而基于自由电子辐射的光源则可以脱离晶体或其它增益介质的束缚,不仅能够产生自由空间光辐射,也可在波导表面形成一类束缚于波导表面光场模式的光源。相比自由空间中传播的光场,以SPP为代表的表面光场具有亚波长压缩和近场增强的优异特性,近年来已逐步应用于新一代无线通信、纳米尺度的成像与探测等诸多领域,并有望为集成光电子器件的开发以及光谱探测、传感、信息处理等领域的应用带来变革性的技术影响。目前,国际上产生表面光场主要有电子直接激发与波导耦合两种方式,但不论采用何种方式,所产生的表面光场都受限于低耦合效率导致的弱光场能量,进而限制了SPP在上述领域的应用。因此,发展相干的高功率SPP光源是该领域亟待解决的问题。近年来,作为半导体集成电路基础的微纳制造工艺不断进步,使集成化的自由电子光源成为可能。围绕小型化自由电子相干光源,科研团队展开飞秒激光驱动的超短电子脉冲泵浦SPP种子研究,采用超快光学泵浦-探测技术,观测到自由电子脉冲对SPP的相干放大。实验通过对SPP的电磁场时空波形、能量、频谱的记录,首次动态演示了SPP受激辐射放大的动力学过程,并揭示SPP经历了高增益自由电子激光中超辐射、指数增长和饱及等三阶段的受激辐射光放大过程。该研究发展了自由电子泵浦实现SPP相干放大的新途径,在光谱探测、传感、信息处理等应用领域颇具应用价值。该成果的实现得益于研究团队在小型化自由电子光源领域中的长期积累,例如,团队相继发现了微型电子波荡器辐射(Nature Photonics,2017)、激光调制阿秒电子脉冲序列(Nature Photonics,2020)等新原理,相关研究成果分别被评为“2017年度中国光学十大进展”和“2021年度中国光学十大进展”。研究团队将基于这一全新技术进一步发展小型化/集成化的相干光源,并将拓展到在光谱探测、传感、信息处理领域的交叉应用。研究工作得到中科院战略性先导科技专项、国家自然科学基金优秀青年基金项目、上海市“基础研究特区计划”项目、中科院基础前沿科学研究计划“从0到1”原始创新项目、中科院青年创新促进会等的支持。
  • 领先世界的高辉度型与超小型3原色激光光源诞生
    —以国际化、新产业化为目标,产学联合共同制订纲要— 在NEDO项目中,大阪大学和岛津制作所以扩大可见光半导体激光用途为目的实施合作研发,开发出领先世界的高辉度型与超小型3原色激光光源,并对这两种激光光源模块做装机实验进行了性能评价。 此外,还以大阪大学为中心成立产学合作组织,制定了与光源相关的安全性纲领文件。今后,将继续开展活动推进其实用普及,引导纲领文件的学习,支持国际标准化提案,实现新工业化目标。图1 领先世界水平的高辉度3原色激光光源模块 图2 世界最小型3原色激光光源模块1.概要 在NEDO项目中,大阪大学和岛津制作所联手,利用3原色可见光半导体激光技术,开发出了两种3原色激光光源模块。一种用于高辉度显示装置、激光照明领域,是该领域目前辉度最高的模块(如图1);另一种用于扫描型激光投射,是可单光纤输出的目前世界最小尺寸的超小型模块。 将上述模块装入9家制造商的设备后,对其进行性能评价。评价结果显示,与LED等其他光源相比,无论是小型化、节能性还是颜色重现性等各方面,激光光源都有其独特的优势。 从这一激光特性来看,可望其未来应用前景相当广泛,从智能手机、笔记本终端等小型电器,到几十米高的剧场、建筑物投射等的大型放映装置皆可应用。 针对限制了激光应用普及的特性及安全性问题,2014年,大阪大学(光学中心、副主任、特聘教授 山本和久)作为发起人,成立了可见光半导体激光应用协会,近期,制订了相应的3原色激光光源模块的性能指标、可靠性及安全性纲领文件,完善了可见光半导体激光技术应用的基础。今后,将继续推进可见光半导体激光的应用普及活动,推进纲领文件学习,支持国际标准化提案,实现新工业化目标。 此外,2016年3月14日在日本桥生命科学中心,由可见光半导体激光应用协会、大阪大学科学中心以及NEDO共同举办的“可见光半导体激光应用研讨会”也对这些成果进行介绍。2.最新成果(1)领先世界水平的高辉度型和超小型3原色激光光源双双诞生 最新开发的高辉度型3原色激光光源模块,用于高辉度显示计及激光照明用途,红、绿、蓝三色激光都具有超10W的高输出功率,实现了领先世界的高辉度(如图3)。超小型3原色激光光源模块用于扫描型激光投射,主体部分仅有0.5cc大小,堪称目前世界最小尺寸。通过调节绿色波长,这些光源可再现自然色(如图4)。图3高辉度型模块特性检测实例 图4超小型模块特性检测实例 近些年,一些投影设备开始采用激光作为光源。电影院、大厅等场所对辉度要求不断增高,有时必须达到10000lm以上的辉度(全光束),但10000lm以上光源目前最常使用的是氙灯和高压汞灯,LED无法实现如此高的辉度。 最新的高辉度模块,利用3原色半导体激光(SHG型除外)可以实现10000lm级以上的高辉度。小型高辉度半导体激光有望在影院级的大型投影仪上投放使用,不仅能提供高清大画面,还能节约电力消耗。 个人、家庭使用的小型投影仪由于几乎没有光线扩散,因此利用激光投影可以不受投影面的距离、形状限制,获得清晰图像。例如,如果内置于智能手机,则可以轻松地在墙面上投射出清晰画面。此外,这种特点也可用于人眼方面,如未来可用于开发头戴式显示器(HMD),使用强度对人眼无害的激光直接对视网膜进行扫描,即使患有近视的人群,也可以看到清晰图像。超小型模块应用需求广泛,今后会继续朝着更加小型化的方向发展。 最新技术优势众多,通过调节内置的半导体激光元部件的数量,可以灵活地满足大规模高输出需求或小规模低输出需求,还可利用光纤实现光源和发光部分分离等。例如,应用于汽车头灯,不仅可对前方照明度和照射位置进行调节,还可随意选择光源本身的安装位置。(2)可见光半导体激光应用协会的设立、运营以及纲领文件的制定 可见光半导体激光应用协会以大阪大学为主体,主要探讨有关3原色激光光源模块的规格、性能指标以及可靠性、搭载产品的安全性等课题,在项目进行期间已制订完成了6项纲领文件。该组织还由其他51家相关机构组成,包括市场上8成的相关行业元件装置生产商及机器生产商、大学研究机构等。 该协会正在就确保激光对人眼安全性的技术标准进行探讨,激光安全性制约着可视化半导体激光的应用。此外,还将致力于解决激光成像技术中的问题——散斑现象。散斑现象,形成于激光扫描投影时,是正常画面中混入干扰图样后无法准确反映画面的现象。现在,以大阪大学为中心,开发了可靠的散斑图检测技术,在此基础上制定了视觉上能够允许的散斑标准。 以上6种纲领文件将逐步公布,该项目合作完成后还将各自推进国际标准化方案提出进程。 图5 散斑;激光干涉图样 图6散斑检测装置关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 我国在小型化相干光源研究中取得突破性进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室李儒新院士和田野研究员团队在小型化自由电子相干光源研究领域取得突破性进展。研究团队实验探索飞秒激光驱动的超短电子脉冲泵浦表面等离极化激元(surface plasmon polariton,SPP)的动力学过程,通过对自由电子脉冲泵浦SPP相干放大的动态过程观测,阐述了自由电子与SPP作用过程中的受激放大机理。该项研究采用超快光学技术探测了自由电子受激辐射放大的全过程,研究成果指明了采用自由电子泵浦SPP实现其相干放大的全新途径,对于发展小型化/集成化的相干光源具有重要意义。相关研究成果于2022年11月3日发表于《自然》(Nature)杂志。回顾激光器的发展历程,提高激光的辐射功率、追求更宽可调谐的频谱,以及实现体积更小、成本更低的光源长久以来一直都是激光科学领域的不懈追求。常见的激光装置,如红宝石激光器等一般需要依赖光学晶体等增益介质来实现激光的输出。而基于自由电子辐射的光源则可以脱离晶体或其它增益介质的束缚,不仅能够产生自由空间光辐射,也可在波导表面形成一类束缚于波导表面光场模式的光源。相比自由空间中传播的光场,以SPP为代表的表面光场具有亚波长压缩和近场增强的优异特性,近年来已逐步应用于新一代无线通信、纳米尺度的成像与探测等诸多领域,并有望为集成光电子器件的开发以及光谱探测、传感、信息处理等领域的应用带来变革性的技术影响。目前国际上产生表面光场主要有电子直接激发与波导耦合两种方式,然而不论对于何种方式,所产生的表面光场都受限于低耦合效率导致的弱光场能量,进而限制了SPP在上述领域的应用。因此,发展相干的高功率SPP光源是该领域亟待解决的问题。近年来,作为半导体集成电路基础的微纳制造工艺不断进步,使集成化的自由电子光源成为可能。围绕小型化自由电子相干光源,研究团队展开飞秒激光驱动的超短电子脉冲泵浦SPP种子研究,采用超快光学泵浦-探测技术,观测到自由电子脉冲对SPP的相干放大。实验通过对SPP的电磁场时空波形、能量以及频谱的记录,首次动态演示了SPP受激辐射放大的动力学过程,并揭示了SPP经历了高增益自由电子激光中超辐射、指数增长和饱和等三阶段的受激辐射光放大过程。该项研究创新发展了自由电子泵浦实现SPP相干放大的全新途径,在光谱探测、传感、信息处理等应用领域具有重大应用价值。该成果的实现得益于研究团队在小型化自由电子光源领域中的长期积累,如团队相继发现了微型电子波荡器辐射(Nature Photonics,2017)、激光调制阿秒电子脉冲序列(Nature Photonics,2020)等新原理,相关研究成果分别被评为“2017年度中国光学十大进展”和“2021年度中国光学十大进展”。未来,研究团队将基于这一全新技术进一步发展小型化/集成化的相干光源,并拓展其在光谱探测、传感、信息处理领域的交叉应用。相关的研究工作得到了中科院先导专项(B类)、国家自然科学基金优秀青年基金项目、基础研究特区项目、中科院原始创新0到1项目、中科院青促会会员和上海市扬帆计划等项目的支持。小型化自由电子相干光源实验方案示意图SPP受激辐射放大的实空间演化SPP能量增益的三个阶段小型化自由电子相干光源
  • 色彩测量技术积分球结构的几何特性及优势
    色彩测量技术积分球结构的几何特性及优势一、d/8º 积分球测量结构及其特点积分球是一种内部壁面呈现白色的球形设备,以其卓越的反射和散射性能被广泛应用于测量光源的色度和强度。在进行颜色测量时,该设备特设多个孔口以便于操作。主要包括一个测量孔,用于与测试样品紧密结合;对面设置一个观测孔,或称为接收器孔,位于测量孔的直接对面,通常与球体法线成8º 角,主要功能是收集样品反射的光线;另外,与观测孔在球体法线上对称的位置设置有一个镜面反射孔,该孔可根据需要开启或关闭,以控制是否收集镜面反射光。这一几何结构被称为d/8º 积分球测量结构,其独特的设计使其在颜色测量领域中具有重要应用。d/8º 测量结构示意图在操作过程中,光从光源发射,经积分球的内壁进行全面的漫反射,使得这些散射光线能够均匀地从各个角度照射到试样上。这导致试样吸收和反射光线,其中定向于8度的反射光被接收器捕获以进行颜色评估。因此,与0度/45度的测量配置相比,d/8度积分球测量结构的一大特点是使用的是漫射光源,这相当于周围环绕着无数个点光源,而非0度/45度配置下的单一光源。其次,接收器位于8度位置,利用可开闭的对称镜面反射孔,可以选择性地收集包含镜面反射(SPIN)的数据或排除镜面反射(SPEX)的数据。包含镜面反射与排除镜面反射光路示意图根据所述分析,当光线投射到样本上时,会经历吸收、散射以及镜面反射的过程。样本表面的物理特性决定了光线的传播方式:平滑表面导致高光泽和较强的镜面反射,同时散射较少;相反,粗糙表面导致低光泽、较弱的镜面反射和较强的散射。因此,对于具有相同材料但光泽不同的样本,当考虑镜面反射时,测量结果显示一致性(即1+2=2+1),这代表了材料的固有颜色,也就是其真实色。然而,在排除镜面反射的情况下,样本之间的差异变得明显(1≠2),这些数据反映了材料特性与表面物理状态的综合效应,代表了表观色,更贴近于人眼观察到的效果。镜面反射数据的包含与排除之间的主要区别由镜面反射光引起,其强度随样品的光泽度变化而变化。因此,样品的光泽度直接影响了在包含与排除镜面反射条件下数据的差异程度。对不同光泽度的涂层在这两种条件下进行测量,得到的色度数据及其差异情况如表所示。不同光泽的样品包含与排除镜面状态的数据差异涂层的光泽程度对包含镜面反射的数据影响较小,但对排除镜面反射的数据有显著影响。随着样品光泽度的增加,排除镜面反射条件下的明度值会降低,导致与包含镜面反射数据的差异增大。积分球技术已广泛应用于多个行业,尤其是在纺织印染和塑料制品检测中,它成为了首选工具。积分球结构能够适应从低光泽到高光泽的样品(如金银卡片和电镀产品),甚至能够检测具有简单特殊效果的涂料。由于积分球仪器能测量样品的真实色,它通常被选用于电脑配色系统中的分光光度计。积分球作为该结构中最关键的组件之一,其内壁采用高漫反射材料制成,因此成本相对较高。为确保测量数据的精确性,需要进行良好的日常维护,以维持其卓越的漫反射性能。二、产品推荐便携式分光光度仪Ci64便携式分光光度仪Ci64是高精度的色彩测量工具,专为满足各种行业对色彩精确度和一致性要求而设计。该仪器特别适合于纺织印染、塑料制品等行业的色彩检测,无论是对于低光泽还是高光泽样本,如金银卡或电镀产品,Ci64均能提供卓越的性能。它甚至能够精确测量具有特殊效果的涂层,如珠光或金属光泽涂料。Ci64结合了积分球测量技术的优势,包括能够在包含或排除镜面反射的条件下进行测量,从而确保了对样品真实色的准确捕获。这种灵活性使得Ci64在电脑配色系统中尤为重要,因为它可以提供关键的色彩数据以支持精确配色。该仪器的设计考虑了易用性和便携性,使得现场测试变得简单快捷。Ci64的内壁使用高漫反射材料制成,确保了测量过程中光线的均匀分布,从而提高了数据的准确性和重复性。然而,为了维持这种高度的漫反射性能和数据精度,Ci64需要适当的日常维护。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 首次实现单个量子光源的超分辨选择性激发和成像
    p   光的衍射极限限制了常规光学成像的分辨率和介质光子器件的尺寸,将对光的操控和利用制约在波长水平,而金属纳米结构的表面等离激元可以将光场束缚在纳米结构表面,使突破衍射极限的纳米尺度光操控成为可能。金属纳米线不仅具有显著的局域电磁场增强效应,可以在纳米尺度上增强光与原子、分子、量子点、色心等纳米量子光源的相互作用,而且支持传输的表面等离激元模式,可作为等离激元纳米波导实现亚波长束缚的光信号传输,是构建片上纳米光子回路的基本元件。金属纳米线与单个纳米量子光源的耦合可以实现单个量子化的表面等离激元的产生和传输,对该体系的研究对于深入认识单光子水平上光与物质相互作用的基本物理和设计纳米量子光子器件都具有重要意义。集成在金属纳米线上的多个纳米量子光源可以通过表面等离激元发生相互作用,产生新的光学现象,如协同辐射和量子纠缠。当纳米光源之间的距离达到亚波长尺度时,光学显微镜的分辨率限制了对金属纳米线上的多个纳米光源进行超分辨成像和超分辨可控激发,阻碍了相关实验的进展。 /p p   针对上述问题,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室魏红副研究员和合作者设计了一种利用金属纳米线上的表面等离激元干涉场作为激发源的超分辨激发和成像方法。由于表面等离激元干涉条纹的周期远小于激发光波长,这种方法具有突破衍射极限的光学分辨率。银纳米线上的传输表面等离激元与局域表面等离激元的干涉形成之字形分布的电场,反向传输的两束表面等离激元干涉形成周期性对称分布的电场。通过调控两束激发光之间的相位差,上述两种等离激元干涉场的分布都沿着纳米线移动,使纳米线上的量子点处的电场强度发生变化,从而可以调控量子点的激发。利用该方法可以实现对相距几十纳米的两个量子点的选择性激发,实验中通过对相距100 nm的两个量子点的选择性激发演示了该技术的可行性。通过将结构照明显微成像技术与金属纳米线上的表面等离激元干涉场相结合,利用模拟计算实现了对多个量子点的超分辨光学成像,分辨率约为96 nm。该工作为研究和表征等离激元纳米波导与多个纳米量子光源耦合体系的光学特性提供了一种实验方法,对于深入认识纳米尺度上表面等离激元增强的光与物质相互作用的机理和规律、设计基于表面等离激元的纳米/量子光子器件和回路等具有重要意义。相关研究结果发表在Nano Letters 18, 2009-2015 (2018)。 /p p   魏红副研究员对金属纳米线表面等离激元的物理特性及其调控进行了长期的系统的研究,取得了一系列原创性的成果。最近她和合作者受邀在国际著名综述期刊Chemical Reviews(影响因子47.9)上发表邀请综述Plasmon Waveguiding in Nanowires [Chemical Reviews 118, 2882-2926 (2018)]。该论文得到了审稿人一致的高度评价,被认为是一篇非常及时、全面和权威的综述(“a very timely and comprehensive review”, “a comprehensive and authoritative review”),是纳米等离激元光子学领域最好的综述论文之一(“one of the best reviews in nanoplasmonics field”)。 /p p   上述工作得到了中国科学院、国家自然科学基金委和科技部的资助。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/4a2fb2c3-f2db-44d4-9c56-367bfaca07e6.jpg" title=" 1.png" / /p p   图1. 利用银纳米线表面等离激元实现对量子点的可控激发(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/0f754c10-d33c-4c70-a4cc-9aabce79ba2c.jpg" title=" 2.png" / /p p   图2. 利用银纳米线表面等离激元选择性激发两个相距100 nm的量子点中的任意一个(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/1074f43b-c0b0-4cd4-99b6-6f18fcfa4c79.jpg" title=" 3.png" / /p p   图3. 将表面等离激元干涉场用于结构照明显微成像技术实现对多个量子点的超分辨光学成像(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/04354f19-0558-4348-9b78-f63646341f13.jpg" title=" 4.jpg" / /p p   图4. 金属纳米线中表面等离激元传输的示意图、表面等离激元模式色散关系的示意图以及三个研究方向(Chem. Rev. 118, 2882-2926 (2018))。 /p p br/ /p
  • 桌面高能X射线光源系统问世
    据美国物理学家组织网10月25日(北京时间)报道,一国际研究小组开发出一种微型同步加速高能X射线光源系统,其能效和质量可与世界上某些最大的X光源设备媲美,这种微型化的廉价高质量X射线光源将有着广泛应用前景。相关研究论文刊登在10月24日的《自然物理学》杂志上。   新设备由英国伦敦帝国学院、美国密歇根州立大学和葡萄牙里斯本大学高等技术学院的科学家共同研制,能在桌面上实现当前巨大激光设备的多项功能。他们的缩微系统采用了一种微型氦气喷气机和一种高能激光,是一种只有铅笔粗细的超短波高能空间相干X射线光束。   论文第一作者、伦敦帝国学院物理系的斯蒂凡柯耐普博士说,我们在产生更加简洁廉价的高能高质X射线方面迈出了第一步。用相对简单的系统,在几毫米范围内产生的高质量X射线光束,能和几百米长的同步加速器产生的光束媲美。尽管我们的技术目前还不能与世界上少数几个大型的X射线源直接竞争,但对于当前某些难以办到的检测来说,它提供了一种重要的应用手段。   新系统产生的X射线具有极短脉冲长度。它们能从一个约1微米的空间小点产生,这会导致一个狭窄的X光束,使研究人员能清楚地看到目标物的细节。这些特性是其他X光源不具备的,超短脉冲使研究人员能以毫微微秒(千万亿分之一秒)的解析度测量原子和分子的互相反应。   新型X射线系统发出称为HERCULES的超高能激光束,进入氦气喷气机生成一个微小的等离子氦柱,激光脉冲在这个等离子内部,生成一个被带负电荷的电子包围的带正电的氦离子泡。   由于这种电荷分离,等离子泡具有强大的电场,不仅能促使等离子体重的某些电子形成能量束,还能使光速“扭动”。当电子束扭动它产生的峰值共振X射线光束时,就能够在实验中进行测量。   这一过程跟其他同步加速光源中所发生的过程相似,但是在一个微观领域内产生。整个桌面X射线源装在一个边长约1米的真空箱里,加速和X射线的产生在不足一平方厘米范围内。这种微型化导致更加廉价高质量的X射线光源,也将带来超短高耀度的属性。   研究人员称,像这样的系统有很多用途,比如使用高能X射线,它最终能极大地提高医学图像的解析度,也能更容易地检测机翼接合有没有微缝隙,还能用于开发特殊科学应用,X射线的超短脉冲可在极短时间内研究“结冰”运动。
  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。   激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。   在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。   飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。   谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。   太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。   邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • 90后天才少年曹原团队,如何用MEMS技术实时调控二维材料的界面特性!
    【科学背景】随着二维材料(2DM)及其异质结构的广泛应用,研究者们越来越关注如何在这些材料中实现更精确的操控与调节。二维材料具有优异的电学和光学性质,其性能可通过静电栅控和范德华(vdW)堆叠来调节。尤其是在扭曲的范德华异质结构中,莫尔效应提供了进一步调控能带结构和多体相关性的可能性,这引起了科学界的广泛关注。然而,尽管静电栅控技术已经成熟,但在实际应用中实现对2DM界面性质的实时控制仍面临诸多挑战。当前,尽管已有通过扫描显微镜等先进技术对2DM进行操控的方法,但这些方法存在应用范围有限、操作复杂以及成本高昂的问题。传统的干转移和湿转移方法虽然可靠且简单,但每个堆叠的独特性和不可重构性限制了对堆叠参数(如扭曲角度)的便捷探索。这种非可重复性使得研究者在探索堆叠效应时常常只能依赖于少数样本,从而限制了对二维材料性质的深入理解和应用开发。为了解决这些问题,哈佛大学的Eric Mazur和Amir Yacoby、哈佛大学和加州大学伯克利分校的曹原团队提出了基于微机电系统(MEMS)的芯片上平台——MEGA2D。这一平台不仅可以精确地控制2DM的堆叠,还能够进行实时的调节和操控,包括接近、扭转和加压等动作。MEGA2D平台的设计旨在提供一种通用的、可扩展的解决方案,能够克服传统方法在操作灵活性和可重复性方面的不足。通过这一平台,我们能够在扭曲的六方氮化硼(h-BN)中创建合成拓扑奇点,例如梅伦(merons),从而推动了非线性光学性质的研究。同时,该技术还为集成光源的开发提供了实时可调的偏振解决方案,并有望在量子光学领域产生可调的纠缠光子对。【科学亮点】1. 实验首次提出了一种基于微机电系统(MEMS)的芯片上平台,名为MEGA2D,用于二维材料(2DM)的通用操控。这一平台实现了在现场对2DM堆叠的精确控制,包括接近、扭转和加压操作,为探索低维量子材料提供了新的工具。2. 实验通过在扭曲的六方氮化硼(h-BN)中创建合成拓扑奇点,如梅伦(merons),验证了MEGA2D平台的有效性。此外,实验展示了这一技术在开发具有实时和宽范围可调偏振的集成光源中的应用潜力。3. 该平台可以应用于量子光学中,生成具有可调纠缠性质的纠缠光子对。这一工作不仅扩展了现有技术在操控低维量子材料方面的能力,还为未来的混合二维和三维器件的发展提供了基础。【科学图文】图1:MEGA2D,一种用于扭转二维材料的芯片上MEMS平台。图2:使用MEGA2D调节的扭曲h-BN的非线性光学探测和拉曼光谱。图3:在扭曲的h-BN中实现的合成梅伦(半斯克雷明)的实验。图 4: 具有MEGA2D的可调经典和量子光源。【科学结论】本文展示了通过微机电系统(MEMS)技术对二维材料(2DM)及其异质结构进行实时操控的创新方法。这一技术突破性地解决了以往静电栅控和扫描显微镜方法在二维材料研究中的局限性,尤其是在探索新奇物理现象和开发先进量子器件方面。通过在芯片上实现对二维材料堆叠的精确控制,本文不仅为研究者提供了更为便利和可扩展的工具,还为未来二维材料与三维器件的混合应用奠定了基础。这种可调控的堆叠方法进一步拓展了二维材料在凝聚态物理学和量子光学领域的研究范围,为开发新型光源和量子纠缠光子对等应用提供了新的思路和可能性。参考文献:Tang, H., Wang, Y., Ni, X. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature (2024). https://doi.org/10.1038/s41586-024-07826-x
  • 如何选择正确的商用照明—CWF和TL84光源的区别
    颜色的产生依赖于光源、物体和观察者三者的交互作用。光源通常发出400纳米至700纳米波段的光,这覆盖了人眼可见的光谱范围,包括红、橙、黄、绿、青、蓝、紫等颜色。当这些光照射到物体上时,物体中的颜料或其他物质会选择性地吸收和反射不同波长的光。物体反射的光的波长组合决定了其颜色。因此,光源的性质对我们所看到的颜色有重要影响。例如,CWF和TL84两种荧光光源,尽管都属于荧光光源,但它们的光谱组成和发光特性的差异会影响在这些光源下观察到的颜色表现。这两者之间有什么区别呢?一、CWF光源和TL84光源是什么?CWF(白荧光)光源是一种标准型荧光光源,通常用于美国的商场和办公机构。它的色温为4150K,符合CIE(国际照明委员会)标准照明体F2。CWF光源的显色指数(CRI)大约为62,其特点是发射大量的绿色光和较少的红色光,因此在进行对色时常被许多美国品牌商所选用。而TL84光源是一种窄带型荧光光源,属于三基色荧光灯。这种光源广泛应用于欧洲和环太平洋地区的商店和办公环境。它的色温大约为4000K,符合CIE标准照明体F11。TL84光源的显色指数约为85,其显著特点是释放出大量的绿色光。欧洲和日本的客户通常会指定使用TL84光源来进行对色工作,因其较高的显色指数可提供更好的颜色还原度。二、CWF光和TL84光源的区别1、色温CWF(冷白荧光)光源和TL84光源在色温方面存在细微的差异。根据SpectralLight Qc光源箱中的光源要求,CWF光源的色温标准为4150±200K,而TL84光源的色温标准为4000±200K。尽管这两种光源的色温相近,但它们仍然展现出略有不同的光色特性。色温是指光源发出的光色与理想黑体在相同温度下发出的光色相匹配时的温度,通常以开尔文(K)为单位。色温的微小差异可能导致光色的轻微变化,但这种差异通常对于人眼辨识来说并不明显,特别是当色温差异较小时。2、显色指数CRI显色指数(CRI)是衡量光源再现物体颜色的能力的量化指标。CWF(冷白荧光)光源的显色指数大约为62,这表示它在颜色再现方面的性能是中等的,可能不会准确地再现所有颜色。相比之下,TL84光源的显色指数约为85,表明它具有更好的颜色再现能力,能更准确地呈现颜色。从附件中的光谱功率分布图可以看出,CWF光源与TL84光源在光谱的分布上存在显著差异。例如,CWF光源在绿色光区域有一个较高的峰值,而在红色区域的发光强度较低。与此相对,TL84光源在绿色区域也显示出较高的峰值,但在红色区域的发光强度显著高于CWF光源。这些差异在光谱分布上造成了两种光源在颜色再现上的不同表现,这可能影响我们对物体颜色的感知和判断。因此,当选择光源进行颜色匹配和评估时,考虑光源的显色指数和光谱功率分布是非常重要的。3、适用范围CWF(Cool White Fluorescent)光源被广泛应用于美国的商业环境,因此美国客户可能会特别指定使用CWF光源来评估颜色。例如,知名的零售和品牌企业如苹果(Apple)、PVH、Ann Taylor、Home Depot、Sears和沃尔玛等,均可能采用此类光源来确保其产品颜色的一致性(虽然沃尔玛已经开始向LED照明转型)。在欧洲,TL84光源作为商业荧光灯的标准选择,被广泛指定用于颜色评估。欧洲客户如玛莎百货(Marks & Spencer)、迪卡侬(Decathlon)、Zara、阿迪达斯(Adidas)等品牌在色彩管理流程中通常会选择TL84光源。这反映了各地区在光源选择上的标准和偏好差异,对于全球业务运营的品牌来说,了解这些差异是至关重要的。爱色丽SPLQC光源箱提供多种光源选择,包括CWF和TL84在内的七种不同光源,以及可选的LED光源。这种多功能性使其成为一个有用的工具,可在设计、定标、预生产、生产以及质量保证和出货质检的多个阶段支持色彩评估。通过使用该光源箱,可以帮助识别和校正颜色问题,从而减少由色彩误差引起的浪费和返工,这可能有助于缩短产品的市场推出时间,并有望提高产品的整体质量。三、年终优惠活动年终特惠,机不可失!爱色丽限时折扣,适用于多款精选产品。更有“以旧换新”优惠活动,帮助您节约采购成本,同类别其他品牌型号亦可参与。了解详情或参与活动,详情咨询爱色丽官方。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 西班牙同步辐射光源的新 MYTHEN2 探测器
    在2021年的夏天,我们客户支持团队访问了西班牙同步辐射光源(ALBA)的材料科学和粉末衍射(MSPD) 实验线站,并对其新购入的MYTHEN2 X 8K探测器进行了验收检测。这样该线站的旧探测器就可以正式退役,新的探测器将踏上新的征程。新的MYTHEN2 X 8K 能够在2θ内覆盖了60°的角度范围,可提供高达1000赫兹的速度,并维持动态范围在24比特。我们采访了MSPD线站的负责科学家Francois Fauth博士,来听听看他对新探测器的想法,尤其是应用在粉末X射线衍射(PXRD)和对分布函数(PDF)中。 在MSPD线站上的MYTHEN2 X 8K 配置:八个模块和两个DCS4,用于高角度覆盖和速度。图片由ALBA同步辐射光源提供DECTRIS:与旧的 MYTHEN 探测器说告别,会不会很不舍? MSPD 线站负责科学家 Francois Fauth 博士:通常来说,评价一个线站是否成功有很多方法:比如说借助该线站发表的论文数量或者再次前来实验室做实验的用户数量。MSPD线站同时在这两方面取得了成功,这让我们感到自豪与高兴。 当然,退役的MYTHEN探测器是成功的关键一环:该探测器与我们一起工作了近十年,在这十年里,我们线站85%的标准粉末衍射实验都是使用这个探测器进行的。这台探测器让我们可以进行原位、操作中, 标准PXRD探测以及PDF研究。我们现在把退役的探测器系统安装在另一个新的实验线站里,并用于补充其X射线吸收数据的收集。 DECTRIS:旧的MYTHEN检测器仍在良好运行。是什么让你想到购买新的探测器? Francois Fauth 博士:有两个原因。实际的原因是,退役的MYTHEN依赖于一个探测器控制系统(DCS)。该系统是由Paul Scherrer研究所研发的,但是这个DCS已不再支持售后。另一个原因是科学上的:我们的线站在5-40KeV的范围内运行,我们希望有一个新的探测器来将我们推向更高X射线能量下的实验。当然,对于PDF来说,我们在采集速度上无法与使用二维探测器的高能线站竞争,比如ESRF的ID22。 与旧的MYTHEN相比,新的MYTHEN有更多的模块,传感器的厚度为1毫米,这意味着更高的角度覆盖和更高的量子效率。对于PDF,旧的设置通常需要四次45分钟的采集。新系统更大,效率更高,所以也可以探索一些现场的PDF测量。 DECTRIS:改用新的探测器,对操作层面的用户会有什么影响? Francois Fauth 博士:我们的大多数用户来自学术界,他们通常不需要DECTRIS探测器系统所提供的非常快的时间分辨率能力。他们中的大多数人对电池和能源相关的材料感兴趣,他们经常进行操作性研究,或研究晶体结构随温度变化的情况。 对于高级用户来说,更换探测器应该不成问题,因为许多程序将保持不变。事实上,我们已经开始和我们的用户一起收集PXRD和PDF数据了! 我们也有工业用户,线站科学家通常协助他们进行检测。 DECTRIS:你可以用MYTHEN2来根据自己的需求设计多模块系统. 这是如何做到的? Francois Fauth 博士:是的,使用单个模块,我们可以自由选择曲率半径和模块在支架上的排列。但是,还有另一个灵活性的问题。通常情况下,当你购买一个探测器时,没有改变或升级的可能,但对于MYTHEN2,几乎在任何时候都有可能增加或重新安排模块。 关于 Francois Fauth 博士Francois Fauth是瑞士人,在苏黎世联邦理工学院研读物理学,然后在保罗-舍勒研究所凭借中子散射技术完成博士学位。他的科学生涯完全是在大型实验设施中度过的:特别是ILL、PSI、ESRF和ALBA,在那里他承担了衍射或散射仪器的线站科学家职责务。 他于1999年加入了瑞士光源,迈出了进入同步辐射光源的第一步,在那里他参与了MS粉末衍射站的设计,该站集成了第一个MYTHEN探测器。自2011年以来,Francois Fauth一直负责MSPD光束线;他还负责ALBA的化学和材料科学部分,其中包括衍射、散射和硬X射线吸收光束线和技术。 About ALBAALBA是位于西班牙的第三代同步辐射源。它由Consortium for the Construction, Equipping, and Exploitation of the Synchrotron Light Source (CELLS) 管理,并由西班牙政府和加泰罗尼亚自治区政府资助。 ALBA目前有10条最先进的实验线站正在运营,包括软X射线和硬X射线,主要用于生物科学、凝聚态物质(磁性和电子特性、纳米科学)和材料科学。此外,还有三条光束线站正在建设中(用于大分子晶体学的微焦点、快速X射线断层扫描和放射学以及光学特性分析)。ALBA现在正在升级,以转变为第四代同步辐射光源,即ALBA II。
  • 大连化物所利用大连光源揭示星际硫化氢分子全波段光化学图像
    近日,大连化物所大连光源科学研究室分子光化学动力学研究组(2507组)袁开军研究员团队和英国布里斯托大学Mike Ashfold教授、南京大学胡茜茜教授合作,揭示了星际硫化氢分子高电子激发态光化学动力学,构建硫化氢全波段、全通道解离动力学图像。   硫化氢分子是太阳星云中最重要的分子之一,其光化学过程对硫单质、硫氢自由基(SH)和氢气(H2)等星际介质的起源和演化有重要意义。尽管硫化氢分子光解离研究受到越来越多的关注,但是迄今为止国内外尚未构建高分辨的、完整的动力学图像。   本工作中,袁开军团队利用大连相干光源结合里德堡氢原子飞行时间谱和时间切片离子成像技术,测量了硫化氢在极紫外波段所有产物通道的光化学。实验结果表明,硫化氢光解离产物的动力学和量子产率具有明显的波长依赖特性。理论计算通过构建高电子激发态势能面,阐明了硫化氢光解过程中复杂的非绝热解离特性。该工作不仅为星际硫化学模型的构建提供了科学依据,同时为量子动力学理论的发展提供了研究范例。   袁开军团队近年来依托大连相干光源系统研究了星际硫化氢分子极紫外光化学,测量了硫化氢光化学生成SH自由基的量子产率(Nature Communications,2020),揭示了硫化氢转动激发依赖的光化学反应机理(Nature Communications,2021),提出了硫化氢光化学过程是星际空间高振动激发H2的重要来源(The Journal of Physical Chemistry Letters,2022)。   相关成果以“The vibronic state dependent predissociation of H2S: determination of all fragmentation processes”为题,发表在《化学科学》(Chemical Science)上,并被选为封面文章。该工作第一作者是我所2507组联合培养博士研究生赵亚锐。该工作得到了国家自然科学基金、中科院关键技术团队、辽宁省兴辽英才计划等项目的资助。
  • 液态金属靶光源—安东帕SAXSpoint进入欧洲生物医学技术中心
    这期谈到生物医学,利用安东帕小角X射线散射仪(SAXS)或原子力显微镜 (AFM) 可获得复合结构表征,也可用于药物释放控制体系的聚合物薄膜结构和形貌特性等。近期,捷克查尔斯大学生物科学与生物医学科学中心近期购买了一台安东帕的SAXSpoint 2.0小角/广角X射线散射仪,配备液态金属靶,Eiger 1M探测器及自动进样器;同时,安东帕根据BIOCEV需求研发原位SAXS-UV/VIS测试模块,可实现原位测试小角和紫外/可见光光谱,仪器已安装并通过验收。BIOCEV是捷克六所科研院所的联合项目,该项目的目标是建立一个欧洲生物医学和生物技术卓越中心,SAXSpoint 2.0将在核心的项目上使用。From Website:http://www.biocev.eu液态金属靶光源具有独有的液态金属射流,以镓合金的液态束为阳极材料产生高亮度光束,具有高稳定性,是目前通量最高的实验室光源。此外,针对生物医学领域安东帕研发的自动进样器可实现192位样品自动测试,该自动进样器可实现4°C控温,可用于测试生物大分子等液体样品。在生物技术、生物工程和生物医学工程中,精密度和可追溯性最为重要。安东帕高端分析设备可用来进行材料特性分析、样品制备、合成等应用。
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect® ,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 捷报:简智仪器双光源差分技术荣获 “BCEIA金奖”
    2019年10月23-26日,第十八届北京分析测试学术报告会暨展览会“BCEIA2019”在北京国家会议中心隆重开幕。简智仪器携自主创新的黑科技产品——差分拉曼、easy-raman 手持式拉曼、SSR-3000等亮相展会,并以双光源差分技术荣获 “BCEIA金奖”!颁奖现场分析测试界顶级盛会——BCEIA展览会北京分析测试学术报告会暨展览会(BCEIA)由中国分析测试协会主办,是中国分析测试领域专业化程度的国际性盛会,迄今已有30余年的历史,已成为在中国举办的分析测试领域规模最大、最具影响力的国际性学术会议和展览会。BCEIA在行业内享有盛誉,被誉为世界四大分析仪器展会之一。同时,每届BCEIA的学术报告会也都是国内外分析科学家的盛会,诸多知名科学家,诸如诺贝尔奖获得者、在国际分析科学发展史上做出重大贡献或具有里程碑纪念意义的学者、中科院院士等到会交流分析科学最新研究成果。本次展会,国内外500余家参展企业带来数千项新产品和新技术。 简智仪器双光源差分技术喜提“BCEIA金奖”简智仪器此次以“双光源差分技术”荣获业内国际顶级盛会颁发的“BCEIA金奖”由王海舟院士颁奖。此次获奖不仅得到了行业的认证与肯定,更具有着深刻的国际影响力,彰显了我国拉曼检测领域科技自主创新的雄厚实力。王海舟院士颁发了第十八届北京分析测试学术报告会暨展览会议奖(BCEIA金奖)“双光源差分技术”是近年来拉曼快检界不可忽视的一大创新,可以避免荧光干扰,大幅提高信噪比,并对弱信号有很强的复原能力。传统的拉曼光谱一个很大的问题就是荧光干扰,无法在光学层面上实现拉曼信号和荧光信号的分离,因此只能对接收到的混合光谱通过软件拟合的方式进行荧光扣除。由于软件拟合必然导致信号失真,因此,无论是对弱拉曼信号的提取或者定量计算都达不到理想的效果。创新的简智差分拉曼光谱技术不同于传统拉曼只使用一个激光源,而是利用拉曼光谱独有的移频特性,采用波长非常接近的两个激光光源,分别照射物质,所收集到的荧光+拉曼+噪声的混合光谱,通过差分的方式扣除相同的部分,也就是噪声和荧光,剩下的就是拉曼信号和自身平移后的差分谱,再通过专门的算法进行还原。由于差分拉曼可以实现荧光和噪声的准确扣除,因此保留下的是纯净的拉曼光谱信号,这就使得差分拉曼技术不仅在测量高荧光物质有良好的效果,对于拉曼信号较弱的物质也有很好的还原效果,通过差分光谱可以实现更好的测量,并大幅降低检出限,定量模型也能具有更强的基质普适性。基于差分拉曼技术,简智仪器推出了目前全球首款产品级的便携式差分拉曼光谱仪。目前已经在公安、食药、海关、珠宝玉石鉴定等多个领域获得了深入应用与高效验证。简智仪器新技术产品引爆现场互动体验25日,简智参加了BCEIA展会的现场筛检等互动体验活动,王海舟院士以及北京矿冶研究总院、中科院研究院所等众多专家以及因差分获金奖慕名而来的粉丝在现场进行样品测试,实地操作体验简智仪器差分拉曼快检黑科技仪器的实力,真正感受简智拉曼快检仪器的强大性能和广泛应用。 专家组亲临现场体验此次在BCEIA国际顶级盛会展现风采,体现了简智仪器始终秉持“科技守护美好生活”的品牌理念,“让检测更简单”的产品宗旨,和不断自主创新的研发实力。未来,简智仪器将继续不负众望,专注拉曼快检领域,研发和推广更多的创新高效拉曼快检产品,为我国本土创新实力贡献自我力量!
  • 便携式质谱及全固态ICP光源新仪器发布会
    仪器信息网讯,2009年11月27日下午,由中国计量科学院和清华大学、中国地质大学等单位研制的便携式质谱和全固态ICP光源新仪器发布会于BCEIA2009期间在北京展览馆A会议室成功召开,近100位相关部门领导、专家学者、仪器厂商代表和媒体记者参加了此次发布会。发布会由清华大学张新荣教授主持。 清华大学张新荣教授 便携式质谱   目前,质谱仪已经成为许多领域的必备分析仪器之一,在制药、生命科学、环境监测、食品安全、航天和军事技术等诸多热点领域发挥着越来越重要的作用。目前质谱仪大多体积庞大、价格昂贵且维护费用高,大范围推广使用有一定困难,特别是在制药和生物学领域。   由中国计量科学院和清华大学等单位共同研制开发的便携式质谱,小巧轻便,没有过多的耗材,可以在运动环境或恶劣气候环境下工作,不需外接电源,不需过多前处理,气、液、固态样品均可引入分析。此外,便携式质谱还可对未知样品进行鉴定和分析,实现快速痕量检测,能达到ppb级别的灵敏度。目前,便携式质谱已应用于环境样品分析、香精香料分析、农药残留和食品安全分析等领域,还可应用于突发事件、军事航天、有机物药物和有机毒物、公共安全等现场分析领域。 全固态ICP光源   目前ICP光源所用的射频电源正向全固态化、高稳定度、智能控制方向发展,提高ICP光源所用的射频光源的频率稳定度和功率稳定度、智能控制、轻便体积一直是ICP光源研制努力的方向。   由中国计量科学研究院和中国地质大学(武汉)共同开发的数字式高效全固态ICP光源为全数字化设计,其状态参数均可通过计算机采集、设置和控制 具有较高的工作效率、频率稳定性和功率稳定性 光源系统具有故障诊断功能、自动阻抗匹配功能和自动保护功能。目前该成果已申请1项发明专利和2项实用新型专利。 中国计量科学院黄泽健教授   中国计量科学院的黄泽健教授向大家介绍了便携式质谱的性能参数及构造特点。 清华大学分析中心林子青先生   清华大学分析中心的林子青先生重点介绍了低温等离子体离子源与便携式质谱仪联用的优势,以及常压便携式低温等离子体质谱仪的分析测试特性。 中国地质大学(武汉)机械与电子学院金星教授   中国地质大学(武汉)机械与电子学院的金星教授首先介绍了目前国内外ICP光源的研究现状,随后重点介绍了数字式高效全固态ICP光源的组成、设计思想、特点及相关研究结果。 中国科学院大连化学物理研究所的张玉奎院士   中国科学院大连化学物理研究所的张玉奎院士表示:便携式质谱及全固态ICP光源的成功研发,表明我国在分析仪器科学技术自主创新方面已经取得了重大进展,成果的发布代表科学仪器研制项目的成功,但通向产业化的道路仍很漫长,希望在领导和相关部门的支持下,更快实现产业化。 中国科技部财条司郑健博士   中国科技部财条司郑健博士首先代表科技部条财司吴学梯副司长向研发便携式质谱及全固态ICP光源的成功研发表示祝贺,之后郑健博士谈到:在有关领导和专家的支持与关注下,中国科学仪器硕果累累,自主创新能力已经达到一定高度,为“十二五”推动科学仪器自主创新奠定了基础。 国家质量监督检验检疫总局姚泽华副处长   国家质量监督检验检疫总局姚泽华副处长谈到:国家质量监督检验检疫总局非常关注科学仪器国产化、专用仪器的开发及方法的研究。他非常高兴地看到目前国产仪器取得的成就,希望在相关部门领导的关怀下,研发单位和相关企业一起努力,共同推进国产科学仪器的产业化进程。 清华大学精仪系分析主任王晓浩教授   清华大学精仪系分析主任王晓浩教授首先代表金国藩院士感谢科技部等相关部门多年来的支持,并希望便携式质谱仪在技术上能有所突破,能够更快更早地进入市场,期待和中国计量科学院能在相关领域有更深入更广泛的合作。 中国计量科学研究院化学所李红梅所长   中国计量科学研究院化学所李红梅所长表示:在科技部、应用领域专家和其他企业的关注下,研发项目取得了阶段性的成功,并希望在今后产业化发展的道路上,能够得到更广泛的支持和鼓励。同时,李所长代表研发团队作出承诺:再接再砺,在分析仪器领域做出自己应有的贡献。 国家标准化管理委员会副主任方向研究员   国家标准化管理委员会副主任方向研究员发言:便携式质谱及全固态ICP光源是“十五”和“十一五”成果的延续。这些技术是属于国家的,也是属于大家的,选择在BCEIA2009这种技术氛围的环境下举行发布会,是希望业内同仁共同努力,将成果转换成产品,推进新成果的产业化进程。 专家观看仪器现场演示 发布会现场
  • 上海光源第六届用户学术年会通知
    上海光源第六届用户学术年会兹定于2016年8月14日~16日在上海松江举行。本次会议由中国科学院上海应用物理研究所主办,旨在加强上海光源装置与用户以及用户之间的交流、合作,促进上海光源的开放运行、用户服务以及今后的发展,更好地发挥上海光源科研平台的作用。 长期以来,北京优纳珂与中国科学院上海应用物理研究所建立了良好的合作关系,对国家重大科技基础设施的建设和发展提供了良好的支持,因此特受邀参会,宣传、展示公司的技术和产品,届时欢迎广大用户莅临指导!我公司展品如下: 瑞士Dectris公司:自2006年成立以来,瑞士Dectris公司一直从事于单光子计数混合像素探测器的研发、生产和销售,在X射线探测器领域中处于领先地位,目前该产品被广泛应用于世界上绝大多数的同步辐射、中国科学院、机械加工、冶金工业、表面改性处理、民生基础建设和国防军工等众多领域,并获得一致认可。 德国STOE公司: 一家专业生产晶体X射线衍射仪的公司,成立于1887年。STOE曾生产出世界上第一台单晶衍射仪,1968年第一台四圆仪问世, 1992年生产出世界上第一台在线实时的IP探测器。STOE公司的产品在质量精度、测角仪设计、探测器分辨率和信噪比、数据处理、原位技术等方面都有着非常大的优势。 法国Xenocs公司:专业致力于为纳米材料表征提供解决方案,专业提供小角和广角 X 射线散射技术,自2000年成立以来,以其X射线技术专长、高性能产品和优质的客户支持,在全球建立了良好的声誉。我们的科学家和工程师团队具有深厚的 X 射线技术背景,特别是 SAXS/WAXS 技术,专业致力于以优质服务为纳米材料研究提供前沿解决方案。 瑞典Excillum公司:一家致力于研发、生产超高亮度微焦斑X射线光源的公司。经过十余年的研发与改进,掌握了先进的液态金属射流(MetalJet) X射线光源技术。这项新技术能够带来10倍于普通固体阳极X射线光源所发射的X射线通量(在相同焦斑面积上)。目前这项技术已经被用于生产多种稳定可靠的微焦斑X射线光源。 英国牛津OxfordCryosystems 公司:一家专业化的低温冷却仪器和相关软件的制造商。OxfordCryosystems冷却系统涉足的科研领域非常广,包括高新材料、医药、通信、新能源等,尤其在生物大分子材料和小分子材料的低温特性研究和结构解析方面,OxfordCryosystems提供的低温解决方案始终处在先进水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制