当前位置: 仪器信息网 > 行业主题 > >

光电化学反应仪

仪器信息网光电化学反应仪专题为您提供2024年最新光电化学反应仪价格报价、厂家品牌的相关信息, 包括光电化学反应仪参数、型号等,不管是国产,还是进口品牌的光电化学反应仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光电化学反应仪相关的耗材配件、试剂标物,还有光电化学反应仪相关的最新资讯、资料,以及光电化学反应仪相关的解决方案。

光电化学反应仪相关的方案

  • 光谱电化学测量
    光谱电化学是一种将电化学测量与原位光谱测量相结合的实验方法。光谱测量可以透射或反射进行。光谱测量在电化学测量过程中提供有用的补充信息。它可用于在电化学测量过程中识别反应中间体或产物结构。本文着重介绍电化学工作站与光谱仪的联用,并进行了实例分析。
  • 拉曼光谱技术在原位电化学研究中的应用
    用于研究电化学的方法包括循环伏安法、恒电流法、单电势阶跃法、交流阻抗法等,主要依赖电位、电流等函数的测量获得有关电极/溶液界面的结构、电极反应动力学参数和反应的机理。但是这些方法只是单纯的电化学测量,无法对反应产物或中间体的鉴定提供直接的化学信息,也不能从化学结构/分子水平上提供电极/溶液界面结构的直接证据。
  • 【EmStat3Blue电化学应用】功能化黑磷纳米复合材料,用于芦丁超灵敏检测的便携式无线智能电化学传感器
    摘要:为了建立一种便携、灵敏的黄酮类化合物浓度监测方法,本文建立了一种新的电化学传感方法。通过使用氮掺杂碳化聚合物点(N- CPDs)锚定少层黑磷烯0D-2D异质结构(N-CPDs@FLBP)和金纳米颗粒(AuNPs)作为修饰剂,以碳离子液体电极和丝网印刷电极(SPE)作为基板电极,分别构建了传统的电化学传感器和便携式无线智能电化学传感器。详细地研究了芦丁在所制备的电化学传感器上的电化学行为与分析性能。由于芦丁的电活性基团,纳米复合材料与芦丁之间的π-π堆积和阳离子-π相互作用,芦丁在AuNPs/N-CPDs@FLBP修饰电极上的电化学反应明显增强。在最佳条件下,可实现芦丁的超灵敏检测AuNPs/N-CPDs@FLBP/SPE的检测范围为1.0 nmol L−1 至220.0 μmol L−1检测限为0.33 nmol L−1(S/N = 3)。最后,用两种传感器进行了实时性测试样品并得到了满意的结果。
  • 矿物中的化学反应分析
    对于寄生在岩石中的细菌以及古生菌类单细胞微生物来说,氢气就是它们的能量来源,它们能够将氢与二氧化碳结合起来, 终转化为自身所需要的能量。通俗的来说,这些细菌及单细胞生物是以气体为食。当我们发现岩石的矿物中发生过这些化学反应,就意味着微生物很有可能存在过。“拉曼光谱能够告诉我们矿物中的化学成分和结构变化,并了解它们之间的相互关系,从而判断岩石中发生的化学反应,以及这一反应环境是否适合微生物的生存。”科罗拉多大学波尔得分校--显微拉曼光谱实验室的管理员和应用埃里克· 埃里森如是表示。
  • 显微拉曼光谱在电化学中的应用原位锂离子电池研究
    介绍在电化学中,利用显微拉曼光谱实现原位分析的方法。显微拉曼光谱的应用范围非常广泛,在电化学中,研究人员利用这项技术实现原位分析,追踪一些动态现象。锂离子聚合物电池的循环机制可以理解为在聚氧化乙烯(PEO)和锂盐组成的聚合物电解质中的离子传输,以及锂离子在V2O5负中的插入和脱出。借助于显微拉曼光谱,可以获得与这些行为相关的信息,实现对电池中相关过程的监控。
  • 天津兰力科:细胞色素c 在硒代胱氨酸修饰电极上的直接电化学
    采用电化学和接触角实验方法研究了硒代胱氨酸自组装膜修饰金电极(SeCys SAMs/Au)和十六烷基三甲基溴化铵(CTAB)-硒代胱氨酸自组装复合膜修饰金电极(CTAB-SeCys SAMs/Au)的特性. 探讨了细胞色素c(Cyt c)在SeCys SAMs/Au 电极和CTAB-SeCys SAMs/Au 电极上的电化学行为. 实验证明SeCys 可促进Cyt c 在电极上的氧化还原反应, 加入CTAB 后其与SeCys 之间的协同作用可在Cyt c 与电极之间形成一个开放的通道,促进作用更加明显, 且在一定浓度范围内, 随CTAB 浓度(1×10-5-1×10-4 molL-1)的增大, Cyt c 在CTAB-SeCysSAMs/Au 电极上的氧化还原电流增大, 在接近临界胶束浓度处出现极大值. 在CTAB-SeCys SAMs/Au 电极上Cyt c 产生一对氧化还原峰, 其峰电位分别为0.305 和0.235 V, 其电化学过程受扩散控制. 光谱实验证实SeCys对Cyt c 电化学过程的促进作用是由于SeCys 与Cyt c 中赖氨酸残基的结合.
  • 【PalmSens4电化学应用】电化学发光法检测吉西他滨
    电化学发光(ECL)是一种值得研究的电化学技术。此前,作者已经确定无法通过传统的基于钌的ECL可靠地检测癌症治疗吉西他滨。本文中,展示了在ECL膜中添加金纳米颗粒如何通过增强的电催化氧化来促进GMB检测,从而产生所需的ECL自由基。通过这种方法,已经能够将ECL信号强度提高60倍,并在6.25–50µM的线性范围内实现低至6.25µM的检测。
  • 电化学原位拉曼分析技术应用及解决方案
    拉曼光谱系统:共聚焦显微拉曼光谱系统、小型科研拉曼光谱仪多种型号可选。借助各类原位池或者探针台,我们可实现对原始反应状态的样品进行检测而避免将其暴露在空气中,电学可根据需求搭配客户的电化学工作中或源表等电学测量设备。
  • 天津兰力科:杨梅酮的电化学和光谱性质研究
    应用循环伏安和紫外光谱法研究杨梅酮氧化还原性质及其稳定性. 结果表明:在B2R缓冲溶液中玻碳电极上,杨梅酮的氧化还原表现为两步氧化反应和两步还原反应. 氧化反应对应于B环4′2 OH和C环32OH的氧化,还原反应对应于C环4位羰基还原为中间体自由基之后再进一步还原生成羟基. 以上各步反应均为单电子单质子电极过程. 杨梅酮的氧化还原反应与溶液pH关系密切,但其原因来自于去质子化作用,并导致它的抗氧化能力增强,但其最终氧化产物没有电化学活性,并吸附在电极表面,阻碍了电极过程电子传递. 在pH 7. 45~12. 00范围内,杨梅酮也因去质子化作用导致紫外光谱Ⅰ带和Ⅱ带随pH增加,而发生红移,分解作用加剧. 同时分解作用还与放置时间有关.
  • 光电化学电池测试
    测试单位:北京卓立汉光仪器有限公司(Zolix Instrument Co.,LTD)测试对象:光电化学电池(PEC)实验目的:光电化学电池的IPCE
  • 电化学检测器测TN-比传统化学发光检测器的优势
    测TN,常用的方法,有电化学检测器法和传统化学发光检测器。前者维护简便,耗材少,使用成本更低,因此受到广大使用者的欢迎。
  • 天津兰力科:聚2 ,2′2 二氨基二缩三乙二醇苯酚醚的电化学合成及其电化学性质
    用循环伏安法研究了2 ,2′2 二氨基二缩三乙二醇苯酚醚(DATGPE) 在ITO 电极上的聚合,讨论了实验条件对聚合过程的影响,初步探讨了聚2 ,2′2 二氨基二缩三乙二醇苯酚醚( PDATGPE) 的电化学性质。结果表明,在乙腈/ 水溶液中,DATGPE 与HCl 的浓度比为1/ 3 ,电位扫描20. 2~1. 0 V 时,能发生快速的电聚合反应。形成的导电膜具有良好的电化学稳定性,且对H+ 呈现很好的能斯特响应。
  • 海能仪器:电化学中电极的分类及应用概述(电化学)
    电化学仪器在我们的生活及实际生产中发挥着重要的作用,在电化学分析中只有选择合适的电极,才能保证实验的精确度与准确性。
  • 在ITO玻璃上采用纳秒激光器处理薄金薄膜研制电化学传感器
    采用立陶宛Ekspla公司生产的纳秒短脉冲半导体泵浦的固体激光器-NL220.波长532nm.脉冲宽度35纳秒,重复频率500Hz.处理ITO玻璃上3-30nm厚的镀金薄膜。生成纳米颗粒,具有独特的电化学特性,可以用来制作电化学传感器。
  • 低阻抗锂离子电池的电化学阻抗谱测试
    电化学阻抗谱(EIS)是获取电化学系统信息的一种强有力的测试方法。它常常被应用在测试新型的能源转换和存储类电化学器件(ECS),包括电池,燃料电池和超级电容器。EIS可以被用到新设备发展的各个阶段,一直从半电解池反应的机理和动力学初始评估到电池包的质量控制。
  • 天津兰力科:电化学氧化对碳纤维表面电化学性质的影响
    碳纤维表面呈现化学惰性,缺乏活性官能团,限制了碳纤维作为电化学分析电极的应用。目前,许多手段被用于碳纤维的表面改性处理。采用电化学氧化方法,在磷酸溶液中对碳纤维进行了处理,并进行了红外光谱和循环伏安试验。结果发现:处理后碳纤维的表面接上了活性官能团,大量活性碳原子被剥离出来。在K4 Fe (CN) 6 加KCl、FeSO4 加HClO4 两组混合溶液体系中的电化学响应明显改善,适合作为电化学分析电极。
  • 天津兰力科:综合电化学工作站硬件设计与实现
    随着电池行业的迅猛发展,人们对电池检测技术提出了更高的要求,迫切需要一种高效,能测量体现电池反应过程参数的检测设备。本课题目的在于研发一种综合电化学工作站满足上述需求。综合电化学工作站是一套完整的、数字化的、电化学体系的检测分析设备。它把恒电位仪,恒电流仪和电化学交流阻抗分析仪有机地结合到一起,既可以做常规的基本测试如动电位扫描、动电流扫描试验和电化学交流阻抗测量,也可以做基于这三种基本试验的程式化试验,如恒电流充电-电化学交流阻抗测量,电池寿命循环试验-电化学交流阻抗测量试验,从而完成多种状态下电化学体系的参数跟踪和分析。它可以快捷、精确的检测电池的容量、测量体现电池反应机理的交流阻抗参数。本文以交流阻抗谱为理论依据,在既定电位范围、精度、分辨率和响应速度等性能指标的要求下构建出上下位机多层次硬件体系结构,有针对性地设计了下位机的接口电路板和测量电路板,并在此设计方案下进行了大量的硬件功能调试,达到了预期的性能指标。本文的主要内容可概括为以下三点:(1)电化学工作站的功能原理研究与硬件系统设计。介绍了电化学工作站的三种基本功能和性能指标,电化学交流阻抗测量的原理,并进而提出了电化学工作站的硬件系统结构,构建了电化学工作站的硬件结构设计;(2)下位机的接口电路板和测量电路板设计,在设计中力图提高系统精度、灵活性。实现对电池电压和电流的测量和控制功能,使工作站测量和控制功能达到了功能多样化精确化,为电化学交流阻抗测量等功能实现打下基础;(3)实验及误差分析。对电化学工作站的硬件测量和控制功能进行了实验验证,分析了误差产生得原因,对固有误差进行了补偿,对不同幅值直流信号和不同幅值、频率的交流信号进行测量,达到了精确测量的性能指标。
  • 电化学工作站EIS教程 – 新手入门
    电化学阻抗谱(EIS)是一个强大的技术,它使用一个小振幅交流电信号去探测电解池的阻抗特征。交流信号在大频率范围扫描以产生一个测试中电化学电解池的阻抗谱。EIS与直流电技术的区别在于它可以对发生在电化学电解池的电容性,电感性和扩散过程进行研究。EIS背后的理论比直流技术更加复杂,所以建议您在入门前先对基本原理有一个基础的了解。EIS有深远的应用包括涂层,电池,燃料电池,光伏,传感器和生物化学。这个指南将集中于EIS技术在涂覆铝面板腐蚀性能分析方面的应用。先知道一些关于被调查的电化学系统的知识也是很有帮助的。有了对系统的基本了解,就可以知道电化学工作站是否能够收集所需的信息且收集到的数据是否满足精度要求。
  • 化学反应的实时监测
    本文介绍了DPiMS-2020实时分析肽保护基的去保护反应的结果,其中肽保护基在样品板上生成。探针电喷雾电离(PESI)是一种直接电离技术,该技术以恒定频率采集样品,并向探针尖端施加高电压,利用探针电离采集到的目标成分。这种电离技术无需色谱仪即可快速监测样品变化。DPiMS-2020(图1)结合PESI和质谱仪,对要分析的成分实时监测分子量信息的变化,以此准确了解化学反应的进程。
  • 天津兰力科:双2[ 22吡咯( 乙氧基) ] 乙烷的合成及其电化学聚合
    以吡咯和二缩三乙二醇为原料合成了N 取代吡咯衍生物单体———双2[ 22吡咯(乙氧基) ]乙烷,并用循环扫描伏安技术研究了该单体的电化学聚合过程。结果表明:在乙腈/ 高氯酸锂溶液中,双2[ 22吡咯(乙氧基) ]乙烷在铟锡氧化物导电玻璃( ITO) 、Pt 、Au 、玻璃碳、石墨电极上均能顺利发生反应,形成一定厚度的聚合物膜。但聚合速率、膜的结构、膜的颜色有差异。溶剂水对聚合有明显影响。形成的聚合膜具有良好的电化学稳定性。
  • 原位红外光谱技术在化学反应中的应用
    原位红外光谱技术是一种非侵入式的技术,利用样品对红外光的吸收特性来进行分析,其原理是将反应物物质放置于光学透明的实验室反应池中,通过专用的红外光谱仪观察反应物在光谱范围内的变化情况,从而得到反应物结构和化学键的信息,进一步研究反应过程及反应机理。
  • 电位滴定法测定电化学抛光液中混酸含量
    目前,对于混酸的分析主要用滴定法,其中传统的人工滴定方法需要根据指示剂颜色变化判断终点,对操作人员的技术要求较高;利用自动电位滴定仪进行常规分析时,有操作简单,分析准确度高等优点。本文主要利用电位滴定法,对混酸含量进行测定,为科研及生产提供了电化学抛光液中混酸组成比例的检测方法。
  • 理想的化学反应釜温度控制系统
    药品研发和化学实验中的温度控制,以及小规模试验生产和工业生产过程中的温度控制,都需要高动态的温度控制系统。对反应釜进行控温时,须对化学反应中的吸放热进行快速补偿。在选择合适的温度控制系统时,需要综合考虑各种条件和影响因素。本文旨在提供壹定的标准和建议,以便用户在应用中选择好的温度控制方案。
  • 电化学工作站在文物保护方面的应用
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • 石河子大学研究团队开发出用于格链孢酚检测的电化学和电化学发光双模式适配体传感器
    本研究团队创新性地构建了一种基于二茂铁羧酸-DNA2(Fca-DNA2)作为猝灭电化学发光(ECL)和差分脉冲伏安法(DPV)信号响应探针,结合Ru-MOF/Cu@Au纳米粒子作为ECL基底平台的双模式适配体传感器。首先,研究人员通过电沉积方法将Ru-MOF快速合成并固定在电极表面,随后在其表面修饰Cu@Au纳米粒子,以协同催化三乙醇胺(TEOA)放大ECL信号,增强传感器的稳定性和导电性。最终,研究人员利用AOH和Fca-DNA2之间的竞争反应,通过ECL和DPV信号的变化对AOH进行敏感检测。实验结果表明,该双模式适配体传感器在0.1至100 ng/mL范围内表现出优异的检测性能,检测限分别为0.014和0.083 pg/mL,且在实际水果样品中具有良好的应用前景。
  • 电化学氧化改性对碳纤维功能材料性能的影响
    未经过表面处理的碳纤维表面能低,约为2.7×10-3N/m,表面呈现憎液性,缺乏有化学活性的官能团,限制了碳纤维作为电极材料的应用。70年代中期发展起来的化学修饰电极(Chemically Modified Electrode,简称CME),为碳纤维电极的制备提供了新的思路。它是通过在电极表面进行分子设计,将具有优良特性的分子、离子、聚合物固定在电极表面,改变电极和电解液界面的微结构,使电极具有良好的电催化性能。CME丰富了电极材料,为直接氧化处理有机物开辟出新的途径。本文通过实验发现:采用0.5mol L-1磷酸溶液,2.0A/g的电流密度,通电5min电化学氧化处理的碳纤维为最佳方案。氧化处理后碳纤维接触角下降了约16o,表面能增加了近9倍,与环氧树脂基体粘接性能提高了33%,电化学响应明显改善。这些实验说明了电化学氧化改性是有效的手段,它使得碳纤维表面接上了数量丰富的活性官能团。通过红外光谱确定碳纤维表面接上的活性官能团主要为内酯基、羧基和羟基。系统讨论了未处理碳纤维在无机酸、无机盐和碱溶液中的电化学性质,表明碳纤维在酸性溶液中氧化最剧烈,中性溶液中的氧化较弱,碱性溶液的变化几乎可以忽略,说明选取磷酸电化学氧化碳纤维是合理的途径。分析了处理后碳纤维的电化学行为,0.5V氧化峰反映出纤维表面一些化学键发生了断裂,表面活性碳原子增加,表面已有的一些官能团被进一步氧化;0.19V氧化峰是纤维表面活性碳原子和吸附的氢氧根离子发生电化学氧化所致。实验还发现,处理后的碳纤维对电极分析标准溶液K4Fe(CN)6加KCl混合溶液、FeSO4加HClO4混合溶液有良好的电化学响应,是适合作为电化学分析的电极。将处理后的碳纤维和碳纳米管电极应用于水溶液中低浓度苯酚(低于5m mol L-1)的检测和氧化处理,发现碳纤维和碳纳米管电极可以在较低的电位(1.0VvsSCE)实现连续氧化,能克服电极吸附。恒电位氧化显示,碳纤维在1200s内保持了电极活性,能有效降低水溶液中的苯酚含量;碳纳米管电极在6000s之后仍然能保持活性,能逐渐将苯酚氧化直到完全清除。分析苯酚的氧化路径显示,苯酚被直接氧化为CO2,避免了二次污染,这证明了碳纤维和碳纳米管作为电极材料,在对污水中苯酚处理方面有应用前景。
  • 天津兰力科:综合电化学工作站系统结构的设计
    电池行业的发展对电池检测技术提出了更高的要求,迫切需要高效智能的检测设备。本课题目的是设计一种满足功能和精度要求的综合电化学工作站。综合电化学工作站在电池检测中占有重要地位,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,既可以做三种基本功能的常规试验,也可以做基于这三种基本功能的程式化试验。在试验中,既能检测电池电压、电流、容量等基本参数,又能检测体现电池反应机理的交流阻抗参数,从而完成对多种状态下电池参数的跟踪和分析。本文从结构设计的角度,对综合电化学工作站进行了研究。根据恒电位测量、恒电流测量、交流阻抗测量三种功能的工作原理和相应的性能指标,提出以DSP处理器为控制核心的硬件结构体系。在该设计方案下,进行了大量的硬件设计调试工作和软件设计调试工作。本文的内容包括以下三点:(1)电化学工作站的系统分析。详细分析了电化学工作站三种基本功能的工作原理和性能指标,确定了电化学工作站的硬件系统结构—以DSP处理器为整个系统的控制核心,实现对六个通道的电池测量和控制,以及将数据送往PC机进行储存和处理。(2)系统硬件设计。硬件设计主要集中在DSP电路板、接口电路板、测量控制电路板的设计上。DSP电路负责发出控制信号和处理测量信号;测量电路直接与被测对象相连接,实现具体测量、控制;接口电路是DSP电路板与测量控制电路板之间的桥梁。从电路结构、芯片选型到最后布局,将各个功能电路进行细化,分步骤设计。(3)系统软件设计。结合系统工作特点和硬件结构,确定了软件总体架构。重点研究了过采样滤波软件算法和快速傅立叶变换(FFT)测算交流阻抗软件算法。
  • 基于高性能石墨炔(graphdiyne)的电化学致动器
    采用立陶宛Ekspla公司的振动和频光谱(SFG)研究了基于高性能石墨炔(graphdiyne)的电化学致动器。
  • 【MultiPalmSens4电化学应用】多部位临床深度记录电极的电化学评价,应用于监测脑组织氧
    颅内测量局部脑组织氧水平PbtO2,已成为重症监护室诊断患者严重创伤和缺血损伤的实用工具。本文作者们在动物模型中的初步工作支持这样一种假设,即PbtO2的多部位深度电极记录,可能会给外科医生和重症监护提供者提供有关大脑生存能力和更好恢复能力的所需信息。本文介绍了FDA批准的、市售的、临床级深度记录电极的表面形态表征和对氧检测分析性能的电化学评估,该电极包括12个Pt记录部位。 发现记录位点的表面由光滑的铂薄膜组成,并且通过循环伏安法在酸性和中性电解质中评估的电化学行为是典型的多晶铂表面。通过电化学活性表面的测定进一步证实了铂表面的光滑度,确认粗糙度因子为0.9。最佳工作电位为?0.6 V vs.Ag/AgCl,传感器显示适合体内PbtO2测量的灵敏度和检测限值。基于报道的Pt对O2电还原反应的催化性质,本文提出这些探针可以重新用于人体大脑中PbtO2的多点监测。
  • 瑞士万通:电位滴定法测定电化学抛光液中混酸含量
    目前,对于混酸的分析主要用滴定法,其中传统的人工滴定方法需要根据指示剂颜色变化判断终点,对操作人员的技术要求较高;利用自动电位滴定仪进行常规分析时,有操作简单,分析准确度高等优点。本文主要利用电位滴定法,对混酸含量进行测定,为科研及生产提供了电化学抛光液中混酸组成比例的检测方法。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制