炎热的秋过去了,终于可以静下心来写些东西了,细细想来也许标题应该用:“我的DIY之路”或者是:“乐趣中的财富”,总之就是一点心得,虽然已经过了轻狂的年纪,依旧少许些不那么淡定(哈。。。见谅了)在这个论坛我发表的第一个贴子已经是很多年前的事了,也是第一个动手用家用微波炉制作的“微波反应器”,虽然技术含量不是很高,获得了很多回帖与支持,使我倍感欣慰,后来陆续制作了“旋风分离器”,“半导体制冷反应器”以及没有在论坛上发出的一些制作,多年的实验室DIY知识积累为我打下了扎实的动手能力基础,在加工配件的同时跟着老师傅学会了电焊板金等技能,在此对这些工作在一线的老师傅表示深深的敬意。他们传授的经验是我们无法从书本上获知的。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647634_1866229_3.jpg这是年前做的一个实验室用的微型反应器,虽然有些简陋,但效果非同一般,规模化的设备已经投入了生产,这台也就结束了它的使命被放弃到了仓库里。还是回归正题吧,年前和朋友品茶聊天工程中,说起他们厂的酯化反应收率问题,这个是在15度,滴加放热反应,收率一直在60-70之间徘徊,就开玩笑的说,你这么喜欢折腾和不考虑改善这个工艺提高收率,也许能挣大钱,在钱的诱惑下(哈。。。。),我决定试试。尝试了各种方法,最后发现问题,就是要解决温度梯度和浓度梯度问题。发现问题就能找到解决问题的办法,发现微型管道反应器是最好的,他的主要功能就是解决:温度梯度,浓度梯度,压力梯度,密度梯度问题明天继续写。。。。。
用于实验室用气(反应气)固(催化剂)催化反应(常压).我想求助各位高手,这种反应器的构造如何,能否自制,若不能,应从哪里购买?急急急
(1)由于反应器中微通道宽度和深度比较小,一般为几十到几百微米,使反应物间的扩散距离大大缩短,传质速度快,反应物在流动的过程中短时间内即可充分混合(2)微通道的比表面积一般为5000—50000m2m-3,而在常规反应容器内,比表面积约为100m2m-3,少数为1000m2m-3。微通道的比表面积大,具有很大的热交换效率,即使是激烈的放热反应,瞬间释放出大量反应热也能及时移出,维持反应温度在安全范围内。由于反应物总量少,传热快,特别适用于研究异常激烈的合成反应而避免爆炸的危险。(3)在微通道反应器中进行合成反应时,需要反应物用量甚微,不但能减少昂贵、有毒、有害反应物的用量,反应过程中产生的环境污染物也极少,实验室基本无污染,是一种环境友好、合成研究新物质的技术平台。(4)在微通道反应器中得到产物的量与近代分析仪器,如GC、GC2MS、HPLC及NMR的进样量相匹配,使近代分析仪器可用于直接在线监测反应进行的程度,大大提高了研究合成路线的速度。(5)可以将各种催化剂固定在芯片微通道中得到高比表面积的微催化床,提高催化效率。(6)在微通道反应器中进行合成反应时,反应物配比、温度、压力、反应时间和流速等反应条件容易控制。反应物在流动过程中发生反应,浓度不断降低,生成物浓度不断提高,副反应较少。(7)在微通道反应器中采用连续流动的方式进行反应,对于反应速度很快的化学反应,可以通过调节反应物流速和微通道的长度,精确控制它们在微通道反应器中的反应时间。(8)随着微加工技术的发展,由微传感器、微热交换器、微混合器、微分离器、微反应单元、微流动装置等组成的集成系统,在合成反应研究中受到越来越多的关注。(9)微流控芯片高通量、大规模、平行性等特点使多个或大量微反应器的集成化与平行操作成为可能,从而提高了合成新物质、筛选新药物的效率,大幅度地降低了研究成本。文章来源:http://www.micromeritics.com.cn/news_view.aspx?id=819
[size=16px][color=#339999][b]摘要:针对目前连续流反应器或微反应器压力控制中存在手动背压阀控制不准确、电动或气动背压阀响应速度太慢、无法适应不同压力控制范围和控制精度要求、以及耐腐蚀和耐摩擦性能较差等诸多问题,本文提出了相应的解决方案。解决方案的核心是分别采用了低压和高压压力精密控制装置,低压控制采用电动针阀可实现0.7MPa以下压力控制,高压控制采用先导阀和气动背压阀可实现20MPa以下压力控制。[/b][/color][/size][align=center][size=16px] [img=连续流反应器和微通道反应器的精密压力控制解决方案,600,401]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151529297690_1768_3221506_3.jpg!w690x462.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 连续流反应是反应组分在受控的工艺条件下通过连续流动进行混合,并通过加热和加压可实现更快的反应速度,而物质之间的有限相互作用使得反应更安全、更易优化以及更易进行工艺放大。近些年来,连续流反应技术已经从小众的学术应用研究转变为一种公认的强大的工业技术,其优势在于该技术所表现出安全、高效、高质与低成本的特点。[/size][size=16px] 按照流动管路的粗细,连续流反应器分为管式反应器和微通道反应器两大类,如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.连续流反应器几种典型形式,650,175]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151534309713_433_3221506_3.jpg!w690x186.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 连续流反应器的几种典型形式[/b][/color][/size][/align][size=16px] 大多数连续流反应装置主要由八个基本部分组成:流体和试剂递送、混合、反应器、淬灭、压力调节、收集、分析和纯化,如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.标准双进料连续流反应过程示意图,650,175]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151534519826_773_3221506_3.jpg!w690x186.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 标准双进料连续流反应过程示意图[/b][/color][/size][/align][size=16px] 连续流反应面临的挑战之一是控制所有过程参数,如温度和压力。如图2所示,反应器压力是连续流化学反应的重要环节,要求在各种苛刻的条件下进行恒压控制,这使得连续流反应器压力控制过程面临着以下挑战:[/size][size=16px] (1)目前多采用手动背压阀进行压力控制,存在压力控制不准、手动调节频繁的问题。[/size][size=16px] (2)目前也出现了电动和气动背压阀进行压力控制,但存在响应时间太长的问题,不太适合连续流反应过程中的压力稳定控制。[/size][size=16px] (3)各种连续流反应过程中会要求不同的压力环境,这就要求压力调节阀仅能满足低压压力控制,又能满足高压压力控制要求。[/size][size=16px] (4)连续流化学反应会涉及到很多腐蚀性气体或液体,这同样对压力控制阀的材质提出很高的要求,要求压力调节阀具有耐腐蚀和耐摩擦的优异性能。[/size][size=16px] 针对上述连续流反应器中存在的上述技术挑战和问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 如图2的连续流反应过程所示,连续流反应器的压力控制的工作原理非常简单,当传送系统以一定压力将流体和试剂传递到反应器中时,可以通过调节阀开度大小来改变反应器出口端的介质流动速度来调节反应器内的压力,调节阀开度的大小则是根据压力传感并采用PID控制器来进行调节,使得反应器的压力始终恒定在设定压力上。[/size][size=16px] 连续流反应器会涉及到从低压到高压的多种压力环境,为了满足不同压力条件的要求,本解决方案采用了低压和高压两个压力控制技术方案。[/size][size=16px][color=#339999][b]2.1 低压压力控制方案[/b][/color][/size][size=16px] 低压压力是指表压为0~0.7MPa的压力范围,反应器低压压力控制装置结构如图3所示。低压压力控制装置由压力传感器、电动针阀和压力控制器组成并构成闭环控制回路,其中压力控制器获得压力传感器信号并与压力设定值比较后,PID控制输出信号驱动电动针阀的开度变化,由此改变通过针阀的流量大小而最终实现反应器的压力恒定控制。[/size][align=center][size=16px][color=#339999][b][img=03.连续流反应器低压压力控制装置结构示意图,550,276]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151535125789_463_3221506_3.jpg!w690x347.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 连续流反应器低压压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 为了保证控制精度,低压压力控制系统三个器件的技术指标如下:[/size][size=16px] (1)压力传感器:根据压力控制精度要求,可在1%~0.05%内选择不同的压力传感器。[/size][size=16px] (2)电动针阀:电动针阀为步进电气驱动的针型阀,具有从0.9、2.25和2.75mm三种通径,工作压力范围为-1~7bar,其最大特点是具有1秒以内的高响应速度,采用FFKM全氟醚橡胶做密封件的超强耐腐蚀性和耐摩擦性,非常适应于微反应器的压力和流量控制。[/size][size=16px] (3)压力控制器:有单通道和双通道可选,双通道控制器还可同时用于温度的测量和控制,其中每个通道都为24位AD、16位DA和0.01%最小输出百分比。压力控制器具有程序控制和PID参数自整定功能,配备有具有标准MODBUS协议的RS485接口,并自带计算机软件,可通过计算机运行软件进行控制器的远程参数设置、运行和控制过程的曲线显示和存储。[/size][size=16px][color=#339999][b]2.2 高压压力控制方案[/b][/color][/size][size=16px] 高压压力是指表压为0.5~20MPa的压力范围,反应器高压压力控制装置结构如图4所示。高压压力控制装置由压力传感器、先导阀、背压阀和压力控制器组成并构成闭环控制回路,其中压力控制器获得压力传感器信号并与压力设定值比较后,PID控制输出信号驱动先导阀,先导阀再驱动背压阀的开度变化,由此改变通过背压阀的流量大小而最终实现反应器的压力恒定控制。[/size][align=center][size=16px][color=#339999][b][img=04.连续流反应器高压压力控制装置结构示意图,550,276]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151535309222_5324_3221506_3.jpg!w690x347.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 连续流反应器高压压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在高压压力控制装置中采用了相同的压力传感器和压力控制器,其他器件的技术指标如下:[/size][size=16px] (1)先导阀:工作压力范围0~0.5MPa,综合精度小于±1.5%FS。[/size][size=16px] (2)背压阀:工作压力范围0.5~20MPa,综合精度小于±10%FS。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述的解决方案,可以很好的解决连续流反应器的压力准确控制问题,特别是采用了电动针阀和高精度压力控制器的低压压力控制装置,可广泛应用于低压低流量的微流道反应器中,可很方便的构成多通道微反应器压力控制系统,并能保证很高的压力控制精度和长期稳定性。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]
随着我国社会经济的迅速发展,不可避免地伴随着大量废弃物排放,这导致了严重的环境污染和生态破坏。这些因素正危及我国居民生存安全。另外,调查表明环境污染问题也会影响到我国的可持续性发展。所以,保护与治理环境是构建环境友好、和谐社会和实现我国社会经济叮持续发展的重要任务。传统污染物处理方法不能彻底消除降解污染物,也容易造成二次污染,使用范围窄。仅适合特定的污染物,还伴随着能耗高,不适合大规模推广等缺陷。近些年来,利用光催化技术降解和消除污染物得到人们的广泛关注。光催化氧化技术是一种集高效节能、操作简便、反应条件温和、同时可减少二次污染等突出特点于一身的一项新的污染治理技术,而且从地球卜物质循环的角度来看,光催化技术可以将大量的有机污染物降解为CO2和H2O.从而被植物利用.形成了循环,如图l所示,可以说光催化技术正足人类所急需的一种技术。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206281052_374718_2556116_3.jpg 光催化技术起源于20世纪70年代.自从日本学者Fujishima和Honda发现了利用TiO2单晶可将水光催化分解之后。世界范围内,便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒等方面的应用研究,于是光催化技术受到全世界的广泛关注。并得到了快速发展。如今人们对于光催化技术的研究主要分为对光催化剂的研究(如TiO2、ZnO)和对光催化反应条件的研究,其中。对反应条件的研究中,人们为了让光催化氧化反应能稳定和高效的进行,会设计出相应的反应器,用来为反应提供良好的平台,一个设计良好的反应器,将能大大提高反应体系的反应效率,从而达到高效、节能、稳定等目的。1 光催化反应器的设计依据 光催化反应器的设计主要目的是为了给光催化氧化反应提供高效和稳定的反应空间和环境。实现光催化过程对光的充分利用,从而提高反应效率。由于光催化反应需要有光子参与,光催化剂才能将光能转化成为化学反应所需的能量,来进行催化降解作用,因而在设计反应器的时候,最主要的两个理论依据就是光的传输理论和催化反应动力学理论。光的传输以及在光在反应器中的分布直接影响到催化剂对于光的吸收效率。充分均匀的催化剂分散可保证光在传输途中浪费少,这样催化剂对光的利用效率高,反之将会有较多催化剂由于得不到或者只接受到很少的光照而不能充分的进行光催化氧化反应。2 国内外光催化反应器的发展 早期的光催化研究大多是在一些很随意的反应条件下进行的。比如在液相光催化反应中,催化剂与污染物溶液混合时,一般的实验过程都是人工用玻璃棒进行搅拌。由于人为误差的因素难以避免,会对结果的准确性和再现性产生较大影响。为了满足对光催化反应器准确、稳定和高效的要求,反应器的设计也在不断的变化。一个设计较好的反应器,不仪可以提高光催化反应的效率,而且可以将其大规模化。可高效稳定的进行光催化作业,从而实现产业化。到目前为止,有一些类型的反应器已经用于诸如污水和空气处理的工业化应用。2.1流动床光催化反应器 流动床光催化反应器是将催化剂与待降解物质直接混合的一种反应器。一直以来,人们都在为满足不同的光催化反应要求,设计不同的反应器。应用最多的儿种类型的反应器包括椭圆型、底灯型和柱型,如图2所示。这几种反应器的特点是不仅效率较高,制作难度低。而且可以用于大多数的反应类型,可以同时满足液相和气相两种类型的光催化反应,因而得到了广泛的应用。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374721_2556116_3.jpg 椭圆型反应器(图2(a)所示)是将灯管和反应区分别放在椭圆的2个焦点上,这样可以很好的将灯管所发出的光集中在反应区内,减少了光的浪费,提高了整体的效率。虽然反应器中的反应区在椭圆型焦点上,但是这不表示灯管所发出的所有光线都能达到反应器,而且这种类型的反应器.光的传输路程较长,这样就增加了光在传输过程中的损失,并且反应区域内光的分布不均匀。底灯型反应器(图2(b)所示)是对椭圆型反应器的改进,它的光源位于抛物线的焦点上,但是光源的光线并不是聚焦在另一个焦点,而是从下往上射人反应区,光进入了反应区域后就不会再被反射回来。更大程度的利用了光源。柱型反应器是现在比较成熟的类型,一般可分为中灯外反应区(图2(c)所示)和中反应区外灯(图2(d)所示)2种。柱型反应器有着较高的光利用率和良好的对称性(可使光在反应区内均匀的分布,减少局部差异)。一些发达园家,这两种反应器已经用来处理污水,在这2种反应器中.光从光源发出来后,基本上都会通过反应区。特别是中灯外反应区这样的反应器.光的利用率几乎可以达到最大。在光源的光照强度合适的情况下,甚至可以不需要反射壁。都可以达到光的最大利用率。而且这种柱型的反应器制造难度小,成本低。适合大规模的生产和运用。因此现在的大多数针对反应器的研究,也是以柱型为模型来进行的。2.2 固定床光催化反应器 在近年来,人们将催化剂固定在一些载体表面来进行催化反应.即固定床反应器,这样避免了光催化剂的分离问题。固定床与传统的流动床的区别在于,催化剂不随液体或者气体一起流动.而是固定在玻璃或者其它介质表面,污染物流经其表面来进行反应。这样一来,人们就可能更精确的了解催化剂的性质,并易于控制催化反应的进行,也易于催化剂和反应物的分离。基于这种思路,人们设计了一些新型的光催化反应器,其中效果比较好的是平板型和喷泉型,如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374722_2556116_3.jpg 平板型的反应器是将催化剂固定在平板上,在光照的条件下.将污染物液体或者气体缓慢的通过催化剂表面降解,属于层流型反应器。这种反应器的好处在于制造简单,待降解物经过催化剂的时候光照时间和光照强度基本一致,并很容易控制流动速度。当流速放慢的时候可提高反应物的降解程度。但是所需时问也就相应增加;当加快流速的时候虽然降解的程度不如流速慢的情况.但是所需时间较少。这种平板反应器可以根据不同的降解需求。调整流速,达到相应的效果。平板型的反应器还有另一个其他反应器不具备优点,由于催化剂是固定在平板上的。不会随着待降解物的流动而流动,也就省去了后续催化剂分离的步骤。但是也由于催化剂固定的原因,在降解一定时间后,催化剂的催化效率会降低,而更换催化剂比较困难,并且光的损失也比较严重。因为光源发出的光最多只有50%被利用.即使加装了反射壁.也会有大量的光损失掉。鉴于平板型反应器的造价低.易于控制的优点,很多实验室都运用平板反应器来进行一系列的光催化研究。 喷泉型反应器是近几年由Puma和Yueu等人提出的,此类反应器与平板型反应器大致相同,将催化剂固定在斜面上,在顶部固定光源,将待降解物斜面中心的喷嘴喷出,然后在重力作用下流经催化剂从而得到降解。此种反应器主要是用于研究催化剂的反应效率.由于结构相对比较复杂,所以应用也较少。还有很多种新型的反应器.比如球型反应器.这种反应器在理论上能达到非常高的光利用率,并且无论是光的分布。还是污染物的分布.还有催化剂的分布都能达到非常高的均匀性和稳定性.反应效率也是非常理想的,但是制作非常的困难.所以现在这种球型的反应器并不常见,是一种理想化的反应器。3 结语 随光催化技术的提高,光催化反应器也在被不断的改进和优化.越来越受到人们的重视.特别是光催化技术实现工业化后,反应器的设计需要进行系统的优化没计才能使光催化反应效率达到最优值,一个设计优良的反应器,不仅可以提高反应效率,还能减少对能源和原材料的浪费.提高经济效益。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206291103_374928_2556116_3.jpg
膜——生物反应器是近年来发展起来的一种新型的重要的污水处理回用装置。是生物技术与膜分离技术的结合。污水经生物反应池,在微生物的作用下,解污水中的有机物,悬浮物及部分凝胶物质,然后靠膜与水分离,使污水达到中水回有物装置。市场前景: 随着工业化的发展,水资源将会日益短缺,节约用水,及将水回用势在必行。水型回用可用于宾馆,别墅,小区,废水回用可应用于工业生产,由于此项技术在我国的应用仍处于起始阶段,故市场潜力巨大。投资概算: 主要由三部分:1,主要构筑物基建费:173万元。2,主要设备安装调试费:16。08万元,3,其它运行费用:如"单位处理水量基建高效单位处理水量电力消耗,人工费,药剂费等。效益分析: 膜一生物反应器技术是以污水回用为最终目的的新工业,回用的节约的水费在两年内即可以收回整个工程投资。两年的节约的水费可以计算机为净利润,经济效非常可观。同时,节约水资源,减轻任意排放造成的污染也具有很好的社会效益。
现在反应改用微波炉反应器,反应时间减短了,但是反应完了之后,炉内生锈了,我用的是氢溴酸,挥发性很强,而且刺鼻,每次反应完,就看见炉内一点点的锈掉了,真担心,还没做完实验,这仪器腐蚀坏了,做不了,现在就想向大家讨教一下这个微波炉炉内防锈的维护技巧,谢谢
传统化学合成需要数个步骤,并且在两个步骤之间需要分离或提纯,因此微观化学只能应用于一步反应或不需要提纯的反应。而现在这一情况发生了变化。来自MIT的科学家发明了完整的多步微观生产线。在最新一期《Angewandte Chemie》上,他们报导了包括3步反应和2步分离的过程。由于是一个微型反应网络,因此科学家甚至可以使得相关物质同时通过反应生成。 为了更好利用微型反应技术,科学家必须整合所需的分离步骤。由Klavs F. Jensen领导的小组最近发明了一种高效的微流体分离技术,并将其结合到整个反应系统中。微观分离和传统分离不同,由于是微流体系统,因此表面张力的作用大于重力。 微流体分离的工作原理是:一个由含氟聚合物制成的多孔膜上涂上一层有机混合物,因此水就无法通过薄膜了。而第二步分离——气液分离基于同样的原理。为了验证体系的可靠性,科学家尝试合成氨基甲酸盐——这是一种常用于杀虫剂的物质,并且是化学合成中重要的成分和试剂。 合成氨基甲酸盐的3步合成反应包括危险的中间产物,因为它们可能存在爆炸性或者对健康有害。而微型反应体系的最大好处就在于这些中间产物会立即被消耗,因此无需分离或者储存。一旦完成第二步分离,产物可以进入多个微反应器,使得一系列不同类型的氨基甲酸盐得以同时合成。文章来源:教育部科技发展中心网
求购艾本德NewBrunswick的二手发酵罐或生物反应器[b]【仪器名称】:[/b][font=&][color=#ff0000][/color][/font]艾本德NewBrunswic二手发酵罐或生物反应器[font=&][/font][b]【新旧程度】:[/b][font=&]二手[/font][b]【价格范围】:【质保期限】:【交易地点】:【联 系 人】:【联系方式】:[/b][font=&]站内短信[/font][b]【信息有效性】:[/b]
反应器 (reactor)实现反应过程的设备,广泛应用于化工、炼油、冶金、轻工等工业部门。化学反应工程以工业反应器中进行的反应过程为研究对象,运用数学模型方法建立反应器数学模型,研究反应器传递过程对化学反应的影响以及反应器动态特性和反应器参数敏感性,以实现工业反应器的可靠设计和操作控制。
本实验室急购一批大型仪器。请速联系。急购:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、厌氧罐、厌氧操作台、光生物反应器和荧光显微镜。其中[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]要国产的一般的就可以。需要配上FID和CID。其它的仪器要好一点的。有意者请提供型号和配置及价格。
[color=#000099][b]摘要:目前的一次性生物反应器袋充气压力控制普遍只使用了电气比例阀或双阀压力控制器,此种充气控制方式中,压力安全监控无法自动反馈和响应、所控压力并不是真正的反应器袋压力,且充气速度较慢。本文针对现有技术存在的问题进行了改进,提出采用串级控制法,通过外置压力控制器和传感器,以比例阀作为执行机构组成双闭环控制回路,可大幅提高控制精度和充气速度,更重要的是可实现充气压力安全监控和报警自动处理。[/b][/color][align=center][/align][align=center]~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#000099]一、问题的提出[/color][/size][/b]一次性生物反应器(Single Use Bioreactor)或用后可弃生物反应器(Disposable bioreactor)是使用一次性袋的生物反应器,代替由不锈钢或玻璃制成的培养容器,简称SUBs。与可重复使用的生物反应器相比,一次性生物反应器(SUBs)具有的重要优势是减少了工艺认证难度,无需清洁认证,缩短了停机时间和周转时间。在所有的一次性生物反应器使用过程中,都存在一个充气步骤,需要将反应器充气到指定压力。但一次性生物反应器生物反应器袋并不属于压力容器,过度加压会造成反应器袋的破裂、泄漏或其他故障。因此,一次性反应器袋的准确充气加压必须考虑到在生长期间引入、消耗和产生的气体,以及培养基、消泡剂和其它引入流体的影响。目前常用的SUB充气控制装置是采用电气比例阀,也有采用类似电气比例阀的双阀压力控制器,整个充气压力控制装置如图1所示。[align=center][img=一次性生物反应器典型充气压力控制系统结构示意图,690,246]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011730388558_6420_3221506_3.jpg!w690x246.jpg[/img][/align][align=center][color=#000099]图1 一次性生物反应器袋典型充气压力控制系统结构示意图[/color][/align]在实际应用中,图1所示的充气压力控制系统存在以下两方面问题:(1)安全性问题:在图1充气压力控制系统中,双阀压力控制器或电气比例阀都内置有压力传感器,此传感器测量的是出压口处的压力,并不代表一次性生物反应器袋的内部压力。因为,出于安全性考虑,还需增加一个压力表来监控反应器袋的真实压力。因此,很多SUB制造商希望更准确的直接控制一次性生物反应器袋的内部压力,并同时具有报警功能。(2)准确性和滞后问题:由于压力控制器和电气比例阀远离反应器袋,所控压力与反应器袋希望的压力值有一定偏差,而且这种充气控压方式存在明显滞后现象,充气速度较慢。[b][size=18px][color=#000099]二、串级回路充气压力控制[/color][/size][/b]为了解决上述一次性生物反应器袋充气压力控制中存在的问题,本文提出一种更精确可靠且快速的充气压力控制方法,其核心技术是采用串级控制方法,即对图1所示的压力控制系统进行了改良,增加一个独立的压力控制器。新型充气压力控制系统如图2所示。[align=center][img=生物反应器袋新型串级双回路充气压力控制系统结构示意图,690,346]https://ng1.17img.cn/bbsfiles/images/2022/11/202211011731023461_8401_3221506_3.jpg!w690x346.jpg[/img][/align][align=center]图2 生物反应器袋新型串级双回路充气压力控制系统结构示意图[/align]图2所示的升级改良后的新型充气压力控制系统,主要有以下几方面的特点:(1)所采用经典的串级控制法,以电气比例阀作为独立的内部执行回路,再外接独立的压力控制器和压力传感器,结合电气比例阀组成外部控制回路,由此构成的串级控制结构形式,可充分发挥串级控制法能提高控制精度和加快充气速度的优势,有效提高压力控制精度和缩短充气时间,此特性对大容积一次性反应器袋的充气过程尤为具有优势。(2)外接的压力传感器直接安装在反应器袋上,更能准确监测反应器袋的内部压力。(3)外接的压力控制器具有超压报警功能和相应的开关控制信号输出。如果反应器袋内部压力超过设定警戒线后,可立刻报警并输出开关信号驱动安全阀放气。(4)压力控制器采用的是24位ADC和16位DAC,具有超高的压力测量和控制信号模拟量输出精度,另外通过双精度浮点运算,可实现最小0.01%的超高精度压力控制调节。(5)压力控制器可存储多个充气压力控制参数,便于不同容积大小的一次性生物反应器袋的充气压力控制而无需再进行设置和调整。(6)控制器可具有两通道形式,即一个压力控制器可同时控制两个电气比例阀实现两个一次性生物反应器袋的充气压力控制。(7)压力控制器带RS 485通讯,标准MODBUS协议,即可独立运行,也可与上位机通讯。(8)随机配的软件可方便采用计算机对压力控制器进行遥控,避免繁复的仪器按钮操作。[b][size=18px][color=#000099]三、总结[/color][/size][/b]综上所述,通过上述新型串级控制系统,可有效提高一次性生物反应器袋充气过程中压力控制的安全性、精度和速度,并具有操作便捷和可扩展的特点。同时此种串级双回路结构适用于各种形式和规格的电气转换器、电气比例阀和双阀压力控制器。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]
微通道反应器冷热源恒温控制设备是微通道反应器行业使用比较多的控温设备,无锡冠亚针对微通道反应器行业配套生产了微通道反应器冷热源恒温控制设备,微通道反应器冷热源恒温控制设备在运行中压缩机如果发生故障的话,需要及时排查解决。 微通道反应器冷热源恒温控制设备压缩机故障排查的话,先检查微通道反应器冷热源恒温控制设备电路部分,看看微通道反应器冷热源恒温控制设备电源、电压、开关是否正常,看看微通道反应器冷热源恒温控制设备电源是否有电,电压是否正常,开关触点是否良好,电源是否缺相。当微通道反应器冷热源恒温控制设备没有安装电流表、电压表时,可采用万用电表或测电笔检查电源情况。在电源电压过低时会使压缩机起动不了。 微通道反应器冷热源恒温控制设备的压缩机如果采用活塞式的压缩机的话,其连杆大头轴瓦与曲袖是否发生抱轴。这些,可以是以前运行时,由于排气温度过高造成,也可能是润滑油焦化,使气缸与活塞粘结造成,使压缩机不能起动。 检查微通道反应器冷热源恒温控制设备压差继电器和高低压继电器。当压缩机的油压不正常时,能使压缩机停止运行。同时,当压缩机排气压力和吸气压力异常时,均不能起动或已起动后压缩机会很快停止运转。检查冷冻水量、冷却水量、水温是否正常。若水量小、水温高,会引起冷凝压力急剧升高,蒸发温度迅速下降,由于机组保护设施动作,往往很快停机。 检查微通道反应器冷热源恒温控制设备有关的电磁阀、调节阀是否失灵,是否按要求开起或关闭。检查温度继电器的感温包内是否有工质泄漏,或调节有误。 微通道反应器冷热源恒温控制设备在使用之前,相应的准备工作一定要做好,希望微通道反应器冷热源恒温控制设备能够高效运行。
[img=,566,400]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071446_01_3194653_3.jpg[/img][url=http://www.fameinstrument.cn/article/?36.html]光生物反应器[/url]BR101光生物反应器完全可定制,可选配多种荧光光源,可适应各种探头和传感器,并通过专用藻类管理软件监测和控制藻类生长。外部控制电脑(或笔记本)可同时控制多达256台生物反应器,每个反应器都有各自的编程,可在一台计算机上运行命令同时控制多台反应器。 PBR101是一款先进的、专业的研究及生产型藻类培养系统。通过该系统可以轻松简单地找到最适合藻株生长的条件,可以直接将最佳 条件应用于批量生产,可大大节省时间、财力和精力。PBR101由科学家、工程师及现实世界的真正用户共同设计,电脑控制,采用突破性的技术以模拟生长及生产环境,如温度、培养周期/强度,CO2。选择预编程实验,或轻松设计您自己的方案,生长变量可根据用户自定义方案动态变化。[img=,375,206]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071451_01_3194653_3.png[/img][b]描述[/b]• 紧凑,功能强大• 可编程• 软件易于使用,节省时间、人力和经费• 精确地进行养藻类和蓝绿细菌(藻氰菌)等的培养和监测• 精确化规模化生产• 促进培养条件的优化,获得最佳培养条件及最高产量• 外部控制电脑(或笔记本)可同时控制多达256台生物反应器,每个反应器都有各自的编程,可在一台计算机上运行命令同时控制多台反应器。[b]技术规格[/b]反应容器: 聚碳酸酯,柱形加热和冷却: +10 to +50℃LED: 定制 — 专为 PBR101设计磁力搅拌器: 计算机控制气体流量计: 计算机控制数据传输: 以太网 + USB控制软件: Algal CommandLogic Control:微处理器温度传感器: 直接输入Algal Command藻类生长测定:定制设计浊度器[img=,354,255]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071452_01_3194653_3.png[/img]
[u][i]精细化工中间体:2004,34(2):1-4[/i][/u][b]微波有机合成及反应器研究新进展[/b][i]刘福萍,陆明[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。针对微波有机合成反应技术及专用微波反应器作了重点介绍。关键词:微波化学;有机反应;微波反应器1 前言 微波是频率大约在 300 MHz~300 GHz,即波长在 1000~1 mm 范围内的电磁波,它位于电磁波谱的红外光波和无线电波之间。在 20 世纪 60 年代,N. H. Williams就曾经报道了用微波加速某些化学反应的研究结果,但在化学合成中应用微波技术则直到 20 世纪 80 年代初期才开始,当时人们并未预料到它对化学研究领域的重大作用。微波应用于有机合成的研究则始于 1986 年, Gedye 和 Smith等通过比较常规条件与微波辐射条件下进行酯化、水解、氧化等反应,发现在微波辐射下,反应得到了不同程度的加快,而且有的反应速度被加快了几百倍。至今,微波促进有机合成反应已经越来越被化学界人士所看好,而且形成了一门倍受关注的领域 —MORE化学(Microwave-Induced Organic Reaction Enhancement Chemistry) 。将微波用于有机合成的研究涉及酯化、Diels -Alder、重排、Knoevenagel、Perkin、 Witting、 Reformatsky、 Dveckman、羧醛缩合、开环、烷基化、水解、烯烃加成、消除、取代、自由基、立体选择性、成环、环反转、酯交换、酯胺化、催化氢化、脱羧等反应及糖类化合物、有机金属、放射性药剂等的合成反应。2 微波促进有机反应机理 微波广泛应用于雷达和电讯传输产品中,为了防止微波功率对无线电通讯、广播、电视和雷达造成干扰,国际上规定工业、科学研究、医学及家用微波炉等民用微波频率为 915 ±15 MHz 和 2450 ±50MHz。微波技术应用于有机合成反应,反应速度较常规方法相比有的能加快数倍、数十倍,有些反应能加速数百倍甚至数千倍。为什么微波有如此大的效果呢 ? 目前关于微波加速有机反应的机理,化学界存在着两种观点。一种观点认为,虽然微波是一种内加热,具有加热速度快、加热均匀无温度梯度、无滞后效应等特点,但微波应用化学反应仅仅是一种加热方式,与传统加热反应并无区别。他们认为微波应用于化学反应的频率 2450 MHz 属于非电离辐射,在与分子的化学键共振时不可能引起化学键断裂,也不能使分子激发到更高的转动或振动能级。微波对化学反应的加速主要归结为对极性有机物的选择加热,既微波的致热效应。1990 年,Edwin G. E.Jahngen 等研究了三磷酸腺甙 (ATP) 在微波作用下的水解反应,发现微波作用下反应速度是常规加热方式下的25 倍,但在两种加热方式下,反应动力学并没有明显的改变。1992 年, Kevin D. Raner 等通过研究微波对 2,4,6-三甲基苯甲酸与 2-丙醇的酯化反应速度的影响,也得出结果表明最终酯化产率仅与温度因素有关,而与加热方式无关。
想把家用微波炉改造为专用的微波反应器,应该怎么样改造呢?哪位大神能够具体说明一下万分感谢,还有就是改造后使用的话在做实验的过程中会有危险么?
MBR反应器的应用[font=宋体][color=black]膜生物反应器(MBR)为膜分离技术与生物处理技术有机结合之新型态废水处理集成系统。主要以膜组件取代二沉池,在生物反应器中保持高活性污泥浓度,提高生物处理有机负荷,从而减少污水处理设施占地面积,并通过保持低污泥负荷减少剩余污泥量。[/color][/font][font=宋体][color=windowtext]但是,MBR也存在一些不足。主要表现在以下几个方面:[/color][/font][align=left][font=宋体]1)[/font][font=宋体]容易出现膜污染,给操作管理带来不便,[/font][/align][align=left][font=宋体]2)[/font][font=宋体]运行费用较高[/font][/align]如何解决这些缺点呢,可以从以下几个方面入手[align=left][font=宋体][color=black]从污染物的位置来划分,膜污染分为膜附着层污染和膜堵塞。在附着层中,发现有悬浮物、胶体物质及微生物形成的滤饼层,溶解性有机物浓缩后粘附的凝胶层,溶解性无机物形成的水垢层,而特定反应器中膜面附着的污染物随试验条件和试验水质不同而不同。膜堵塞是由于上述料液中的溶质浓缩、结晶及沉淀致使膜孔产生不同程度的堵塞。[/color][/font][font=宋体]同时MBR膜清洗繁琐,需要每片膜都拿出来清洗。膜的清洗方法可分为水力学清洗、机械清洗、化学清洗。选择何种清洗方式主要取决于膜的构型、种类和耐化学试剂能力及污染物的种类。水力学清洗的主要方法是反洗,如水反冲法和气水反冲膨胀法。机械清洗只适用于超型海绵球的管式系统。化学清洗是最有效的方法。对于大分子物质等在膜表面形成的凝胶层,仅靠热水清洗和反冲,效果甚微,可用酸或碱液对污染后的膜浸泡清洗,碱性条件下有机物、二氧化硅及生物污染物质易被清除;酸性条件下一些金属离子污染物易被溶解。表面活性剂和鳌合剂可去除牢固附着的物质,但造价高。因此,高效率清洗膜污染的方法对MBR工艺来说至关重要。[/font][/align][align=left][font=宋体][color=black]以超高强度、大通量、抗污染、超低过膜压、可反冲洗等综合性能优异的异质增强聚偏氟乙烯微滤/超滤膜为核心,优化设计组装膜组件及MBR,采用[/color][/font][font=宋体][color=black]基于高强度瞬间进气和产水反洗的气/水混合膜再生技术,降低膜通量衰减率。[/color][/font][font=宋体][color=black]运用生物膜法担体制作技术,将废旧膜丝制成有超大比表面积的担体。作为微生物载体用于吸附并零排放用。[/color][/font][font=宋体][color=black]在MBR工艺中,通过培养特种菌种加强生化工艺处理效果,既能提高生物膜池的处理效率,同时也实现了膜污染防止。[/color][/font][font=宋体]针对不同废水,对水质进行全面分析,通过对不同阶段的产水进行合理分析,根据水质及流量情况给予絮凝-沉淀、格栅过滤、沙滤、微滤、超滤、MBR、纳滤、分渗透、EDI等不同的工艺组合,以创新的组合工艺使得水资源得到最佳分配[font=宋体]组合废水预处理、微滤-超滤-反渗透多级处理和反渗透浓水多重MBR处理技术,实现废水深度处理的高回收率和零排放,以降低能耗[/font][/font][/align]
Project 项目 http://ng1.17img.cn/bbsfiles/images/2016/08/201608010811_602766_3122077_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608010812_602767_3122077_3.pngTime 时间 2014 年 10 月说明:本装置适用于固定床金属反应器模拟绝热过程,测控精确,拆装方便。冷却器,可选用低温致冷,致冷温度可以设定和控制。反应后气相产物可在线分析。装置使用上、下位机控制结构,可以选用单独上位机实现自控操作,也可选用先进的计算机控制软件操作系统实现简洁,方便的人、机对话,调节、显示、记录一体化,无须专业特殊培训。主要参数 Main Date反应压力:0 ~ 5 Mpa液体流量:0.001 ~ 10sccm 或自选气体流量:1 ~ 1000sccm 或自选反应炉温度:室温~ 800℃冷却器温度:-20 ~ 0℃催化剂装量: 2 ~ 10 ml大连中嘉瑞霖流体技术科技有限公司真诚期待与您的合作,为您服务是我们的荣幸,真诚期待您的垂询。
最近我在查找进口的微波反应器,不知道各位大哥、大姐有没有可以推荐的品牌?
放射性废弃物的超临界水氧化: 从反应器设计到有毒废弃物的热水处理 摘要: 核工业将产生混有放射性元素和有机溶剂的一些有机废弃物,通常的工艺方法无法处理,尤其是高浓度的含氯的化合物。基于以前在原子能和高压领域经验,我们进行了有前景的超临界水氧化工艺的研究:处理氯化的高污染性废物。超临界水氧化工艺有两个众所周知的局限,阻碍了非纯有机废物处理的工业化发展:腐蚀和盐阻塞。 几代反应器设计,都是为了克服这些缺点。这里介绍未来化学科技有限公司进行的策略和方法,用于获得最终的工业工艺,应用于核废物的处理。也提高了含氯和高浓度矿物盐的危险废弃物的热水处理。 废弃物处理至今仍是一个最有趣的话题。危险废弃物,如核工业产生的有毒化合物或放射性有机化合物,无法使用传统的生物处理或热处理。因而,一定要开发对人和环境无害的新方法。超临界水氧化工艺,用于有机化合物在超临界水(临界压力22.1 MPa和临界温度647 K)中进行处理,看起来是一项处理这些危险废弃物的好技术。 超临界水氧化的优点在于水在超临界条件下的特殊物理性质。超临界水的均相和高扩散使快速反应和获得高处理率成为可能。此外,氧化剂被限制并允许流出物控制。 碳氢化合物被完全氧化成CO2和水,有机化合物中的N形成分子氮N2和少量的N2O,因此气态流出物中没有污染物质,如NOx。杂环原子如氯、磷或硫的矿物酸,分别为HCl, H3PO4H2SO4。 这些酸和氧化剂产生了腐蚀环境,任何材料均会受到腐蚀的侵袭。这一现象在卤化化合物的出现时得到强化。为了防止反应器被腐蚀,经常加入碱金属作为中和试剂。这导致了无机盐的形成。一方面无机盐在常温常压水中有非常高的溶解性,另外一方面,他们在超临界条件水出是不溶的,因为超临界水的低密度和小介电常数。结果导致了盐的析出,并在管壁上结垢。腐蚀和盐析出是超临界水工艺的两个主要的局限。为了扩展超临界水氧化的应用,这些缺点必须得到克服。对于新的反应器,必须适用于处理非常危险的废弃物,如核燃料。我们未来化学科技有限公司花了几年的时间研究了合适的反应器。 目标废弃物主要包括由动力堆乏燃料后处理的液-液萃取的产物:萃取剂(如磷酸三正丁酯,TBP)、稀释液(如煤油)、以及有机流出物(如卤化溶剂)。 未来化学科技有限公司供应三种反应器:第一种是管式或高压釜式反应器;第二种是TWR专利反应器;第三种是设计用于含盐有机物或卤化核素的超临界水氧化的一种新型反应器: 既有防止釜体腐蚀的双层,又有能够获得更好传质和传热及防颗粒沉积的搅拌器。 更多信息欢迎垂询问未来化学科技有限公司!
[align=left]微型传感器是一个将被测量的装置,如位移、变形、强制、加速度、湿度、温度和其他物理量转换成电阻值。主要是电阻应变型、压阻型、热阻、热阻、气敏、湿敏电阻传感器器件。[/align]微型传感器中的应变仪具有金属的应变效应,即在外力作用下的机械变形,因此电阻值相应地改变。应变仪主要是金属和半导体。金属应变仪是线型、箔型、薄膜型。半导体应变片具有高灵敏度(通常是线型、箔型的几十倍)、的小横向效应。压阻式微型传感器是根据半导体材料的压阻效应通过半导体材料的衬底上的扩散电阻制造的器件。衬底可以直接用作测量传感元件,并且扩散电阻器在衬底中以桥的形式连接。当基板通过外力变形时,电阻值将改变,并且电桥将产生相应的不平衡输出。用作压阻式微型传感器的基板(或隔膜)主要由硅晶片和钽制成。由敏感材料制成的硅压阻传感器受到越来越多的关注,特别是在测量压力时。并且固态压阻式微型传感器应用的速度是通用的。微型传感器的滞后特性表征前进(输入增加)和反向(输入增加)冲程输入特性曲线之间的不一致程度。通常,使用两条曲线之间的较大差ΔMAX。满量程输出FS的百分比表示滞后可能是由微型传感器内部元件中的能量吸收引起的。微型传感器变化很大,甚至不同工作原理的微型传感器也可用于相同类型的测量。因此,必须使用合适的传感器。(1)微型传感器的测量条件如果错误选择微型传感器,系统的可靠性将会降低。为此,从系统的整体考虑,要清楚地了解使用目的和使用传感器的需要,永远不要使用不合适的微型传感器和不必要的传感器。测量条件如下:测量目的,测量量的选择,测量范围,输入信号的带宽,所需的精度,测量所需的时间以及过量输入的发生频率。(2)微型传感器性能选择微型传感器时,请考虑传感器的以下特性,即精度,稳定性,响应速度,模拟信号或数字号,输出及其电平,被测物体特性的影响,校准周期以及过度 - 反保护。(3)微型传感器的使用条件微型传感器的使用条件是设定位置,环境(湿度、温度、振动等),测量时间,显示器之间的信号传输距离,与外围设备的连接,电源容量。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]
中国在微流控芯片领域的水平和国外相差不大,而且中国已经有微流控芯片研发生产企业,在网上直接搜索“微流控芯片”便可以找到生产企业和微流控芯片相关资料文章。 微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等 。其中电压驱动的毛细管电泳(Capillary Electrophoresis , CE) 比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE ( 生化分析仪,Aglient) ,可提供用于核酸及蛋白质分析的微流控芯片产品。 微流控芯片的特点 芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。 廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。 我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。3月26日多名微流控领域的专家也将参加在上海举办的2015(第三届)先进体外诊断技术峰会,共同对微流控的先进技术进行总结和分析,对我国的微流控芯片研究领域进行更多的解读。相信经过不懈的努力,微流控芯片蓬勃的发展在我国很快将会到来。
大家谈谈看热电偶控温仪,怎么给改装后的微波反应器自动控温也看了文献,现在有点疑问想请教下大家怎么把微波炉连接到控温仪上?使得到达设定温度后微波炉自动断电低于设定直时有自动开启?望指点谢谢
反应器按操作方式可分为: ①间歇釜式反应器,或称间歇釜。 操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。 间歇操作反应器系将原料按一定配比一次加入反应器,待反应达到一定要求后,一次卸出物料。连续操作反应器系连续加入原料,连续排出反应产物。当操作达到定态时,反应器内任何位置上物料的组成、温度等状态参数不随时间而变化。半连续操作反应器也称为半间歇操作反应器,介于上述两者之间,通常是将一种反应物一次加入,然后连续加入另一种反应物。反应达到一定要求后,停止操作并卸出物料。 间歇反应器的优点是设备简单,同一设备可用于生产多种产品,尤其适合于医药、染料等工业部门小批量、多品种的生产。另外,间歇反应器中不存在物料的返混,对大多数反应有利。缺点是需要装卸料、清洗等辅助工序,产品质量不易稳定。 ②连续釜式反应器,或称连续釜 )。可避免间歇釜的缺点,但搅拌作用会造成釜内流体的返混。在搅拌剧烈、液体 粘度较低或平均停留时间较长的场合,釜内物料流型可视作全混流,反应釜相应地称作全混釜。在要求转化率高或有串联副反应的场合,釜式反应器中的返混现象是不利因素。此时可采用多釜串联反应器,以减小返混的不利影响,并可分釜控制反应条件。 大规模生产应尽可能采用连续反应器。连续反应器的优点是产品质量稳定,易于操作控制。其缺点是连续反应器中都存在程度不同的返混,这对大多数反应皆为不利因素,应通过反应器合理选型和结构设计加以抑制。 ③半连续釜式反应器。 指一种原料一次加入,另一种原料连续加入的反应器,其特性介于间歇釜和连续釜之间。
当前,水源污染日趋严重和给水水质标准提高的双重压力,对给水深度处理提出了更高的要求。作为以超滤为核心技术的第三代净水工艺,也在“与时俱进”中不断寻求着自身发展。近日,在“全国给水深度处理研究会2009年年会”上,中国工程院院士李圭白就浸没式膜生物反应器(SMBR)在饮用水处理领域研究的进展情况和与会代表进行了分享,他尤其强调浸没式膜生物反应器可高效降解水源中的氨氮,能够有效地应对氨氮突发污染。同时,在浸没式膜生物反应器(SMBR)基础上构建的一体化膜混凝吸附生物反应器(MCABR)在饮用水深度净化方面优势明显。浸没式膜生物反应器(SMBR)凭借占地面积小、出水水质优良等特点已在污水处理领域得到了广泛的研究和应用。而在饮用水处理领域,浸没式膜生物反应器(SMBR)技术还相对较新。据李圭白介绍,浸没式膜生物反应器(SMBR)由于通过底部曝气,可使反应器内始终保持充足的溶解氧,因而对高氨氮原水的处理效果明显优于生物活性炭工艺(BAC),所以可以更好地解决水源水中的氨氮污染问题,包括突发性的氨氮冲击负荷。而生物活性炭工艺(BAC)则因通过活性炭吸附和生物降解的协同作用可更高效地去除水中溶解性有机物。所以,研究人员尝试在浸没式膜生物反应器(SMBR)中投加粉末活性炭(PAC),构建出膜-粉末炭吸附生物反应器(MABR),以强化对溶解性有机物的去除。实验结果表明,在UF膜截留、微生物降解、粉末炭吸附的共同作用下,BDOC去除率为70.1%;AOC的去除率为48.5%,而应用浸没式膜生物反应器(SMBR),BDOC和AOC两者的去除率分别仅为69.8%和44.3%。此外,为进一步去除以憎水性大分子有机物为主的有机物,研究人员又尝试在浸没式膜生物反应器(SMBR)中直接投加混凝剂,构建出膜混凝生物反应器(MCBR)。实验表明:在生物反应器中直接进行混凝并不会对反应器中的微生物群落造成不良影响,而且在反应器中投加聚合氯化铝(PACl)进行混凝后,膜混凝生物反应器(MCBR)对溶解性硫酸盐的去除效率比浸没式膜生物反应器(SMBR)提高了76.9个百分点,同时,出水中几乎检测不到磷,使得出水生物稳定性得到显著提高。经以上研究,以李圭白为首的研究人员又尝试在浸没式膜生物反应器(SMBR)中同时投加混凝剂和吸附剂,构建一体化膜混凝吸附生物反应器(MCABR)。实验结果表明,单独UF对进水有机物去除能力较低,对DOC和UV254的平均去除率仅为11.1%和11.4%,而传统SMBR对去DOC和UV254的除率分别提高到19.4%和16.4%,这意味着生物降解作用对去除两个指标的贡献分别为8.3%和5.0%;当聚合氯化铝(PACl)投加到反应器中之后,膜混凝生物反应器(MCBR)对DOC和UV254的去除率分别达到44.0%和54.5%,表明聚合氯化铝(PACl)的混凝作用对DOC和UV254去除的贡献分别为24.6%和38.1%;当粉末活性炭(PAC)进一步头加到系统中后,一体化膜混凝吸附生物反应器(MCABR)对两个指标的去除率分别提高到63.2%和75.6%,表明在MCABR中PAC的吸附作用对去除DOC和UV254的贡献分别为19.2%和21.1%。可见,该一体化工艺饮用水深度净化功能优良。
求购GB/T 9966.6-2001天然饰面石材试验方法第六部分:耐酸性实验方法中要求的“反应器”。反应器:容积为0.02m[sup]3[/sup],深度250mm的具有磨口盖方缸;距上口和底20mm~30mm处各有一气口,内装试样架。找遍了都找不到在哪有卖,求各位大神帮帮忙。
核工业将产生混有放射性元素和有机溶剂的一些有机废弃物,通常的工艺方法无法处理,尤其是高浓度的含氯的化合物。基于以前在原子能和高压领域经验,我们进行了有前景的超临界水氧化工艺的研究:处理氯化的高污染性废物。超临界水氧化工艺有两个众所周知的局限,阻碍了非纯有机废物处理的工业化发展:腐蚀和盐阻塞。 几代反应器设计,都是为了克服这些缺点。这里介绍未来化学科技有限公司进行的策略和方法,用于获得最终的工业工艺,应用于核废物的处理。也提高了含氯和高浓度矿物盐的危险废弃物的热水处理。 废弃物处理至今仍是一个最有趣的话题。危险废弃物,如核工业产生的有毒化合物或放射性有机化合物,无法使用传统的生物处理或热处理。因而,一定要开发对人和环境无害的新方法。超临界水氧化工艺,用于有机化合物在超临界水(临界压力22.1 MPa和临界温度647 K)中进行处理,看起来是一项处理这些危险废弃物的好技术。 超临界水氧化的优点在于水在超临界条件下的特殊物理性质。超临界水的均相和高扩散使快速反应和获得高处理率成为可能。此外,氧化剂被限制并允许流出物控制。 碳氢化合物被完全氧化成CO2和水,有机化合物中的N形成分子氮N2和少量的N2O,因此气态流出物中没有污染物质,如NOx。杂环原子如氯、磷或硫的矿物酸,分别为HCl, H3PO4H2SO4。 这些酸和氧化剂产生了腐蚀环境,任何材料均会受到腐蚀的侵袭。这一现象在卤化化合物的出现时得到强化。为了防止反应器被腐蚀,经常加入碱金属作为中和试剂。这导致了无机盐的形成。一方面无机盐在常温常压水中有非常高的溶解性,另外一方面,他们在超临界条件水出是不溶的,因为超临界水的低密度和小介电常数。结果导致了盐的析出,并在管壁上结垢。腐蚀和盐析出是超临界水工艺的两个主要的局限。为了扩展超临界水氧化的应用,这些缺点必须得到克服。对于新的反应器,必须适用于处理非常危险的废弃物,如核燃料。我们未来化学科技有限公司花了几年的时间研究了合适的反应器。 目标废弃物主要包括由动力堆乏燃料后处理的液-液萃取的产物:萃取剂(如磷酸三正丁酯,TBP)、稀释液(如煤油)、以及有机流出物(如卤化溶剂)。 未来化学科技有限公司供应三种反应器:第一种是管式或高压釜式反应器;第二种是TWR专利反应器;第三种是设计用于含盐有机物或卤化核素的超临界水氧化的一种新型反应器: 既有防止釜体腐蚀的双层,又有能够获得更好传质和传热及防颗粒沉积的搅拌器。
[img=,285,332]http://ng1.17img.cn/bbsfiles/images/2017/06/201706231519_01_3194653_3.jpg[/img][url=http://www.bio-equip.com/show1equip.asp?equipid=4005835&division=9999]生物反应器现有应用:生物燃料 食品(人,动物)营养/ 保健制药 肥料 污染控制 颜料/生物活性化合物微藻 (真核生物等等)蓝藻(通常称为“蓝绿色的藻类如螺旋藻”,原核生物,如鱼腥藻和颤藻)生物燃料 食品(人,动物)营养/ 保健制药 肥料 污染控制 颜料/生物活性化合物微藻 (真核生物等等)蓝藻(通常称为“蓝绿色的藻类如螺旋藻”,原核生物,如鱼腥藻和颤藻)[/url]
我相买个微波反应器做化学反应,可以搅拌、控温、气体保护的哪种,发现很多都是微波消解的。个人感觉消解和微波反应是不同的,好像不能通用,不是很明白,请教下各位专家。另外,大家可以推荐些好的微波反应器不?
对于特定的反应过程,反应器的选型需综合考虑技术、经济及安全等诸方面的因素。 反应过程的基本特征决定了适宜的反应器形式。例如气固相反应过程大致是用固定床反应器、流化床反应器或移动床反应器。但是适宜的选型则需考虑反应的热效应、对反应转化率和选择率的要求、催化剂物理化学性态和失活等多种因素,甚至需要对不同的反应器分别作出概念设计,进行技术的和经济的分析以后才能确定。 除反应器的形式以外,反应器的操作方式和加料方式也需考虑。例如,对于有串联或平行副反应的过程,分段进料可能优于一次进料。温度序列也是反应器选型的一个重要因素。例如,对于放热的可逆反应,应采用先高后低的温度序列,多级、级间换热式反应器可使反应器的温度序列趋于合理。反应器在过程工业生产中占有重要地位。就全流程的建设投资和操作费用而言,反应器所占的比例未必很大。但其性能和操作的优劣却影响着前后处理及产品的产量和质量,对原料消耗、能量消耗和产品成本也产生重要影响。因此,反应器的研究和开发工作对于发展各种过程工业有重要的意义。