燃烧副产物

仪器信息网燃烧副产物专题为您整合燃烧副产物相关的最新文章,在燃烧副产物专题,您不仅可以免费浏览燃烧副产物的资讯, 同时您还可以浏览燃烧副产物的相关资料、解决方案,参与社区燃烧副产物话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

燃烧副产物相关的耗材

  • 全氟酰基咪唑(HFBI 和 TFAI)
    产品信息:全氟酰基咪唑(HFBI 和 TFAI)可对羟基、伯胺和仲胺进行有效的酰化* 定量反应,过程平稳,不产生酸性副产物*咪唑是主要的副产物,其惰性较高*极其适用于 FID 和 ECD 技术* 衍生物的基团虽然很大,但具有挥发性*衍生物与氟结合紧密,从而提高了稳定性 订货信息:全氟酰基咪唑(HFBI 和 TFAI)描述规格部件号数量HFBI5g dTS-442111 /包TFAI10 x 1mL 安瓿TS-488821 /包此订购表中的d代表购买此产品需交纳有害物质运输费用。
  • 阴离子色谱柱Metrosep A Supp 7 - 250/4.0,61006630,6.1006.630
    水处理中的副产物(消毒副产物)不仅可能危害健康,甚至可能致癌。因此羰基卤化物成为许多检测方法及标准的目标(例如 EPA 300.1 方法 B 部分、EPA 方法 317.0、EPA 方法 326.0)。首先针对那些饮用水臭氧化过程中由溴化物中产生的溴酸盐。Metrosep A Supp 7 - 250/4.0 是可以同时测定标准阴离子、羰基卤化物和二氯乙酸的高效分离柱。借助此柱甚至在低 µ g/L 范围内也可准确可靠地测定这些离子。使用 5 μm 的聚乙烯醇聚合物使其达到高度指示灵敏度,其基数极高,由此实现优秀的分离性能和指示灵敏度。此外,还可通过更改温度来针对特殊应用要求调整分离工作。
  • 皖仪 色谱柱 阴离子类分离柱
    广泛用于环境检测、食品检测等领域,等度条件下可测水中常见九种阴离子(含消毒副产物),亦可作常见7种阴离子快速分离。

燃烧副产物相关的仪器

  • Metrohm 燃烧炉-离子色谱联用系统 开启分析领域的新纪元。传统固态和高粘度样品分析方法(氧弹燃烧法)需要耗费大量人力,燃烧炉离子色谱联用系统可以取代传统方法,实现全自动分析,并且能够同时检测卤素和硫。由于可以在非常短时间内得到非常好的实验结果,因此燃烧炉离子色谱联用系统可以保证样品检测的高效性。原理在全自动分析过程中,样品先在氩气或者氦气氛围下在燃烧炉中热分解,随后被氧气氧化,所得气体产物会在吸收液中被吸收,之后吸收液样品进入离子色谱进行分析。燃烧炉离子色谱联用系统优势1.将一切可燃物质纳入离子色谱分析的范围2.可以同时检测卤素和硫元素3.可以同时对不同类型卤素的含量分别进行定量分析4.完全符合针对无卤产品的非常新的检测方法(RoHS,WEEE,&hellip &hellip .)5.样品检测通量高6.高准确度,高精确度,高稳定性7.可通过MagIC NetTM魔术师色谱工作站进行仪器控制和数据处理,并且所有信息可显示在同一个检测报告中。8.火焰传感器可确保样品能够在短时间内得到充分的燃烧。9.符合FDA和GLP标准。10.基于Metrohm公司独有的单标多点校正技术(MiPT),只需要一个标准品即可进行标准曲线绘制。11.只需一套自动进样系统,即可实现固体和液体样品的全自动进样。应用领域瑞士万通离子色谱与燃烧炉的联用系统,使得只要是能够燃烧的样品,均可通过燃烧炉离子色谱联用系统进行分析,因此该技术可在众多领域得到应用,例如:在原料,中间产物和之后产品的品质控制方面。而在环保方面,检测结果可以满足各种法规和标准的要求,如:DIN EN 228,IEC 60502-1,RoHS,WEEE等。以下领域和产品可以通过燃烧炉离子色谱联用系统进行检测:1.环保 油,废塑料,玻璃,活性炭 2.电子元件 电路板,树脂,电缆,绝缘材料 .3.燃料 汽油,煤油,原油,燃料油,煤炭,催化剂 4.塑料 聚合物,如聚乙烯,聚丙烯5.染料 色素,油漆6.医药 原料,中间产物,成品应用题目燃烧炉离子色谱联用技术测定S-苄基硫脲盐酸盐燃烧炉离子色谱联用技术测定高浓度RoHS指令标准分析参考物质(ERM-EC681k)燃烧炉离子色谱联用技术分析燃料中硫微波燃烧样品结合单标多点校正技术分析卤素燃烧炉离子色谱联用技术测定高粘性油样燃烧炉离子色谱联用技术分析残留溶剂燃烧炉离子色谱联用技术电缆绝缘材料燃烧炉离子色谱联用技术DMF-甲醇混合物燃烧炉离子色谱联用技术分析脱盐原油燃烧炉离子色谱联用技术测定高浓度RoHS指令标准分析参考物质(ERM-EC680k)燃烧炉离子色谱联用技术分析营养油中的氯浸出实验、燃烧炉离子色谱联用技术分析乳胶和PVC手套燃烧炉离子色谱联用技术分析燃煤燃烧炉离子色谱联用技术分析土壤、沉积物和岩石燃烧炉离子色谱联用技术分析表面活性剂中的氟化物燃烧炉离子色谱联用技术分析药物中碘燃烧炉离子色谱联用技术分析纤维素和矿物油燃烧炉离子色谱联用技术分析彩色显示器材料燃烧炉离子色谱联用技术分析对苯二甲酸燃烧炉离子色谱联用技术分析钛金属粉末燃烧炉离子色谱联用技术分析不同类型燃煤样品燃烧炉离子色谱联用技术测定地质对照品中的氟和氯
    留言咨询
  • 产品介绍燃烧在线离子色谱仪SH-CIC3200通过仪器的系统集成将前处理和检测过程完美结合,克服了传统离线裂解方法的不足,一切可燃物质均可经在线燃烧系统后进入离子色谱进行分析定量,大大提高了样品的分析通量;整个燃烧过程和吸收模块是由软件控制自动完成,中间不需任何人工干预,无需引入内标,简化了样品分析过程,避免了污染的引入,保证了分析结果的准确性和稳定性。在线燃烧原理燃烧在线离子色谱仪SH-CIC3200的检测过程中,样品首先在燃烧单元的低氧环境中热分解,随后在富氧环境中燃烧,燃烧产物经气体带入吸收单元吸收后直接到离子色谱进样分析,可完成对多类型卤素和硫的精确分析。应用领域1 电路板、废塑料,树脂材料,电缆、绝缘材料2 矿石、土壤。矿产原料、石油、煤炭、水泥、3 玻璃,活性炭、石墨材料4 医药原料,中间产物,成品5 可吸附有机卤素(废水)6 食品添加剂、纤维素、调味料。功能亮点A 同时完成可燃样品中多种卤素及硫的定性定量分析B 智能化程序控制,一键启动,即可自助完成样品分析C 精准的液路、气路控制模块,保证样品燃烧充分及良好的方法重现性D 内置存储模块,可为客户量身打造专用样品程序升级包,与仪器软件无缝对接E 独具匠心的裂解水预热设计及特别的石英燃烧管,保证裂解充分及持久,安全体验F 模块化的离子色谱,结合盛瀚自主研发技术及国外工艺于一身,保证结果可靠性四大组成模块(1)燃烧炉单元样品放入燃烧炉的样品舟后,样品舟在电机推动下缓慢进入燃烧室,完成燃烧后自动退出。整个燃烧过程由内部PLC的程序自动控制完成.一键启动,即可完成整个样品的处理;多达5个温区,样品经过不同的温区可选择不同的进样速度和停留时间,以达到样品优化处理方案的目的;程序可以进行保存,使得同一类样品采用同一程序进行测试;独特的裂解水预热设计,使水以高压喷雾形式进入燃烧炉,汽化后与载气混合更充分,显著减轻HX(HF)对燃烧管的腐蚀。(2)气体吸收单位样品在燃烧炉模块完成燃烧后,所产生的气体物质在载气的推动下,到达气体吸收单元进行吸收。此处吸收管内装有离子色谱作为淋洗液用的碱溶液,可以吸收燃烧产生的一系列气体。样品收集功能,测试完后可选择样品收集,以方便验证及做其他测试;气体吸收单元具有自动加吸收液、和自动冲洗管路的功能;Led指示灯及报警器,提示使用人员试验运行状态,避免操作者进行误操作。气体吸收单元的十通阀加六通阀设计,不仅可以完成燃烧炉燃烧的样品的测试,同时还可以作为自动进样器实现对外置10个样品的测试;(3)离子色谱分析单元离子色谱分析单元采用盛瀚CIC-D160型离子色谱仪,这是一款全新模块化设计的高稳定离子色谱仪,结合盛瀚自主研发核心技术产品和国外优秀机械加工工艺于一身,不仅在泵系统内集成了在线气液分离器,柱温箱采用变频循环立体风加热方式,确保分析结果的准确性和可靠性。内置循环式立体恒温技术;全塑化流路系统,配套独有的在线脱气和气液分离技术;一体化主机,模块化设计,即插即用,自动识别;连续自再生微膜抑制器,无需手动加酸再生,平衡快,抗污染。(4)智能操作软件;系统的工作参数通过电脑进行控制,离子色谱仪测的数据通过工作站软件进行显示及后续处理。国内领先的燃烧在线离子色谱仪,显示所有仪器参数。燃烧在线离子色谱仪与离子色谱控制软件集成于一体,使用方便;适合中国人习惯的中文界面,操作设置简洁明了;实时显示运行状态,可监测仪器正在运行至程序的哪一个步骤;具有手动和自动两种控制模式,方便用户开发及仪器维护。为了解决全氟和多氟化合物引起的全球性问题,盛瀚SH-CIC 3200在线燃烧离子色谱提供了全氟和多氟化合物非靶向的筛查方法,可快速、稳定且有效的检测样品中氟氯溴离子的含量。图 氟氯混标测试SH-CIC 3200测定PFAS具有以下技术优势:1.燃烧-吸收-分析过程全自动化处理,测定结果准确度和精密度高;2.一次进样可同时分析样品中总有机氟、总有机氯、总有机溴和总有机碘的含量;3.具有23位自动进样功能,可节省人工;4.燃烧具有5段温区设计,保证样品充分燃烧,有机卤素释放彻底,重复性好;5.样品及标样均通过同一燃烧通道,保证测定结果的准确性;6.冷凝装置低温密封性好,可实现高温气体冷却,为在线吸收做好预处理;7.吸收液在线自动配制,有机氟释放彻底,在吸收液中完全以离子形式存在,样品基质消除完全;8.吸收装置具备富集浓缩功能,可完成痕量物质检测;9.吸收装置具备留样功能,方便样品追溯;10.可测定限度低至ppb级的氟和其他卤素。
    留言咨询
  • ETHOS X微波无溶剂天然产物提取(SFME)技术是Milestone公司对微波化学又一贡献,为研究者提供一个绿色、快速提取香精油的技术平台,是香精油提取萃取、中药有效成分提取和食品香料提取的较好方法。与常规的水蒸气蒸馏相比,效率大幅提高, 5-8min即可得到第一滴精油,40min左右即可完成常规水蒸气蒸馏需要数小时的提取过程 绿色环保的提取过程,无需添加任何溶剂提取过程无需添加任何的有机溶剂或水提取后可直接用于GC-MS分析,无需溶剂蒸发浓缩和溶剂置换的繁琐操作 高纯提取提取时间和水分的大幅减少显著降低了化合物的热分解和副产品的出现 多种配置可选2L、5L、12L多种提取容量用于工业生产的机型具有150L提取腔,可容纳75kg物料专门配置的挥发性精油和不挥发香精提取方案
    留言咨询

燃烧副产物相关的方案

燃烧副产物相关的论坛

  • 消毒副产物疑问

    各位大神,电解食用盐产生次氯酸钠用于饮用水消毒,会产生什么副产物,产生的副产物对人有害吗,网上查资料说会产生有机副产物

  • 副产物和副产品的区别?

    [font=仿宋_GB2312][size=21px][color=#6b6b6b]答:《固体废物鉴别标准—通则》明确:目标产物(通俗可理解为产品)在工艺设计、建设和运行过程中,希望获得的一种或多种产品,包括副产品。副产物是指在生产过程中伴随目标产物产生的物质。副产品是确定的,在环评阶段就明确的,应有相应的产品质量标准。[/color][/size][/font]

  • 问:副产物和副产品的区别?

    答:《固体废物鉴别标准—通则》明确:目标产物(通俗可理解为产品)在工艺设计、建设和运行过程中,希望获得的一种或多种产品,包括副产品。副产物是指在生产过程中伴随目标产物产生的物质。副产品是确定的,在环评阶段就明确的,应有相应的产品质量标准。

燃烧副产物相关的资料

燃烧副产物相关的资讯

  • 国标在手-消毒副产物检测不用愁!
    国标在手-消毒副产物检测不用愁!关注我们,更多干货和惊喜好礼上周五(2020.4.24),生态环境部标准《HJ 1050-2019 水质 氯酸盐,亚氯酸盐,溴酸盐,二氯乙酸和三氯乙酸的测定 离子色谱法》已经开始实施啦。消毒副产物(DBPs)的监测,正式从生活饮用水、矿泉水,扩展到环境地表水,地下水,生活污水和工业废水领域。这一系列标准方法,为水质中DBPs的全方位监测提供了技术支撑,为中国大地提供了全方位的水质安全保障。新冠病毒来袭,勤洗手、戴口罩、定时通风和消毒,成了老幼皆知、妇孺共守的日常习惯。“宅在家里消消毒,买菜回来消消毒,出入小区消消毒。”一场疫情,让消毒剂成了普通人大战新冠病毒的必备武器。但也有人担心,大量使用的消毒剂作为生活废水排放是否会引发健康风险?如何保证饮用水的安全引起了大家的广泛关注。其实对于饮用水问题,大家不用如此焦虑,无论是废水还是饮用水的排放,我国都有严格的卫生标准和规范。众所周知,无论取自何处的源水,都有被病毒,细菌和寄生虫卵等多种微生物污染的可能。为了防止通过饮水传染疾病,对饮水进行化学消毒是国际上公认和普遍采取的消毒工艺。 飞飞:国内水质采用何种消毒方式?赛老师:化学消毒方式(氯剂、二氧化氯和臭氧消毒)是主流消毒方式。 飞飞:消毒副产物是什么?如何产生的呢?赛老师:采用化学消毒工艺时,消毒剂不可避免的会与饮用水中的一些天然有机物或者无机物反应生成不同消毒副产物(DBPs)。 飞飞:DBPs主要包括哪些物质?有什么危害?赛老师:DBPs主要是三卤甲烷,卤代乙酸和卤氧化物等,大多具有较强的致癌性、致突变和致畸性。溴酸盐被国际癌症研究机构认定为2B级潜在致癌物质。 飞飞:DBPs有什么监测手段?赛老师:可采用GC、HPLC、IC进行监测。其中极性较强的卤代乙酸和卤氧化物,采用IC法具有操作简便、灵敏度高、选择性强等优势。 国标中消毒副产物限量多少? 高“三致”危害,必然有严格的限量规定。《GB 8537-2018食品国家安全标准 饮用天然矿泉水》将溴酸盐含量限定为10ppb。《GB 5749-2006生活饮用水卫生标准》对居民饮用水中卤氧化物和卤代乙酸进行了严格限定。 DBPszui大允许浓度BrO3-10ppbDACC50ppbTACC100ppbClO2-0.7ppmClO3-0.7ppm国标中的消毒副产物检测方法对于卤氧化物的测定,《GB/T 5750-2006》《GB/T 8538-2016》以及正式实施的《HJ 1050-2019》均推荐抑制电导-离子色谱法;对于卤代乙酸的测定,《GB/T 5750-2006》推荐衍生化气相色谱法,正式实施的《HJ 1050-2019》推荐与卤氧化物同时一次进样完成分离测定。 赛默飞消毒副产物监测方案方案壹抑制型电导-离子色谱法测定水中亚氯酸盐,氯酸盐,溴酸盐,二氯乙酸和三氯乙酸常规7种阴离子和5种消毒副产物分离色谱图优势赛默飞-抑制电导-离子色谱法(IC-CD)测定卤氧化物和卤代乙酸,具有以下优势:1. 样品无需前处理,过滤后即可上机测试;2. 无需柱前或柱后衍生化操作,直接测定;3.特色高选择性离子交换色谱柱(IonPac AS27),提供强极性离子形态和价态的差异化分离;4.特色高容量离子交换色谱柱(IonPac AS27),提供高样品基质兼容能力,兼容生活污水及工业废水等复杂基质;5.水质中5种消毒副产物的检出限可达0.43-1.53ppb;6.满足HJ 1050-2019 、GB/T 5750.10-2006、GB/T 8538-2016的检测要求;Thermo Scientific™ Dionex™ Integrion 离子色谱仪“只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图赛默飞Integrion高压离子色谱只加水技术,提供简单、方便、高效和高灵敏度的分析选择。方案贰 离子色谱-质谱法(IC-MS)测定水中卤代乙酸和卤氧化物 质谱利用质荷比进行化合物的定性筛选,是理想特异性检测器,离子色谱串联质谱法(IC-MS/MS)比抑制电导-离子色谱法具有更高的选择性、灵敏度和更少的假阳性。对于消毒副产物的检出限,IC-MSMS法可低至0.01-0.27ppb。赛默飞IC-MSMS方案,除满足碘乙酸、二氯乙酸、三氯乙酸及卤氧化物等热门DBPs的定性定量监测外,还可扩展完成所有氯代和溴代卤乙酸的分析测定。碘乙酸,二氯乙酸,三氯乙酸和卤氧化物9种卤代乙酸优势赛默飞提供du家的离子色谱和质谱自由平台,在IC-MSMS联用方面具有独特的技术优势:1.离子交换分离端兼顾抑制电导-离子色谱法所有技术优势;2.联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;3.质谱检测器的HESI II离子源探针盐耐受能力强,稳定性好;4.质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;5.Chromeleon 变色龙统一软件操作平台,实现离子色谱和质谱的同时控制。离子色谱串联质谱(IC-MSMS)抑制器脱盐原理图总结从抑制电导-离子色谱法到高端的离子色谱串联质谱(IC-MSMS),赛默飞提供了水质中卤代乙酸和卤氧化物的完整分析解决方案。消毒剂使用Tips:1. 按照说明书,合理使用消毒剂,避免和减少消毒剂的滥用。2. 各类消毒剂应单独使用,不要混合使用。3. 消毒产品只能用在说明书标识的对象上,不可超范围使用。4. 严格按照说明书浓度配制消毒剂,保证说明书最少消毒时间。5月7日赛默飞将云集国内外大咖 携HPIC高压离子色谱助您加速启程 探索离子世界扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 水中的PM2.5?——饮用水中的消毒副产物
    清华大学环境学院国家环境模拟与污染控制重点实验室陈超课题组,曾在对全国饮用水系统中亚硝胺类消毒副产物进行普查时发现,中国是世界上亚硝胺检出情况最多样的国家,其中亚硝基二甲胺(NDMA)的浓度最高。流行病学研究表明,亚硝胺与消化道癌症密切相关,它也被认为“像极了当年空气污染中被忽视的PM2.5。”亚硝胺(亚硝基二甲胺,NDMA)是一类新型的饮用水消毒副产物,其中NDMA是亚硝胺类消毒副产物的典型代表。而除了亚硝胺外,饮用水中的消毒副产物还有多种不同类别。这些消毒副产物是怎么产生的?总有机碳(TOC)与消毒副产物之间是什么样的关系?有机物的监测在饮用水处理过程中起到什么样的作用?下面小编来为大家普及一下。?什么是消毒副产物?消毒副产物(DBPs)是自来水厂原水中天然来源的有机物(NOM)在水厂的氯消毒过程中,交互作用而产生的。NOM被作为总有机碳(TOC)来代表性的测量。DBPs,例如三卤甲烷(THMs),随着水流经水系统的分配管路和接触时间的增加而持续生成。中国的GB 5749-2006《生活饮用水卫生标准》早在2006年就已改版升级,其中包括了总三卤甲烷(THMs)的限定指标,对于特殊的三卤甲烷做了单独的限定,同时对卤乙酸(HAAs)和其它特殊的消毒副产物也做了限定,但还没有将亚硝胺类物质纳入其中。升级后的标准可以帮助减少消毒副产物对身体健康带来的危害,同时也使TOC水平和与之相关的消毒副产物的水平成为评价一个水厂的重要因素。你知道吗消毒副产物的研究历程水的消毒历程中曾有各种副产物被发现1974年美国人发现用Cl2消毒不仅可以引起嗅觉和味觉上的反应,还可以产生三氯甲烷1976年美国环保署调查发现总三氯甲烷(TTHMs)存在于氯消毒后的饮用水中1983年Christman等发现卤乙酸(HAAs)普遍存在于氯化消毒后的饮用水中1983年发现臭氧消毒副产物溴酸盐1989年发现消毒副产物卤代呋喃酮1990年发现消毒副产物卤乙腈(HANs)1997和2000年先后发现卤代硝基甲烷消毒副产物1998年发现消毒副产物亚硝基二甲胺2000年发现二氧化氯消毒副产物2002年发现卤乙酰胺(HAcAms)消毒副产物2006年前后发现UV消毒副产物*数据来源于网络TOC如何涉及到DBPs?饮用水原水(未净化的水)中的TOC来源于自然界中的植被腐烂,包括水中的藻类、沉积物和颗粒物。水源水中TOC的浓度随着地区的不同,水体类型的不同,甚至是水源季节性的不同而不同。例如,经常在天气炎热季节时发生的藻类的开花,可以大量增加水源水中的有机物。TOC也在原水当中,随着水源地的迁移而增加,例如,水源地在沼泽附近、陆地径流或河道水之间的迁移。自然界原生的碳化合物自身没有危害,但这些碳化合物和消毒剂结合后会产生消毒副产物,这些消毒副产物就涉及到了人身健康。一些对实验室动物的研究表明DBPs可以致癌。THMs,这些一级消毒副产物,可以由TOC和自然界天然的溴化物在加氯消毒过程中交互作用形成。(见图一)图一、由TOC、溴化物、氯形成THMs典型的消毒包括一级消毒和二级消毒,一二级消毒能够在处理过程中产生消毒副产物。许多自来水厂的消毒副产物在进水口到除色除味工序的预氯化过程中产生,絮凝沉淀和过滤工艺不会完全除去消毒副产物,并且在前面发生的二级消毒到进入管网系统过程中会产生额外的的消毒副产物。消毒副产物的水平会在管网系统中从一点到另一点发生显著的变化,在水流经管网系统的过程中还会持续生成。DPB的水平在地表水系统中通常比较高,因为地表水中通常含有相对较高浓度的TOC,它是DBP的前体物质,需要有更强的消毒。大多数自来水厂在他们的水处理工艺中去除颗粒物是没有问题的,但在去除DOC(可溶解性的有机物)上就有困难了。DOC是TOC最主要的组成部份,占据了TOC组成物质的绝大部分。TOC由可溶解的有机物和不可溶解的颗粒有机物组成。DOC可以通过将水用0.45微米的前处理系统过滤后,用TOC分析仪准确测得。一些自来水厂已经走在了前面,他们开始用TOC和DOC浓度来描述他们的全部生产工艺。这需要完成对自来水厂内所有点和全部的处理流程的TOC或DOC的分析,确定哪里的TOC或DOC的浓度发生或没有发生显著下降。中国饮用水质量标准综述最新版GB 5749-2022《生活饮用水卫生标准》将于2023年4月1日取代2006版标准正式开始实施。新标准规定的部分指标限值更加严格,对许多特殊的消毒副产物做了严格限定。新标准中对总三卤甲烷的限定仍延续为1 mg/L,对一些特殊的三卤甲烷的限定更低。如:对三氯甲烷的限定是0.06 mg/L,对三溴甲烷的限定是0.1 mg/L。对总卤代乙酸没有做总量控制,但对特殊的二氯乙酸的限定为0.05 mg/L,对三氯乙酸的限定为0.1 mg/L。新标准进一步将检出率较高的一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷、二氯乙酸、三氯乙酸6项消毒副产物指标从非常规指标调整到常规指标,以加强对上述指标的管控。同时,考虑到氨(以N计)的浓度对消毒剂的投加有较大影响,将其从非常规指标调整到常规指标。并新增亚硝基二甲胺为水质参考指标。新标准中在中国被控制的DBPs,以及它们的限定指标见表一。表一、中国饮用水标准控制污染物(GB 5749-2022)指标限值总三卤甲烷(mg/L)(THMs)该类化合物中各种化合物的实测浓度与其各自限值的比值之和不超过1三氯甲烷(mg/L)一氯二溴甲烷(mg/L)二氯一溴甲烷(mg/L)三溴甲烷(mg/L)0.060.100.060.10卤乙酸(mg/L)未做总量控制二氯乙酸(mg/L)三氯乙酸(mg/L)0.050.10溴酸盐(mg/L)(使用臭氧消毒的工厂)0.01亚氯酸盐(mg/L)(使用二氧化氯消毒的工厂)0.70结论中国正在解决清洁水质这一国家优先事项,因此饮用水行业会面对法规的挑战。为了将DBP的水平控制在标准的限定以下,一个自来水厂应该全面了解他们水厂的水源和管网内的DBP前体的情况特征。自来水厂内大部份的维护工作应包括全厂TOC水平的监测,明白厂内处理工艺如何会遇到TOC问题。知道自来水厂内哪里的TOC正在被去除和没有被去除,能够帮助一个水厂对处理工艺做合适的改进,防止今天的TOC变为明天的DBPs。◆ ◆ ◆联系我们,了解更多!
  • 论副产物、副产品与危险废物的概念的界定与异同——刀还是那把刀吗?
    一、背景和问题的提出近年,以副产物/副产品的名义非法转移、处理和处置危险废物的案件时有发生,引起大家普遍的关注。关于副产物/副产品“属性”的界定成为焦点。到底什么是“副产物”,副产物与副产品是什么关系,副产物/副产品可能是废物吗?本文试图分析和界定副产物、副产品与危险废物三者概念的异同,为环境管理工作提出建议。本文将重点论述如下问题:01危险废物和危险化学品概念上有何异同,废弃的危险化学品一定是危险废物吗?02副产物和副产品概念上有何异同?03企业的产物仅限于“产品”和“废物”两种吗?04企业自行制定的产品质量标准合法有效吗?05环保上对产品与废物的界定符合“产品质量法”和“标准化法”的要求吗?06危险废物和副产物、副产品如何界定,有何异同?07不满足强制产品质量标准的产品就是废物吗,可以出售吗?08杀人的刀与切菜的刀在性质上是否相同,监管的对向应该是刀还是人?二、主要依据●《中华人民共和国固体废物污染环境防治法》(2020年4月29日修订),以下简称“固废法”●《中华人民共和国产品质量法》(2018年12月29日修正),以下简称“产品质量法”●《中华人民共和国标准化法》(2017年11月4日修订),以下简称“标准化法”●《中华人民共和国消费者权益保护法》(2013年10月25日修正)●《危险化学品安全管理条例》(2013年12月7日修正)●《中华人民共和国标准化法实施条例》(1990年4月6日)●《危险废物鉴别标准通则》(GB 5085.7-2019),以下简称“危废鉴别通则”●《固体废物鉴别标准通则》(GB34330 -2017),以下简称“固废鉴别通则”●《国务院关于印发深化标准化工作改革方案的通知》(国发〔2015〕13号)●《贯彻实施行动计划(2015-2016年)》(国办发〔2015〕67号)三、基本定义本节将基于相关法规和标准,对副产物、副产品、危险化学品、固体废物和危险废物进行定义。1. 产品 products《产品质量法》第二条:本法所称产品是指经过加工、制作,用于销售的产品。2. 目标产物 target products固废鉴别通则GB34330第3.6节:是指在工艺设计、建设和运行过程中,希望获得的一种或多种产品,包括副产品。3. 副产品[1] by-products 副产品是企业在生产主要产品的同时,从同一种原材料中,通过同一生产过程附带生产或利用生产中的废料进一步加工而生产出来的非主要产品。主副产品的区分并不是绝对的,甚至可以相互转化。原来的副产品,由于新的用途而提高售价,就可能从副产品上升为主产品。例如,焦炭与煤气就取决于企业的生产目标,以生产煤气为主的企业,煤气为主产品,焦炭为副产品;以生产焦炭为主的企业,则反之。副产品虽然与主产品同时生产出来,但其价值与主产品相比要小。注:[1]未查询到法规标准对副产品的定义,引自王文元,夏伯忠.新编会计大辞典:辽宁人民出版社,1991-01。4. 副产物 by-products固废鉴别通则GB34330第3.7节:是指在生产过程中伴随目标产物产生的物质。马哥评述:副产物不属于目标产物,而副产品属于目标产物的一种。副产物未必是副产品,但是副产品一定是副产物。GB34330中副产物的英文翻译是by-products,副产物与副产品又似乎是同一个意思。但是,“目标”二字带有强烈的“主观”色彩:企业基于何种目的生产呢,商业活动都是“逐利”的,其目标必然是价值的最大化,也因此企业会尽可能将的副产物划分为副产品。“产品”与“废物”在理化特性上没有本质差异,其界定原则仅体现在“利用价值”和是否“废弃”上。因此,其界定的核心和概念上的边界在于认定是否具备产品属性(也称为资源属性),还是废物属性。具备资源属性的副产物可以作为副产品,没有资源属性的副产物则可能是废物。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制