腔体相互作用

仪器信息网腔体相互作用专题为您整合腔体相互作用相关的最新文章,在腔体相互作用专题,您不仅可以免费浏览腔体相互作用的资讯, 同时您还可以浏览腔体相互作用的相关资料、解决方案,参与社区腔体相互作用话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

腔体相互作用相关的耗材

  • 质谱仪真空腔体
    质谱仪核心部件高真空腔体,材料选用6060-T6,通过五轴一体加工成型,再结合精密的抛光和表面处理工艺,综合公差保证0.01以内,不仅可以保证长期保压状态下的真空度,而且可以满足在设备里长期使用的稳定性。支持不同规格及不同材质的定制。
  • 安捷伦 收集极腔体G1531-20740
    FID维修部件部件号 :G1531-20740收集极腔体
  • 安捷伦 6890气相色谱 19256-60510 PMT 腔体组件
    维修部件部件号 :19256-60510PMT 腔体组件FPD 光电倍增管(PMT) 和固定架组件说明部件号收集极后盖G1535-80520加热器/传感器组件G1535-60610传输管线支架19256-00320固定架/支架G1535-00010硫滤光片,7890 和较新型号的6890* 1000-1437硫滤光片,蓝色,早期型号6890* 19256-80000磷滤光片19256-80010滤光片垫片,仅与火焰光度检测器硫滤光片配合使用(部件号1000-1437) 19256-20910PMT 腔体组件19256-60510双FPD 排放管,前G1535-00030

腔体相互作用相关的仪器

  • Creoptix总部位于瑞士。拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry ,GCI)的光学生物传感器专利,以及外置的微流控的设计和Google公司研发的自动化软件。Creoptix致力于提供高质量的动力学数据,拥有业内高度灵敏准确的WAVE 系统,使全球生物科学研究者可以做以前不可能做的事情,看到以前看不见的数据。避开了SPR的限制,突破无标记技术的局限。Creoptix公司于2022年1月被马尔文帕纳科公司收购。WAVE分析互作仪 创新的无标记检测技术配合防堵塞微流控芯片和自动化检测软件,为您提供高质量的结合动力学数据,并适用于多种样品类型。高信噪比&灵敏度专利的光栅耦合干涉(Grating-Coupled Interferometry,GCI)技术,赋予WAVE系统超越传统SPR技术的检测灵敏度和时间分辨率。不同于SPR技术,Creoptix WAVE GCI产生的消逝波(evanescent field)仅在芯片表面与样品溶液接触,并且延长了其与样品相互作用的长度,以确保更低的信噪比(0.015pg/mm2)。凭借WAVE分子相互作用仪的低检测限,可轻松获取无标记互作分子高精度的动力学速率,亲和常数及浓度数据。即使检测丰度较低的样品,仍可确保数据不失真。创新型微流控芯片防堵塞设计微流控芯片适用于多种不同类型样品,确保样品活性和生物学特性,节约了纯化步骤所需时间以其他设备脱机、堵塞等问题可能耗费的时间。高时间分辨率准确的表征解离速率大于10s-1的分子间相互作用的动力学。灵活的组合兼容48,96,384板任意组合,120h无人值守运行。智能软件从方案建立,数据分析到报告生成的每一步均可利用向导设计来简化,让您工作更加轻松高效。应用范围 分析领域:分子相互作用模式的研究;动力学常数的测定;亲和常数测定,浓度的测量及构象变化的速率等。 生命科学研究领域:蛋白质组学研究、癌症研究、新药研发、信号传递、分子识别、热力学分析、免疫调节、免疫测定、疫苗开发、瞬时结合、配体垂钓、结合特异性、结构与功能的关系及酶反应等。 分析样品类型:小分子化合物、多肽、蛋白质、寡核苷酸、寡聚糖到类脂、脂质体,噬菌体、病毒样颗粒和细胞等。
    留言咨询
  • 仪器简介:FT-SPR 可以检测多层生物膜组装过程,可以检测更大或更小的分子与微粒。其动态检测范围在所有 SPR 检测仪中最为广泛。 FT-SPR 除了可以获得分子相互作用的信息,还可以配置完整的傅立叶红外光谱功能:可进行 ATR、DRIFT、PMIRRAS、VCD、Raman 等测试;通过 FTIR 中的不同检测模块可检测到相关的红外光谱,获取生物样品分子结构的信息。甚至可以与液相色谱联机检测。主要特点:赛默飞世尔分子光谱部以其近四十年傅立叶变换红外(FTIR)技术结晶结合最新的 SPR 专利技术【U.S. Patent No. 6330062】成功的发展了傅立叶变换型等离子共振技术(FT-SPR),并以此为基础推出了崭新的 FTSPR 检测模块 — SPR 100。利用成熟的傅立叶变换红外光谱仪在多通道技术与波数精度方面的优势使 SPR 检测很容易达到传统的基于角度变化的 SPR 检测所无法企及的高灵敏度与快速测试。通过检测由折射率变化引起的波长变化可以监测到吸附层大约 1 Å 的有效膜厚变化。甚至,需要超高灵敏度的亚单分子层测试也可通过 FT-SPR 技术实现。
    留言咨询
  • 定量的表征生物大分子间的相互作用,如抗原/抗体、酶/抑制剂、蛋白质/多糖等重要生物学体系,是生命科学研究及生物技术研究的关键。 Calypso是一个以组分-梯度多角度光散射(CG-MALLS)为基础的生物大分子间相互作用分析系统,可以快速、自动、无损、定量的表征大分子间的相互作用,具有重复性高、灵敏度高及无需样品修饰等诸多优点。该系统可以分析分子间的特异性及非特异性相互作用,聚集或解离的动力学等。对于分子间的特异性相互作用,Calypso可以测定其自聚作用及不同样品分子间的异聚作用,得到平衡解离常数Kd及反应的化学计量数。对于非特异性相互作用,可以测定其维力系数,并判断分子间的作用力及强度。此外,Calypso还可以测定反应的动力学,样品的重均分子量及均方根半径等重要分子信息。 Calypso分析系统无需对样品进行修饰(荧光标记、固定化等),且在溶液环境中测量,因此可以最大程度的保证样品的天然状态,从而得到其他技术难以得到的结果,最真实的表征生物大分子间的相互作用,样品方便回收。Calypso分析系统的工作原理:组分-梯度多角度光散射(CG-MALS)是最新的分析技术之一,利用分子量的变化测定分子间的相互作用。溶液中大分子的散射光强依赖于物质的浓度C和重均分子量Mw,分子间发生复合,Mw则增加。例如,若所有的蛋白质分子以二聚体形式出现,则散射光强也会增倍。对于可逆的聚集,蛋白与单体蛋白复合的比例会达到一个平衡值,这个值依赖于每种蛋白初始的浓度和缓冲液的条件。不同的组成和浓度会导致Mw不同。通过分析一系列不同组成和浓度的光散射结果,可以确定所发生的聚集形式、各自的结合亲和力Ka、结合和解离平衡常数。手动配制比例及测量是一项繁琐、费时间且容易产生操作误差的工作,Calypso系统通过自动化的过程克服了CG-MALS手动操作的困难,将样品配制、输送及数据的采集和分析集合于一体,完美的保证了实验的重复性,并解决了人工配制样品时引入操作误差的问题。 技术优势1. 智能化配样,消除了手动配样时的误差问题;2. 样品直接测试,无需标记化或固定化,最大程度的保证了样品的天然状态;3. 快速的测定时间,半小时即可测得实验结果;4. 适用于各类生物反应体系的测定;5. 体系中自聚及不同样品分子异聚的分析;6. 化学计量点,平衡常数的分析,平衡常数范围:pM &ndash mM;7. 反应动力学的分析;8. 与激光检测器、浓度检测器联用,快速测定物质的Mw、Rg、A2、A3;获取Zimm图; 应用领域:1. 酶反应体系:酶与抑制剂的相互作用,酶促动力学等2. 药物探索:药物对蛋白质间相互作用的影响等3. 免疫研究:抗原/抗体的相互作用等4. 方法改进:测定及调整第二维力系数,帮助纯化抗体,确定多聚体的组成,确定样品的最优溶解条件等。5. 结合特异性:化学计量点,平衡常数,离子强度、pH或者辅料对多聚物或者蛋白结合的影响等。6. 多分子复合物的结构分析:在一系列缓冲溶液、时间、温度变化下,表征大分子聚集过程中分子间的结合强度, 以及确定其化学计量关系,通过Mw及Rg判断其空间构型。
    留言咨询

腔体相互作用相关的试剂

腔体相互作用相关的方案

腔体相互作用相关的论坛

  • 【分享】美找到自旋轨道强相互作用新材料 显示不凡性质

    近日美国能源部阿尔贡先进光源(APS)实验室研究发现,一种含有重元素铱的氧化材料,受到铱5d层价态上的自旋轨道相互作用的控制,显示出非同寻常的性质。该研究成果发表在近期《物理评论快报》上。  该研究由阿尔贡APS国家实验室、肯塔基大学、橡树岭国家实验室以及北伊利诺伊州立大学联合开展,在APS的X射线科学分部用4-ID-D光束,对一种名为三氧化钡铱的多晶体进行了X射线吸收和磁环双色探测,在铱的5d层价态分析了电子自旋、轨道角动量和自旋轨道耦合。  研究人员本来认为,铱在5d层的电子波会和邻位有很强的重叠并“绑”在一起,再加上一个来自氧离子的强大晶体场围绕着铱离子,5d层电子的角动量和自旋轨道相互作用几乎会“被消灭掉”。这次研究却发现,5d层电子存在很大的轨道角动量,约是它们自旋角动量的3倍,由此在铱原子中形成很强的自旋轨道耦合。  由于固体性质由其组成原子的外层价电子所决定,如由相邻原子的电子云重叠而形成的晶体场等强相互作用。但当固体中自旋轨道相互作用力起重要作用时,就会显示出有趣的性质:如在含有稀土的永磁体材料中,位于4f层的电子引起的磁性,会被材料中相邻电子5d层和6d层的价效所屏蔽。它们的自旋轨道耦合时,自旋对称被打破,将4f层的磁性运动固定到特定的晶格方向,由此产生了很强的永磁效果。  研究人员迈克尔·万·威内达尔说:“这种新材料的基本状态不是由强晶体场作用而是由自旋轨道作用和库仑作用这种较弱的力来最终决定。”  领导该研究的APS物理学家丹尼尔·哈斯克说,研究自旋轨道耦合具有重要意义,这种类原子行为可用于化学掺杂,破坏材料中的磁序。  研究人员称,与砷化镓相比,弱绝缘性的三氧化钡铱自旋轨道相互作用更强,过渡金属氧化物的自旋轨道特征可能更加适于自旋控制设备。  作为下一代自旋电子设备,自旋晶体管有着巨大的应用前景。开发自旋晶体管需要找到具有大量电子自旋轨道的新型材料。由于自旋轨道的相互作用是随着原子数量而迅速增加,含有重元素的材料成为该领域的最佳候选。  在半导体中,自旋轨道耦合可以通过电场调节自旋累积来控制,这是开发自旋晶体管的一个很有前途的方向。比如开发自旋电子设备,基于电子自旋而不是所带的电荷,能使其功能更加强大、速度更高而且能耗更低。

腔体相互作用相关的资料

腔体相互作用相关的资讯

  • 国内科研市场调查:大分子相互作用仪100%进口
    高校及科研院所重大科研基础设施和大型科研仪器是国家科技基础条件资源的重要组成部分。但由于管理模式及制度,生物大分子相互作用仪等科学仪器设备不对外开放,大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决此问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。仪器信息网对平台高校和科研院所上传的生物大分子相互作用仪的品牌、型号、应用领域等进行统计分析,在一定程度上可反映科研领域中生物大分子相互作用仪的市场现状。希望能帮助正在选购仪器的同学,或苦于寻找仪器共享平台的科研工作者,或对此类仪器市场感兴趣的工作人员。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)。国产缺席,100%进口统计高校和科研院所在全国仪器共享平台上传的数据,截止2021年6月3日,平台上生物大分子相互作用仪的总数量为173台,其中美国Cytiva、德国Sartorius和NanoTemper三家市场占有率超9成,其中,美国Cytiva独自占比58%;Sartorius占比26%,排名第二;NanoTemper占比7%,排名第三。在高校和科研院所中占据优势地位。除此之外,美国Plexera、Biosensing Instrument、Reichert、加拿大Nicoya、法国HORIBA scientific等品牌在市场上也占据少量份额。近年来,生物大分子相互作用仪市场参与品牌日益增多,技术路线多样,产品日趋多样化,市场迎来“百花齐放”的新局面。但本次调查中未出现国产品牌。全国共享生物大分子相互作用仪品牌分布全国共享生物大分子相互作用仪产地分布从全国共享生物大分子相互作用仪型号分布来看,最受高校和科研院所青睐的型号为美国Cytiva的Biacore T200、其次是德国Sartorius的Octet RED 96和美国Cytiva的Biacore X100,仪器共享数量分别为45台、32台和31台。热门型号top10中还包括Biacore 3000、Monolith NT.115、Octet K2、Biacore 8k、PlexArray、Octet QKe和Biacore T100,其中Monolith NT.115和PlexArray分别属于德国NanoTemper和美国Plexera。全国共享生物大分子相互作用仪热门型号top10从调查结果来看,高校和科研院所用的生物大分子相互作用仪被进口品牌垄断。一方面是出于科研需求,科研团队需要采用精度更高,技术更先进的高端仪器,而大部分国外高端科研仪器水平相对较高,因此导致了目前的垄断局面。另一方面,是国产仪器起步相对较晚,国内整体的制造技术水平较欧美发达国家落后一截。资源分布不均,北京独占鳌头统计高校和科研院所在全国仪器共享平台上传的数据发现,平台上生物大分子相互作用仪所属学科领域的分布以生物学、药学、基础医学和化学为主,其中生物学独占鳌头,占比达61%。此外,生物大分子相互作用仪在临床医学、中医学和中药学和食品科学技术等领域发挥越来越重要的作用。全国共享生物大分子相互作用仪学科领域分布全国共享平台上生物大分子相互作用仪涉及27个省份、直辖市、自治区。北京以38台的生物大分子相互作用仪数量高居榜首,其次是山东、上海、江苏、辽宁、湖北和广东,生物大分子相互作用仪数量分别17台、14台、13台、12台、12台12台。从全国共享生物大分子相互作用仪分布图不难看出,仪器资源集中分布在高等教育强省,这一方面与各省份的高校数量和质量有关,另一方面则是受到国家科研经费的制约。共享平台的开放正是为了解决仪器资源分布不均的问题,提升科研设施与仪器服务能力。全国共享生物大分子相互作用仪单位分布此外,共享生物大分子相互作用仪的单位共涉及128所高校及研究院所,且985和211高校的仪器资源更强,其中,共享生物大分子相互作用仪数量超过2台的单位有10所,分别是北京大学、南京中医药大学、厦门大学、大连医科大学、南京农业大学、山东大学、山东省科学技术厅、四川大学、中国科学院生物物理研究所和中国科学院微生物研究所。北京作为共享生物大分子相互作用仪最多的地区,涉及25所高校及研究院所,且科研院所的数量比高校多。全国共享生物大分子相互作用仪数量超2台的单位北京25所全国共享生物大分子相互作用仪单位更多生物大分子相互作用仪器信息,请点击:小编精选|大分子相互作用仪导购篇 or 技术流派解析:带你重新认识大分子相互作用仪
  • 中国科大利用量子精密测量技术搜寻宇称破缺的新相互作用
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授、江敏副研究员等在量子精密测量和检验超越标准模型领域取得重要进展,利用自主研制的量子自旋放大技术实现了对一类超越标准模型的宇称破缺相互作用的超灵敏检验,实验结果提升国际纪录至少5个数量级,弥补了现有天文学观测的空白。相关研究成果于1月6日以“Search for exotic parity-violation interactions with quantum spin amplifiers”为题在线发表于国际学术期刊《Science Advances》上[Sci. Adv. 9, eade0353 (2023)]。粒子物理标准模型是20世纪物理学建立的最伟大的模型之一。然而,尽管标准模型取得了巨大的成功,但许多物理现象如暗物质、暗能量、中微子振荡、正反物质不对称性等无法被很好解释。为此,许多理论预言了可能存在超越标准模型的新轻玻色子,如轴子、暗光子、Z玻色子等,其可以作为暗物质的候选粒子,补充现有的标准模型理论。这些新粒子的能量可能跨度几十个量级的范围。对于低能区的新粒子 (远小于1eV),更加凸显出粒子的波动性,它们的德布罗意波长甚至要比现在的大型对撞机还要大,因此不适于使用粒子对撞器与加速器等高能装置进行研究。量子传感器如原子磁力仪、原子钟弥补了高能装置对这类超轻暗物质候选粒子的探测空白,但因这些新粒子与标准模型内粒子的相互作用十分微弱,亟需一种高灵敏度的量子传感器对标准模型外的新物理进行研究。图1 检验新相互作用的实验装置和相应的磁探测灵敏度。  彭新华教授研究组利用近期发展的量子自旋放大器技术(图1A)[Nat. Phys. 17, 1402–1407 (2021)],实现了对待测磁信号2个数量级的放大(图1B),并将其应用于超越标准模型的新粒子与新相互作用的搜寻,在国际上提出了“蓝宝石”研究计划,英文缩写SAHPPHIRE(SpinAmplifier for Particle PHysIcs REsearch)。该计划的首批实验约束了一种由Z玻色子诱导的自旋相互作用,如图1C所示,此类奇异相互作用是宇称不守恒的,其强度正比于自旋源内的电子自旋数量。因此本实验采用了两个原子气体室,一个利用惰性气体氙原子作为自旋传感器,一个利用碱金属铷原子作为自旋源。自旋源内的碱金属原子通过激光泵浦实现约1014的电子极化自旋数量,并由泵浦光间断极化,从而产生一个交流的震荡奇异场作用于量子自旋传感器上,并被进一步放大和探测。相较于其他应用于新物理搜寻的共振技术,量子自旋放大器中的铷原子充当嵌入式磁强计,实现了惰性气体氙原子的连续极化和原位测量。相比之下,原位测量提供的一个显著优势是由于大费米接触放大因子而增强核共振信号。此外,由于氙核自旋通过与极化铷原子的自旋交换碰撞而连续极化,自旋放大器可实现对奇异场的连续搜索。由于这些独特的优点,自旋放大器更适用于奇异相互作用的超灵敏连续波检测。正因如此,本实验对电子与中子之间的宇称破缺奇异相互作用的约束较国际前沿实验界限提高了5个数量级(如图2A),且对中子与质子之间的奇异相互作用进行了首次探索(如图2B)。不仅如此,SAPPHIRE计划仍有很大的性能提升空间,研究人员提出利用K-3He自旋放大器与固体自旋源,有望将对此类奇异相互作用的实验约束界限进一步提升8个量级。 图2 新奇相互作用实验界限。审稿人对这一工作有高度评价:“The result is a clearly a major improvement for the field”(该领域的一个重大提升),“What is particularly remarkable about these results is that they have established strong new constraints, which have improved prior bounds by several orders of magnitude, in a region of parameter space where there are little or no constraints from astrophysics ”(该实验最引人注目的是在一个几乎没有天体物理学约束的参数空间区域建立了强有力的新约束,将先前的约束提高了多个数量级)。这一成果展示了SAPPHIRE计划下量子精密测量技术与粒子物理学研究的有机结合,有望激发宇宙天文学、粒子物理学和原子分子物理学等多个基础科学的广泛兴趣。中国科学院微观磁共振重点实验室博士研究生王元泓和黄颖为该文共同第一作者,彭新华教授和江敏副研究员为该文共同通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制