当前位置: 仪器信息网 > 行业主题 > >

高岩心扫描系统

仪器信息网高岩心扫描系统专题为您提供2024年最新高岩心扫描系统价格报价、厂家品牌的相关信息, 包括高岩心扫描系统参数、型号等,不管是国产,还是进口品牌的高岩心扫描系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高岩心扫描系统相关的耗材配件、试剂标物,还有高岩心扫描系统相关的最新资讯、资料,以及高岩心扫描系统相关的解决方案。

高岩心扫描系统相关的资讯

  • 4280万 岩心光谱扫描仪重大仪器专项启动
    由中国地质调查局南京地调中心承担的国家重大科学仪器设备开发专项 “岩心光谱扫描仪研发与产业化”项目启动会,于2013年1月28日在南京国际会议中心召开。来自国家科学技术部、国土资源部和江苏省科技厅等主管部门的负责人,以及国土资源部航空物探遥感中心、国土资源实物地质资料中心、北京航空航天大学、南京大学、南京农业大学、南京理工大学、紫金矿业等单位70多人参加了会议。   岩心光谱扫描仪研发与产业化项目由南京地调中心牵头,项目周期2012年10月至2017年9月止。项目总经费4280万元,其中国家重大科学仪器设备开发专项资金3530万元。项目拟通过攻克岩心光谱实时在线检测技术,开发成像光谱探测、波谱探测两个关键部件,通过系统集成和工程化开发,研制出具有自主知识产权的岩心光谱扫描仪,项目验收后3年内,建成生产线1条,生产仪器50台套,实现产业化应用,为我国地质科学研究提供支撑。   科技部条件财务司就国家重大仪器专项的总体思路和相关要求进行了解读,专家对项目分解的8个任务的仪器研发、应用开发和工程化开发进行了指导并提出具体建议。 会议现场
  • 占据C位,扫描电镜在油气藏采收率技术提升中的主角光环
    2023年3月22日-24日,以“深入实施创新驱动发展战略,助力采收率技术快速发展”为主题的“第六届全国油气藏提高采收率技术研讨会”在安徽省合肥市顺利召开。中石油、中石化、中海油等油田企业的专家骨干,中国石油大学(北京)、东北石油大学、西南石油大学等13所高校的专家学者代表共计220余人参加会议。作为国产电镜的研发、生产代表性公司,聚束科技(北京)有限公司受邀出席会议,并展示了公司自主研发的高通量(场发射)扫描电子显微镜系列产品。大会现场从会议现场各位专家老师所做的报告中可以看出,近年来,先进扫描电子显微镜技术与地质学、岩石物理学和油气田开发的深度融合,为能源行业科学研究、技术服务和成果转化工作提供数字化、智能化、精细化的数据支撑。先进的数字化手段充分挖掘了地下深部大量岩心岩屑样品信息,研究储层岩石样品的结构组分、跨尺度的孔隙形态及分布,助力快速形成油气田高效开发过程中的新理论、新技术,对于控制石油的开采成本起到重要作用。聚束科技展位高通量(场发射)扫描电子显微镜的成像基于电子束检测手段,具备更高的分辨力、放大倍率和景深,能够从纳米尺度上清晰观察到矿物的表面形貌特征和成分差异,可为科研专家提供矿物的微观形貌、结构构造、元素分布等极为有用的丰富信息。聚束科技的NavigatorSEM系列高通量(场发射)扫描电子显微镜,基于高通量性能,实现了岩心样品表面大视域跨尺度的信息采集,形成地图集式的全景数据图像,帮助用户更全面完整地研究岩石样品。聚束科技高通量(场发射)扫描电镜拍摄页岩样品不同成分区域的微观形貌此外,聚束科技高通量(场发射)扫描电镜以其纳米级高分辨率快速采集的技术优势,被广泛的应用于各大含油气盆地页岩储集层样品的实验研究中,实现了对样品全尺度的孔隙、裂缝各类信息精准快速采集,充分揭示了微-纳米级尺度上各类型油气储集空间的发育特征。图像与数据质量得到了越来越多领域内研究人士的认可,并逐渐在油气勘探与开发领域发挥着更大的作用。正如此次大会的主题所表达的,油气藏采收率提升技术的快速发展,离不开创新的深入驱动,聚束科技将继续加强科研创新,助力我国油气藏采收率技术的更快发展。【关于聚束】聚束科技(北京)有限公司,成立于2015年,总部位于北京。公司专注于科研及工业等领域应用的高通量、全自动化电子显微镜解决方案。具备独立设计和生产高端场发射电子显微镜系统能力并拥有全部核心的自主知识产权,可以根据用户及行业需求定制化设计、生产专业用途电镜系统,结合高速图像大数据采集能力和AI大数据分析能力,从而极大地提高纳米成像检测效率。未来,我们将继续加强技术创新研发,用更为尖端的显微技术打造更具核心竞争力的电镜产品,为所有用户、技术专家们探索微观世界提供有力工具。
  • CT引领实验室动态扫描分析 | 扒一扒欧洲教堂的“黑历史”
    欧洲教堂和城堡代表了一个时代的建筑成就,是“实用、坚固、美观”理性思想指导下,对形而上学思想的阐释。而“变黑的大教堂”恍惚间让你穿越到黑暗的中世纪,唤醒被压抑着的性灵,此时是不是疑惑:它们不应该是抚慰人心,及至天堂吗? 我国著名建筑设计大师贝聿铭先生也曾说过“建筑是光与影的结合”,而教堂和城堡其实就是光与影的最佳体现形式之一。其中比较有代表性的教堂,如德国科隆大教堂、圣家族大教堂、TESCAN 4D原位CT起源地根特的圣尼古拉斯大教堂等。而说到城堡不得不提一下位于TESCAN总部捷克的布拉格城堡。虽然蔡依林的“布拉格广场”脍炙人口,其实布拉格只有老城广场并没有所谓的布拉格广场。 拿科隆大教堂来举例,在建成时其实是银白色的!耗时6个世纪于1880年竣工。为什么德国科隆大教堂现在是一副黑漆漆的样子???其实,这是所有大教堂和城堡都面临着的严峻问题。总部位于比利时根特的TESCAN XRE利用其高分辨率显微CT揭开其谜底。从“白马王子”到“邋遢大叔”,只需环境的改变首先是选材。在欧洲,特别是中、西欧,地处阿尔卑斯山脉附近,大理石储量丰富且优质。有多丰富呢,直到2000年以前欧洲大理石产量仍占全球80%以上,而大理石使用寿命高达上百年且极具美观。因此,大理石成为建造教堂的首选材料。科隆,是欧洲重要的工业城市,也是德国最大的褐煤(煤化程度最低的矿产煤,污染远超一般的煤)生产基地。由于长期受到工业废气和酸雨污染、腐蚀,大理石表面容易被溶解和变色,严重的会出现空洞和裂缝,导致强度降低,从而损坏建筑物。大教堂从原来的“白马王子”变成了现在的“邋遢大叔”。那建筑石材在酸性环境下,究竟是如何一步步变化的?在比利时根特大学X射线断层扫描中心TESCAN的高分辨率CoreTOM CT成像装置耗时4天,使用原位动态能力观察研究了石灰岩在酸性环境下反应的时间过程。在不破坏材料的情况下,详细记录了样品内外部的微观结构变化。最终用2D、3D图像以及动画形式在微米尺度上为大家揭秘。实验设计Tescan CoreTOM CT System4D原位CT实验选择一块直径为4毫米的石灰岩岩心为本次实验样品,将岩心固定在密闭容器内,并在底部加装释放酸性环境的原位设备,以此来模拟酸性城市环境。最后将原位装置的电源和数据信号接入CoreTOM系统特殊的原位载物台上,该载物台搭载专用的“无电缆缠绕”接口,可匹配市面上大部分原位装置,让载物台在旋转时无后顾之忧,自由自在地旋转而不用担心电缆数据线缠绕问题。让石灰岩岩心完全暴露在酸性环境中进行连续采集,然后对原始采集投影图像进行“实时”重建,每30分钟一次扫描,共扫描136次,扫描体素为5μm。第一次扫描得到差分图像(t=0h)为参考体积,一直记录到第68小时。实验挑战在数据处理和重建过程中,超长的采集时间和超多的扫描数量,使得数据总量甚至会超过1.5T。这个问题怎么解决?1.“实时”重建技术,CoreTOMCT系统配备了实时重建技术,实现边扫描边重建,合理运用计算机的算力并且节约时间成本。2.“关键节点”重建技术,在数据时间轴当中,利用差分成像,来观察时间节点。我们可以有选择的进行重建分析,选择某个时间节点前后,或者某个关键变化前后进行重建。以此来高效处理整个数据体。不遗漏任何一个变化的同时也可降低数据压力。3. 连续四天不间断采集。TESCAN动态显微 CT适用范围更广,性价比更高,目前,是市场上唯一一款介于传统实验室显微 CT(延时成像)和同步加速器显微 CT (可用范围有限、成本十分昂贵)之间的桥梁。实验结果石材的变质是一个复杂的过程,它涉及到物理、生物、化学等多种机制。首先我们选择观察样品的一个切片图,以t=0时的切片图为参考体积,做出随时间变化的差分图像,用更加直观的方法,展现样品的变化过程。样品内部的孔隙,不同成分的密度差,外部的形貌等等我们都可以清晰地观察测量到。不难发现随着时间的变化,石灰岩开始慢慢被腐蚀。在第68小时达到顶峰。随后我们在3D立体图像上,来展示整个样品的变化趋势,不同颜色代表不同时间段发生的变化。而在本次实验中主要发生了两个变化,一个是在酸性环境下方解石胶结物的溶解,另一个是石膏(CaSO4.2H2O)结晶过程,为了很好地展示两种变化的过程,我们分别对3D成像做了两种处理。而在中后期,则主要是石膏结晶过程。小结:大理石在使用和暴露于大气条件时,与其环境之间的相互作用和干扰,比如溶解、剥落、打磨、溶解、风化或结壳等,会导致侵蚀或沉积蚀变模式,这些模式的改变是复杂和动态的。其中,石膏结痂是污染城市环境中建筑石材上的硫酸盐结壳,主要由石膏晶体组成,由于混入空气中的灰尘和颗粒物,通常被称为黑色结痂。通过实验我们能清晰的观察到这一系列动态过程。为原位实验而生除此外,我们还使用Tescan DynaTOM CT设备对石膏材料进行了4D原位加温试验,不仅可观察到外部形状变化,还能完美地记录下内部孔隙率、孔隙形状、尺寸变化等数据。更多CT应用视频,请扫码进入B站:搜索”TESCAN中国“。
  • 牛津仪器推出NMR岩心分析仪新品
    p   8月17日,牛津仪器(Oxford Instruments)和绿色成像技术(Green Imaging Technologies)宣布推出GeoSpec2+产品,这是知名的GeoSpec系列 a title=" " href=" http://www.instrument.com.cn/zc/43.html" target=" _self" strong NMR /strong /a 岩心分析仪的最新产品。这两家公司结合他们世界领先的NMR知识和经验,再一次推进NMR在石油和天然气领域的应用。 /p p style=" TEXT-ALIGN: center" img title=" Core-Analyzer-GeoSpec2Plus.png" src=" http://img1.17img.cn/17img/images/201508/insimg/94279ad8-30b3-4789-812b-18fb96b0806c.jpg" / /p p strong   更多的功能,更少的空间 /strong /p p   GeoSpec2+拥有全新的紧凑型电子控制台,性能进一步提升,还配备一套新的监测和诊断软件,这意味着用户可以更好的控制结果的质量和可追溯性。操作软件也已经升级,经过改进,高级用户可以定义他们自己的协议和应用程序,所以内部开发的方法可以很容易在其他网站上应用。 /p p   strong  型号范围扩大 /strong /p p   现在的GeoSpec系列NMR分析仪包括行业标准2MHz (样本直径从半英寸到6英寸)、12MHz(低孔隙度样品增加灵敏度)和20MHz(最紧密的岩石样本也可以分析)。专用的覆盖层单元(P5单元)对大多数型号都可用。P5单元为NMR用户提供技术,给岩心样品加压至5000 psi,加热至100& amp #176 C,测量时尽可能接近储层条件。 /p p   牛津仪器磁共振市场销售总监Barry Jones说:“这一最新的GeoSpec产品证明了牛津仪器和绿色成像技术的承诺:保持GeoSpec在全球工业和学术用户选择NMR岩心分析仪时的地位”。 /p p    strong 从基本的岩心分析到先进的方法 /strong /p p   所有GeoSpec型号交付完成都配备LithoMetrix软件,用以控制和监视仪器设备,并执行基本的岩石物性测量,如孔隙度、自可动/束缚流体、孔隙大小分布和T2截止值。先进的GIT系统软件也可用于测量饱和度剖面、空间T2分布、毛细管压力,以及进一步的应用研究。所以无论你需要怎样的NMR岩心分析仪, GeoSpec都会有相应的硬件和软件组合来满足你的需求。。 /p p & nbsp /p
  • “1.5米扫描干涉场曝光系统”通过验收
    p /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 311px height: 212px " src=" https://img1.17img.cn/17img/images/202009/uepic/4ca21b5b-64a5-457f-b1d8-824702f6ea76.jpg" title=" tpxw2020-09-29-03.jpg" alt=" tpxw2020-09-29-03.jpg" width=" 311" height=" 212" / /p p style=" text-align: center " 图1. “1.5米扫描干涉场曝光系统”项目验收专家组会议现场 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 324px height: 243px " src=" https://img1.17img.cn/17img/images/202009/uepic/60a97bc9-669b-4a03-a6b5-caa2176d22eb.jpg" title=" tpxw2020-09-29-04.jpg" alt=" tpxw2020-09-29-04.jpg" width=" 324" height=" 243" / /p p /p p style=" text-align: center " 图2. 项目负责人巴音贺希格研究员汇报项目完成情况 /p p   2020年8月24-25日,国家自然科学基金委员会(以下简称自然科学基金委)信息科学部组织专家对中国科学院长春光学精密机械与物理研究所承担的国家重大科研仪器设备研制专项(部委推荐)“1.5米扫描干涉场曝光系统”进行了结题验收。验收专家组由光学、仪器、档案和财务等领域的23位专家组成。自然科学基金委党组成员、副主任王承文出席 /p p   专家组认为,项目组成功研制了1.5米扫描干涉场曝光系统,取得了一系列技术创新和突破,各项性能指标均达到或超过项目计划书要求,全面完成了项目的研制任务;项目管理文件和技术文档记录全面,内容真实可靠,档案立卷符合规范要求;项目经费使用符合管理办法要求;一致同意项目通过验收。 /p p   王承文副主任对项目组取得的成果给予肯定,强调仪器设备在科学研究、技术创新以及科技强国建设中的重要地位,并希望依托单位和项目组进一步做好项目的科技成果转化,使科学仪器设备发挥更大的作用。 /p p br/ /p
  • 蔡司推出新一代全自动数字玻片扫描系统
    蔡司Axioscan 7兼顾扫描性能和应用自由度 德国耶拿|2021年4月7日|蔡司研究显微镜解决方案 蔡司发布了新一代全自动数字玻片扫描系统Axioscan 7,用于显微镜样品的自动数字化成像。蔡司Axioscan 7继承了前一代产品 Axio Scan.Z1的优越性能,又几乎在各个方面都进行了重大改进:新型采集引擎,可实现更高的扫描速度;更广泛的成像模式,可提供更大的应用灵活性;拓展了高级荧光成像的性能;以及大大改善了用户体验。 在生命科学研究实验室,公共成像平台和药物研究中,自动而可靠对玻片进行高质量数字显微成像的需求不断增长。蔡司Axioscan 7通过将持续的高速扫描和简单的操作与针对不同应用领域的个性化选项相结合,满足多种应用领域对可靠的长时间扫描性能以及高品质成像质量的需求。 全新明场反差成像方法更全面的展现样品特征 蔡司Axioscan 7能够在不同的明场成像模式之间自动切换,以适应不同应用的要求,同时保持最佳的扫描性能。完全支持圆偏光和线偏光成像,从而开辟了一系列新的实验和成像模式组合。TIE是一种新的用于在透明样品中产生对比度的方法,增加了相位和浮雕反差,丰富了成像模式。TIE可以在常规明场模式下检测到几乎没有对比度的透明组织,因此可以保护样品免于漂白,并以非常快的聚焦速度加速荧光成像过程,从而有利于使用敏感的荧光染料进行实验。 高效荧光成像 当涉及多色荧光成像时,速度,温和处理和最佳波长至关重要。蔡司Axioscan 7采用快速且可重现的LED照明,快速滤光轮和多色的荧光滤块,可有效分离各种荧光通道。两种光源——超快7色LED光源蔡司Colibri 7和白光LED光源X-Cite Xylis ——为选择合适波长提供了灵活性。新设计的用于多色荧光成像的荧光滤块可实现清晰的光谱区分,分离多色荧光。 高级相机提高图像质量 新的玻片扫描系统配备了蔡司Axiocam产品组合中最高级别的Peltier制冷相机,以先进的成像性能支持明场和荧光应用。蔡司Axiocam 705 color相机具有每秒55帧的采集速度和广阔的视野范围,可以快速完成明场和偏振成像任务。蔡司Axiocam 712 mono相机像素尺寸小(3.45 µm),可以充分利用高数值孔径物镜的分辨率潜力,并具有非常低的读出噪声,这使其成为高级荧光成像应用的首选。 有价值的投资对高通量和批量筛选能力的需求推动了自动化仪器的发展。蔡司Axioscan 7可以在不牺牲灵活性或高质量图像的情况下实现自动化,为公共成像平台吸引大量客户。这种新型玻片扫描系统能够满足从组织切片中多色荧光染色到岩石切片中偏光等多种多样的应用需求,吸引了生命科学和地质学等领域的用户。蔡司Axioscan 7产品设计强大,适合的用户群体广泛,在机时利用率方面表现出色,因此可迅速收回成本。 蔡司全自动数字玻片扫描系统 Axioscan 7,配置蔡司Colibri 7用于荧光成像 蔡司Axioscan 7可一次性对100张相似样品或混合多种应用的样品进行数字化采集 适合生命科学应用的蔡司Axioscan 7
  • Phenom扫描电镜发布颗粒分析系统
    自从Phenom问世以来,Phenom一直在进步,不断有新的更新和配件满足行业的不同需求。现在Phenom台式扫描电镜又推出了颗粒分析系统,使用基于Phenom飞纳台式扫描电镜的ParticleMetric颗粒测试系统,以最快、最简便的方式实现颗粒的可视化分析,是微观颗粒分析技术的一大进步。快速、易用和超清晰图像质量的Phenom飞纳扫描电镜,加上Particle Metric颗粒系统的颗粒图像分析功能,为用户提供了分析颗粒和粉末试样的强大工具。随时获取所观测颗粒的面积、当量直径、表面积、外接圆直径、比表面积、周长、宽高比、充实度、伸长率、灰度等级、长轴、短轴长度(椭圆)、凸壳体、重心、像素点数、凸状物等数据,最终实现ParticleMetric加速颗粒物分析速度、提升产品质量的目的。详情请登录公司官方网站www.pehnom-china.com。
  • Nanoscribe微纳3D打印系统助力扫描探针成像系统技术突破
    研究背景为了探索待测物微纳米表面形貌,探针扫描成像技术一直是理论研究和实验项目。然而,由于扫描探针受限于传统加工工艺,在组成材料和几何构造等方面在过去几十年中没有显著的研究进展,这也限制了基于力传感反馈的测量性能。 如何减少甚至避免因此带来的柔软样品表面的形变,以实现对原始表面的精确成像一直是一个重要议题。 Nanoscribe设备加工的“减震器“纳米探针近日,东南大学生物科学与医学工程学院、生物电子学国家重点实验室顾忠泽教授和赵祥伟教授等人在Nature热门子刊Nature Communications上报道了一种新的扫描探针设计和加工方案,使用德国Nanoscribe公司的微纳3D打印系统制作一种基于层次堆叠单元的低密度三维微纳结构,旨在利用谭政自身机械特性来减少探针-样品的过度机械作用。在该工作中,研究人员借鉴生物组织的多孔结构在能量吸收,传导和缓释的有效作用,提出了低密度的结构可控机械材料(Materials with Controlled Microstructural Architecture, MCMA), 作为探针本体的构筑设计,并且通过 Nanoscribe公司先进的微纳米增材技术进行激光直写制备。微结构缓冲材料与扫描成像系统的创新集成为尖端成像方案开辟了林一条道路,促进了基于3D激光直写制备的多功能扫描探针成像系统的发展。Nanoscribe公司的系列产品是基于双光子聚合原理的高精度微纳3D打印系统,双光子聚合技术是实现微纳尺度3D打印最有效的技术,其打印物体的最小特征尺寸可达亚微米级,并可达到光学质量表面的要求。Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2 结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。了解更多双光子微纳3D打印技术和产品信息请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备
  • 飞纳台式扫描电镜多次应邀在公安刑侦系统内演示
    近日飞纳台式扫描电镜多次应邀在公安刑侦系统内做枪击残留物及火药成分分析演示,取得了良好的效果。下图为一种枪击残留物颗粒,利用飞纳台式扫描电镜既可以观察形貌图像,又可以检测成分:下图为另一个的枪击残留物颗粒的形貌及 EDS 分析效果:通过比对这两个枪击残留物颗粒形态及成分数据可以发现这两个枪击残留物颗粒成分大致相同,应该是来自于同一种子弹的底火生成。飞纳台式扫描电镜进行枪击残留物(GSR)分析的特点:1、台式扫描电镜中唯一可以做枪击残留物分析的科学仪器2、一次可以放置 36 个样品,测样效率高,数据量大准确性更高3、枪击残留物(GSR)检测软件为通用软件,兼容性强,技术成熟4、配合飞纳台式扫描电镜大样品室卓越版 Phenom XL 可以实现全自动分析5、稳定的 CeB6 灯丝,不会在实验过程中发生烧断6、极强的通用性,飞纳台式电镜 XL 本身可以作为扫描电镜使用7、该产品完全符合国际通用标准:ASTM E1588 - 168高准确性:与 FEI 大电镜(配 GSR)识别率重叠 90% 以上飞纳台式扫描电镜的枪击残留物分析将有助于刑侦行业提高检测效率,促进司法公正,构建和谐社会。知识小贴士枪击残留物分析在甄别一个犯罪中是否使用了枪械的过程中发挥着重要的作用。枪击残留物分析技术是基于扫描电子显微镜的使用,它用来扫描样品来发现可疑的枪击残留物颗粒。如果一个可疑的枪击残留颗粒被发现,就可以利用能谱仪来确定颗粒的成分。最常见的搜索标准是铅,锑,和钡的存在。然而,无铅底火(如含有钛、锌)的检测也常被要求。在子弹的发射过程中会产生枪击残留物,这些枪击残留物是如何产生的?这些就要从子弹的构造来看,一般子弹由弹头、药筒、装药、底火四部分组成。如下图所示:手枪击针击发底火后,底火摩擦产生火星开始快速燃烧进而点燃装药,装药开始燃烧,弹壳内压增大,当压力上升到 250~500kg / 平方厘米时,弹头脱离弹壳,挤入线膛,开始起动。弹头在高温、高压气体作用下,迅速向前运动。弹头发射出去的同时,底火燃烧的颗粒会向各个方向扩散开去,落在持枪人的手上,衣服甚至头发上,也可以落在枪击现场附近的人身上。一般子弹的底火中含有原发性爆炸化合物三硝基间苯二酚铅,氧化剂硝酸钡及还原剂锑硫化物,因此枪击残留物颗粒的化学成分是非常有特征性的,一般含有铅,钡和锑等元素,而且不同的子弹所使用的底火都是不同的,甚至相同厂家生产的不同批次的底火也是有区别的,可以通过鉴别枪击残留物的成分来追溯到犯罪嫌疑人所使用的子弹来源进而有助于案件的侦破。
  • mini扫描隧道显微镜系统研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " Mini & nbsp & nbsp 扫描隧道显微镜系统研制 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 中科院物理研究所 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 郇庆 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " qhuan_uci@yahoo.com /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 □可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " √技术转让 & nbsp & nbsp √技术入股 & nbsp □合作开发& nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/f0bed8ec-b171-4a82-9bae-a0e07ed68bd1.jpg" title=" mini STM.jpg" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / /p p style=" line-height: 1.75em " & nbsp br/ /p p style=" line-height: 1.75em " & nbsp & nbsp 这是一款工作在超高真空环境下的扫描隧道显微镜(STM)系统,具备样品的退火和溅射清理功能,并可以在原位情况下沉积各种有机/无机材料。可在从液氦温区(& lt 10K)到室温范围内工作,降温/升温速度快,特别适合材料及相关研究人员快速表征样品。同时,该系统具有很好的稳定性,具备稳定的原子分辨能力并可获得一阶和二阶电流微分谱,经扩展后可具备与光路连结的可能和AFM功能。其主要技术指标为: br/ & nbsp & nbsp & nbsp 背景气压:≤ 1x10-10Torr br/ & nbsp & nbsp & nbsp 工作温度范围:8K~350K br/ & nbsp & nbsp & nbsp 原位沉积:& nbsp 是 br/ & nbsp & nbsp & nbsp 扫描范围: br/ & nbsp & nbsp & nbsp 4.0μmx4.0μmx0.6μm @ RT br/ & nbsp & nbsp & nbsp 1.0μmx1.0μmx0.15μm @ 8K br/ & nbsp & nbsp & nbsp 分辨率:原子分辨& nbsp br/ & nbsp & nbsp & nbsp 灵敏度: br/ & nbsp & nbsp & nbsp XY: ≤200Å /V& nbsp & nbsp Z:≤30Å /V @ RT br/ & nbsp & nbsp & nbsp XY: ≤ 50Å /V& nbsp & nbsp Z:≤ 7.5Å /V @ 8K br/ & nbsp & nbsp & nbsp 恒温器类型:连续流 br/ & nbsp & nbsp & nbsp 降温时间(室温至≤10K): ~2小时 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 纳米表征和研究的重要工具,国内每年需求量在数十台。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 201510468456.5 br/ & nbsp & nbsp & nbsp 发明专利:200810114537.5和201410165949.7 /p /td /tr /tbody /table p br/ /p
  • 国内第一台扫描电镜高温力学原位研究系统新品
    p style=" text-align:center " img src=" https://img1.17img.cn/17img/images/201906/pic/4479fa41-fec1-4836-90f5-abdeb6ad0d71.jpg!w400x400.jpg" alt=" 扫描电镜高温力学原位研究系统" / /p p span style=" font-family: 微软雅黑 font-size: 16px " 扫描电镜高温力学原位硏究系统(In-situ mechanical testing system at High temperature in SEM)是国家重大科学仪器研制专项的成果转化产品,其特征是将宏观材料力学实验置于具有与纳米分辨的扫描电子显微镜內,实现了宏观力学性能与纳米层次结构分析的一体化。主要功能为在纳米分辨的二次电子成像和背散射成像(EBSD)的观察条件下,实现室温至1200° C高温的拉伸、压缩、三点弯曲等原位力学实验。主要用于硏究各类材料在力、热以及耦合条件下的力学性能测试与微观组织结构演变机制硏究。该仪器也可以兼容匹配各类光学显微镜(OM)、X射线衍射仪(XRD)和原子力显微镜(AFM)等材料微观分析仪器。 /span /p p span style=" font-size:12px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " br clear=" all" style=" page-break-before:always" / /span /p p 创新点: br/ /p p 国内第一台可以在SEM扫描电镜下使用的高温拉伸力学研究系统。最高温度可达1200℃。 /p
  • 200万!上海交通大学全景组织切片扫描分析系统采购项目
    项目编号:0773-2341SHHW0009/校内编号:招设2023A00018项目名称:上海交通大学全景组织切片扫描分析系统预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:设备名称: 全景组织切片扫描分析系统数量:1套设备用途: HE染色、化学染色等组织病理、药理切片成像,又可应用于免疫荧光或荧光蛋白多色标记的脑片、脊髓、视网膜以及其他脏器等标本的观察。简要技术参数:*1、光路设计:无限远光学系统,齐焦距离为国际标准≤45 mm;其余详见“第八章货物需求一览表及技术规格”。交货期:合同签订后 6 个月内。交付地点:上海交通大学用户指定地点合同履行期限:合同签订后 6 个月内本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:上海交通大学地址:上海市闵行区东川路800号联系方式:招采办经办人:王老师,86-21-54744366 技术联系人:王老师,86-021-629327792.采购代理机构信息名称:中金招标有限责任公司地址:上海市四平路200号盛泰国际大厦606室联系方式:宋晓飞、张莹莹、朱杨峰,86-21-66059798*1083.项目联系方式项目联系人:宋晓飞、张莹莹、朱杨峰电话:86-21-66059798*108
  • 为岩芯做核磁,中油测井自主研发移动式岩心核磁共振测井仪器
    “过去只见过在医院里给患者做核磁,这次给岩芯做核磁,我还是第一次干。”5月8日,在中油测井天津分公司工程技术交流会上,从事一线工作近20年的作业队长周海对负责该项目解释评价的工程师宋连猛说道。周海提到“给岩芯做核磁”设备,是指中油测井自主研发的车载岩石物理实验室搭载的移动式岩心核磁共振测井仪器。宋连猛看着岩芯说,“别看这一颗颗小岩芯个头不大,里面蕴藏的内容可丰富极了,这些从数千万年、乃至上亿年的地下取出的样品,不但拥有多种矿物组分,还隐藏着地质变迁、油气成藏、乃至地下环境分布的‘大秘密’!”位于大港油田的测井作业现场 姚东江 摄位于大港油田的测井作业现场 姚东江 摄在5月8日刚刚完成的中国石油某重点风险探井测井作业中,随着按照采样深度向岩芯分组送入仪器,各项复杂数据和曲线也精准被测出。接下来,解释评价人员将对各类数据进行综合比对和分析,在不同层位分析出相关数据和参数,为油气井射孔和试油提供数据支撑。据了解,该项装备可实现在现场对井下岩芯进行快速、连续、无损、高精度的一维与二维核磁测量与资料快速处理解释,可以获取地层孔隙度、孔隙结构、流体性质、含油饱和度等地质信息。自今年初步应用以来,已在河北、陕西、辽宁等地多次完成作业,助力多口油气井实现油气资源的评价和开发。解释评价工程师对岩芯进行检查 姚东江 摄解释评价工程师对岩芯进行检查 姚东江 摄“咱们国产核磁装备已经从单一的下井测量,发展至车载和便携式,测量越来越精准,使用越来越方便。今后,我们会为更多的地层和岩芯做核磁,为地质分析和资源开发提供更优质的数据支撑。”宋连猛自信地说道。
  • 不贴点!跟踪式激光扫描系统在大尺寸精密测量中显身手
    精准测量是支撑高质量制造的基石。先临三维的高精度工业3D扫描技术作为一种光学测量工具,凭借其高精度、高效率、非接触等优势,为高端制造的精密三维尺寸检测提供保障。当下,这项技术已经渗透至到汽车工业、航天制造、电子电器、教育科研等行业,满足了不同用户对三维尺寸检测的需求。在工业领域,激光3D扫描仪得到了广泛应用。然而,传统的激光3D扫描仪需要在被测物体上粘贴标志点,以实现高精度三维数据的拼接与获取。在大型工件的三维尺寸检测中,这种方式动辄需要粘贴和去除成百上千个标志点,耗费大量时间。先临三维的跟踪式激光扫描系统以动态跟踪、不贴点的独特优势,以及激光扫描高精度、高效率、材质适应性佳的稳定表现,为大型工件精准的三维尺寸检测提供了破题思路。通过在扫描仪的工作过程中使用跟踪仪来获取扫描仪的三维空间信息,跟踪式激光扫描系统实现了大范围的无需标志点的拼接扫描,从而为大型工件的三维尺寸检测进一步提速。行业应用案例: 汽车工业白车身是指装焊完成但未涂装的车身结构,是整车零部件的载体。这种车身具有尺寸体积大、曲面复杂、部分零件表面反光等检测难点,因此需要精度高、无需贴点、材质适应性更强的激光3D扫描设备进行数据获取。使用先临天远的FreeScan Trak Pro2 跟踪式激光扫描系统,仅需约10分钟即可获取完整的白车身三维数据。此外,扫描精度最高可达0.023mm且重复性精度稳定,结果准确可靠满足工业测量需求。*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第 3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。轨道交通轨道车辆的车身主体是由一次次的焊接而成型,保证焊接的准确度,是后期顺利装配的基础。因此,确保扫描结果精准、扫描过程不贴点以保证效率,是车身进行三维检测的核心诉求。FreeScan Trak Pro跟踪式激光扫描系统表现出色,高效获取车身的完整三维数据后,将扫描获取数据与原始的CAD设计数据相对比,即可完成车身的焊接质量检测。模具铸造在模具铸造过程中,模型的形状和尺寸至关重要。面对结构复杂的大型铸件模型,不贴标志点的高效扫描成为三维检测中的关键环节。FreeScan Trak Pro流畅、高质的扫描提供了助力,不仅大幅缩短三维尺寸检测时间,还为铸件的浇筑生产节省大量时间。更多应用场景先临三维的跟踪式激光扫描系统,同样为航空制造、工程机械等行业的大尺寸精密测量提供高效解决方案。我国制造业正向高端迈进,大型化装备 和复杂结构制造的兴起,对测量方式提出了精度更高、适应性更强的要求。先临三维的高精度工业3D扫描业务线,品全而精,包含踪式激光三维扫描系统、手持式激光三维扫描仪、固定式蓝光三维扫描仪等多款产品,以精准测量保证精密制造。未来,先临三维将持续对产品、功能、应用进行深度打磨,让高精度工业3D扫描技术朝着设备无线化、软件智能化、检测自动化的方向不断精进,助力先进制造业的高质量发展。
  • 思看科技发布全新TrackScan-P系列跟踪式三维扫描系统
    近日,思看科技(SCANTECH)发布全新TrackScan-P系列跟踪式三维扫描系统。该三维扫描系统由三维扫描仪和E-Track光学跟踪器组成,采用智能光学跟踪测量技术,配备超高分辨率智能相机,无需贴点即可完成超高精度动态三维测量,可在航空航天、汽车制造、轨道交通、模具制造等行业满足质量控制、产品开发、逆向工程、自动化测量等多样需求。TrackScan-P 系列三维扫描系统可搭配补光模块,光照更均匀,支持钣金件的圆、槽及机加孔精准测量;搭配便携式CMM测量光笔T-Probe工作,能精准获取工件的边界、圆、槽等特征;与机器人协同工作,实现智能在线自动化批量三维检测。无需贴点 智能跟踪基于智能光学跟踪测量技术,TrackScan-P 系列跟踪式三维扫描系统无需贴点、即刻扫描,大幅提升工作效率、降低人力物力成本。极速高效 无惧细节基于不同的扫描场景需求,TrackScan-P系列可自由切换多种工作模式。高速扫描模式,扫描速率最高可达2,600,000次测量/秒;7束平行蓝色激光精细扫描,极致细节,精度可达0.025mm,满足各类工业测量需求;单束蓝色激光扫描,迅速获取深孔及死角位置三维数据。边界检测 精准测量新一代孔测技术,自动提取孔特征,无需导入CAD即可快速测孔,大大提升了孔测适应性及便捷性。灰度值边界测量功能,搭配可拆卸式补光模块,光照更均匀,支持钣金件圆孔、圆槽、方槽及机加孔精准测量,保证对应孔的位置度和孔径的重复性精度。环境感知 超强适应采用航空航天级碳纤维材质,稳定可靠,不易受环境、震动、温度等外界因素影响;具有超强环境适应性,轻松获取光亮、黑色材质物体三维数据。多样适配 无限测量多种方案,TrackScan-P系列三维扫描系统,可与SCANTECH生态系统内不同设备互联协同,应对不同类型测量需求:支持多模式工作,多台跟踪头级联工作扩展扫描范围,有效应对大型工件扫描场景。搭配便携式CMM测量光笔T-Probe,支持多测针适配,单点重复性0.030 mm,获取基准孔、隐藏点等关键部位的精准数据。搭配无线传输模块AirGO Pro工作,在移动端同步投屏展示数据结果,获得更为灵活便携的三维扫描体验.与机器人协同工作,搭建自动化三维测量系统AutoScan-T,实现高效、批量化测量。E-Track配合工具模拟器及路径规划软件,构成M-Track机器人路径智能规划引导系统,赋予机器人“双眼”和“大脑”。
  • 喜报 | 先临三维多功能手持3D扫描系统获智能产品创新优秀奖
    10月16日,由杭州市政府主办的2020“市长杯”杭州高价值知识产权智能产品创新创意大赛在杭州国际博览中心圆满落幕。本次大赛以“高价值智能知本,高质量杭创未来”为主题,参与企业均来自全国实力雄厚的人工智能产品相关企业,报选项目共155项 (创新组项目69项,创意组项目86项),总计涉评2112件国内专利和766件国外专利。大赛评委会将奖项分为创新组和创意组,评选范围包括:项目知识产权情况、项目创意、项目产业化程度、项目的社会效益等方面。图片源于2020杭州高价值知识产权智能产品创新创意大赛官网先临三维自主研发项目《多功能手持3D扫描系统》,经评委会全面评选后,获2020年杭州高价值知识产权智能产品创新创意大赛-创新组-优秀奖图片源于2020杭州高价值知识产权智能产品创新创意大赛官网多功能手持3D扫描系统本次获奖的多功能手持3D扫描系统是先临三维自主研发项目。该项目开创性地通过主体硬件辅以多种功能模块,配套多种扫描算法,将包括正弦条纹测量、数字散斑测量、多根平行直线测量等多种测量模式融合到一个系统中,实现多模式、低成本、高效率、高精度的3D数据获取,使一台设备同时满足不同应用领域或场景的使用需求。该套扫描系统兼容多种扫描模式与多种拼接方式,具有如下特色及优势:1)数据细节丰富,高度还原实物表面立体信息2)图形算法先进、交互流程直观高效3)材质、尺寸适应广泛,更大程度扩展扫描应用边界4)扫描流畅,数据采集传输不卡顿5)精度高,数据尺寸误差低6)模块化设计,兼容多种扫描模式和拼接模式多功能手持3D扫描系统是高效获取高品质3D数据的利器,其对于三维模型的精度、细节等的表现令其成为设计师、工程师、艺术家、医疗工作者以及科研工作者工作及学习的得力助手。目前已应用于汽车、船舶、轨道交通、航空航天、虚拟展示、家居消费、雕塑文保、教学科研、医疗健康等领域。
  • Sunny发布SUNNY CSIM 100共聚焦扫描成像模块(系统)新品
    SUNNY CSIM 100共聚焦扫描成像模块(系统)桑尼全新自主研发 CSIM 100共聚焦扫描成像模块(系统),为您提供高性价比荧光显微镜升级解决方案。一台简单的荧光显微镜,搭配 CSIM 100共聚焦扫描成像模块(系统),即可方便、快速地升级为激光扫描(单点)共聚焦成像系统,获取高分辨率图像。使用进口元件保障成像质量、提供全面的技术支持和售后服务。通用性好 适用各品牌显微镜使用标准C型接口,无需额外配件即可与显微镜连接,搭建激光扫描共聚焦成像系统,获取高品质图像。激光器直调 超长使用寿命使用COHERENT OBIS 固体或半导体激光器,通过外部调节激光器功率和开关,延长激光器使用寿命,有效降低售后成本。激光器稳定性好,8小时功率变化<2%。即开即用,操作方便,可同时搭载4个激光器。高灵敏度PMT标配Hamamatsu新一代高性能多碱PMT,量子效率超过25%,相比国外前代共聚焦产品,灵敏度提高超过一倍。可升级为磷砷化镓(GaAsP),进一步提高图像的信噪比: GaAsP 的量子效率可达45%。Sunny XY高速扫描振镜使用本公司生产制造的XY高速扫描振镜,扫描512*512成像速度可达4fps。 响应速度快、重复精度高、发热量低、温度漂移小。其他配件:共聚焦/宽场切换接口接口可同时连接共聚焦和相机,可自由选择共聚焦成像或相机成像。 电动Z轴马达使手动显微镜实现自动调焦功能,实现XYZ三维扫描。 DIC功能可定制升级,加载DIC(微分干涉)模块。 软件功能全中文界面,简单易用全软件控制完成多维图像采集,实现多通道扫描、时间序列和Z轴序列成像多色荧光、DIC图像叠加,添加标尺全软件控制数据记录,支持成像参数管理导出支持多种图像输出格式 技术参数应用实例 创新点:采用标准C接口与显微镜连接,可与任意荧光显微镜对接,为宽场显微镜提供便捷的升级方案 通过调制的方式控制激光器的开关和功率,延长激光器寿命,降低仪器的售后成本 光路使用圆形针孔,避免多边形针孔对成像质量的不良影响 SUNNY CSIM 100共聚焦扫描成像模块(系统)
  • 电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统
    这里是TESCAN电镜学堂第四期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!扫描电子显微镜主要由电子光学系统、信号收集处理系统、真空系统、图像处理显示和记录系统、样品室样品台、电源系统和计算机控制系统等组成。第一节 电子光学系统电子光学系统主要是给扫描电镜提供一定能量可控的并且有足够强度的,束斑大小可调节的,扫描范围可根据需要选择的,形状完美对称的,并且稳定的电子束。电子光学系统主要由电子枪、电磁聚光镜、光阑、扫描系统、消像散器、物镜和各类对中线圈组成,如图3-1。图3-1 SEM的电子光学系统§1. 电子枪(Electron Gun)电子枪是产生具有确定能量电子束的部件,是由阴极(灯丝)、栅极和阳极组成。灯丝主要有钨灯丝、LaB6和场发射三类。① 钨灯丝电子枪:如图3-2,灯丝是钨丝,在加热到2100K左右,电子能克服大约平均4.5eV的逸出功而逃离,钨灯丝是利用热效应来发射电子。不过钨灯丝发射电子效率比较低,要达到实用的电流密度,需要较大的钨丝发射面积,一般钨丝电子源直径为几十微米。这样大的电子源直径很难进一步提高分辨率。还有,钨灯丝亮度差、电流密度低、单色性也不好,所以钨灯丝目前最高只能达到3nm的分辨率,实际使用的放大倍数均在十万倍以下。不过由于钨灯丝价格便宜,所以钨灯丝电镜得到了广泛的应用。图3-2 钨灯丝电子枪② LaB6电子枪:要提高扫描电镜的分辨率,就要提高电子枪的亮度。而一些金属氧化物或者硼化物在加热到高温之后(1500~2000K),也能克服平均逸出功2.4eV而发射热电子,比如LaB6,曲率半径为几微米。LaB6灯丝亮度能比钨灯丝提高数倍。因此LaB6灯丝电镜有比钨灯丝更好的分辨率。除了LaB6外,类似的还有CeB6等材料。不过目前在扫描电镜领域,LaB6灯丝价格并不便宜,性能相对钨灯丝提升有限,另外就是场发射的流行,使得LaB6灯丝的使用并不多见。图3-3 LaB6电子枪② 场发射电子枪:1972年,拥有更高亮度、更小电子束直径的场发射扫描电镜(FE-SEM)实现商品化,将扫描电镜的分辨率推向了新的高度。场发射电子枪的发射体是钨单晶,并有一个极细的尖端,其曲率半径为几十纳米到100nm左右,在钨单晶的尖端加上强电场,利用量子隧道效应就能使其发射电子。图3-4为场发射电子枪的结构示意图。钨单晶为负电位,第一阳极也称取出电极,比阴极正几千伏,以吸引电子,第二阳极为零电位,以加速电子并形成10nm左右的电子源直径。图3-5为场发射电子枪的钨单晶灯丝结构,只有钨灯丝支撑的非常小的尖端为单晶。图3-4 场发射电子枪结构示意图图3-5 场发射电子枪W单晶尖端场发射电子枪又分为冷场发射和热场发射。热场发射的钨阴极需要加热到1800K左右,尖端发射面为或取向,单晶表面有一层氧化锆(如图3-6),以降低电子发射的功函数(约为2.7eV)。图3-6 热场发射电子枪钨单晶尖端冷场发射不需加热,室温下就能进行工作,其钨单晶为取向,逸出功最小,利用量子隧道效应发射电子。冷场电子束直径,发射电流密度、能量扩展(单色性)都优于热场发射,所以冷场电镜在分辨率上比热场更有优势。不过冷场电镜的束流较小(一般为2nA),稳定性较差,每个几小时需要加热(Flash)一次,对需要长时间工作和大束流分析有不良影响。不过目前Hitachi最新的冷场SEM,束流已经能达到20nA,稳定性也比以往提高了很多,能够满足一些短时间EBSD采集的需要,不过对于WDS、阴极荧光等分析还不够。热场发射虽然电子束直径、能量扩展不及冷场,但是随着技术的发展,其分辨率也越来越接近冷场的水平,有的甚至还超越了冷场。特别是热场电镜束流大,稳定性好,有着非常广阔的应用范围。从各个电镜厂商对待冷场和热场的态度来看,欧美系厂商钟情于热场电镜,而日系厂商则倾向于冷场电镜。不过目前日系中的日本电子也越来越多的推出热场电镜,日立也逐步推出热场电镜,不过其性能与自家的冷场电镜相比还有较大差距。① 各种类型电子源对比:各类电子源的对比如表3-1。表3-1 不同电子源的主要参数SEM的分辨率与入射到试样上的电子束直径密切相关,电子束直径越小,分辨率越高。最小的电子束直径D的表达式为:其中D为交叉点电子束在理想情况下的最后的束斑直径,CS为球差系数、CC为色差系数、ΔV/V0为能量扩展、I为电子束流、B为电子源亮度,a为电子束张角。由此可以看出,不同类型的电子源,其亮度、单色性、原始发射直径具有较大的差异,最终导致聚焦后的电子束斑有明显的不同,从而使得不同电子源的电镜的分辨率也有如此大的差异。通常扫描电镜也根据其电子源的类型,分为钨灯丝SEM和冷场发射SEM、热场发射SEM。§2. 电磁透镜电磁透镜主要是对电子束起汇聚作用,类似光学中的凸透镜。电磁透镜主要有静电透镜和磁透镜两种。① 静电透镜一些特定形状的并成旋转对称的等电位曲面簇可以使得电子束在库仑力的作用下进行聚焦,形成这些等电位曲面簇的装置就是静电透镜,如图3-7。图3-7 静电透镜静电透镜在扫描电镜中使用相对较少。不过电子枪外的栅极和阳极之间,自然就形成了一个静电透镜。另外一些特殊型号的电镜在某些地方采用了所谓的静电透镜设计。② 磁透镜电子束在旋转对称的磁场中会受到洛伦兹力的作用,进而产生聚焦作用。能使产生这种旋转对称非均匀磁场并使得电子束聚焦成像的线圈装置,就是磁透镜,如图3-8。图3-8 磁透镜磁透镜主要有两部分组成,如图3-9。第一部分是软磁材料(如纯铁)制成的中心穿孔的柱体对称芯子,被称为极靴。第二部分是环形极靴的铜线圈,当电流通过线圈的时,极靴被磁化,并在心腔内建立磁场,对电子束产生聚焦作用。图3-9 磁透镜结构磁透镜主要包括聚光镜和物镜,靠近电子枪的透镜是聚光镜,靠近试样的是物镜,如图3-10。一般聚光镜是强励磁透镜,而物镜是弱励磁透镜。图3-10 聚光镜和物镜聚光镜的主要功能是控制电子束直径和束流大小。聚光镜电流改变时,聚光镜对电子束的聚焦能力不一样,从而造成电子束发散角不同,电子束电流密度也随之不同。然后配合光阑,可以改变电子束直径和束流的大小,如图3-11。当然,有的电镜不止一级聚光镜,也有的电镜通过改变物理光阑的大小来改变束流和束斑大小。图3-11 聚光镜改变电流密度、束斑和束流物镜的主要功能是对电子束做最终聚焦,将电子束再次缩小并聚焦到凸凹不平的试样表面上。虽然电磁透镜和凸透镜非常像似,不过电子束轨迹和光学中的光线还是有较大差别的。几何光学中的光线在过凸透镜的时候是折线;而电子束在过磁透镜的时候,由于洛伦兹力的作用,其轨迹是既旋转又折射,两种运动同时进行,如图3-12。图3-12 电子束在过磁透镜时的轨迹§3. 光阑一般聚光镜和物镜之间都有光阑,其作用是挡掉大散射角的杂散电子,避免轴外电子对焦形成不良的电子束斑,使得通过的电子都满足旁轴条件,从而提高电子束的质量,使入射到试样上的电子束直径尽可能小。电镜中的光阑和很多光学器件里面的孔径光阑或者狭缝非常类似。光阑一般大小在几十微米左右,并根据不同的需要选择不同大小的光阑。有的型号的SEM是通过改变光阑的孔径来改变束流和束斑大小。一般物镜光阑都是卡在一个物理支架上,如图3-13。图3-13 物理光阑的支架在电镜的维护中光阑的状况十分重要。如果光阑合轴不佳,那将会产生巨大的像散,引入额外的像差,导致分辨率的降低。更有甚者,图像都无法完全消除像散。另外光阑偏离也会导致电子束不能通过光阑或者部分通过光阑,从而使得电子束完全没有信号,或者信号大幅度降低,有时候通过的束斑也不能保持对称的圆形,如图3-14,从而使得电镜图像质量迅速下降。还有,物镜光阑使用时间长了还会吸附其它物质从而受到污染,光阑孔不再完美对称,从而也会引起额外的像差,信号的衰弱和图像质量的降低。图3-14 光阑偏离后遮挡电子束因此,光阑的清洁和良好的合轴,对扫描电镜的图像质量来说至关重要。光阑的对中调节目前有手动旋拧和电动马达调节两种方式。TESCAN在电镜的设计上比较有前瞻性,所有型号的电镜都采用了中间镜技术,利用电磁线圈代替了传统的物镜光阑。中间镜是电磁线圈,可以受到软件的自动控制,并且连续可调,所以TESCAN的中间镜相当于是一个孔径可以连续可变的无极孔径光阑,而且能实现很多自动功能。 §4. 扫描系统① 扫描系统扫描系统是扫描电镜中必不可少的部件,作用是使电子束偏转,使其在试样表面进行有规律的扫描,如图3-15。图3-15 扫描线圈改变电子束方向扫描系统由扫描发生器和扫描线圈组成。扫描发生器对扫描线圈发出周期性的脉冲信号,如图3-16,扫描线圈通过产生相应的电场力使得电子束进行偏转。通过对X方向和Y方向的脉冲周期不同,从而控制电子束在样品表面进行矩形的扫描运动。此外,扫描电镜的像素分辨率可由X、Y方向的周期比例进行控制;扫描的速度由脉冲频率控制;扫描范围大小由脉冲振幅进行控制;另外改变X、Y方向脉冲周期比例以及脉冲的相位关系,还可以控制电子束的扫描方向,即进行图像的旋转。图3-16 扫描发生器的脉冲信号另外,从扫描发生器对扫描线圈的脉冲信号控制就可以看出,电子束在样品表面并不是完全连续的扫描,而是像素化的逐点扫描。即在一个点驻留一个处理时间后,跳到下一个像素点。值得注意的是扫描电镜的放大率由扫描系统决定,扫描范围越大,相应的放大率越小;反之,扫描的区域越小,放大率越大。显示器观察到的图像和电子束扫描的区域相对应,SEM的放大倍数也是由电子束在试样上的扫描范围确定。① 放大率的问题有关放大率,目前不同的电镜上有不同的形式,即所谓的照片放大率和屏幕放大率,不同的厂家或行业有各自使用上的习惯,故而所用的放大率没有明确说明而显得不一样。这只是放大率的选择定义不一样而已,并不存在放大率不同的问题。首先是照片放大率。照片放大率使用较早,在数字化还不发达的年代,扫描电镜照片均是用照片冲洗出来。业内普遍用宝丽来的5英寸照片进行冲洗。所用冲洗出来的照片的实际长度除以照片对应样品区域的实际大小之间的比值,即为照片放大率。不过随着数字化的到来,扫描电镜用冲洗出来的方式进行观察已经被淘汰,扫描电镜几乎完全是采用显示器直接观察。所以此时用显示器上的长度除以样品对应区域的实际大小,即为屏幕放大率。同样的扫描区域,照片放大率和屏幕放大率会显示为不同的数值。不过不管采用何种放大倍数,在通常的图片浏览方式下,其放大率通常都不准确。对于照片放大率来说,只有将电镜图像冲印成5英寸宝丽来照片时观察,其实际放大倍数才和照片放大率一致,否则其它情况都会存在偏差;对屏幕放大率来说,只有将电镜照片在控制电镜的电脑上,按照1:1的比例进行观察时,实际放大倍数才和屏幕放大率一致。否则照片在电脑上观察时放大、缩小、或者自适应屏幕,或者照片被打印成文档、或者被投影出来、或者不同的显示器之间会有不同的像素点距,都会造成实际放大率和照片上标出的放大率不同。不过不管如何偏差,照片上的标尺始终一致。所以在针对放大率倍数发生争执时,首先要弄清楚照片上标的放大倍数为何种类型,尽量回避放大率的定义,改用视野宽度或者标尺来进行比对。 §5. 物镜扫描电镜的物镜也是一组电磁透镜,励磁相对较弱,主要用于电子束的最后对焦,其焦距范围可以从一两毫米到几厘米范围内做连续微小的变化。① 物镜的类型:物镜技术是相对来说比较复杂,不同型号的电镜可能其它部件设计相似,但是在物镜技术上可能有较大的差异。目前场发射的物镜通常认为有三种物镜模式,即所谓的全浸没式、半磁浸没式和无磁场式,如图3-17。或者各厂家有自己特定的名称,但是业界没有统一的说法,不过其本质是一样的。图3-17 全浸没式(左)、无磁场式(中)、半磁浸没式(右)透镜A.全浸没式:也被称为In-LensOBJ Lens,其特点是整个试样浸没在物镜极靴以及磁场中,顾名思义叫全浸没模式。但是其试样必须做的非常小,插入到镜筒里面,和TEM比较类似。这种电镜在市场里面非常少,没有引起人们的足够重视。B.无磁场式:也叫Out-lensOBJ Lens,这也是电镜最早发展起来的,大部分钨灯丝电镜都是这种类型的物镜。此类电镜的特点是物镜磁场开口在极靴里面,所以物镜产生的磁场基本在极靴里面,样品附近没有磁场。但是绝对不漏磁是不可能的,只要极靴留有让电子束穿下来的空隙,就必然会有少量磁场的泄露。这对任何一家电镜厂商来说都是一样,大家只能减少漏磁,而不可能彻底杜绝漏磁,因为磁力线总是闭合的。采用这种物镜模式的电镜漏磁很少,做磁性样品是没有问题的。特别是TESCAN的极靴都采用了高导磁材料,进一步减少了漏磁。TESCAN的VEGA、MIRA、LYRA系列均是采用此种物镜。C. 半磁浸没式:为了进一步提高分辨率,厂商对物镜做了一些改进。比较典型的就是半浸没式物镜,也叫semi-in-lens OBJ Lens。因为全浸没式物镜极少,基本别人忽视,所以有时候也把半浸没式物镜称为浸没式物镜。半浸没式物镜的特点是极靴的磁场开口是在极靴外面,故意将样品浸没在磁场中,以减少物镜的球差,同时产生的电子信号会在磁场的作用下飞到极靴里面去,探测器在极靴里面进行探测。这种物镜最大的优点是提高了分辨率,但是缺点是对磁性样品的观察能力相对较弱。为了弥补无磁场物镜分辨率的不足和半浸没物镜不能做磁性样品的缺点,半磁浸没物镜的电镜一般将无磁场式物镜和半磁浸没式物镜相结合,形成了多工作模式。从而兼顾无磁场和半浸没式的优点,做特别高的分辨率时,使用浸没式物镜(如TESCAN MAIA3和GAIA3的Resolution模式),做磁性样品的时候,关闭浸没式物镜使用一般的物镜(如TESCAN的Field模式)。从另一个角度来说,在使用无磁场模式物镜时,对应的虚拟透镜位置在镜筒内,距离样品位置较远;使用半浸没式物镜时,对应的透镜位置在极靴下,距离样品很近。根据光学成像的阿贝理论也可以看出,半浸没式物镜的分辨率相对更高,如图3-18。图3-18 无磁场式(左)和半磁浸没式(右)透镜对应的位置① 物镜的像差电磁透镜在理想情况下和光学透镜类似,必须满足高斯成像公式,但是光学不可避免的存在色差和像差以及衍射效应,在电子光学中一样存在。再加上制造精度达不到理论水平,磁透镜可能存在一定的缺陷,比如磁场不严格轴对称分布等,再加上灯丝色差的存在,从而使得束斑扩大而降低分辨率。所以减少物镜像差也一直是电镜在不断发展的核心技术。A.衍射的影响:由于高能电子束的波长远小于扫描电镜分辨率,所以衍射因子对分辨率的影响较小。图3-19 球差、色差、衍射的对束斑的影响B.色差的影响:色差是指电子束中的不同电子能量并不完全相同,能量范围有一定的展宽,在经过电磁透镜后焦点也不相同,导致束斑扩大。不同的电子源色差像差很大,也造成了分辨率的巨大差异。C.像差的影响:像差相对来说比较复杂,在传统光学理论中,由于成像公式都是基于旁轴理论,所以在数学计算上做了一定的近似。不过如果更严格的考虑光学成像,就会发现在光学成像中存在五种像差。a. 球差:电子在经过透镜时,近光轴的电子和远光轴电子受到的折射程度不同,从而引起束斑的扩大。而电镜中的电子束不可能细成完美的一条线,总会有一定的截面积,故而球差总是存在。不过球差对扫描电镜的影响相对较小,对透射电镜的影响较大。b. 畸变:原来横平竖直的直线在经过透镜成像后,直线变成曲线,根据直线弯折的情况分为枕形畸变和桶形畸变,如图3-20。不过在扫描电镜中因为倍数较大,所以畸变不宜察觉,但是在最低倍率下能观察到物镜的畸变。特别是扫描电镜的视场往往有限,有的型号的电镜具有了“鱼眼模式”,虽然增加了视场但却增加了畸变。TESCAN的电镜很有特点,利用了独特的技术,既保证了大视野,又将畸变减小到了最低甚至忽略不计,如图3-21。图3-20 透镜的畸变图3-21鱼眼模式和TESCAN的视野模式c. 像散:像散是由透镜磁场非旋转对称引起的一种像差,使得本应呈圆形的电子束交叉点变成椭圆。这样一个的束斑不再是完美对称的圆形,会严重影响电镜的图像质量。以前很多地方都说极靴加工精度、极靴材料不均匀、透镜内线圈不对称或者镜头和光阑受到污染,都会产生像散。但是,像散更是光学中的一种固有像差,即使极靴加工完美,镜头、光阑没有污染,也同样会有像散。当然由于加工及污染的问题,会进一步加大像散的影响。在光学理论中,不在光轴上的物点经过透镜后,用屏去截得到的光斑一般不再是圆形。其中有三个特殊位置如图3-23,一个叫做明晰圆位置,这里的光斑依然是圆形;而另外两个特殊的位置称为子午与弧矢,这里截到的是两条正交的直线;其它任意位置截到的是一个会随位置而变化的椭圆。图3-22 电镜中的消像散图3-23 光学理论中的像散 对于电子束来说也一样,原来圆形的束斑在经过电磁透镜后,会因为像散的存在变得不再是完美的圆形,引起图像质量的降低。要消除像散需要有消像散线圈,它可以产生一个与引入像散方向相反、大小相等的磁场来抵消像散,为了能更好的抵消各个方向的像散,消散线圈一般都是两组共八级线圈,构成一个米字形,如图3-24。如果电镜的像散没有消除,那么图像质量会受到极大的影响。图3-24 八级消像散线圈d. 慧差和像场弯曲:慧差也总是存在的,只是在扫描电镜中不易被发觉,不过在聚焦离子束中对中状况不好时可以发现慧差的存在;由于扫描电镜的成像方式和TEM等需要感光器件的仪器不同,像场弯曲在扫描电镜中也很难发现。慧差和像场弯曲在扫描电镜中都可以忽略。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】哪种物镜设计的扫描电镜可以观测磁性样品(特指可充磁性样品)?↓ 往期课程,请关注微信“TESCAN公司”查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
  • “微区升级你有我送” | 特别优惠升级普林斯顿微区扫描电化学测试系统活动
    “微区升级你有我送” | 特别优惠升级普林斯顿微区扫描电化学测试系统活动 阿美特克科学仪器部助力科研新秀,特对普林斯顿电化学仪器现有用户推出“微区升级你有我送” 特别优惠升级微区扫描电化学测试系统的活动。用常规电化学工作站的价格,升级到微区测试,实现全方位最前沿的电化学测试。此次“微区升级你有我送”疫情年特殊促销活动有效期至2020年12月31日。您想跻身于世界电化学研究的前沿吗?您的研究还在为没有先进的测试设备而没有新意停滞不前吗?快来升级普林斯顿VersaScan微区扫描电化学测试系统吧,睹微知著。微区扫描电化学-更高空间分辨率普林斯顿VersaScan微区扫描电化学工作站是一个建立在电化学扫描探针设计的基础上,进行超高测量分辨率及空间分辨率的非接触式微区形貌及电化学微区测试系统,是提供给电化学及材料测试以极高空间分辨率的一个测试平台。普林斯顿VersaSCAN扫描电化学系统每个普林斯顿VersaSCAN都具有高分辨率,长工作距离的闭环定位系统并安装于抗震光学平台上。不同的辅助选件都安装于定位系统上,辅助选件如电位计、压电振动单元或者激光传感器,为不同扫描探针试验,定位系统提供不同的功能。相对于传统电化学,普林斯顿VersaScan微区扫描电化学将获得以下重要信息: 表面电流成像 局部活性惰性 反应速率表征 电子转移计算 反应机制研究多相界面探索(来源Chem. Rev. 2016, 116, 13234?13278) 国内外大量的研究成果表明,微区扫描电化学技术以其极高的空间分辨率,在腐蚀、能源、生物、材料、多相催化、界面反应、表面修饰和动力学研究等众多电化学研究领域中表现出巨大优势。 更多了解“微区升级你有我送” 特别优惠升级普林斯顿微区扫描电化学测试系统活动,欢迎联系我们或者访问https://www.instrument.com.cn/netshow/SH102493/C371134.htm。 关于阿美特克科学仪器部美国阿美特克集团公司(www.ametek.com)是全球电子仪器和电子机械设备的领先供应商,年销售额超过50亿美金,员工规模超过15000人,分布在全球的120个工厂和100多家销售和服务中心。Advanced Measurement Technology Inc.是美国阿美特克集团的子公司,旗下拥有Princeton Applied Research (普林斯顿应用研究),Solartron Analytical (输力强分析),Signal Recovery 和ORTEC四个品牌。其中Applied Research,Solartron Analytical和Signal Recovery三个品牌组成阿美特克科学仪器部。 普林斯顿应用研究,PAR是阿美特克集团旗下一个具有悠久历史的电化学仪器品牌。创建于1961年,由世界著名的美国常春藤高校普林斯顿大学和等离子实验室的一群科学家共同建立,近60年来,在业内具有极高的品牌知名度。自1979年进入中国以来,用户以超过数千人,专注于能源,腐蚀,传感器,电分析等研究领域,提供卓越的宏观和微观电化学测试系统和技术。 输力强(Solartron)具有60多年专业的设计和生产精密电子仪器的历史,是电化学交流阻抗谱仪器的专业生产厂商,已成为极高准确性和可靠性的电化学和材料测试分析仪器市场的领先者。目前主要应用于新能源行业,传感器,腐蚀,电分析等研究领域。为动力电池和电池组性能评价提供完整的解决方案。 更多详情欢迎访问 普林斯顿输力强官网 或官方微信号:普林斯顿及输力强
  • 预算9891万!上海高研院2022年仪器采购意向汇总
    仪器是科学创新的重要基础和条件,科学发现不仅仅需要理论创新,还需要依靠仪器进行实验观察和测量。中国科学院上海高等研究院作为中国科学院和上海市人民政府共建的科研机构,以先进光源大科学装置的研制、建设和运行为核心,开展加速器科学、光子科学、能源科学与信息科学领域的原始创新研究和关键核心技术研发,其前沿科学研究同样离不开仪器的支持。根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,要求各采购人进一步提高政府采购的透明度,让供应商提前获知政府采购信息,保障各类市场主体平等地参与政府采购活动,从而优化政府采购营商环境,提升采购绩效。中国科学院上海高等研究院作为仪器使用大户,近年来不断公开仪器类政府采购意向。为方便仪器信息网用户及时了解仪器采购信息,本文特对中国科学院上海高等研究院2022年1至12月仪器类政府采购意向进行了盘点汇总。共收集到26项仪器采购意向,预算金额相加达9891万元,采购品目包括Nano-CT、激光显微测量仪、快速切片扫描仪、液氮冷却双晶快速单色器、X射线光学转换显微系统、衍射仪等诸多仪器类型。上海高研院2022年1至12月仪器采购意向汇总表序号项目名称采购品目预算金额(万元)采购日期项目详情1数字化电源控制器A02061599其他电源设备1603月详情链接2高性能激光器A02100303物理光学仪器1503月详情链接3三台电镜维保C0908其他专业技术服务1784月详情链接4衍射仪A02100604生物、医学样品制备设备3754月详情链接5自动上样机械手A02100604生物、医学样品制备设备2804月详情链接6EBL图形发生器A02100303物理光学仪器2005月详情链接7小鼠独立送风笼具A031016畜牧饲养机械2505月详情链接8镜子A02062002电气物理设备3856月详情链接9激光显微测量仪A02100303物理光学仪器1506月详情链接10调制激光驱动激光器A02100303物理光学仪器3306月详情链接11全自动土壤碳通量监测系统A02100415环境监测仪器及综合分析装置1707月详情链接12JKW-基于柔性布局燃气轮机的复合动力装置技术A02060199其他电机1957月详情链接13真空腔系统A02052402真空应用设备2009月详情链接14Nano-CT系统A02100303物理光学仪器24719月详情链接15可升降实验平台A02100699其他试验仪器及装置1309月详情链接16面探测器A02100303物理光学仪器1209月详情链接17X射线光学转换显微系统A02100301显微镜1709月详情链接18电动SAXS真空管道A02051318输送管道2609月详情链接19KB聚焦镜A02100303物理光学仪器3569月详情链接20快速切片扫描仪A02100604生物、医学样品制备设备18012月详情链接21液氮冷却双晶单色器1A02100303物理光学仪器57212月详情链接22液氮冷却双晶快速单色器A02100303物理光学仪器67912月详情链接23液氮循环机组A02052299其他气体分离及液化设备44712月详情链接24谐波镜系统A02100303物理光学仪器24012月详情链接25水冷双晶单色器A02100303物理光学仪器58512月详情链接26液氮冷却双晶单色器2A02100303物理光学仪器65812月详情链接
  • 海克斯康发布首款智能蓝光扫描系统SmartScan VR800
    创新时代,变幻无穷!SmartScan VR800智能蓝光扫描系统,是首款配备自动变焦镜头的结构光3D扫描仪,拥有智能分辨率、智能变焦和智能抓拍三大创新功能。它专为提高工作效率而设计,通过简单的软件设置,即可完成扫描分辨率和测量范围的快速调整,为用户实现精确、高效的扫描测量提供了前所未有的创新体验!全新的3D扫描方式SmartScan VR800具有开创性的全新功能,可以通过软件设置调整扫描分辨率和测量范围。这些功能可应用于各种检测工作流程,能够大幅提升光学3D扫描系统检测的效率。随时随地,自定焦测量SmartScan VR800配备四个独立的高清相机和变焦投影单元,具有独特的可变分辨率和可变测量范围功能。只需几秒钟,用户就能在检测软件中快速完成对扫描细节和测量范围的调整,且无需更换光学器件或进行重新校准。易于使用,极简工作流程VR800的多相机配置能够简化3D扫描仪的测量操作,为开创新型高效工作流程提供了前所未有的机会。该系统在一个项目中可以使用不同的扫描分辨率,并且能够近乎同步完成对其切换,从而有效提升数据采集、处理和分析的速度。精度聚焦,关键数据一览无余随着检测设备的日益强大,检测数据的处理由于需要大量的计算资源,也变得越来越具有挑战性。用户使用VR800可以准确定义检测对象中的重要部分,并只对这些区域进行高分辨率扫描。由于图像在基准对齐情况下同步采集的,VR800通过设置可以避免扫描重叠区域。三大创新功能,让测量更加智能智能分辨率VR800的智能分辨率功能允许用户在保持恒定测量范围的同时改变分辨率。用户可在软件中切换不同设置,并将数据合并到同一个测量项目中。这一功能方便用户根据工件测量的具体需要,进行分辨率的调整。智能变焦VR800的智能变焦功能允许用户快速调整扫描仪的测量范围和分辨率,共有6种测量范围选项,其中最大的测量长度800 毫米,最小160 毫米。用户可根据测量工件的实际情况,按需选择合适的选项。智能抓拍VR800的智能抓拍功能支持多相机以不同的方式投入使用,全部四个数字相机在LED闪光灯的支持下,可以同时获取定位信息和扫描数据。这种组合方式能够大大减少所需目标点的数量,增大目标测量范围,同时加快整个扫描工作流程。质量为先,创新是新时代制造行业的核心,SmartScan VR800突破性的产品功能和创新设计理念,开创了结构光扫描技术发展的新篇章,不仅实现了多项行业先进技术的首创,还首次将变焦镜头的使用提升到了全新的技术平台。不断实现技术革新突破,真正用技术创新催生行业客户发展新质生产力,海克斯康始终同行!
  • 国内首套太赫兹扫描隧道显微镜系统研发成功
    近日,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。THz-STM系统扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具,通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学教授Frank Hegmann,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等科研团队纷纷开展相关技术研究。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM)。该显微镜具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等领域。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科学技术厅、广州市、黄埔开发区等相关项目的资助。THz自相关脉冲和THz-STM电流信号硅重构表面原子分辨和金表面原子分辨
  • 突破!我国首台太赫兹扫描隧道显微镜系统研制成功
    2022年2月,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,为国内首套自主研制的太赫兹扫描隧道显微镜系统。扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具。通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域具有广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学Frank Hegmann教授,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等著名科研团队纷纷开展相关技术研究。但我国在该领域的研究一直处于空白。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM),具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等诸多领域,有望取得具有重要国际影响力的原创性科研成果。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科技厅、广州市、黄埔开发区等相关项目的资助。 THz-STM系统硅重构表面原子分辨(左),金表面原子分辨(右)
  • 卡尔蔡司AXIO Scan.Z1全自动数字玻片扫描系统
    灵活、全自动地获取明场和荧光样本图像   2012年12月17日 德国斯图加特,耶拿/旧金山,美国   今年在旧金山举行的美国细胞生物学学会年会上,卡尔蔡司显微镜事业部发布了一款数字玻片扫描系统——Axio Scan.Z1。 这款自动化的显微系统,可帮助研究人员对固定组织切片和细胞样本进行全自动的高速明场和荧光扫描。   归功于样品夹的“托盘”设计理念Axio Scan.Z1能够做到扫描载玻片上的全部标本区域——包括玻片的边缘部分。仅需几分钟的时间,自动校正切片扫描仪系统便可获得高质量的数字虚拟玻片图像。该系统一次性可扫描100张玻片。在拍摄荧光样品时,高速滤片转轮仅需短短50毫秒即可实现切换。高灵敏度的科研级相机结合高精度校准的光路设计可获取最优品质的图像。系统搭载了Colibri.2 UV-free LED荧光光源,利用斜照明查找焦平面的装置,环形光阑照明方式(Ring Aperture Contrast),确保对样本提供最大限度的保护。   “蔡司数字切片扫描系统支持科学家反复进行大型样本图像的获取工作,例如老年痴呆症与癌症研究中的组织学分析。该领域的应用范围可以从基础研究延伸至医药产业项目”,卡尔蔡司Axio Scan.Z1的产品经理Thorsten Heupel博士说。   Axio Scan.Z1是由卡尔蔡司的ZEN成像软件操作的,ZEN既允许用户使用预定义的设置参数自动工作,又允许用户在不同步骤时对单个参数独立设置。用户界面的设计是专为研究领域的工作流程而设计的。   虚拟玻片数据被安放在一个可连接网络的数据库:ZEN Browser。除系统本身的电脑可进行操作以外,用户可以访问、查看、并可与同事在线共享他们的图像与数据或者组织整个项目——甚至在外出时也可方便实现以上功能。也有一个适用于Iphone和Ipad的免费应用软件来实现上述功能。   用户可以在最开始决定用多少显微镜玻片、哪种检测方式和他们最希望使用的相机类型,并且随着课题的发展,Axio Scan.Z1可非常简便地进行升级.
  • 机载激光扫描测图系统研发中心在天河挂牌
    昨日,广州建通测绘技术开发有限公司与武汉大学联合成立的机载激光扫描测图系统研究开发中心在天河软件园高唐园区正式挂牌。   机载激光雷达技术广泛应用于交通和电力等线路工程、城市规划与三维城市建模、采矿、灾害应急响应和资源环境监测等方面。武汉大学、广东省科技厅、广东省交通厅、广东省国土局测绘处的相关领导以及广州市各主要高校产学研负责人出席了挂牌仪式。
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称 扫描探针显微镜宽动态范围电流测量系统的研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。 2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。 应用前景: 扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 国内首套扫描电镜专用原位AFM探测系统顺利落户上海硅酸盐所
    喜讯2019年8月,国内套奥地利GETec公司扫描电镜专用原位AFM探测系统(AFSEM)在中国科学院上海硅酸盐研究所曾毅教授课题组顺利交付使用。奥地利GETec公司扫描电镜专用原位AFM探测系统现场安装培训 纳米新探索 奥地利GETec公司发布的AFSEM是一款紧凑型,适用于真空环境的AFM产品,能够轻松地与SEM结合为一体,大地扩展SEM样品成像和分析能力,实现了AFM和SEM的功能性互补。AFSEM技术与SEM技术的结合,是人们对纳米新探索的重要工具之一。 GETec AFSEM 系统安装示意图及实物图中国科学研究院硅酸盐研究所曾老师课题组主要从事材料显微结构表征技术研究,在扫描电镜使用操作方面具有丰富的经验。本次交付的AFSEM系统结合了课题组已有的美国FEI电镜Versa™ 3D 双束扫描电镜,该强有力地结合,可将SEM已有的样品表面分析成像功能扩展到AFM探测领域,同时也将帮助曾老师课题组在材料显微结构方面的研究,我们也祝愿曾老师在未来的科研工作中取得累累成果。同时,GETec公司也非常关注此次安装,同期9月,奥地利政府经济商会访问团在上海大学参与政府组织的学术研讨活动,会后邀请其国内外专家人士参观曾老师课题组,并顺利举办有关GETec技术应用研讨会,将奥地利公司及研究机构与上海大学及研究机构紧密联系在一起。研讨会上,奥地利GETec公司介绍了AFSEM的新发展并讨论其应用。 奥地利GETec公司国内举办研讨会及现场仪器操作演示
  • 武汉大学预算430万元购买1套超高真空扫描隧道/原子力显微镜系统
    4月29日,武汉大学公开招标购买1套超高真空扫描隧道/原子力显微镜系统,预算430万元。  项目编号:HBT-13210048-211202  项目名称:武汉大学超高真空扫描隧道/原子力显微镜系统采购项目  预算金额:430.0000000 万元(人民币)  最高限价(如有):430.0000000 万元(人民币)  采购需求:  超高真空扫描隧道/原子力显微镜系统(进口)1套。  合同履行期限:交货期为合同签订并图纸确认后10个月,质保期两年。  本项目( 不接受 )联合体投标。  开标时间:2021年05月21日 09点30分(北京时间)
  • 1000万!重庆大学极低温强磁场扫描隧道显微镜系统采购
    项目编号:CQU-SS-HW-2022-156项目名称:重庆大学极低温强磁场扫描隧道显微镜系统采购预算金额:1000.0000000 万元(人民币)最高限价(如有):980.0000000 万元(人民币)采购需求:序号产品名称(设备名称)※数量单位备注1极低温强磁场扫描隧道显微镜系统1套(核心产品)合同履行期限:中标人应在采购合同签订后18个月内交货,交货后30日内完成安装调试。本项目( 不接受 )联合体投标。重庆大学“极低温强磁场扫描隧道显微镜系统”采购项目-招标文件(挂网稿)-1205改.doc
  • 国内首张!“荧光玻片自动扫描成像系统”取得医疗器械注册证
    近日,由中科院苏州医工所研发的“荧光玻片自动扫描成像系统”在天津国科医工科技发展有限公司成功获得天津市药品监督管理局颁发的二类医疗器械注册证(注册证编号:津械注准20222220401),为国内第一张宽场超分辨病理显微成像的二类医疗器械注册证。该产品用于医疗机构进行病理切片的显微图像扫描拍摄,辅助医生进行临床诊断。 此次获批的荧光玻片自动扫描成像系统(型号:BIO-SIM1.1)属于科技部“十三五”国家重点研发计划“数字诊疗装备”重点专项“随机光学重建/结构光照明复合显微成像系统研制”项目的研究成果。该项目由苏州医工所医用光学技术研究室李辉研究员及其团队负责研发工作,在天津国科进行医疗器械产品注册。项目也于近日顺利通过了科技部中国生物技术发展中心组织的项目综合绩效评价。 BIO-SIM1.1系统将具有快速超分辨成像能力的结构光照明显微成像技术应用到病理切片样本的观测成像中,有效解决了视场小、分辨率低、成像速度慢等问题,通过对上百例的荧光原位杂交(FISH)分子病理切片的观测成像,证明其对Her-2、MDM2等基因扩增探针和需要精确间距测量的基因易位探针的成像具有优势,有助于提高对软组织和淋巴肿瘤等重大疑难疾病诊断的准确性。 苏州医工所医用光学室以超分辨光学显微成像核心器件和系统为重点发展方向,研发了大数值孔径物镜等核心器件,以及共聚焦显微镜、STED超分辨显微镜、结构光照明超分辨显微镜等高端光学显微成像仪器,与国内相关企业和应用单位联合共同推进高端光学显微成像设备的国产化进程。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制