当前位置: 仪器信息网 > 行业主题 > >

高压自增强系统

仪器信息网高压自增强系统专题为您提供2024年最新高压自增强系统价格报价、厂家品牌的相关信息, 包括高压自增强系统参数、型号等,不管是国产,还是进口品牌的高压自增强系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高压自增强系统相关的耗材配件、试剂标物,还有高压自增强系统相关的最新资讯、资料,以及高压自增强系统相关的解决方案。

高压自增强系统相关的论坛

  • 表面增强拉曼四十年

    2014年10月31日-11月3日,第十八届全国分子光谱学学术会议在苏州召开。本次会议中,拉曼,特别是拉曼增强的研究依然是大家看好的领域。在大会报告中就有很多专家及老师介绍了拉曼光谱及表面增强拉曼光谱的技术以及应用进展。http://bimg.instrument.com.cn/show/NewsImags/images/201411610520.jpg田中群院士 厦门大学 表面增强拉曼四十年:从基础到应用  其中田中群院士作了以《表面增强拉曼四十年:从基础到应用》为题的报告。在报告中,田中群介绍到,由于对复杂体系痕量分析的需求越来越多,科学研究亟待发展基于新原理和新方法的科学仪器,这也是分析化学发展的主要驱动力。而拉曼光谱具有高识别性,特别是拉曼增强效应能够使拉曼光谱的灵敏度提高百万倍甚至更好,具有很好的发展和应用前景。  从1974年,有关拉曼增强的第一篇文章发表到现在整整40年,在这40年中,前半段时间发展的相对缓慢,后半段比较迅速,原因在于表面增强拉曼光谱的发展是基于纳米科技的发展才得以快速的发展,而我国的纳米科技是在1990年之后才发展起来的。  由于有了纳米技术的发展,我们才可以看到并调控纳米粒子,进而达到拉曼增强的效果。我们应该清晰的认识到,表面增强拉曼散射效应就是一种基于纳米结构而发展起来的技术。所以,要发展拉曼技术,就要抓住关键点,研究怎样的纳米结构才可以最大限度的增强拉曼光谱的信号。  田中群介绍到,目前拉曼增强方面的研究有两个“短板”:一个是可以达到增强效果的材料比较少;二是表面形貌,目前只能在纳米结构或者粗糙的表面上来得到增强的效果。  “纳米科学的发展使得我们有越来越多的技术和能力可以设计和制造各种纳米结构。”田中群说,“不要再用一些简单的纳米粒子来做研究,这已经用了几十年了,老一辈用是合理的,年轻人应该更大胆的去创新,去思考有没有更好的纳米结构可以进一步增加灵敏度。”

  • 【分享】表面增强拉曼光谱的研究进展

    本文从提高表面拉曼光谱检测灵敏度和空间分辨率两个方面的发展叙述表面增强拉曼光谱和针尖增强拉曼光谱的原理、方法、特点以及最新进展。对利用表面增强拉曼光谱和针尖增强拉曼光谱研究金属表面上分子吸附等方面的应用进行总结,并对他们的应用前景做了预测。

  • N沟道增强型高压功率场效应管可提高逆变器工作效率

    不少电子产品的元器件都会有逆变器这么一个部件,而电子工程师都知道逆变器在电子产品中的重要性,而场效应管的质量将影响到逆变器的转换效率、启动速度、安全性能、物理性能、和带负载适应性和稳定性,所以电子厂家都希望采购的场效应管质量过硬。而现在市场上的7N40就是逆变器使用的场效应管之一,但由于成本的原因,厂家也会希望有可以替代的同类型场效应管。逆变器的直流转换是MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。所以如果MOS管质量不过关,无法进行电压变换,就换导致电器故障,电子产品批量出现问题的话会是企业出现负面形象的,所以选择优质的场效应管就很重要了。而飞虹的这个国产FHF730高压MOS管,在性能参数上都可以替代7N40场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/0a1980a77a3b8ee13893eaf183cb6384-sz_179372.JPG?x-oss-process=style/xmorient[/img]飞虹的FHF730高压MOS管为N沟道增强型高压功率场效应管,FHF730除了可以替代7N40场效应管,还可以替代6N40、IRF730B这两个型号的场效应管,主要应用于150W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。FHF730高压MOS管的封装形式为TO-220/TO-220F,脚位排列方式为GDS,Vgs(±V)30,VTH(V)2-4,5.5A, 400V, RDS(on) = 1.2Ω(max) @VGS = 10 V,而且FHF730最大的特点就是低电荷、低反向传输电容开关速度快、低电阻。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHF730高压MOS管,不仅质优价廉,而且还能替代7N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 共振拉曼增强

    共振拉曼增强与SERS有什么关系啊,共振拉曼增强激发光与待测物质吸收峰相吻合还是和待测物与基底有关啊,相同条件下工共振拉曼增强与待测物的量有没有关系。

  • 表面增强拉曼概念问题

    看文献过程中有提到等离子体振子增强拉曼(plasmon enhanced Raman spectroscopy)还有无等离子体振子增强拉曼(free-plasmon enhanced Raman spectroscopy),那么哪一类材料是等离子体哪一类不是呢?谢谢大家

  • 关于表面拉曼增强

    楼主是菜鸟,才接触,想问下:我们想测鸡蛋清的拉曼增强光谱,具体是把鸡蛋清晾干做成薄膜,在上面抹上拉曼增强剂(金),可是实验上并没有发现光谱增强,相反测骨髓时效果很明显,各位大神能告诉是什么原因吗?帮忙分析下,跟溶解有关吗?

  • 【原创】表面拉曼增强

    小弟刚刚接触表面增强拉曼,想问下在用硝酸银与硼氢化钠配制黄色银溶胶时需要注意些什么地方?还有在用银溶胶测吡啶的表面增强拉曼时应该如何取样?

  • 【讨论】有做金属荧光增强的同志么??

    最近做了一下关于溶胶银的荧光增强实验,即在染料溶液中掺入银纳米颗粒,得到染料的荧光峰显著增强的现象,甚至可以达到100多倍,可是不知道这种现象对于生物标记研究有没有什么研究意义啊?

  • 【资料】相关拉曼光谱技术  表面增强拉曼光谱技术

    [size=5]相关拉曼光谱技术  [b]表面增强拉曼光谱技术[/b] [/size][size=5]  自1974年Fleischmann等人发现吸附在粗糙化的Ag电极表现的吡啶分子具有巨大的拉曼散射现象,加之活性载体表面选择吸附分子对荧光发射的抑制,使激光拉曼光谱分析的信噪比大大提高,这种表面增强效应被称为表面增强拉曼散射(SERS)。SERS技术是一种新的表面测试技术,可以在分子水平上研究材料分子的结构信息。 [/size]

  • 表面增强的硬件要求?

    如题。现在有很多做便携式拉曼光谱仪的厂家,分辨率通常比较低,比如8-10个波数的,这样的分辨率,能识别出增强的拉曼信号吗?是不是增强之后,就跟测纯净的化学物质一样,可以得到足够的信号强度?

  • 表面增强拉曼光谱探针分子

    [color=#444444]请教一下各路大神,用来做表面增强拉曼光谱的话,常用的探针里有没有无毒的,比如说像R6G什么的还是有毒的,或者说有没有相对来说毒性小一点的,10-4M浓度左右皮肤接触伤害不大的?[/color]

  • 玻纤增强的聚丙烯按177.1520是否合适

    玻纤增强的聚丙烯 如果按177.1520要求测密度,很有可能不合格。FDA中是否有针对玻纤增强聚丙烯的标准呢。目前没有找到相关资料我知道有个177.2355 矿物增强尼龙

  • 商用表面增强拉曼光谱传感器面世

    2012年11月22日 来源: 科技日报 作者: 何屹 本报讯 据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。 表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。 新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。 研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。 由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。(何屹)

  • 热足增强防病能力

    热足,即临睡前用45℃-50℃的热水洗脚泡脚。常言道“寒从脚下起”,指双足供血不足,热量较少,保温性差。所以,每晚应坚持用热水泡脚,促进全身的血液循环,增强防病能力。

  • 合成了拉曼表面增强剂,有想试用的吗?

    本人研究方向是纳米材料,偶然看到纳米银都拉曼散射有增强的作用,于是合成了纳米银增强剂,经过形貌表征,和文献上的一致。目前,单位没有拉曼光谱仪,无法评价拉曼增强效果,有想试用的站短联系,仅限北京。可开展进一步的合作。

  • N沟道增强型高压功率场效应管FHP730可保护AC-DC开关电源芯片

    AC-DC开关电源几乎充斥在我们生活的方方面面,无论是电子产品还是各种充电器,里面都会涉及到AC-DC开关电源。电子工程师都知道在设计电子产品的时候,要想保持AC-DC开关电源的输出电压稳定,在设计AC-DC开关电源芯片的时候就要采用一款优质的场效应管。现在市面上使用的场效应管型号为6N40,但由于种种原因,电子厂家也会需要一些代用型号。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/0a1980a77a3b8ee13893eaf183cb6384-sz_179372.JPG?x-oss-process=style/xmorient[/img]场效应管对AC-DC开关电源的电压输出稳定、简化电路设计和提高可靠性都起到至关重要的作用,如果场效应管的质量不过关,容易使电器开关电源失控,导致电器损坏。所以为了减少电器的返修率,厂家在生产时就应该选用一款质量过硬的场效应管,例如飞虹的这个FHP730高压MOS管质量过硬,性能稳定,可替换6N40场效应管。飞虹的FHP730高压MOS管为N沟道增强型高压功率场效应管,除了可替代6N40外,还可替代7N40、IRF730B这两款场效应管。FHP730高压MOS管主要应用于150W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]飞虹的FHP730高压MOS管的封装形式为TO-220/TO-220F,脚位排列为GDS,Vgs(±V)30,VTH(V)2-4,5.5A, 400V, RDS(on) = 1.2Ω(max) @VGS = 10 V,且FHP730最大的特点就是低电荷、低反向传输电容开关速度快、低电阻。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP730高压MOS管,不仅质优价廉,而且还能替代6N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 「科技自立自强」西安交大方吉祥教授团队在限域增强拉曼光谱领域取得重要进展

    [font=helvetica][color=#555555]单分子及痕量分子水平检测是人类对物质世界认知的一贯追求。自从1974年表面增强拉曼光谱(SERS)发现以来,到1997年,单分子表面增强拉曼散射(SM-SERS)现象的发现,SM-SERS技术的检测能力达到了超灵敏的单分子水平,从而受到了物理、化学和生物医学等研究者的广泛青睐。然而,经过二十余年的发展,面对目前商业化和实际应用需求,SM-SERS的超高灵敏度的优势尚未在多种分子和真实样品检测中得以充分发挥。[/color][/font][font=helvetica][color=#555555]从SERS到SM-SERS,电磁场增强机制及热点效应一直在其理论研究方面占据主流地位。在过去的几十年里,研究人员主要关注了光-纳米结构的相互作用这一基本科学问题,通过纳米技术创造了各种类型的SERS基底并实现了对热点的调控。然而,1997年所报道的SM-SERS呈现出一种典型的“on and off”时序波动现象,这种闪烁信号行为在SM-SERS的实际应用中是非常不利的。因为,商业检测中更需要高度可重复、均匀、稳定的SERS及SM-SERS信号。[/color][/font][align=center][img=,500,223]https://img1.17img.cn/17img/images/202312/uepic/56816964-4a9f-4bfa-b8ce-8e196e8a26a0.jpg[/img][/align][align=center][font=楷体][size=14px][color=#555555]图1 (a) SERS的传统概念 (b) 1997年,SM-SERS中活性位点概念 (c) 本工作所提出的限域增强拉曼光谱概念[/color][/size][/font][/align][font=helvetica][color=#555555]针对以上问题,西安交通大学生命学院方吉祥教授团队基于对早期SERS和SM-SERS研究的深入理解,及分子-纳米结构相互作用及相关机制进行深入研究,提出了一种限域增强拉曼光谱(CERS)新概念及避免SM-SERS闪烁信号的新机制,在SM-SERS信号稳定性、重现性及灵敏度方面,均得到显著提升。该方法是在SERS检测过程中,在银、金甚至其他等离激元纳米材料表面原位构建一个活性的封装壳层(图1)。这种活性封装壳层可以将待测分子限域并锚定在等离激元纳米粒子表面,以避免待测分子的吸附-解吸附行为,从而避免SM-SERS光谱的闪烁信号。本工作首次在金胶体纳米粒子体系中实现对待测物的超高灵敏度、高稳定性和高信号重复性的单分子/少分子水平的检测。此外,在实际应用中,可以通过设计具有不同组分的封装壳层,使该策略广泛适用于包括生物医学诊断、催化反应机制研究等多种分子系统的SM-SERS检测。[/color][/font][font=helvetica][color=#555555]该研究成果以“限域增强拉曼光谱”(Confined Enhanced Raman Spectroscopy)为题2023年12月13日发表在国际权威期刊《纳米快报》(Nano Letters)上。西安交通大学生命科学与技术学院为本工作第一作者及通讯作者单位,该研究得到了厦门大学化学化工学院李剑锋教授及南京大学化学与化工学院龙亿涛教授的帮助与支持。以上工作得到了国家自然科学基金、西安交通大学创新团队项目支持。[/color][/font][font=helvetica][color=#555555]论文链接:[/color][/font][url]https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.3c03734[/url][font=helvetica][color=#555555]研究团队主页链接:[/color][/font][url]http://gr.xjtu.edu.cn/web/jxfang[/url][来源:交大新闻网][align=right][/align]

  • 液氮低温拉曼信号增强原理

    请问一下,为什么某些物质在液氮环境下,拉曼光谱会增强,具体原因和原理是什么?必须要低温到液氮的温度信号才能显著增强么?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制