落叶阔叶树

仪器信息网落叶阔叶树专题为您整合落叶阔叶树相关的最新文章,在落叶阔叶树专题,您不仅可以免费浏览落叶阔叶树的资讯, 同时您还可以浏览落叶阔叶树的相关资料、解决方案,参与社区落叶阔叶树话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

落叶阔叶树相关的耗材

  • 场镜_linos扩束镜_激光扩束镜_Qioptiq
    仪器简介:德国Linos工业镜头,包括激光系统镜头,机器视觉镜头等工业光学部件,秉承德国设计严谨、工艺精湛的工业产品特点 产品及业务: 大幅照相机镜头 专业数码相机镜头 专业摄影滤镜 非球面的镜片 放大机及打印机镜头德国LINOS公司各种光学元件技术参数:德国LINOS公司 德国著名的光学产品制造商,其著名的Rodenstock镜头在德国以及世界机器视觉领域,堪与蔡司和施耐德比肩。德国Linos工业镜头,包括激光系统镜头,机器视觉镜头等工业光学部件,秉承德国设计严谨、工艺精湛的工业产品特点。 德国LINOS公司是活跃于全球的精密光学仪器制造商,市场涉及激光、照相洗印服务、测量技术、医学、生物工程及半导体等方面的应用。世界闻名的Rodenstock普通镜头及放大镜头是LINOS公司图像处理市场的重磅产品。几十年的丰富经验以及最前沿的技术知识,充分满足了现代化的数码设备对镜头的高度要求。Rodenstock普通镜头(如Sironar系列和Grandagon系列)和Rodenstock放大镜头(如Apo-Rodagon系列和Rodagon系列)因其杰出的成像性能而世界驰名。 主要特点:德国Linos Photonics公司以其丰富多样的光学系统而闻名世界。其远心式合成材料透镜,即F-Theta透镜,适用于激光标刻、 专门用于小型、快速扫描头的新型物镜,同时在725 nm至1050 nm范围内近红外线的新型激光扩径系统上也可适用该透镜。激光扫描 F-θ透镜,扩束镜,适合波长1064nm,532nm,355nm,266nm等德国LINOS激光扩束镜被众多的激光工业用户所采用,采用伽利略原理设计手动和自动2到8倍可调激光扩束镜,精密的加工,优异的光学品质,高通过率,低失真。主要特点:4片光学元件设计通过率95%扩束倍数可调波前失真λ/4主要技术指标:
  • 电动激光扩束镜
    这款电动激光扩束镜,电动激光扩束器是专业为激光光束扩束而研发,它采用精密马达驱动,可计算机控制实现2-12倍扩束。电动激光扩束镜,电动激光扩束器由由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口激光扩束器.电动激光扩束镜,电动激光扩束器特色像差最小化设计(采用像差补偿技术)即插即用,内置控制器适合飞秒激光和皮秒激光等超快激光扩束内置微控制器直接控制可选安装接口自动放大倍率可调手动放大倍率可调电动激光扩束镜,电动激光扩束器参数规格连续可调放大倍率:2.5x...12X工作波长:340-360nm, 510-540nm, 1020-1070nm材料:光学玻璃或UVFS控制接口:USB2.0, RS232软件平台:WindowsTM入射光束直径:高达10mm出射光束直径:高达48mm整体透过率:98.5%激光损伤阈值:7 J/cm2 for 10 ns pulses @ 1064 nm重量:1kg
  • Restek 带扩散盖的冲洗/废液瓶 | 23096
    产品特点:带扩散盖的冲洗/废液瓶Rinse/Waste Vials with Diffusion Caps订货号:23096用于Agilent 7673,7683和7693自动进样器● 扩散帽可防止挥发性溶剂蒸发。● 六种不同的瓶盖颜色使溶剂识别更容易。● 小瓶上的分数标记表示内容量。● 包括12个样品瓶和瓶盖(每种颜色的两个瓶盖)。产品名称:冲洗/废液小瓶带刻度标记点和扩散帽(6种不同颜色各2种) (Rinse/Waste Vials w/graduated marking spots and diffusion caps (2 each of 6 different colors))容量:4 mL

落叶阔叶树相关的仪器

  • 西格玛激光扩束镜在简易实验中扩大激光光束的光束扩束器。已经调整固定在射入准直光束时,射出最佳的准直光束。所以只要直接入射激光光束,就可以得到简单扩大的准直光束。 光束扩束器的光学系统为没有胶合透镜的空气隙型透镜构造,因此,高能量激光也可以使用。 采用伽利略型透镜构造,减少了校正像差的透镜数量,缩短了光束扩束器的全长。 可见光型的扩束器,可以直接安装在He-Ne激光器(05-LHP)的射出口处。 西格玛激光扩束镜注意:?相对入射光轴倾斜方向安装光束扩束器时,从扩束器射出的光束将相对入射光轴倾斜射出。安装光束扩束器时要使入射光束垂直射入或请使用可以调整光束扩束器的倾斜角度的支架。?相反朝向使用光束扩束器时,不能形成光束口径缩小了的准直光线。请计算激光光束的发散角度或束腰的位置,使用其它适当的光学系统。?入射光束是发散光或收缩光时,射出光束可能不能变为准直光束。西格玛激光扩束镜外形图
    留言咨询
  • Yaxin-1242叶面积仪 400-860-5168转4470
    用途:Yaxin-1242叶面积仪是快速测量离体和非离体的常见植物叶片,更适合狭长类叶片。除了叶片面积、周长、长度、宽度等参数,新增了叶片的长宽比,形状因子两个参数。广泛适用于小麦、水稻、甘蔗、阔叶树木的栽培和育种研究。 特点:Yaxin-1242叶面积仪广泛适用于植物生理生态学教学和研究;农作物、林木、花卉、果树、蔬菜的栽培和育种研究。适合大专院校和科研部门应用;除了叶片面积、周长、长度、宽度等参数,新增了叶片的长宽比、形状因子两个参数; 快速测量离体和非离体的常见植物叶片,更适合狭长类叶片。技术参数:仪器功能测量功能可以即时测量叶片的面积、周长、长度、宽度、长宽比、形状因子;可以测量离体和非离体叶片;无需校准 ;叶缘不齐或有虫洞不影响测量结果 ;对叶片颜色无要求设置功能设置文件名,采用英文字母、字符加数字的形式;设置显示项,可以任意选定和显示各测量项目数据查看可翻阅仪器内存中的历史测量数据计算功能自动计算叶片面积、周长、长宽比、形状因子;面积累加值、平均值时间功能仪器内部自带时间、日期功能;可随测量数据保存测量时间软件功能上位机软件免安装;USB数据传输;支持固件升级系统信息查看可随时获取电池电压信息、存储空间剩余容量、仪器固件版本等信息供电功能可充电锂电池便携功能小巧轻便,操作简单;适合室内和野外使用传感器主要传感器CIS接触式图像传感蓝光420±10nm最大扫描长度2m最大扫描宽度220mm测量参数测量单位mm,mm2扫描速度不大于200 mm/s精度±2%(矩形样品面积大于10cm2)分辨率0.1mm2长度分辨率1mm宽度分辨率0.1mm最大测量厚度≤6mm主机显示器128*32点阵,2行,中文界面显示数据存储9999组测量数据接口USB2.0电源7.2V1.0AH 可充锂电电量续航能力1000次以上尺寸34×6×4(cm )重量约1.5Kg温度0~50℃湿度0~100%RH不结露
    留言咨询
  • WinFOLIA 阔叶分析系统 400-860-5168转1218
    WinFOLIA 阔叶分析系统 采用开放式架构体系,自由组合为田间便携式、实验室型等扫描、摄像方式的个性面积测量仪器,获取叶片图形并精确分析计算叶片面积及其相关参数,广泛运用于农艺和林学等形态学、病理学研究 原理:  运用各种图形扑捉设备获取高质量叶片图形,运用专业软件分析计算叶片面积等相关参数,该软件可以读取其他TIFF标准图形。组成:1、图像采集设备:经厂家调试的台式扫描仪、便携式扫描仪(计算机供电)、摄像头或数码相机中任意一种图像采集设备2、图形分析软件:基本版 /标准版 /专业版WinFOLIA分析软件技术指标:测量参数WinFOLIA版本基本版标准版专业版叶面积(面积可累积)YesYesYes叶片面积(面积可累积)NoYesYes叶子穿孔面积(面积可累积)YesYesYes叶子长度YesYesYes叶片和叶柄长度NoYesYes叶周长(不受叶子孔洞影响)YesYesYes叶片周长NoYesYes叶最大宽度(水平方向)YesYesYes任意方向叶片宽度NoYesYes纵横比YesYesYes形状系数YesYesYes自定义长度和角度测量NoYesYes测量图形编码存储NoYesYes自定义浅裂片角NoYesYes叶片锯齿高度、宽度、数量NoNoYes包膜NoNoYes不规则叶片形态分析NoNoYes病理分析(通过真彩分析)NoNoYes颜色分析NoNoYes其他技术特点图像编辑YesYesYes测量数据修订NoYesYes叶片分析YesYesYes碎片过滤YesYesYes自定义或批量分析YesYesYes自定义或批量扫描YesYesYes自定义锁定叶片NoYesYes自动搜索确认叶片YesYesYes产 地:Regent 加拿大
    留言咨询

落叶阔叶树相关的试剂

落叶阔叶树相关的方案

  • 落叶阔叶树异戊二烯排放研究
    采用封闭式采样方法及光离子化气体分析仪(GC-PID)直接分析技术测定了12种北京市主要绿化树种的异戊二烯排放树种:春季,银杏和玉兰仅排放少量异戊二烯;其余六种树无异戊二烯排放,此外,法国梧桐和龙爪槐的异戊二烯平均排放因子在春季和夏季及不同天气状况下存在很大差异。夏季法国梧桐和龙爪槐的异戊二烯平均排放因子分别为.......(未完) 查看全文(pdf文档),请点击本页上方链接进行下载。
  • 人落叶型天疱疮抗体(PF)检测试剂盒
    人落叶型天疱疮抗体(PF)检测试剂盒人落叶型天疱疮抗体(PF)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人落叶型天疱疮抗体(PF)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人落叶型天疱疮抗体(PF)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人落叶型天疱疮抗体(PF)抗原、生物素化的人落叶型天疱疮抗体(PF)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人落叶型天疱疮抗体(PF)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 根系在凋落物层生长对凋落叶分解的影响
    试验在所选林地中收集新鲜的楠木和格氏栲凋落叶,在自然状况下风干并储存。设置样方,设置有根处理(RT):菌根和细根均有,去除地表凋落物后直接将凋落叶网袋铺设于土表。另一个为无根处理(CK):在凋落叶网袋下铺设1um×1um孔径尼龙网,以阻止细根及其共生菌根 。采用网袋法进行分解试验。记录凋落叶干重残留量,测定凋落物叶中的C、N、P含量和酶活性。

落叶阔叶树相关的论坛

  • 中国主要土壤类型之黄棕壤

    [font=-apple-system, BlinkMacSystemFont, &][color=#121212]北起秦岭、淮河,南到大巴山和长江,西自青藏高原东南边缘,东至长江下游地带。是黄红壤与棕壤之间过渡型土类。亚热带季风区北缘。夏季高温,冬季较冷,年平均气温为15~18℃,年降水量为750~1000毫米。植被是落叶阔叶林,但杂生有常绿阔叶树种。既具有黄壤与红壤富铝化作用的特点,又具有棕壤粘化作用的特点。呈弱酸性反应,自然肥力比较高。[/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#121212]黄棕壤地区的水热条件优越,自然肥力较高。很适宜多种林木的生长,是中国经济林的集中产地、也是重要的农作区,盛产多种粮食和经济作物。在土层浅薄处,宜栽耐旱耐瘠的马尾松、刺槐、山杨等。土层厚、肥力好的地方,可大力发展栎类、杉木以及油茶、油桐、漆树、竹茶、桑等经济林木、排水较差处可种植经济价值较高的油料乌桕。[/color][/font]

  • 欧盟拟修订咯菌腈在多种阔叶作物中的最大残留限量

    据欧盟食品安全局(EFSA)消息,依据欧盟委员会(EC)No396/2005法规第6章的规定,英国收到园艺开发公司(Horticultural DevelopmentCompany)要求修定几种阔叶作物中咯菌腈(fludioxonil)最大残留限量的申请,为协调英国阔叶作物中咯菌腈应用于室内以及室外时的最大残留限量,英国建议将部分作物中咯菌腈的最大残留限量提高至15mg/kg。英国依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后于2011年6月23日转至欧盟食品安全局。欧盟食品安全局对评估材料进行审核后,做出如下决定:商品代码商品现行MRL(mg/kg)建议MRL(mg/kg251020莴苣1015251030菊苣(Scarole)10150252010 菠菜7150252030 甜菜叶715 原文链接:http://www.efsa.europa.eu/en/efsajournal/doc/2487.pdf

落叶阔叶树相关的资料

落叶阔叶树相关的资讯

  • ASD | 利用高光谱反射率预测温带落叶阔叶树木的叶片性状
    ASD | 利用高光谱反射率预测温带落叶阔叶树木的叶片性状:通用模型可适用于整个生长季节吗?追踪生长季和地理区域中叶片性状的变化是理解陆地生态系统功能的关键。野外光谱法是原位监测叶片功能性状的有力工具,在农业、林业和生态学中都有许多应用,例如,叶片光谱已用于表征许多叶片理化特性,预测倍体水平,估计叶龄,甚至可以预测入侵植物对凋落物分解的影响。但目前尚不清楚是否可以开发通用统计模型来根据光谱信息预测性状,或是否需要根据条件变化进行重新校准。特别是,生长季多个叶片性状同时变化,是否可以从高光谱数据成功预测这些时间变化是一个悬而未决的问题。基于此,为了填补研究空白,在本研究中,一组国际研究团队利用标准实验室方法(包括光捕获和生长:N(%),δ15N(‰),δ13C(‰),叶绿素,可溶性C(%)和叶片含水量(LWC);防御和结构:每单位面积的叶片质量(LMA g m-2)、总C(%)、半纤维素(%)、纤维素(%)、木质素(%)、总酚类(mg g-1)和单宁(mg g-1);岩石衍生营养素:P(%)、K(%)、Ca(%)、Mg(%)、Fe(μg g-1)、Mn(μg g-1)、Zn(μg g-1)和B(μg g-1))和叶片光谱(利用光谱范围为350-2500 nm的ASD FieldSpec 3进行测量,在350-1000 nm,采样间隔为1.4 nm,在1000-2500 nm,采样间隔为2 nm)追踪了整个生长季的变化,研究了温带落叶树木多种叶片性状和光谱特性之间的联系。旨在回答以下问题:(1)常见物种叶片的理化性状在生长季如何变化?(2)叶片反射率在生长季如何变化?(3)生长季叶片理化性状和光谱之间是否存在可预测的关系,从而使叶片光谱能够不受时间限制地远程追踪森林生态系统功能的变化?然后评估叶片光谱是否可以在季节效应的影响下稳定地捕获叶片性状,为通过机载和星载传感器的高光谱成像进行大尺度叶片性状调查奠定基础。【结果】理化性状和光谱在整个生长季变化很大,虽然6月和9月之间收获的成熟叶片变化较小。重要的是,叶片光谱可以准确预测大多数叶片性状的季节性变化,成熟叶片的预测精度通常较高。然而,对于一些性状,PLSR估算模型因物种而异,单一PLSR模型不能用于物种水平的准确预测。8个落叶树种叶片光谱及其变异性(平均反射率(a)和变异系数(b))的季节模式。2017 年 5 -10 月,不同季节对英国剑桥Madingley林地21种叶片性状全/特定光谱数据最佳PLSR性能的影响。2017 年 5-10 月,不同物种对英国剑桥Madingley林地21种叶片性状全/特定光谱数据最佳PLSR性能的影响。【结论】叶片光谱可成功预测整个生长季多种功能性叶片性状,为机载和星载成像光谱技术监测和绘制温带森林植物功能多样性奠定了一定基础。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650309890&idx=1&sn=9bddcb74cbb31a26c18ad6aee87f4344&chksm=bee1a9fd899620ebd02f200799a9370626a1d8b6fee07375ad2580b562fa8ad686a495393775&token=1524960455&lang=zh_CN#rd
  • Resonon | Pika L高光谱成像在亚热带阔叶森林单木分割和树种分类上的应用
    了解亚热带森林树种的准确信息对于森林可持续管理、生态系统服务评估、生物多样性监测以及生态环境保护至关重要。因此,亟待快速有效的方法对单个树种进行分类。传统的树种地面调查费事、费力、成本高,难以大面积实施。而遥感可以获取较大区域的特征信息。许多遥感数据,如超高分辨率RGB、机载高光谱和雷达数据,已广泛应用于单木分割和树种分类。然而以往都是利用其中一种或两种类型的数据进行研究,综合这三种遥感数据进行树种分类的研究十分有限。基于此,为填补研究空白, 研究者们于2019年8月在中国南方深圳的亚热带阔叶林聚龙山公园(114°23′28′′E,22°43′50′′N)基于UAV LiDAR,高光谱(Resonon Pika L高光谱成像仪)、超高分辨率RGB数据以及地面数据进行单个树种的分类。作者首次开发了watershed-spectral-textural-controlled normalized cut(WST-Ncut)算法进行单木分割。然后整合UAV LiDAR(提取结构特征),高光谱(提取光谱特征)和超高分辨率RGB数据(提取纹理特征)进行分类。最后通过总体精度(OA)和kappa系数(k)评估分类精度。主要研究目标为:(1)评估所提出的WST-Ncut算法在亚热带阔叶森林进行单木分割的准确性;(2)与单独使用这些数据相比,评估UAV LiDAR,高光谱和超高分辨率RGB数据相融合进行亚热带阔叶树种分类的有效性和改进以及(3)探索单木分割的准确性和树种数量对树种分类精度的影响。研究区位置【结果】18个树种在383-1020 nm波长下的反射率平均值和±标准差。18个树种在383-1020 nm波长下的平均光谱反射率。七种特征组合得到的树种分布图使用所有特征时获得的总体分类精度与树种数量之间的关系。【结论】在本研究中,作者利用UAV LiDAR,高光谱和超高分辨率RGB数据在亚热带阔叶森林树木尺度上进行18个树种的分类。作者首次提出了watershed-spectral-textural-controlled normalized cut(WST-Ncut)算法来描述单木。结果表明,WST-Ncut算法适合描述亚热带阔叶森林单木(Recall=0.95,Precision=0.86,F-score=0.90),可以减少过度分割。LiDAR获取的垂直结构特征,高光谱获取的光谱特征以及超高分辨率RGB数据获取的纹理特征在树种分类上相互补充。分类结果表明这三个数据集相结合可以有效区分18个树种,获得最高的分类精度(总体精度=91.8%,Kappa=0.910),比单独利用光谱特征,结构特征和纹理特征分别高10.2%,13.6%和19.0%。此外,结果表明,单木分割越好,树种分类越准确,树种数量增加将会导致分类精度下降。
  • Resonon+LR1601 | 机载高光谱成像和激光雷达相融合用于洋白蜡EAB危害的早期监测及新的
    Resonon+LR1601 | 机载高光谱成像和激光雷达相融合用于洋白蜡EAB危害的早期监测及新的EAB监测指数-NDVI北京百万亩平原造林项目种植了大面积的北美外来树种—洋白蜡。作为一种外来树种,它极易受到中国本土害虫—白蜡窄吉丁(EAB)的危害。在EAB危害早期,洋白蜡没有明显的受害症状,危害严重后洋白蜡则会大量死亡,因此,亟须开发出一个精准有效的EAB危害的早期监测技术以阻止其进一步扩散蔓延。遥感技术对识别树木大尺度生理和形态变化至关重要,激光雷达可以准确采集物体的三维信息,进行单木分割,提取每棵树的位置和结构信息,从而对森林进行精准管理。无人机系统的快速发展极大地增强了激光雷达在森林健康监测方面的能力。然而,目前尚未有相关研究将机载高光谱图像(UAV-UI)和激光雷达(LiDAR)相结合进行EAB监测。基于此,在所附的文章中,来自北京林业大学的研究团队于2019年8月和9月在中国北京通州区漷县镇(37.7125°N,116.8528°E)(图1)的一片白蜡树林进行了相关研究。作者将机载高光谱图像(Resonon Pika L高光谱相机)和激光雷达(LR1601-IRIS机载激光雷达系统(依锐思,北京理加联合科技有限公司))相融合(图2)监测了EAB对白蜡木的危害,主要研究目标为:(1)确定哪个窄波段光谱HI数据和3D LiDAR数据最有利于白蜡树EAB危害的早期监测;(2)结合UAV-HI和LiDAR,开发一种有效且快速方法进行EAB相关胁迫的早期监测;以及(3)开发半自动分类器用于北京地区白蜡树EAB的早期监测。图1 北京EAB研究区。黄色方框表示UAV飞行区域,红色方框表示两个采样点位置。图2 LR1601-IRIS LiDAR和Pika L高光谱成像仪机载系统。图3 试验流程图。【结果】通过PLS-VIP算法,确定R678 nm是对EAB危害最敏感的高光谱单波段。在此基础上,提出了一个新的EAB早期监测指数-NDVI(776,678)。LiDAR数据被用来进行单木分割和提供单木三维结构信息。通过使用NDVI(776,678)指数,不同受害程度白蜡树的分类准确率得到了较大提升。其中,健康树木的准确度为90%,轻度受害的准确度为76.25%,中度危害的准确度为58.33%,重度危害的准确度为100%,总准确度为82.90%。图4 在选定的敏感波段范围内:(a)400-1000 nm;(b)484-571 nm;(c)608-698 nm;(d)938-1000 nm,不同EAB危害阶段白蜡树冠层平均反射率值。表1 六个数据集对四个EAB危害程度的RF分类结果。图5 (a)飞行区内的HI。(b)包含NDVI(776,678),11个其他植被指数和10个LiDAR指标在内的EAB危害制图。【结论】阔叶树钻蛀性害虫的精准治理是可持续森林管理不可或缺的一部分。由于钻蛀性害虫管理的复杂性,需要高技术手段进行有效和准确管理。无人机高光谱、激光雷达和人工智能技术相结合为精准森林提供了有效解决方案。本研究从HI中收集了窄带光谱信息,从LiDAR中收集了3D数据,并开发了新的植被指数,NDVI(776,678),用于白蜡树EAB危害的精准管理。在HI的原始窄波段反射率光谱中,678 nm处的反射率是检测白蜡树EAB危害最敏感的波段。LiDAR成功用于单木分割。单独使用LiDAR数据区分白蜡木危害阶段的准确度很低,表明LiDAR对洋白蜡EAB危害早期监测不敏感。新指数,NDVI(776,678),在白蜡树健康,轻度和中度阶段存在统计学显著差异(p 0.0001)。同时,当结合HI和LiDAR时,其识别轻度EAB危害阶段的准确度为76.25%,对所有危害阶段的总准确度为82.90%,这高于未使用NDVI(776,678)情况下的准确度。因此,NDVI(776,678)是一个很好的新窄波段植被指数,可用于洋白蜡不同EAB感染阶段制图,也可用于指导北京地区阔叶树健康遥感监测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制