离子型污染物分析

仪器信息网离子型污染物分析专题为您整合离子型污染物分析相关的最新文章,在离子型污染物分析专题,您不仅可以免费浏览离子型污染物分析的资讯, 同时您还可以浏览离子型污染物分析的相关资料、解决方案,参与社区离子型污染物分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

离子型污染物分析相关的耗材

  • 北分天普TP-624 挥发性优先污染物
    ●专为分析挥发性优先污染物而设计●适用于美国EPA方法●键合交联温度使用范围:-20至260℃内径(mm)柱长(m)膜厚(μm)价格(元)货号0.25301.50269064302515601.504940646025150.32301.502970643032152.65332064303226601.505460646032152.655950646032260.53303.00532064305330
  • 持久性有机污染物 (POP) 筛选工具包
    持久性有机污染物 (POP)筛选和结构确证应用工具包持久性有机污染物 (POP) 筛选工具包Description(描述)目录 编号数量持久性有机污染物 (POP) 筛选工具包TS-MKITG5011包含以下组件:TRACE TR-Dioxin 5MS GC 色谱柱:30m x 0.25mm x 0.10μm26AF047P1支S/SL 进样器 – BTO 隔膜,直径 17mm3130321150个S/SL 进样器 – 分流/不分流衬管, 5mm ID x 8mm OD x 105mm 长453500335支S/SL 进样器 – 银密封垫2903362910个S/SL 进样器 – 石墨衬管密封垫2903340610个S/SL 进样器 – 石墨刃环,适用于 0.25mmID 色谱柱2905348810个MS 接口 – 石墨/Vespel 刃环,适用于 0.25mm ID 色谱柱2903349610个1.1mL 螺口锥形瓶,Clear Gold 级玻璃制品1.1-STVG500个带预装硅树脂/PTFE 密封垫的 8mm 螺旋盖8-SC-ST15500个10μL 固定式针头注射器,50mm 长,25 号,锥形针头365005251支持久性有机污染物 (POP) 结构确证工具包Description(描述)目录 编号数量持久性有机污染物 (POP) 结构确证工具包TS-MKITG5021包含以下组件:TRACE TR-Dioxin 5MS GC 色谱柱:60m x 0.25mm x 0.25μm26AF154P1支S/SL 进样器 – BTO 隔膜,直径 17mm3130321150个S/SL 进样器 – 分流/不分流衬管,5mm ID x 8mm OD x 105mm 长453500335支S/SL 进样器 – 银密封垫2903362910个S/SL 进样器 – 石墨衬管密封垫2903340610个S/SL 进样器 – 石墨刃环,适用于 0.25mm ID 色谱柱2905348810个MS 接口 – 石墨/Vespel 刃环,适用于 0.25mm ID 色谱柱2903349610个1.1mL 螺口锥形瓶,Clear Gold 级玻璃制品1.1-STVG500个带预装硅树脂/PTFE 密封垫的 8mm 螺旋盖8-SC-ST15500个10μL 固定式针头注射器,50mm 长,25 号,锥形针头365005251支
  • 瑞思泰康 Rtx-VMS 挥发性有机污染物专用柱
    Rtx-VMS (专有 Crossbond?固定相)● 应用:专门用于使用GC/MS来分析挥发性有机污染物● 不到10分钟就可以完成US EPA方法8260中所列化合物的分离● 最高使用温度为260℃固定相为高稳定性聚合物,与高灵敏度的离子阱和Agilent 5973质谱联用,在分离挥发性化合物方面具有突出的优势Rtx-VMS柱子流失较低,选择性好,对于挥发性有机化合物可以进行快速分离,例如US EPA 方法8206所列化合物。Rtx-VMS固定相是高稳定性的聚合物,与高灵敏度的离子阱检测器和Agilent 5973质谱仪联用时对挥发性化合物有卓越的分析效果。内径0.18mm和0.25mm的毛细管柱允许进样口分流进样,减少了射流分离器jet separator的维护及费用。 在配备了射流分离器jet separator的系统中,内径0.45mm和0.53mm的柱子能够直接连接到隔膜吹扫捕集传输线。产品应用:专门用于使用GC/MS来分析挥发性有机污染物;不到10分钟就可以完成US EPA方法8260中所列化合物的分离订货信息: 货号 长度内径 膜厚 包装量 49914 20m 0.18mm 1.00μm ea. 49915 40m 0.18mm 1.00μm ea. 19915 30m 0.25mm 1.40μm ea. 19916 60m 0.25mm 1.40μm ea. 19919 30m 0.32mm 1.80μm ea. 19920 60m 0.32mm 1.80μm ea. 19908 30m 0.45mm 2.55μm ea. 19909 60m 0.45mm 2.55μm ea. 19985 30m 0.53mm 3.00μm ea. 19988 60m 0.53mm 3.00μm ea. 19974 75m 0.53mm 3.00μm ea.19915-6850Rtx-VMS Cap. Column30m, 0.25mm ID, 1.40um 5" Cage for HP685019916Rtx-VMS Cap. Column60m, 0.25mm ID, 1.40um19916-600Rtx-VMS Cap. Column60m, 0.25mm ID, 1.40um Pack of 619916-6850Rtx-VMS Cap. Column60m, 0.25mm ID, 1.40um 5in cage for HP 685019919Rtx-VMS Cap. Column30m, 0.32mm ID, 1.80um19919-6850Rtx-VMS Cap. Column30m, 0.32mm ID, 1.80um 5" HP6850 Cage49914-042Rtx-VMS Cap. Column20m, 0.18mm ID, 1.00um 5" Nordion Cage49914-600Rtx-VMS Cap. Column20m, 0.18mmID, 1.00um Pack of 649914-6850Rtx-VMS Cap. Column20m, 0.18mm ID, 1.00um w/5" Cage for HP 685049915Rtx-VMS Cap. Column40m, 0.18mm ID, 1.00um49915-6850Rtx-VMS Cap. Column40m, 0.18mm ID, 1.00um 5" HP6850 Cage

离子型污染物分析相关的仪器

  • 清洁排放污染物控制过程及监测方案 赛默飞世尔科技严格契合国家和地方日益严格的法规标准,推出了为中国客户量身定制的固定污染源清洁排放监测方案,精确测量低浓度烟气条件下的组份。SO2可监测到10mg/m3, NOx可监测到5mg/m3,颗粒物浓度可以准确测量到3mg/m3以下。另外我们还提供烟气汞连续监测系统,全方位为客户做出有力支持和保障。 对低浓度气态污染物监测,通常直接抽取法CEMS受方法限制,最低量程的误差难以满足精度要求。赛默飞采用稀释法,从根本上保障了系统测量的准确性。 l 稀释法可以彻底解决凝结水问题,可以适应高温、高尘或高湿低温等恶劣工况l 恒定的稀释比例;温度、压力的变化不会影响稀释比l 高精度的分析仪和系统保证测量的精度和准确性,可以测量烟尘、SO2,NOx,NH3,Hg和SO3采用:? 43i型二氧化硫分析仪? 42i型氮氧化物分析仪? 48i一氧化碳分析仪? 410i二氧化碳分析仪? 17i氨分析仪? 颗粒物连续排放监测系统(PM CEMS)? 汞连续排放监测系统 (Mercury FreedomTM)l 全系统校准,确保测量准确l 用于脱硫、脱硝、汞等清洁排放连续监测;低浓度条件下获得理想精度,准确测量
    留言咨询
  • 简介该产品采用国标(环境空气气态污染物(SO₂ 、NO₂ 、O₃ 、CO)连续自动监测系统技术要求及检测方法(HJ654-2013))推荐的点式监测方法,利用光谱检测技术,对常规的四种气态污染物(SO₂ 、NO₂ 、CO、O₃ )进行监测。产品特点● 具有全自动在线质控功能;● 自动校准:具有灵活的、直观的自动/手动零点校准和跨度校准的功能;● 数据辨识度高:分析仪监测数据附带标识,易于分析数据的有效性,提高数据的辨识度;● 接口丰富,可以更灵活的与其它仪器进行集成;● 自动报警:仪器配置了8路输出报警通道,可供用户灵活进行配置,便于实时监测仪器的运行状况。
    留言咨询
  • 1 引言包气带是指位于地表面以下、潜水面以上的地质介质。在包气带中发生的各种物理、化学和生物过程尤为复杂,它既是大气水、植物水、土壤水和地下水相互联系与转化的枢纽, 又是各种化学物质(如在地表施加的农药、化肥, 来自于地表渗滤液和地下水的各种溶质)运移和反应的载体。目前, 包气带物质和能量迁移转化过程日益得到人们的重视,成为农田施肥管理、土壤学、水文学、环境学、生态学等学科的重要研究内容之一。在包气带水分和溶质的迁移转化过程中,各种来源的污染物,如过度施肥的产物硝态氮、垃圾渗滤液中的有机污染物和各种重金属是土壤污染、地下水污染等问题的主要原因。广泛开展包气带污染物溶质运移实验室土柱模拟试验研究, 能够充分了解污染物在包气带中的迁移速率和浓度的时空分布规律,为深入研究包气带水分溶质运移机理、完善基于多孔介质水和溶质运移的数值模型提供科学基础,对于合理施肥、盐渍化土壤治理、土壤污染控制、地下水污染控制、生态环境恢复和改善等应用有着重要的指导意义。 2 观测系统设计2.1 目标包气带中污染物运移由于地下水的耦合作用,是一个非常复杂的动态过程,在实验室土柱模拟研究中,如何把地下水的作用耦合到数值模型中,如何精确测定包气带土壤含水量、基质势等水分参数,以及如何精确测定污染物的浓度梯度等溶质运移参数是研究的难点和重点。AZ-ES100包气带污染物运移试验模拟研究系统采用某一特定高度的微型土柱,填装原状土样,沿土体剖面埋设高精度土壤水分、土壤水势传感器,数据采集器自动采集数据,从而精确测量土壤水分的变化梯度;在土柱体底部安装有陶土盘,用于渗漏水的取样和土体张力模拟,能够有效控制土柱体底部的水势,并测量排水量。沿土体剖面埋设土壤溶液自动取样器,利用全自动离子分析单元或便携重金属分析单元进行污染物溶质浓度分析。 2.2 样品采集及传感器布设 根据研究需要,采集直径300mm、高度为300mm或600mm或1200mm的原状土,或用进行了预处理的特定类型土壤,装填入模拟土柱。300mm高的土柱沿土体剖面按3个层次、600mm高的土柱沿土体剖面按4个层次、1200mm高的土柱沿土体剖面按5个层次分别安装土壤水分、土壤水势传感器和土壤溶液取样器。土壤水分和土壤水势的数据采集时间间隔可通过数采进行统一设置为1、5、10、30s,或1、5、10、30min,或1、2、4、12、24h,也可每个 通道单独设定合适的采集时间间隔。 2.3 观测指标 包气带土壤水参数:土壤水分、土壤水势梯度值。包气带污染物参数:氨、氯化物、六价铬、氰化物、可溶性铁、亚硝酸盐、硝酸盐、硝酸盐+亚硝酸盐、联氨、正磷酸盐、挥发酚、硅酸盐、总磷、总氮、硫酸盐等溶质浓度梯度;或Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb等重金属元素的浓度梯度。 2.4 观测系统组成 AZ-ES100包气带污染物运移试验模拟研究系统由微型实验室土柱、土壤水分水势测量传感器、土壤溶液取样器、全自动土壤离子分析单元或便携重金属分析单元共同组成。 3 数据处理 包气带中污染物浓度的变化是由于污染物在地下水和土壤水的协同作用下在包气带中经过土壤孔隙运移、土壤颗粒的吸附以及土壤微生物的降解等多种因素共同影响的结果。由于污染物质主要是沿垂向运移,所以其运移模型常按垂向一维问题处理。一般认为水在土层中运移符合推流模式,若仅考虑弥散、吸附、降解作用,则污染物质在土层中垂直向下迁移的基本方程为 式中:c — 水中污染物浓度值(mg/ L) x — 垂向运移距离(m) D — 弥散系数(m2/ d) v —x 方向渗透速度(m/ d) s — 包气带土壤中污染物吸附浓度(mg/ mg) ρ— 土层干容重(g/ cm3) η— 有效空隙度。 4 参考文献 [1] 周睿,赵勇胜,任何军,等。不同龄渗滤液及其在包气带中的迁移转化研究,环境工程学报,2008,2(9):1189-1193。.[2] 刘期凤,廖家莉,张东,等。包气带土壤对Eu( Ⅲ) 的吸附,核化学与放射化学,2005,27(4):210-215。[3] 杨建锋,万书勤,邓伟,等。地下水浅埋条件下包气带水和溶质运移数值模拟研究述评,农业工程学报,2005,21(6):158-165。.[4] 高太忠,黄群贤,刘野,等。有机污染物在包气带中迁移转化试验研究,环境污染治理技术与设备,2004,5(2):42-45。.[5] 张云, 张胜, 刘长礼,等。包气带土层对氮素污染地下水的防护能力综述与展望,农业环境科学学报,2006,25(增刊):339-346。[6] 宋国慧,史春安。铬在包气带的垂直污染机理研究,西安工程学报,2001,23(2):56-58。
    留言咨询

离子型污染物分析相关的方案

离子型污染物分析相关的论坛

  • 【七嘴八舌大讨论】直视“九种持续性有机污染物的分析”

    今年,《关于持久性有机污染物的斯德哥尔摩公约》再添新成员,九种持久性有机污染物(POPs)将逐渐在全球停止生产和使用。随着社会对环保的重视,今年5月份《关于持久性有机污染物的斯德哥尔摩公约》新增9种持久性有机污染物,[color=#DC143C]这9种物质为五溴联苯醚、十氯酮、六溴代联苯、林丹、全氟辛烷磺酸及其盐类、商用八溴联苯醚、五氯苯、a-六六六、β-六六六。[/color]在这样一个现状下,我们又作何感想呢?~[color=#DC143C][B]回帖讨论话题方向:[/B]1、你了解的这9种物质主要以什么形式存在?主要来自哪里?怎么产生的?会造成什么污染危害呢? 2、针对以上的9种污染物,您认为分别通过什么样的分析方法能够得到更为可靠、高效的分析结果呢?您是否有接触到过这9种污染物及其它们的分析研究?3、这9种物质的分析方法开发过程中,您觉得难点是什么?怎么解决? 4、您认为环境保护中对污染物的分析、控制和食品安全存在怎么样的联系?您是如何看待目前我国的环境污染问题的?[/color]

  • 挥发性有机污染物常用分析方法

    1比色管检测法比色管检测法是一种简单实用的检测技术,由一个充满显色物质的玻璃管和一个抽气采样泵构成。在检测时,将玻璃管两头折断,通过采样泵将室内空气抽入检测管,吸入的气体和显色物质反应,气体浓度与显色长度成正比,从而可以直观地得到气体的大致浓度。此方法数据代表性差,目前的空气检测范围不足以覆盖全部的TVOCs成分。2比[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有高效能、高选择性、高灵敏度、速度快和应用范围广等特点,尤其对异构体和多组分有机混合物的定性、定量分析更能发挥作用。使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]——氢火焰离子化检测器(FID)对有机污染物进行定性和定量测定是比较成熟的方法之一。FID是利用氢气/空气火焰的热能和化学能作电离源,使有机物电离,产生微电流而响应的检测器。它是一种破坏性的质量型检测器,其响应值取决于单位时间进入检测器的组分量,其峰高随着载气流速的增加而增大,峰面积基本不变。FID对气体流速、压力和温度变化不敏感,它对H2O、O2、N2、CO和CO2等无响应,对几乎所有的有机化合物均有响应,特别是对烃类灵敏度高,且响应与碳原子数成正比,检测限达10~12 g/s。3色质联用法(GC-MS)色质联用法可以测定TVOCs中各种组分的种类和浓度,分析结果准确可靠。缺点是采样和分析过程复杂,分析时间长,测量成本高。质谱检测器(MSD)可对未知化合物进行定性鉴定,还可用于痕量组分的定量分析。MSD由离子源、质量分析器和离子检测器组成。离子源将待测组分电离成离子,并使这些离子加速和聚焦成离子束。质谱检测器将不同质荷比的离子分离,经质量分析器分离之后的离子进入离子检测器,将正负离子流转变成电信号输出,MSD的输出为电压——质荷比——时间三维图谱。MSD的定性采用全扫描质谱图,分子离子峰可确定待测组分的分子量,各碎片离子是该分子的一些组成部分。可采用计算机检索定性,也可通过图谱解析定性。MSD定量的基础是待测组分的峰强与其含量成正比。与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法相比,GC-MS法除具有高效分离能力和准确的定性鉴定能力外,还能够检测尚未分离的色谱峰,且其灵敏度更高,数据更可靠,在一般应用中可省去其他色谱检测器。因此,GC-MS联用技术已逐步成为检测痕量物质的重要手段。

  • 挥发性有机污染物常用分析方法

    1比色管检测法比色管检测法是一种简单实用的检测技术,由一个充满显色物质的玻璃管和一个抽气采样泵构成。在检测时,将玻璃管两头折断,通过采样泵将室内空气抽入检测管,吸入的气体和显色物质反应,气体浓度与显色长度成正比,从而可以直观地得到气体的大致浓度。此方法数据代表性差,目前的空气检测范围不足以覆盖全部的TVOCs成分。2比[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有高效能、高选择性、高灵敏度、速度快和应用范围广等特点,尤其对异构体和多组分有机混合物的定性、定量分析更能发挥作用。使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]——氢火焰离子化检测器(FID)对有机污染物进行定性和定量测定是比较成熟的方法之一。FID是利用氢气/空气火焰的热能和化学能作电离源,使有机物电离,产生微电流而响应的检测器。它是一种破坏性的质量型检测器,其响应值取决于单位时间进入检测器的组分量,其峰高随着载气流速的增加而增大,峰面积基本不变。FID对气体流速、压力和温度变化不敏感,它对H2O、O2、N2、CO和CO2等无响应,对几乎所有的有机化合物均有响应,特别是对烃类灵敏度高,且响应与碳原子数成正比,检测限达10~12 g/s。3色质联用法(GC-MS)色质联用法可以测定TVOCs中各种组分的种类和浓度,分析结果准确可靠。缺点是采样和分析过程复杂,分析时间长,测量成本高。质谱检测器(MSD)可对未知化合物进行定性鉴定,还可用于痕量组分的定量分析。MSD由离子源、质量分析器和离子检测器组成。离子源将待测组分电离成离子,并使这些离子加速和聚焦成离子束。质谱检测器将不同质荷比的离子分离,经质量分析器分离之后的离子进入离子检测器,将正负离子流转变成电信号输出,MSD的输出为电压——质荷比——时间三维图谱。MSD的定性采用全扫描质谱图,分子离子峰可确定待测组分的分子量,各碎片离子是该分子的一些组成部分。可采用计算机检索定性,也可通过图谱解析定性。MSD定量的基础是待测组分的峰强与其含量成正比。与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法相比,GC-MS法除具有高效分离能力和准确的定性鉴定能力外,还能够检测尚未分离的色谱峰,且其灵敏度更高,数据更可靠,在一般应用中可省去其他色谱检测器。因此,GC-MS联用技术已逐步成为检测痕量物质的重要手段。

离子型污染物分析相关的资料

离子型污染物分析相关的资讯

  • 岛津'PFAS二高一自'方案:高效分析新污染物
    全氟或多氟烷基化合物(Per- and Polyfluoroalkyl Substances,PFAS),是近年来备受关注的一类新污染物。研究表明,经由饮用水和其他环境介质的PFAS暴露给公众健康带来一定风险,目前全氟辛基磺酸(PFOS)、全氟己基磺酸(PFHxS)、全氟辛酸(PFOA)三类PFAS已列入POPs公约及我国《重点管控新污染物清单》。国内外相继发布了水质PFAS分析相关法规(HJ 1333-2023、GB 5750.8-2023、EPA 537.1等),现有方案一般采用离线SPE进行浓缩富集,样品用量大,操作繁琐耗时,容易引入误差或干扰。此外,不同法规的分析目标物数量存在差异,给法规依从分析带来挑战。岛津特别推出 “PFAS二高一自”应用方案:高灵敏-直接进样方案、高通量-平行液相方案、自动化-On-line SPE分析方案,水样直接上机,至多覆盖46种分析目标物,让PFAS分析更有信心。“PFAS二高一自”应用方案PFAS广泛用于铬雾抑制剂、灭火剂、不粘涂层等领域,在水体中呈现种类多、含量低的特点。为了同时兼顾法规和科研需求,覆盖更多的分析目标物,提升灵敏度和分析效率,岛津隆重推出“PFAS二高一自”特色应用方案,在法规基础上进行升级,满足您的个性化需求。三种方案均采用LCMS-8060NX三重四极杆串联质谱仪,灵敏度极高,水样无需离线SPE浓缩,直接上机,PFOA和PFOS轻松达到ppt级别灵敏度,满足大部分法规的要求,来看看“PFAS二高一自”的亮点吧!高灵敏-直接进样方案Nexera LC+LCMS-8060NX● 优异的灵敏度,PFOA和PFOS-0.5 ng/L;● 40种目标物+9种内标同时分析高通量-平行液相方案Nexera MX+LCMS-8060NX● 单次分析时间仅5.5 min,两条流路交替分析,通量高;● 41种目标物+9种内标同时分析自动化-On-line SPE分析方案On-line SPE+LCMS-8060NX● 1mL样品直接上机,PFOA、PFOS线性低点0.2ng/L;● 15 min分析46种目标物+9种内标“PFAS二高一自”特色应用方案推荐搭配以下全氟分析专用的配件和方法包●洁净样品瓶1.5 mL,Shimadzu LabTotal Vial for LC/LCMS(P/N 227-34001-01);●延迟柱和无氟化管路包(P/N:S225-46100-41),有效避免系统本底的干扰;●PFASs MRM数据库,包含93种PFAS的MRM参数,68个目标+25个内标(P/N:M232-07175-41);●LC/MS/MS 饮用水中PFAS分析方法包(P/N:S225-45420-91),覆盖EPA 533和537.1法规要求;↓高灵敏-直接进样方案赏析↓高灵敏-直接进样方案,非常考验仪器的极致灵敏度及稳定性,LCMS-8060NX标配Ion Fucus离子源,进一步提升了离子导入效率,从而提升了灵敏度及抗污染性能。40种目标物仅需50 μL上样量,线性范围0.5-100 ng/L,以PFOA和PFOS为例,定量限可达0.5 ng/L,灵敏度优于美国EPA的MCLs(最大污染水平)4 ng/L。● 线性在1-100 ng/L范围内,PFOA和PFOS,线性回归系数r20.99;↓高灵敏-平行液相方案赏析↓在传统的LCMS分析过程中,梯度洗脱的冲洗再平衡阶段质谱不再采集“有用”数据,属于质谱空闲时间,单次分析的质谱空闲时间一般在30-50%,岛津Nexera MX平行液相系统,采用独特的MX-DST技术,实现了流路1在分析的同时,流路2在冲洗和平衡,在液相梯度完成并且目标峰出峰结束后,便可交替流路开始下一针的分析(即重叠进样功能),将质谱空闲时间有效利用起来。同时,Nexera MX搭配LabSolutions Connect软件和MX Solution软件,实现参数优化和数据采集的智能化处理。使用高通量-平行液相系统,41种PFAS目标物、9种内标单次分析仅5.5 min,大大提升了质谱的利用率,实现了降本增效。兼顾效率的同时,灵敏度也能达到PPT级别。● 仪器配置及条件● 色谱图41种PFAS目标物、9种内标色谱分离良好,2 ng/L PFOA 和PFOS色谱图如下。41种PFAS目标物、9种内标TIC图(62 ng/L)↓自动化-On-line SPE分析方案赏析↓自动化-On-line SPE分析方案,配备了捕集上样模块,实现在线富集,超大体积进样(2000 μL定量环),实现一机多用,节省样品分析时间等,轻松实现自动化分析,告别繁复的手动前处理。46种PFAS目标物、9种内标在10 min内实现了良好的分离,色谱峰形良好。46种分析目标物以全氟/多氟烷基酸类,全氟烷基酸前体类为主,包括了羧酸类、磺酸类、饱和/不饱和调聚羧酸类、调聚磺酸、磺酸醚、羧酸醚、磺酰胺等共10类。● 系统配置系统控制器:SCL-40输液泵:LC-40D X3×2,LC-40B X3自动进样器:SIL-40C X3(2000 μL定量环)柱温箱:CTO-40C(FCV-36AH)质谱仪:LCMS-8060NX混合器:20μL×2● 分析目标物分类自动化-On-line SPE分析目标物分类● 自动化-On-line SPE分析条件● 灵敏度自动化-On-line SPE分析方案标准曲线图(PFOA和PFOS)●线性结果46种PFAS线性相关系数R0.995,具体如下表所示;结语“PFAS二高一自”特色应用方案,简化了前处理了,实现了更多目标物的分析,更适合法规依从和风险筛查。以上案例中的LCMS-8060NX,可以升级为新款LCMS-8060RX三重四极杆液质联用仪,LCMS-8060RX采用全新开发的IonFocus离子源,配备新开发的CoreSpray技术,提高ESI 喷雾针同轴度,进一步提升了分析数据的稳定性。
  • 微塑料中的典型有机污染物,如何快筛?
    ☆ 导读 ☆近年来,随着塑料的大量生产与使用,环境中的(微)塑料浓度不断增加,微塑料污染已成为与臭氧耗竭、海洋酸化、气候变化等并列的全球性环境问题。微塑料本身含有增塑剂等添加剂,加之具有较大表面积,容易吸附海水中的多氯联苯(PCBs)、多环芳烃(PAHs)等疏水性污染物,并产生富集作用。有研究表明,微塑料吸附有机污染物的浓度较周围沉积物高100倍,较海水高100万倍(Mato et al. 2001)。而这些疏水性污染物基本都是持久性有机污染物,大都具有较大生物毒性,能在环境中持久存在,并通过生物食物链进行累积。 ☆ 微塑料小知识 ☆ 什么是微塑料?微塑料是指所有直径小于5毫米的塑料颗粒,其中直径小于100纳米(比病毒还小)的颗粒被称为纳米颗粒。迷你尺寸意味着它们可以轻松在河道和海水中游走。 微塑料来自哪里?微塑料的来源主要有两方面:一是大块塑料随时间的碎裂分解;二是工业产品中本身含有的微塑料(如牙膏、洗面奶中的微塑料研磨剂)。 微塑料有什么危害?生物摄入微塑料主要造成生物体的物理损伤,而微塑料中的有毒有害添加剂和其表面吸附的有机污染物则对生物体具有更深的毒理学危害。 ☆ 微塑料中多氯联苯(PCBs)、多环芳烃(PAHs)快速筛查方案 ☆使用热裂解-气质联用仪(PY-GCMS)、气相色谱三重四极杆质谱仪(GC-MS/MS)对微塑料中多氯联苯(PCBs)、多环芳烃(PAHs)进行筛查。方法简单高效,可以快速筛查微塑料中典型有机污染物。GCMS-TQ8040 NX PY+GCMS-QP2020 NX ☆ 方法介绍 ☆样品前处理 仪器参数 标准谱图图1. 28种PCBs和16种PAHs色谱图(50 μg/L,MRM模式采集) 表1 目标组分信息 样品分析图2. PY-GCMS分析微塑料样品总离子流图 对10份微塑料样品进行分析,其中7份样品不溶于丙酮,使用PY-GCMS筛查。7份样品中两份样品检出菲,一份样品检出苊。3份可溶于丙酮样品中PCBs类化合物均未检出,一份样品检出包括萘、芴等10种PAHs,一份检出苯并(a)蒽和䓛两种PAHs。 图3. GC-MS/MS分析微塑料样品总离子流图 ☆ 结语 ☆万物生灵息息相关,可持续发展必须实现人与环境和谐共处。抗击微塑料污染的道路道阻且长,科学研究必须走在前面,利用先进的分析手段及早发现潜藏在微塑料外衣下凶险的有毒有害物质,有助于更好的了解微塑料的危害,从而为微塑料污染治理指明方向。 【参考文献】[1] Mato Y , Isobe T , Takada H , et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment.[J]. Environmental Science & Technology, 2001, 35(2):318-24.
  • 蓝天 碧水 净土 三大保卫战——石化环境污染物分析及溯源技术进展
    石化产业是能源及化工原料的提供者,在国民经济中占有重要的地位,但因其高耗能、高污染的特点,相关污染防治工作一直受到社会各界的高度重视。在炼油化工生产过程,部分物料具有易燃易爆和毒害性质,不可避免地就会产生污染,其中就包括水污染、大气污染、固体废物污染和噪声污染等,将会对环境造成不利影响。自2014年以来,国家陆续出台了新《环境保护法》、“气十条”、“水十条”、“土十条”及石油炼制工业和石油化学工业污染排放新标准等法律法规,环保政策导向由污染物总量控制转为环境质量改善,对炼化企业环保工作提出了更高的要求。“气不上天、油不落地、水不乱排、废不乱放、声不扰民”,“清洁、低碳”既是对石化产品的要求,也是对生产过程所提出的要求。炼化企业环境监测对时空性和准确性的要求也越来越高,实验室检测、在线监测及现场快速监测技术都在各石化企业得到了广泛应用,而有条件的石化、化工类工业园区已开展走航监测、网格化监测以及溯源分析等工作。石化行业的相关排放标准有GB 31570-2015石油炼制工业污染物排放标准,GB 31571-2015 石油化学工业污染物排放标准,GB 15618-2018 土壤环境质量农用地土壤污染风险管控标准,GB 36600-2018 土壤环境质量建设用地土壤污染风险管控标准,GB 34330-2017 固体废物鉴别标准-通则,GB 5085.7-2019 危险废物鉴别标准 通则,国家危险废物名录(2021)… … ,以及更加严格的地方排放标准,如DB 31/387-2018《上海市锅炉大气污染物排放标准》等。环境监测与评价方法废气污染物监测技术及进展炼化企业废气污染物包括SOx、NOx、粉尘、烃类气体、其他挥发性有机化合物(简称VOCs)、恶臭气体等有毒有害气体。目前,SOx、NOx的实验室检测技术和在线监测技术已经非常成熟,包括滴定法、电化学方法及分光光度法等,而VOCs和恶臭气体的检测以气相色谱法(简称GC)、气相色谱质谱法(简称GC-MS)和高相液相色谱法为主,分析技术比较成熟,相关标准比较齐全。气相色谱法是应用最早、最普遍的技术,最初的分析模式为大体积采样和填充柱分析,在后续解决了采样预浓缩(低温)及热解析等预处理技术后,结合不同极性毛细管色谱柱组合的强大分离技术,形成了吸附管采样-热解析-毛细柱分离-GC/MS监测和苏玛罐采样-低温预浓缩-热解析-毛细管分离-GC/MS监测两种分析模式,实现了117种VOCs的准确测定。但该技术具有采样复杂、分析周期长、数据滞后的缺点,较难反映统一监测点位的浓度变化趋势。为了解决目前VOCs传统监测方法获取数据时空代表性不足的问题,在线监测、便携式监测技术已经成为石化行业VOCs现场监测的发展趋势。目前,可用于气体在线监测的分析技术主要包括传感器技术、光谱技术、色谱技术和质谱技术等多种类型,具体的应用模式包括分析小屋和走航监测等。便携式分析仪主要用于应急检测、污染源追踪监测、环保部门执法抽查检测、泄露和敞开面VOCs检测等方面。目前,国内许多检测部门、企业已经逐步配备便携式VOCs分析仪。VOCs的异常排放及精准溯源更是目前炼厂VOCs排放的研究热点之一。水质分析及循环水漏油溯源技术进展石化行业的水质分析方法主要包括重量法、容量法、分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱、离子色谱、电化学法、气相色谱法、高校液相色谱法、气相色谱-质谱法、比色法、生物监测法等。其中钙硬度、碱度、氯化物、硫酸盐和电导率等可以反映水质的腐蚀性和结垢性,铁离子、铜离子可以反映阻垢缓蚀剂的缓蚀性能,浊度和游离氯可以反映循环水系统的物料泄露情况和微生物控制情况等。目前,炼厂水质的常规监测及在线监测技术均比较成熟。那么,当监测指标发生异常时,对异常点位的及时准确溯源就成为了炼厂最为关心的问题。事实上,循环水系统的油料泄漏问题在国内石化行业非常普遍,有泄漏现象的装置达到85%以上。一旦发生油料泄露,会在设备表面形成油膜,不仅大大增加了装置的能耗,也会给炼油装置运行带来安全隐患。如果能及时找到漏油的源头,即精准溯源,将会极大的节约成本。现有的溯源方法并不完善,如下图所示:中国石化石油化工科学研究院(简称石科院)基于烃指纹技术开发了智慧循环水溯源专家系统,通过将自行开发的水中油高效样品预处理方法以及烃指纹分析技术(基于气相色谱或气相色谱-质谱技术)相结合,利用智慧循环水溯源软件,可以对循环水中的泄漏物料与炼厂的典型油品烃组成数据库进行匹配,并根据智能算法等技术,自动完成循环水泄露的智能监测和溯源,减少人为主观判断,提高循环水物料泄露源查找方法的自动化水平。该溯源方法具有高灵敏、高智能化的特点,在循环水系统发生泄露早期,即可快速给出泄露位置,避免造成更大的污染和浪费。石化企业循环水油料泄露溯源专家系统固废危废分析技术及进展在目前固体废物减量化、无害化及资源化的国家大政策下,部分城市和炼厂已率先提出固体废物零排放的年度计划,这就要求对现有企业的固体废物进行资源属性、环境属性的全面表征,并对固废进行炼厂正常工况条件的协同处置时,有可能产生的腐蚀和安全风险开发快速的过程控制分析技术。石科院目前已经开发了对含油污泥、石油焦等固体废物的资源属性及部分环境属性的表征技术,如油泥适度预处理耦合造气技术,可实现油泥梯级资源化利用与无害化处置,油泥梯级资源化利用技术路线如下图所示:油泥梯级资源化利用技术路线附:中国石化石油化工科学研究院分析平台中国石化石油化工科学研究院具有的CNAS/CMA认证资质:标准号标准名称 CNAS/CMA认证1HJ639-2012水质挥发性有机物的测定 吹扫捕集/气相色谱-质谱法√2HJ605-2011 土壤中挥发性有机物的测定 吹扫捕集-气相色谱质谱法√3HJ741-2015土壤中挥发性有机物的测定 顶空/气相色谱法√4HJ 834-2017 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法√5HJ 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法√6HJ 832-2017土壤和沉积物 金属元素总量的消解 微波消解法√7HJ 501-2009水质 总有机碳的测定 燃烧氧化-非分散红外吸收法√… … … √40GB/T 14424-2008 工业循环水中余氯的测定√作者:中国石化石油化工科学研究院 钱钦
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制