当前位置: 仪器信息网 > 行业主题 > >

高温微波灰化炉

仪器信息网高温微波灰化炉专题为您提供2024年最新高温微波灰化炉价格报价、厂家品牌的相关信息, 包括高温微波灰化炉参数、型号等,不管是国产,还是进口品牌的高温微波灰化炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温微波灰化炉相关的耗材配件、试剂标物,还有高温微波灰化炉相关的最新资讯、资料,以及高温微波灰化炉相关的解决方案。

高温微波灰化炉相关的方案

  • 培安公司:CEM PHOENIX微波灰化方法(小麦粉)
    样品:小麦粉摘要:本方法旨在描述利用配备石英纤维坩锅的CEM PHOENIX微波马弗炉(微波灰化系统),测量小麦粉中的灰分含量,仪器要求: CEM PHOENIX微波马弗炉(微波灰化系统) 石英纤维坩锅、石英纤维坩锅垫、移液管、吸收内衬、坩锅钳、感量±0.1mg分析天平试剂要求:乙酸镁 乙醇(95%)方法:1.配液:将乙酸镁和95%乙醇配成0.015:1(质量:体积)溶液。方法如下:称量15g乙酸镁,溶于1000ml95%乙醇中。使用前,进行过滤。2.程序设定:将CEM PHOENIX微波马弗炉(微波灰化系统)温度设定为935℃,然后等待仪器升温到设定温度。3.时间设定:10分钟
  • 莱伯泰科:微波灰化法测定原油中的铅和砷
    有样品比较复杂,前处理难度大,有的样品铅、砷含量较低,取样量太少的话达不到后续分析仪器的检出限。因此需要建立准确、可高、灵敏、快速的分析方法。微波灰化是一种快速处理样品技术,比湿法消化的取样量大的5~10倍,因此大大的提高了仪器的检出限;同时样品的处理时间短、损失少,是比较准确可靠的样品前处理方法。
  • 安康鱼灰化测试-立式微波灰化炉
    将安康鱼鲜样制成灰样,计算灰鲜比产品设计参考GB4706.21-2008《家用和类似用途电器的安全微波炉,包括组合型微波炉的安全要求》;GB5959.6-2008《电热装置的安全 第6部分 工业微波加热设备的安全规范》
  • 莱玻特瑞煤质缓慢灰化方法
    马弗炉煤质分析缓慢灰化法,分析煤的灰分煤质分析缓慢灰化法为经典的煤质灰分测定方法,其化验过程检测时间较长,分析缓慢,但是结果准确,较为普遍使用。煤质分析测定原理:称取一定量的空气干燥煤样,放入煤质分析仪器马弗炉或快灰仪中,以一定的速度加热到(815±10)℃,灰化并灼烧到质量恒定,以残留物的质量占煤样质量的百分数作为灰分产率。煤质分析方法要点:称取一定质量的煤样在干燥箱中干燥至空气干燥煤样1g,放入低于100℃的马弗炉中,在30min时间内升温至500℃,在此温度下保温30min,再升至(815±10)℃,烧1h至质量恒定。以灰渣的质量占煤样质量的百分数为灰分产率。煤质分析仪器设备:1. 干燥箱 2.分析天平感量0.0001g3.马弗炉:能保持温度为(815±10)℃,炉膛有足够的恒温区,路后壁的上部带有排烟孔。4. 耐烧的瓷板和石棉板。 5.瓷灰皿 6.送样铲,坩埚架、不锈钢坩埚煤质分析测定步骤:在预先灼烧至质量恒定并已称量(称准至0.0002g)的灰皿中称取粒度小于0.2mm的空气干燥煤样(1±0.1)g(称准至0.002g),摇匀、摊平。放入温度不超过100℃的马弗炉中,关上炉门使炉门留有15mm左右的缝隙,使炉内空气自然流通,促使煤样在空气中充分并完全燃烧,确保慢灰化验结果的精确性。在不少于30min的时间内将炉温缓慢升至500℃,并在此温度下保持30min。继续升温到(815±10)℃,管严炉门,在此温度下灼烧1小时。 从炉中取出灰皿,在空气中冷却5min左右,移入干燥箱冷却至室温(约20min)后称量。若灰分大于15%,则进行检查性灼烧,每次20min,直到连续两次灼烧的质量变化不超过0.001g为止,取最后一次灼烧后的质量为计算依据。煤质化验须知:1.样品放置,煤样应置于灰皿中,并平摊、其厚度不应超过0.15g/cm2,2.灰皿要置于专用的灰皿架上放入高温炉中,而不应将灰皿直接置于炉底,灰皿的位置应在热电偶热端附近。用灰皿架,便于批量测定,操作方便。3.升温与控温要求:缓慢灰化法测定灰分采用三段升温法。在500℃前,要缓慢升温。使煤中硫化物分解有足够的时间。在500℃时,要求保持恒温并维持30min,以保证硫化物分解生成的SO2气体通过烟囱充分排出炉外。在500℃后,炉温升至(815±10)℃,此时碳酸盐分解完全,而SO2已从炉内排出,煤样灼烧至恒重(一般为1h),即完成测定。4.灰化条件 如果燃煤灰分含量大于15.00%,则应进行检查性灼烧,每次20分钟,直到连续两次灼烧后的质量变化不超过0.0010g为止。用最后一次灼烧后的质量来计算灰分含量。灰化完毕,自炉内取出灰皿,先置于空气中冷却10分钟左右,然后转入干燥箱中冷却至室温,约(15-20)分钟,称重。Aad = (m1-m0)/ (m——m0)×100%m-----加煤样后的质量,g m0---------灰皿质量,gm1--------检查性灼烧后的质量,g
  • 马弗炉在食品中氟的测定 灰化蒸馏——氟试剂比色法中的作用
    氟是人体所需的一种微量元素,氟摄入过多会导致牙齿中的钙化酶活性降低,就可能因牙齿钙化失败,存在色素沉积在釉质表面,使牙釉质受到损害,形成氟斑牙。在饮水、食物中存在长期过量摄入氟的情况,还可能引起慢性的氟中毒,导致骨头脆性增加,骨髓造血功能下降,影响体内钙磷的正常代谢,从而引发氟骨症,也易发生骨质疏松和骨折。本实验为试样经硝酸镁固定氟,经高温灰化后,在酸性条件下蒸馏分离氟,蒸出的氟被氢氧化钠溶液吸收,氟与氟试剂、硝酸镧作用、生成蓝色三元络合物,与标准比较定量。
  • 微波消解高温合金
    高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。为检测高温合金中的多种金属元素含量,选择微波消解对其进行前处理,探索最适合的消解参数,该方法还有回收率高、空白低等特点,有利于后续对多种无机元素的快速准确测定。
  • 海能仪器:预混合饲料的测定产品配置单(微波消解仪)
    通过使用海能仪器微波消解仪消解过程用时短,操作简便,经过高温灰化后压力降低,安全可靠,消解后溶液澄清透明。
  • 微波消解钴基高温合金
    钴基高温合金是含钴量40~65%的奥氏体高温合金。在730~1000℃条件下具有一定的高温强度、良好的抗热腐蚀和抗氧化能力。它是以钴做为主要成分,除此之外还含有钼、镍、硅,锰等成分,根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。通过微波消解方法对钴基高温合金进行前处理,有利于后续对样品中痕量元素含量的快速准确测定。
  • 微波消解钴基高温合金
    钴基高温合金是含钴量40~65%的奥氏体高温合金。在730~1000℃条件下具有一定的高温强度、良好的抗热腐蚀和抗氧化能力。它是以钴做为主要成分,除此之外还含有钼、镍、硅,锰等成分,根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。通过微波消解方法对钴基高温合金进行前处理,有利于后续对样品中痕量元素含量的快速准确测定。
  • 新拓仪器:螺旋藻中的铅、镉微波消解- 石墨炉原子吸收测定法
    螺旋藻属蓝藻类,它被联合国粮食与农业组织(FAO) 誉为“21 世纪最理想和最完善的食品”。螺旋藻蛋白质含量高达60 %~70 % ,它还含有人体所需要的18 种氨基酸和铁、铜、锌、锰、硒等人体必须微量元素,所以每天服用一定剂量的螺旋藻对人体健康有着一定的益处。但螺旋藻在培植过程中也会吸附对人体有害的铅、镉元素,因此检测螺旋藻中铅、镉含量具有一定的卫生学意义。铅、镉元素在550 ℃干法灰化时就有逸失[1 ] ,而微波消解是将样品置于特定的密闭容器中,样品在高压下进行微波消解,可以在使样品全部消解的同时避免被测元素的逸失。本文参考有关资料建立微波消解与石墨炉原子吸收法相结合测定螺旋藻中的微量铅、镉,报告如下。
  • 微波消解石墨炉原子吸收光谱法直接测定鼠骨中重金属Cr含量
    生物样品分析中,样品处理是十分关键的步骤.干灰化法和湿消化法是处理生物样品最常用的方法。随着微波技术的发展,微波消化用于生物样品处理也日益广泛。骨骼中各种元素测定的方法,作者[1][2]曾进行过有关的研究,卜海富[3]也报道过骨中Pb、Cd的测定。其样品处理方法分别用甲酸或四甲基氢氧化氨溶液于沸水浴中进行消解,既耗时,又未能将样品彻底消化。本文采用甲酸作溶剂,加压微波消化鼠骨样品,使其基体得以较彻底的破坏,可用石墨炉原子吸收光谱仪,以标准曲线法,直接测定鼠骨中Cr等元素的含量
  • 微波消解石墨炉原子吸收光谱法直接测定鼠骨中重金属Ni含量
    生物样品分析中,样品处理是十分关键的步骤.干灰化法和湿消化法是处理生物样品最常用的方法。随着微波技术的发展,微波消化用于生物样品处理也日益广泛。骨骼中各种元素测定的方法,作者[1][2]曾进行过有关的研究,卜海富[3]也报道过骨中Pb、Cd的测定。其样品处理方法分别用甲酸或四甲基氢氧化氨溶液于沸水浴中进行消解,既耗时,又未能将样品彻底消化。本文采用甲酸作溶剂,加压微波消化鼠骨样品,使其基体得以较彻底的破坏,可用石墨炉原子吸收光谱仪,以标准曲线法,直接测定鼠骨中Ni等元素的含量
  • 微波消解石墨炉原子吸收光谱法直接测定鼠骨中重金属Cu含量
    生物样品分析中,样品处理是十分关键的步骤.干灰化法和湿消化法是处理生物样品最常用的方法。随着微波技术的发展,微波消化用于生物样品处理也日益广泛。骨骼中各种元素测定的方法,作者[1][2]曾进行过有关的研究,卜海富[3]也报道过骨中Pb、Cd的测定。其样品处理方法分别用甲酸或四甲基氢氧化氨溶液于沸水浴中进行消解,既耗时,又未能将样品彻底消化。本文采用甲酸作溶剂,加压微波消化鼠骨样品,使其基体得以较彻底的破坏,可用石墨炉原子吸收光谱仪,以标准曲线法,直接测定鼠骨中Cu等元素的含量
  • 微波消解石墨炉原子吸收光谱法直接测定鼠骨中重金属Mn含量
    生物样品分析中,样品处理是十分关键的步骤.干灰化法和湿消化法是处理生物样品最常用的方法。随着微波技术的发展,微波消化用于生物样品处理也日益广泛。骨骼中各种元素测定的方法,作者[1][2]曾进行过有关的研究,卜海富[3]也报道过骨中Pb、Cd的测定。其样品处理方法分别用甲酸或四甲基氢氧化氨溶液于沸水浴中进行消解,既耗时,又未能将样品彻底消化。本文采用甲酸作溶剂,加压微波消化鼠骨样品,使其基体得以较彻底的破坏,可用石墨炉原子吸收光谱仪,以标准曲线法,直接测定鼠骨中Mn等元素的含量
  • 超级微波消解仪在石英砂化学成分分析中的应用
    石英砂是一种常见的非金属矿物原料,主要由二氧化硅(SiO2)组成,具有良好的耐高温、耐腐蚀、高硬度等特点。石英砂在工业、农业、建筑等领域具有广泛的应用。 微波消解法是利用微波将封闭容器中的消解液以及样品加热使其快速溶解的消解办法。与干灰化法、湿法消解相比,微波消解是在密闭空间内发生的,且具有高温、高压的条件,故消解的程度、速度等都会增加,并且因此消解酸的需求量也会降低。除此之外,试样空白值降低的同时也可以避免挥发元素损耗、环境污染,提高结果的准确度、精密度。微波消解过程时间短,消解完全,设置简单,是一种革新的样品前处理技术;能够对石英砂进行检验,且检验实施的过程中能够通过调节时间、控制温度,获得良好的检验效果。该种检验技术的操作十分便捷、安全,且准确度较高,与传统检验方式相比优势十分明显。
  • 通用水浴在食品中氟的测定 灰化蒸馏——氟试剂比色法中的作用
    氟是人体所需的一种微量元素,氟摄入过多会导致牙齿中的钙化酶活性降低,就可能因牙齿钙化失败,存在色素沉积在釉质表面,使牙釉质受到损害,形成氟斑牙。在饮水、食物中存在长期过量摄入氟的情况,还可能引起慢性的氟中毒,导致骨头脆性增加,骨髓造血功能下降,影响体内钙磷的正常代谢,从而引发氟骨症,也易发生骨质疏松和骨折。本实验为试样经硝酸镁固定氟,经高温灰化后,在酸性条件下蒸馏分离氟,蒸出的氟被氢氧化钠溶液吸收,氟与氟试剂、硝酸镧作用、生成蓝色三元络合物,与标准比较定量。
  • pH计在食品中氟的测定 灰化蒸馏——氟试剂比色法中的作用
    氟是人体所需的一种微量元素,氟摄入过多会导致牙齿中的钙化酶活性降低,就可能因牙齿钙化失败,存在色素沉积在釉质表面,使牙釉质受到损害,形成氟斑牙。在饮水、食物中存在长期过量摄入氟的情况,还可能引起慢性的氟中毒,导致骨头脆性增加,骨髓造血功能下降,影响体内钙磷的正常代谢,从而引发氟骨症,也易发生骨质疏松和骨折。本实验为试样经硝酸镁固定氟,经高温灰化后,在酸性条件下蒸馏分离氟,蒸出的氟被氢氧化钠溶液吸收,氟与氟试剂、硝酸镧作用、生成蓝色三元络合物,与标准比较定量
  • 干灰化-碳酸钠碱熔-电感耦合等离子体发射光谱法测定植物样品中硅含量
    根据样品的灰分含量((如表2所示)称取植物样品((尽量保证灰分在50mg以下)并置于铂坩埚内,随后将其放入马弗炉。在300°C下预灰化2h((炉门打开一条一指宽的缝,使空气能进入,从而使有机质燃烧充分),关上炉门升温至600°C保持2h。
  • 微波消解碳化锆
    碳化锆是暗灰色有金属光泽的立方晶体,是一种重要的高熔点、高强度和耐腐蚀的高温结构材料,可用作电极、耐火坩埚和阴极电子发射材料,用于多元合金以提高机械强度,也是生产金属锆、四氯化锆的原料,因此对碳化锆中元素含量的测定是非常有必要的。微波消解法具有样品溶解完全、速度快,试剂消耗少,空白低,元素损失小、回收完全等优点,采用此方法能够实现对碳化锆的快速、完全消解,有利于后续的元素分析。
  • 微波消解回转窑结焦
    随着国家对危险废物处置要求的提高,回转窑作为工业炉的一种,在危险废物焚烧处置工程中的应用越来越广泛。在随着回转窑转动焚烧过程中,于危险废物成分复杂,危险废物在高温下会进行分解,分解后的元素在高温下会重新组合,形成一部分低熔点盐类。这些低熔点盐类在高温下非常粘稠,可以自身粘结并粘附其它物质而在回转窑内结焦。通过微波消解方法对回转窑结焦进行前处理,有利于后续原子吸收对样品中痕量元素含量的快速准确测定。
  • 微波消解碳化锆
    碳化锆是暗灰色有金属光泽的立方晶体,是一种重要的高熔点、高强度和耐腐蚀的高温结构材料,可用作电极、耐火坩埚和阴极电子发射材料,用于多元合金以提高机械强度,也是生产金属锆、四氯化锆的原料,因此对碳化锆中元素含量的测定是非常有必要的。微波消解法具有样品溶解完全、速度快,试剂消耗少,空白低,元素损失小、回收完全等优点,采用此方法能够实现对碳化锆的快速、完全消解,有利于后续的元素分析。
  • TANK PLUS微波消解仪土壤镉金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。
  • TANK PLUS微波消解仪土壤铅金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。
  • TANK PLUS微波消解仪土壤重金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。
  • 上海新仪:微波消解在测定食品中微量元素中的应用方案汇总
    该法是将一定量的样品置于石英坩埚内先在电炉上用小火炭化,炭化完全后用马福炉以适当的温度灰化,灼烧除去有机成分,再用酸溶解,使其微量元素转化成可测定状态。该法优点是:设备简单,取样量较大,溶剂用量不多,而且可批量操作。缺点是:加热时间长,耗电量大。对于汞、砷等易挥发元素,高温灰化法易造成损失,影响测定结果的准确度。
  • 微波等离子体高温热处理工艺中真空压力的下游控制技术方案和装置
    本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了解决这一关键技术所采用的真空压力下游控制技术方案和相应装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。
  • TANK PLUS微波消解仪土壤中锌金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。
  • TANK PLUS微波消解仪土壤镍金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。
  • TANK PLUS微波消解仪土壤铜金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。
  • TANK PLUS微波消解仪土壤铬金属检测方案
    随着经济和社会的发展,我国土壤污染日益严重,已对土地资源可持续利用与农产品生态安全构成威胁。据报道,目前受重金属污染土地达2000万公顷,严重污染土地超过70万公顷,13万公顷土地因镉含量超标而被迫弃耕,全国土壤环境状况总体不容乐观。土壤成分的复杂性,重金属元素分析需要进行样品前处理。目前常用的消解方法有湿法消解、干灰化法和微波消解等。前两种方法耗费时间长,不能保证消解效果,也有可能造成待测元素损失,同时湿法消解所用挥发性酸易形成酸雾,污染环境,易对实验操作者造成伤害。微波消解方法操作简单,消解速度快,大大缩短了检验周期,提高了分析效率,消解效果好,有效改善实验人员的工作环境,分析结果的精密度、准确度及回收率均能得到有效保障。由于不同土壤样品间的成分与形态差别较大,本文对消解温度、消解时间、消解溶剂选择及后续处理方案进行了系统研究及优化。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制