金属材料样品

仪器信息网金属材料样品专题为您整合金属材料样品相关的最新文章,在金属材料样品专题,您不仅可以免费浏览金属材料样品的资讯, 同时您还可以浏览金属材料样品的相关资料、解决方案,参与社区金属材料样品话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

金属材料样品相关的耗材

  • 气动拉伸试验夹具金属材料楔形夹具体钳口全自动带钳口
    适用范围:金属材料哑铃试样/圆棒单选轴接头 :外径30mm, 长度30mm,插销孔径12mm,插销孔中心到接头顶部端面距 离14.5mm .气管接头孔径=6MM 可选钳口:平面钳口:0-7mm,7-14mm, 14-21mm ,21-26mm V形钳口:V4-9mm,V9-V14mm, V14-21mm, V21-26mm可夹持试样宽度=35MM
  • 三点弯曲试验夹具 非金属材料抗弯工装
    适用范围:各种材料试样的弯曲测试 可选A或B型接头:A接头 轴外径20mm长度30mm(配锁 紧母)B接头 内孔20mm深30mm,插销孔径10mm,插销孔中心到接头 端面距离14.5mm。不配接头时夹具体M12内牙。250mm三点弯曲夹具体1件+R5压棍1件高度80mm宽50mm+R5支棍2件高度135mm宽50mm+ R2支棍2件高度135mm宽50mm+ 千分表支架1套高度123mm(不 配千分表,装表孔经8mm)+支/ 压棍均为固定式不可转动.
  • 非金属圆棒哑铃材料试件辅具装置 试验机楔形拉伸夹具
    适用范围:金属材料哑铃试样/圆棒单选轴接头:外径50mm, 长度 54mm,插销孔径18mm 插销孔中心 到接头端面距离24mm 锁紧方式为双柄旋转锁紧。 可选钳口:平面钳口:0-7mm,7-14mm, 14-21mm ,21-26mmV形钳口:V4-9mm,V9-14mm, V14-21mm, V21-26mm。可夹持试样宽度=40mm

金属材料样品相关的仪器

  • 金属材料试验机 400-860-5168转1655
    HY-20080(门式)电子材料试验机通常用于在单个试验机架内实现拉伸或压缩的静态试验模式。它们也称为拉伸试验机,可以进行的试验类型包括拉伸、压缩、剪切、挠曲、剥离、撕裂、循环和弯曲试验.根据用户要求可求取非金属材料的大强度、弹性模量(E)、定压缩强度、定荷伸长、屈服强度等。金属材料的屈服强度、非比例强度、总压缩强度、抗压(拉)强度、延伸率等。一、典型试样:塑料薄膜 橡胶 细金属丝,纤维和细线,铝箔, 铜箔 ,光伏焊带, 太阳能电池板 , 生物材料,高分子材料,粘合剂,打包带,输液管,吻合器 ,泡沫材料、医药行业,包装,纸产品 弹性性 木制品 薄金属 保温材料 高强度金属丝 ,5mm厚镀锌钢板, 汽车零部件 ,汽车内饰件, 紧固件 钢丝绳,焊缝,焊接强度 复合材料等等。二、主要特点:(1)全套结构紧凑、高刚性的双柱框架 (2)日本松下伺服电机和驱动器一套。 (3)精密预紧载荷进口高精度滚珠丝杠两根。 (4)进口高精度拉压双向负荷传感器一只。 (5)多国语言、单位可切换的数字开环或闭环控制器一套。 (6)方便快捷操作的便携式遥控器一只。三、技术参数:1. 产品规格: HY-20080(龙门式)2. 精度等级: 0.5级(以内)3. 额定负荷: 1N 5N 10N 20N 50N 100N 200N 500N 1000N 2000N 3000N 5000N 10KN 20KN 50KN 100KN 200KN(可配多只)4. 有效测力范围:0.1/100-99% 5. 试验力分辨率,负荷±500000码;内外不分档,且全程分辨率不变。6. 有效试验宽度:600mm(可根据样品加宽)7. 有效试验空间:800mm(可根据样品加高)8. 试验速度::0.001~500mm/min(任意调)9. 速度精度:示值的±0.5%以内;10.位移测量精度:示值的±0.5%以内;11.变形测量精度:示值的±0.5%以内;12.应力控速率范围: 0.005%~6%FS/S13.应力控速率精度: 速率<0.05%FS/S时,为设定值的±1%以内;速率≥0.05%FS/S时,为设定值的±0.5%以内;14.应变控速率范围: 0.002%~6%FS/S15.应变控速率精度: 速率<0.05%FS/S时,为设定值的±2%以内;速率≥0.05%FS/S时,为设定值的±0.5%以内;16. 恒力/位移/变形测量范围:0.5%~99%FS17.恒力/位移/变形测量精度:设定值<10%FS时, 为设定值的±1%以内; 设定值≥10%FS时, 为设定值的±0.1%以内;18.试台升降装置:快/慢两种速度控制,可点动;19.试台安全装置:电子限位保护20.试台返回:手动可以高速度返回试验初始位置,自动可在试验结束后自动返回;21.试验定时间自动停车,试验定变形自动停车,试验定负荷自动停车22.超载保护:超过大负荷10%时自动保护;23. 自动诊断功能,定时对测量系统、驱动系统进行过载、过压、过流、超负荷等检查,出现异常情况立即进行保护24.电源功率: 3000W25.主机重量: 1250kg26. 电源电压: 220V(单相)27. 主机尺寸:1000*680*2300mm四、选配件: (1)仪器豪华型工作台 (2)仪器豪华型防护罩一套 (3)大变形(测塑料橡胶材料)和电子引伸计(测金属材料) (4)拉伸夹具 压缩夹具 三点弯曲夹具 四点弯曲夹具 剪切夹具 剥离夹具 撕裂夹具 压陷硬度夹具 T型槽台 (5)戴尔品牌电脑和23寸的显示器 (6)彩色HP喷墨打印机 (7)上海市计量检定证书
    留言咨询
  • 型号:ZD-CX2名称:金属材料分析系统主要技术指标• 测量范围:碳 0.00001%-10.00000% (可扩至99.999%)硫 0.00001%-5.00000% (可扩至99.99%)其他元素0-1.999A吸光度值 0-99.99%浓度值• 测量精度:符合碳:符合ISO9556-94标准 硫:符合ISO4935-94标准 其他元素符合GB/T22.3-5-88标准• 工作电源:220V士 10% 50HZ• 工作环境:温度:5°C-40°C 湿度<80%• 分析误差:符合GB/T20123-2006 IS015350: 2000标准符合GB/T223标准• 准确度:符合国家计量检定规程JJG395-97标准主要性能指标• 该仪器是我公司研制的一款国内先进的综合性分析仪,可检测钢铁、有色金属、水泥、矿石、玻璃、陶瓷及其它金属、非金属等多种材 科中的碳、硫、镒、硅、磷、铭、镣、钳、铜、钛、镁、稀土等元素。• 整个分析程序由计算机自动控制完成,软件功能齐全,提供文件帮助、系统监测、通道选择、数据统计、结果校正、断点修正、系统诊断等 四十多项功能。• 采用微机控制及数据处理整机控制电路模块化设计,提高了仪器的可靠性,可存储无限条曲线,标准曲线可自由建立、调用、查询等可视化 操作。• 碳硫为高频燃烧,选用进口高精度红外传感检测数据,测量精度高,稳定性好,故障率低。• 配置万分之一精密电子天平,计算机自动读取样品重量。• 设计:碳硫采用大功率高频电路设计,高频功率管,减轻高频燃烧系统的负载,提高使用寿命。• 元素分析采用自家开发的新检测软件,确保了检测结果的可靠性。
    留言咨询
  • 型号:ZD-CX1名称:金属材料分析系统主要技术指标• 测量范围:碳0.00001%-10.00000% (可扩至 99.999%)硫0.00001%-5.00000% (可扩至99.99%)其他元素0-1.999A吸光度值 0-99.99%浓度值• 测量精度:符合GB/T223.69-2008 GB/T223.68-1997GB/T223-88 标准• 工作电源:220V士 10% 5CHZ• 工作环境:温度5°C -40°C 湿度<80%技术性能指标• 该仪器是国内一款新型的综台性分析仪,可检测普碳钢、高中低合金钢、不锈钢、生铸铁、球铁、合金铸铁等多 种材料中的碳、硫、信、硅、磷、铭、镣、铝、铜、钛、镁、稀土等元素。• 整个分析程序由计算机自动控制完成,软件功能齐全,提供文件帮助、系统监测、通道选择、数据统计、结果校 正、断点修正、系统诊断等四十多项功能。• 采用微机控制及数据处理,可存储无限条曲线,标准曲线可自由建立、调用、查询等可视化操作;碳硫测定均为 全自动。选用进口高精度传感器检测数据,经计算机处理后的结果由电脑直接显示含量。• 配置万分之一精密电子天平,计算机自动读取样品重量。• 设计:碳硫采用低噪声、高灵敏度、高稳定性的红外探测器,炉体自动升降。• 元素分析采用新检测软件,确保了检测结果的可靠性。
    留言咨询

金属材料样品相关的方案

金属材料样品相关的论坛

  • 求 金属材料的tem 制备样品的外文书籍

    急求 金属材料的tem 制备样品的 外文书籍 ,有关 双喷 。 如果中文好的也考虑。记得年前在坛里见过类似的啊,现在就找不到了。 去哪了? 唉太乱了。zralnicu@126.com 都懂的。多谢!

  • 【求助】金属材料制样

    金属材料的透射样品,粉末状和块状,这两种的透射样品观察时的效果有差别吗?主要区别在哪儿啊?

  • 金属材料分析

    针对企业生产或使用的金属产品及配件,美信分析可通过分析检测,提供金属成分元素含量的准确信息,协助企业的生产质量控制,确保企业的产品研发方向,为企业的生产和可持续性发展提供助力。 [b]金属材料服务项目[/b] (1) 有色金属元素:如,锡合金、铜合金、铝合金、镁合金、镍合金、锌合金、钼合金等;(2) 金属牌号鉴定与元素分析:如不锈钢、结构钢、碳素钢、合金钢、铸铁等的牌号鉴定和元素分析;(3) 矿物分析:提供金属矿物中成分的准确含量,为矿物的进一步分离提纯提供可靠保障;(4) 镀层分析:各种材料金属镀层的分析;(5) 其他金属材料分析:根据客户要求,提供金属材料中各种元素的准确含量分析结果。[b]检测服务流程[/b]① 前期项目和样品确认② 寄送样品到美信③ 签订委托书,安排款项(全款或者部分款项,根据项目而定④ 美信测试⑤ 按照测试周期完成测试,(部分项目需付清尾款)发送测试结果报告 [b]金属材料分析检测设备[/b] (1) 电位电解仪(2) 电位滴定仪(3) 碳硫分析仪(CS)(4) [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url](AAS)(5) 电感耦合等离子体发射光谱仪(ICP-OES) MTT是一家从事材料及零部件品质检验、鉴定、认证及失效分析服务的第三方实验室,网址:www.mttcert.com,联系电话:400-850-4050。

金属材料样品相关的资料

金属材料样品相关的资讯

  • 金属材料的微观结构分析——用合适的样品制备获得最佳结果
    微结构用于描述金属材料的主要特征,它在很大程度上决定了产品的性质和性能。 微观方法分析是材料科学的基本技术,以研究其状态和对材料特性的影响。 为了通过金相技术对微观结构进行最佳的描述,合适的样品制备起到了核心作用。微观结构的重要性及其分析无论是悬索桥的钢缆、涡轮机的叶片还是人体的人工髋关节,所有产品都有一个共同点:它们的特性不仅仅来自材料及其化学成分,而是来自内部结构的特殊排列[1]。这是指材料的微观结构,微观结构可以由不同的成分组成,如晶粒、晶界、沉淀或杂质。许多材料性能取决于这种微观结构,例如钢缆的强度或涡轮叶片在极端操作条件下的长期稳定性[2]。金相学是研究微观结构的最重要方法之一,它允许通过定性和定量分析方法对整个微观结构以及单个成分进行微观可视化。金相学的一个重要组成部分和中心作用是样品制备,这取决于材料的类型、条件以及检验方法。如果准备不足或执行不当,后续检查可能会导致错误的结果和对材料性能的错误评估。因此,了解具有特定材料要求的合适试样制备标准并正确实施尤为重要。以下将解释金相制备的基本程序,并以钛为例阐明具体材料要求的明确细节。适当的样品制备及其挑战图1显示了样品制备过程,包括以下步骤:样品切片和切割、样品安装、研磨和抛光,最后对样品进行蚀刻。每个单独的步骤都是相关的,并且会影响制备的金相截面的后续质量。图1 金相制备方法的示意图第一步是确定从整个零件上移除一个截面,有计划的调查研究将在该截面上进行,因为在许多情况下,关注的不是整个零件及其微观结构,而是特定区域。对于通过机械切割方法进行的拆卸,建议使用湿磨料切割机,包括工件的主动冷却。这减少了输入工件的热量,防止了不必要的微观结构变化,并冲洗掉了磨损的颗粒。切割钛时,通常使用碳化硅和合成树脂粘结制成的切割轮。第一步是确定从整个部分的整个部分的去除,在其上,这些部分将在许多情况下进行,而不是整个部分,并且其微观结构是感兴趣的,而是只有一个特定的区域。为了通过机械切割方法去除,推荐使用包括工件的主动冷却的湿磨削切割机。这将输入的热量减少到工件中,防止不希望的微观结构改变并冲洗擦除磨损的颗粒。对于切割钛,通常使用碳化硅与合成树脂键合的截止轮。在样品切片和切割后,将零件以正配合嵌入合成树脂基体中。这种嵌入简化了进一步的试样处理,便于制备机械上特别敏感的试样,允许将多个试样组合在一个金相截面中,并能够使用自动研磨和抛光设备。根据工艺温度,区分冷安装和热安装。温热嵌入期间产生的温度非常低,对试样的任何影响和可能的微观结构变化通常可以忽略不计。如果还要通过扫描电子显微镜检查试样,则必须注意嵌入介质中是否含有导电成分(例如石墨)。在下一步中,可以开始通过研磨和抛光进行准备。由于嵌入试样的表面质量通常较差,研磨过程首先以粗粒度开始,以提高质量并使试样平整。随后,以越来越细的粒度重复研磨过程,以去除粗研磨过程中产生的加工痕迹和划痕。重要的是确保足够的水供应,以消除金属磨损,并防止试样过热。对于钛,当使用碳化硅砂纸时,从P120的砂砾开始,继续使用P240、P320、P600、P800、P1200和P2400。在随后的抛光过程之前,试样应没有深划痕和大的机加工痕迹。如果计划对试样进行机械抛光(例如,电解或振动抛光工艺),则在第一步中使用细绒布和抛光剂。抛光可以手动或自动完成。自动设备的优点是节省时间和使用规定的接触力,因为过大的力会快速导致变形或划痕,尤其是在敏感材料上。在同步条件下,钛用金刚石悬浮液(3µm)在15-25 N的接触力下抛光约10分钟。如果金相断面质量足够且无划痕,则可继续进行最终抛光。为了控制目的,可通过使用暗场过滤器的光学显微镜进行目视检查。在这种情况下,质量良好的表面呈深色,而划痕和凹痕呈浅色。对于钛的精细抛光,使用由粒径为0.06µm(2 x 10 min)的胶体二氧化硅组成的悬浮液,并逐滴添加水。由于钛的高氧亲和力,建议使用30%的过氧化氢溶液作为润滑剂,以避免在制备的部分表面上形成氧化层。根据计划的检查,可能必须重复进行最终抛光。对于光学和大多数扫描电子显微镜检查,一个过程通常就足够了。例如,如果计划通过电子背散射衍射(EBSD)进行分析,则最终抛光应重复数次(最多六次)。图2 用克罗尔(Kroll)试剂蚀刻Ti-6al-4V的EBSD分析,显示相位分布(左)和彩色代码(b)[3]在每次研磨和抛光步骤后,应对制备部分进行彻底清洁,以防止可能遗留的磨损颗粒和污染物。在研磨和抛光步骤之间,至少应用水冲洗。在从研磨过程过渡到抛光过程之前以及最终抛光之后,应在超声波浴中额外清洁准备好的部分几分钟,然后在自来水下冲洗,最后用酒精冲洗。金相切片的干燥是在热气流中进行的,结果应该是镜像和无污染的表面。通过显微方法进行微观结构分析的最终准备步骤是通过蚀刻对比微观结构。这应在最终抛光后立即进行,因为表面上很快就会形成一层氧化物,尤其是钛,这会对蚀刻过程产生负面影响。例如,制备部分的蚀刻可通过化学或物理方式进行。如果钛基材料通过浸渍进行湿化学对比,则可使用克罗尔(Kroll)试剂进行蚀刻。蚀刻时间的持续时间因钛合金而异。纯钛的腐蚀时间为30-45秒,而Ti-6Al-4V合金的腐蚀时间可达60秒。另一种蚀刻剂是由氢氧化钾(KOH)制成的碱溶液。这导致微观结构的不同对比度,从中可以获得更多信息。对于Ti-6Al-4V,此处的蚀刻时间为15-30s。微观结构的显微镜调查制备完成后,可使用各种成像和分析技术对微观结构进行显微镜检查。图2显示了使用EBSD的扫描电子显微镜的分析结果,该分析是在Ti-6Al-4V样品上进行的,该样品如前所述制备并用克罗尔试剂蚀刻。图3显示了使用替代KOH蚀刻试剂成功制备两个Ti-6Al-4V样品,其中可以看到具有篮织结构(左)和马氏体结构(右)的微观结构。当在光学显微镜下观察时,该蚀刻试剂允许微观结构的彩色可视化,并且特别适合于具有马氏体微观结构成分的钛合金,因为如图3(右图)所示,这些成分被清楚地突出显示[3]。图3 用KOH试剂蚀刻Ti-6Al-4V的光学显微镜照片,显示篮织结构(左)和马氏体微观结构组分(右)参考文献[1] Hornbogen, E. et al.: Metalle: Struktur und Eigenschaften der Metalle und Legierungen. 7th ed., Berlin, Springer Vieweg, (2019) ISBN 978-3-662-57763-9.[2] Gottstein, G.: Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen. 4th ed., Berlin, Springer Vieweg, (2014) ISBN 978-3-642-36602-4.[3] Pede, D. et al.: Additive manufacturing: metallographic analysis of microstructure. In Advances in metallography: proceedings of the 53rd Metallography Conference September 18-20, 2019 in Dresden, (2019), ISBN 978-3-88355-417-4.作者简介Dennis Pede(丹尼斯佩德):Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, Germany丹尼斯佩德在汉诺威莱布尼茨大学获得医学工程硕士学位。他目前是福特旺根大学材料科学与工程图特林根研究所(IWAT)的研究助理和博士生,由Mozaffari Jovein教授指导。他的研究活动集中于添加剂制造工艺、金属材料以及材料测试和分析。Lidija Virovac:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyLidija Virovac在富特旺根大学攻读学士学位时学习了医学工程,在硕士学位时学习了应用材料科学,并在学习期间获得了实用金相学的第一次经验。随后,她在Mozaffari Jovein教授的指导下,在Tuttlingen材料科学与工程研究所(IWAT)担任研究助理,加深了自己的知识。进一步的研究领域是添加剂制造和功能涂层的制备。Tobias Poleske:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyTobias Poleske在富特旺根大学攻读材料工程学士学位。自2017年以来,他一直是Tuttlingen材料科学与工程研究所(IWAT)的研究助理,在Mozaffari Jovein教授的指导下从事各种材料科学课题。他的工作重点是使用光学和扫描电子显微镜进行实用材料成像,以及对常规和附加制造部件进行材料分析。Hadi Mozaffari-Jovein:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyHadi Mozaffari Jovein在斯图加特大学攻读冶金学,并从斯图加特大学(马克斯普朗克金属研究所)获得博士学位。自2009年以来,他一直担任富特旺根大学材料科学教授和图特林根材料科学与工程研究所所长。他的研究涵盖各种材料科学主题,包括损伤分析、材料测试和分析、传统和添加剂制造工艺,以及材料开发和优化。原文;Microstructural analysis of metallic materialsMicroscopyLight Microscopy,15 November 2021(符斌 供稿)
  • 上海衡翼非破坏性金属材料力学试验机新品上市
    往往在现实生活中很多不可能的事,如今上海衡翼精密仪器限公司就做到了,上海衡翼打破了金属破坏性能的力学试验,在过去做力学试验时,只有把样品破坏以后才能分析出材料的力学性能,浪费了很多材料,给企业、国家带来巨大的经济损失。根据现状,上海衡翼精密仪器有限公司研发了一款新型的非破坏金属材料力学性能试验机。 非破坏金属材料力学性能试验机的特点是:在不损坏材料、样品的情况下,就能测出材料、样品的力学性能,为企业节省了大量材料、样品,从而给企业带来了巨大的经济收入。 衡翼非破坏金属材料力学性能试验机顺利交付到上海交通大学实验室,并安装调试完毕,并且得到了饶教授的赞赏!现在已有很多大学、科研单位陆续来我司咨询并订购。 非破坏金属材料力学性能试验机的主要技术指标: A.采用直接加压方式,电机轴与加压头同轴设计 B.位移传感器采用高精度位移传感器,量程约10毫米,测量误差小于正负1微米。位移传感器偏心安装装在刚性良好的下板上,与电机轴偏心小于50毫米,在加、卸载过程中,直接与被测表面接触,监测压头的位移情况。 C.采用双磁吸式底座,单侧磁吸的吸力大于30kg. D.加载方式可以采用载荷—时间控制或位移-时间控制,可以设置单次循环加卸载,也可以设置多次循环加载-卸载。加卸载过程中的载荷—位移数据以excel格式存储于电脑中,可以由其他软件读取。
  • 我国科学家发现纳米金属材料新特质
    人民网科技2月2日讯 据中国科学院金属研究所消息,1月30日,《科学》报道了中科院金属研究所沈阳材料科学国家(联合)实验室卢磊研究员领导的研究小组与卢柯研究员、丹麦Risφ国家实验室的黄晓旭博士合作研究的成果,他们利用共格孪晶界独特的稳定界面结构获得了具有超细特征尺寸的纳米结构金属,并发现减小孪晶片层厚度将增加材料的强度。这一发现表明当纯金属的特征尺寸降低至纳米量级时,由于塑性变形机制的变化会导致极值强度的出现,同时表现出一般金属材料所不具备的超高加工硬化效应。评审人认为作者在利用纳米孪晶强化材料本质方面获得了具有重大意义的发现,不但丰富和拓宽了人们对纳米尺度材料塑性变形的本质的认识,同时也为进一步发展高性能纳米结构材料及其应用提供了重要线索。   普通多晶体金属材料的强度通常随晶粒尺寸的减小而升高。这种晶粒细化强化源于更多晶界阻碍了位错运动,从而使塑性变形困难。但是,当晶粒尺寸小至纳米量级时,晶格位错运动将受到抑制,塑性变形的控制机制由晶格位错运动逐步转化为晶界行为,从而使材料强度下降。因此,理论分析和分子动力学模拟均预测当金属材料的晶粒尺寸小至纳米量级时其强度将出现一极大值,随晶粒尺寸进一步减小会导致材料软化。然而迄今为止这种极值强度在纯金属力学性能实验中尚未观察到。其主要原因是制备超细晶粒尺寸(通常小于10纳米)的纳米材料非常困难:由于纯金属材料中晶粒具有很高的长大驱动力。通常晶粒愈小,长大驱动力愈大,晶粒很容易在室温状态或更低的温度下就发生长大。因此如何制备出稳定的超细特征尺寸的纳米结构材料并探索其本征变形机理长期以来是纳米金属材料领域一大难题。   卢磊研究员及其合作者采用脉冲沉积技术通过细致的工艺探索在纯铜样品中成功地将孪晶片层平均厚度(λ)减小到约4 nm,并发现减小孪晶片层厚度材料的强度增加。当孪晶片层厚度为15nm时,材料强度达到最大值。进一步减小孪晶片层,强度反而减小、出现软化现象。随孪晶片层减小,样品的塑性和加工硬化能力单调增加。当孪晶片层小于10纳米时,其加工硬化系数超过了粗晶纯铜的加工硬化系数,即铜及铜合金的加工硬化系数上限,表现出超高加工硬化能力。分析表明纳米孪晶铜中极值强度的出现是由于随孪晶片层尺寸减小塑性变形机制从位错孪晶界相互作用主导转变为由孪晶片层结构中预存位错运动主导所致。而超高加工硬化效应则来源于纳米孪晶片层中大量孪晶界可有效吸纳高密度位错,其位错密度较一般多晶体中的饱和位错密度高1-2个数量级。   塑性变形过程中共格孪晶界可有效阻碍位错,具有和普通晶界相似的强化作用。同时,共格孪晶界又可作为位错的滑移面吸纳大量位错,与普通晶界相比孪晶界结构更加稳定,其晶界过剩能仅为普通晶界的十分之一。因此,纳米孪晶结构从能量上要比相同化学成分的纳米晶体结构稳定很多。这种稳定的超细纳米孪晶结构的获得不仅是传统材料制备技术的突破,同时也为深入研究金属材料力学行为的纳米尺寸效应提供了可能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制