当前位置: 仪器信息网 > 行业主题 > >

高纯锗核素谱仪

仪器信息网高纯锗核素谱仪专题为您提供2024年最新高纯锗核素谱仪价格报价、厂家品牌的相关信息, 包括高纯锗核素谱仪参数、型号等,不管是国产,还是进口品牌的高纯锗核素谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高纯锗核素谱仪相关的耗材配件、试剂标物,还有高纯锗核素谱仪相关的最新资讯、资料,以及高纯锗核素谱仪相关的解决方案。

高纯锗核素谱仪相关的论坛

  • 【分享】沪皖苏浙粤桂6省市检测出极微量放射性核素

    中新网3月28日电 据环境保护部网站消息,继3月26、27日在黑龙江省东北部监测点的气溶胶样品中检测到了极微量的人工放射性核素碘-131之后,28日,中国东南沿海江苏省、上海市、浙江省、安徽省、广东省、广西壮族自治区部分地区的监测点气溶胶样品中也检测到了极微量的人工放射性核素碘-131。3月28日,环境保护部(国家核安全局)有关负责人就环境辐射监测情况表示,环保部门继3月26、27日在黑龙江省东北部监测点的气溶胶样品中检测到了极微量的人工放射性核素碘-131之后,今天又在东南沿海江苏省、上海市、浙江省、安徽省、广东省、广西壮族自治区部分地区的监测点气溶胶样品中检测到了极微量的人工放射性核素碘-131,其浓度均在10-4贝克/立方米的量级及以下。该负责人称,结合近年来当地辐射环境监测数据分析,初步确认所检测到的碘-131来自日本福岛核事故。由于检测出的人工放射性核素所带来的附加辐射剂量极其微弱,小于天然本底辐射剂量的十万分之一,仍在当地本底辐射水平涨落范围之内,因此不需要采取任何防护行动。目前环保部门设在全国其他地区的气溶胶取样监测点尚未确认检测到来自日本福岛核事故的人工放射性核素。环境保护部(国家核安全局)3月28日18时继续发布全国省会城市和部分地级市辐射环境自动监测站实时连续空气吸收剂量率监测值。监测结果表明,目前中国环境辐射水平仍在本底范围内,日本核电事故未对中国环境及境内公众健康产生影响。

  • 【转帖】沪皖苏浙粤桂6省市检测出极微量放射性核素

    据环境保护部网站消息,继3月26、27日在黑龙江省东北部监测点的气溶胶样品中检测到了极微量的人工放射性核素碘-131之后,28日,中国东南沿海江苏省、上海市、浙江省、安徽省、广东省、广西壮族自治区部分地区的监测点气溶胶样品中也检测到了极微量的人工放射性核素碘-131。3月28日,环境保护部(国家核安全局)有关负责人就环境辐射监测情况表示,环保部门继3月26、27日在黑龙江省东北部监测点的气溶胶样品中检测到了极微量的人工放射性核素碘-131之后,今天又在东南沿海江苏省、上海市、浙江省、安徽省、广东省、广西壮族自治区部分地区的监测点气溶胶样品中检测到了极微量的人工放射性核素碘-131,其浓度均在10-4贝克/立方米的量级及以下。该负责人称,结合近年来当地辐射环境监测数据分析,初步确认所检测到的碘-131来自日本福岛核事故。由于检测出的人工放射性核素所带来的附加辐射剂量极其微弱,小于天然本底辐射剂量的十万分之一,仍在当地本底辐射水平涨落范围之内,因此不需要采取任何防护行动。目前环保部门设在全国其他地区的气溶胶取样监测点尚未确认检测到来自日本福岛核事故的人工放射性核素。环境保护部(国家核安全局)3月28日18时继续发布全国省会城市和部分地级市辐射环境自动监测站实时连续空气吸收剂量率监测值。监测结果表明,目前中国环境辐射水平仍在本底范围内,日本核电事故未对中国环境及境内公众健康产生影响。

  • 【原创】宇宙的元素丰度和核素丰度图

    【原创】宇宙的元素丰度和核素丰度图

    我们要设法勾画出整个宇宙的元素和核素丰度了,这是一项多么艰巨的任务。宇宙是如此之大,其时间尺度至少在一百几十亿年,而我们现在测定的宇宙物质实际上只是沧海中的几滴水,可能比这还少。用现有的数据去描绘宇宙组成,实在比瞎子摸象的情形都不如。-----------------------------------------然而,宇宙化学家不畏艰辛,孜孜不倦地探求宇宙的元素丰度。最早在1947年,休斯就尝试将核性质结合有限的分析结果提出宇宙的元素丰度,他利用核的奇偶性质和幻数核等方法至今仍是正确的。稍后,他与尤里合作绘制了最早的宇宙元素丰度图。他们主要依据前面提到的太阳光谱、星际光谱和陨石数据,还利用了少量地球样品的分析结果。经过几十年的修订和补充,现在已基本被公认的宇宙丰度示于图1。从这张图中,我们可以归纳出下述一些重要结论。-----------------------------------------[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902251119_135271_1626579_3.jpg[/img] 图1. 宇宙的元素(核素)丰度随质量数的变化关系(以Si=106为标准)[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902251122_135273_1626579_3.jpg[/img] 图2. 相对于106Si原子数的丰度-----------------------------------------我们把太阳系元素丰度的各种数值先取对数,随后对应其原子序数作曲线图(如上图),就会发现太阳系元素丰度具有以下规律:1.所有元素中,氢和氦的丰度最大,两者约占宇宙质量的98%以上,而所有其他元素的质量之和不足2%。2.原子序数较低的元素区间,元素丰度大体上随质量数增加而下降;而在原子序数较大的区间(Z>45),到质量数大于100之后,下降趋势变缓,各元素丰度值很相近;3.在铁的位置处,有一个明显的丰度峰。4.氘、锂和铍与其邻近的氢、氦、碳、氮、氧相比,丰度小得多。5.在较轻的核中(到钪为止),质量数为4的倍数的核(例如16O、20Ne、24Mg、28Si)的丰度比邻近核的大。这称为奥得规则。6.原子序数为偶数的核的丰度比其邻近的奇数核的高。具有偶数质子数(P)或偶数中子数(N)的核素丰度总是高于具有奇数P或N的核素,这一规律称为Oddo-Harkins(奥多--哈根斯)法则,亦即奇偶规律;7.在某些质量数处,质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度,例如 80、 88、 90、 130、138、196和208的核的丰度比邻近核的高。此外还有人指出,原子序数(Z)或中子数(N)为“幻数”(2、8、20、50、82和126等)的核素或同位素丰度最大,例如,4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)和140Ce(Z=58,N=82)等都具有较高的丰度。这即为幻数效应。8. Li、Be和B具有很低的丰度,属于强亏损的元素,而O和Fe呈现明显的峰,为过剩元素。比铁重的核中,丰中子核的丰度比丰质子核的高。-------------------------------------上述宇宙元素丰度特征十分重要,它们是检验元素起源学说的试金石。详细的宇宙元素丰度数据可参见表1,表中还列出了它们可能的核合成过程。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902251126_135274_1626579_3.jpg[/img]通过对上述规律的分析,人们认识到太阳系元素丰度与元素原子结构及元素形成的整个过程之间存在着某种关系: 1.与元素原子结构的关系。原子核由质子和中子组成,其间既有核力又有库仑斥力,但中子数和核子数比例适当时,核最稳定,而具有最稳定原子核的元素一般分布最广。在原子序数(Z)小于20的轻核中,中子(N)/质子(P)=1时,核最稳定,为此可以说明4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)等元素丰度较大的原因。又如偶数元素与 偶数同位素的原子核内,核子倾向成对,它们的自旋力矩相等,而方向相反,量子力学证明,这种核的稳定性较大,因而偶数元素和偶数同位素在自然界的分布 更广; 2.与元素形成的整个过程有关。H、He的丰度占主导地位和Li、Be、B等元素的亏损可从元素的起源和形成的整个过程等方面来分析。根据恒星合成元素的假说,在恒星高温条件下(n×106K),可以发生有原子(H原子核)参加的热核反应,最初时刻H的“燃烧”产生He,另外在热核反应过程中Li、Be、B迅速转变为He的同位素42He, 因此太阳系中Li、Be、B等元素丰度偏低可能是恒星热核反应过程中被消耗掉了的缘故。-------------------------------------读者可能会问,图1和附录二果真代表宇宙的元素(核素)丰度吗?回答当然是不确定的,或者严格地说,它们只能是太阳系丰度。既然这样,读者可能会继续发问,为什么我们将图1称为宇宙元素丰度图?对这一问题,我们可以从两方面来回答:第一,人类对客观世界的认识是一个循序渐进的过程,就如从牛顿的万有引力到爱因斯坦的相对论。限于我们目前对宇宙丰度的最好认识就是这样,我们没有理由为这种丰度图象可能只描述了宇宙的一小部分,或者只描述了宇宙的历史长河的有限一段,而对这种丰度有过多的非难。我们在利用这种宇宙丰度的同时,记住它的局限性就可以了,并准备在将来用更确切的数据对此加以修正。第二,就目前的宇宙学概念而言,太阳系还是有代表性的。我们在前面讲到,太阳现正处于主星序阶段,氢燃烧大约已进行了46亿年。我们还知道,宇宙中的恒星可分为三代。第一代恒星是最早形成的大质量星体,几乎完全由氢和氦组成,由于其质量大,核聚变燃烧阶段很短,并早以超新星爆发形式寿终正寝,但这一代恒星形成的新的重元素可作为后代恒星的原料。在我们的银河系中,现已没有这类恒星了。下一代恒星,即第二代恒星的形成方式与第一代相同,但其质量较小,因此寿命较长,它们除了氢和氦外,还含有约1%的较重元素(例如碳和氧)。至于太阳,属于第三代恒星,除了氢和氦外,还含有约2%以上的重元素,这些重元素来自第一代和(或)第二代恒星,因此太阳系的重元素丰度是与上代恒星核合成过程密切相关的,可以反映星际核合成的特征。由此可见,我们用太阳系丰度作为宇宙丰度的近似值是有理论基础的。---------------------------------------许多恒星、银河系和星际物质的元素丰度分布与太阳系的元素丰度分布相一致,因此习惯上把太阳系元素丰度称为“宇宙”丰度。实际上,也有许多天体的元素丰度分布与太阳系丰度分布有明显的偏差。银河系中心附近的重元素丰度富于旋臂处的丰度,这种丰度差别的研究对于宇宙中元素的形成和银河系的化学演化研究具有重要价值。

  • 关键核素选择

    [font=宋体]判断题:在制定环境监测计划时选择关键核素很重要。关键核素要选择原料和产品中的主要核素。[/font][font=宋体]( )[/font]

  • 【讨论】日本辐射核素有哪些

    请问一下大家,本次日本核泄漏事故中,我们外界检测到的核素有哪些呢? 每种核素的半衰期又是多久,我们该怎样预防呢!

  • 【原创】正电子核素生产

    [size=3][font=宋体]与[/font][font=Times New Roman]MRI[/font][font=宋体],[/font][font=Times New Roman]CT[/font][font=宋体]等其他影像设备不同,[/font][font=Times New Roman]PET[/font][font=宋体]是一种高级的医学影像设备,它利用组织中分布的正电子标记的放射性药物所产生的光子信息来获得病变组织的影像及其定量指标。这些放射性药物在体内的转运、代谢、分布和动力学状态通过正电子核素示踪而显示,反映相应组织的生理生化特性,它可使疾病在开始出现症状之前,进行评价和诊断,观察其发展过程,为治疗方案的制定提供客观的依据。[/font][/size][size=3][font=Times New Roman] [/font][font=宋体]正电子放射性药物是实施[/font][font=Times New Roman]PET[/font][font=宋体]显像的先决条件之一,为了满足[/font][font=Times New Roman]PET[/font][font=宋体]的常规临床应用必须选择有效的放射性药物。现在,在许多的临床[/font][font=Times New Roman]PET[/font][font=宋体]中心已开发了许多有价值的正电子示踪剂,并广泛的应用于基础和临床研究。这些正电子示踪剂大多使用[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体],[/font][font=Times New Roman][sup]13[/sup]N[/font][font=宋体],[/font][font=Times New Roman][sup]15[/sup]O[/font][font=宋体]和[/font][font=Times New Roman][sup]18[/sup]F[/font][font=宋体]等正电子核素进行标记,由于它们的半衰期很短,因此这些核素必须用小型的回旋加速器适时生产,并在较短的时间内标记合成出适宜的正电子示踪剂进行[/font][font=Times New Roman]PET[/font][font=宋体]显像。[/font][/size][size=3][font=宋体]目前,在全世界的很多[/font][font=Times New Roman]PET[/font][font=宋体]中心已开发了多种正电子示踪剂,并应用于探查血流、氧代谢、葡萄糖代谢、蛋白质合成和神经递质活动等。这些放射性药物必须具备如下的标准:①器官的摄取性,即反映重要的和可鉴定的生理生化过程;②摄取程度,即对疾病、药物、或刺激等所引起的生理或生化改变是敏感的;③进行定量,即能够测量感兴趣区([/font][font=Times New Roman]ROI[/font][font=宋体])的放射性浓度,并与通常使用的示踪剂动力模式一致;④有效性,即安全可靠的合成或由其他[/font][font=Times New Roman]PET[/font][font=宋体]中心供给。[/font][/size][font=宋体]小型医用回旋加速器是[/font][font='Times New Roman']PET[/font][font=宋体]中心的基本配置,它普遍使用质子和氘核两种加速粒子轰击特定的靶物质,生产出以适当化学形式存在的正电子核素。[/font]

  • 我国在西太平洋检出福岛核事故特征核素

    科技日报北京6月18日电 (记者陈瑜)记者18日从国家海洋局获悉,由该局生态环境保护司组织实施的西太平洋海洋环境监测预警体系建设2014年第一航次顺利返航。 航次首席科学家何建华介绍,除完成既定监测任务外,还取得了五方面的创新性成果。一是在吕宋海峡口监测采样深度由2013航次的最深1000米增加至2000米,且监测深度超过1000米的站位数也由2013航次的1个增加至5个,这将为深入了解日本放射性污染物向我国管辖海域的迁移扩散情况提供更准确的监测数据。二是利用海洋三所自行研发的富集设备,开展了多核素的现场快速富集与测量试验,并首次在部分站位现场检出了日本福岛核事故特征核素——铯134,为实现现场快速监测预警奠定了坚实的基础。三是监测采样范围由2013航次的东经119°向西扩展至东经116°附近,为进一步了解日本福岛核事故放射性污染物对我国管辖海域的影响提供了更多的参考资料。四是在我国管辖海域和西太平洋公海海域首次开展了海洋三所自主研发的溴化镧探测器现场测试实验,获取了十余小时的测试能谱,为在我国核电海域布放放射性实时监测预警浮标积累了数据和经验。五是在西太平洋公海海域成功回收了2013年航次布放的近5500米深的潜标一套,首次在该海域获取了长时间序列的监测资料,为了解西太平洋海域长时间序列的海洋水文和数值预测模型的建立打下了坚实基础。 据悉,本航次由海洋三所牵头实施,使用中国水产科学院南海水产研究所“南锋”号监测船,历时27天,总航程5500余海里,完成站位53个,采集125公斤海洋生物样品,布放5个漂流浮标,完成2013年第一航次投放的核监测潜标系统回收。此外,监测人员还利用自主研发的多核素富集设备完成了61个表层海水样品的监测,获得了较好的数据,进一步测试了设备的性能,为现场多核素富集检测设备定性打下基础。下一步监测队员将尽快完成样品和数据测试分析工作。来源:中国科技网-科技日报 作者:陈瑜 2014年06月19日

  • 【分享】核辐射基础知识--什么叫放射性和放射性核素

    核素是指具有特定质量数、原子序数和核能态,而且其寿命又长到足以被观察的一类原子。 核素可以分为两大类,一类核素是稳定的核素,另一类核素是不稳定的。不稳定的核素可以自发地蜕变为另外元素的核素,这一过程叫做放射性衰变。在放射性衰变过程中,会从核内放出粒子、粒子、光子粒子、俘获轨道电子等一种或几种射线。这种不稳定核素放出射线的特性叫做放射性。能放出射线的不稳定核素叫做放射性核素。例如,碳-14是放射性核素,它衰变成氮-14、氮-14是稳定核素。钡-140是放射性核素,它衰变成镧-140,它也是放射性核素,它又衰变成铈-140(稳定性核素)。现在已知的107种元素的1900多种同位素中,大约有近300种核素是稳定的核素,有大约1600种放射性核素,其中有1500多种是人工放射性核素,约有60种是天然放射性核素。 放射性衰变的种类 根据核素衰变时所放出的射线种类不同而分为α衰变、β-衰变、β+衰变、电子俘获和γ衰变等 放射性衰变的规律 放射性是放射性核素所具有的特性,它不受外来因素,如温度、压力、化学变化和磁场等的影响。衰变的速度主要取决于核的特性。放射性核素的每一个衰变并不是同时发生的,而是有先有后,是一个统计过程。放射性核素在单位时间内衰变的原子核数与该时间内尚未衰变的总的原子核数成正比。衰变常数是表示不同的放射性核素的衰变速度,反映不同放射性核素衰变特征的量。不同的放射性核素有不同的衰变常数,半衰期是放射性核素特征的另一种表示法,它的定义是放射性核素的原子核数因衰变而减少到它原来数目的一半所需要的时间。半衰期和衰变常数之间的关系是: T1/2=0.693/λ 其中T1/2是半衰期 λ是衰变常数 放射性活度和单位 在实际应用中,常常关心的不只是放射性核素的原子序数,而对单位时间里衰变的原子核数更感兴趣。因此,引用了一个新的物理量,即放射性活度A。所谓放射性活度A是指一定量的放射性核素在单位时间里衰变数。放射性活度的单位是可勒尔,简称为贝可,符号为Bq。1Bq=1个衰变/秒。以前用的放射性活度单位是居里(Ci),居里与贝可的关系是: 1居里=3.7×1010贝可

  • 【讨论】山西地表水体中首次监测到放射性核素

    记者4月7日从省环保厅获悉,我省首次在地表水体中监测到极微量放射性核素碘-131和铯-137,但含量极低,不会对环境和公众健康带来影响。  4月6日中午,省辐射环境监督站对地表水体 (采样点为太原市滨河公园)进行了采样检测,结果显示,水体中有极微量的放射性核素碘-131和铯-137。这是日本核事故泄漏以来,我省首次在地表水体中监测到放射性核素,但含量极低,所带来的附加辐射量极其微弱。  我省3月29日在空气中监测到极微量的人工放射性核素碘-131以来,省辐射环境自动监测站进行不间断的采样监测,结果均为正常水平,未见异常。4月6日,在气溶胶中监测出的放射性物质含量与前日相比,下降了近一半。  省辐射环境监督站站长董克说,目前我省辐射环境仍在天然本底辐射范围之内,不会对环境和公众健康造成影响,不需要采取任何防护措施。

  • 【原创大赛】实验室γ能谱仪的选购和验收(8月)

    【原创大赛】实验室γ能谱仪的选购和验收(8月)

    实验室γ能谱仪的选购和验收摘要 由于放射性的危害,而且一般情况下必须借助专门仪器方可感知。目前日本核电站事故背景下,γ能谱仪成为口岸实验室最重要的放射性核素检测仪器。本文对高纯锗γ能谱仪的结构、类型、指标进行简单的说明,为检验检疫实验室购买和验收该仪器提出了参考意见。关键词 γ能谱仪 放射性检测中图分类号 TL81 放射性危害因涉及面广、隐蔽性强、杀伤力强、危害性大且难以进行销毁处理,受到各国的政府高度重视和公众媒体的高度关注。由于放射性物质具有上述特性,一旦通过物流进入国内,很可能会危害到国民生命健康和造成环境污染,并引起很严重的社会恐慌。3月份,日本大地震引发福岛核电站事故,造成大量放射性物质外泄,是1986年切尔诺贝利核电站事故以来最大的一次核污染事件。国家质检总局立即要求各口岸加强对日本进口货物、人员及其携带物和交通工具放射性检测。放射性检验中,需要对放射性核素进行定性和定量。很多放射性核素,如碘-131、铯-137、铯-134都有γ放射性,这时候,γ能谱仪就成为放射性核素定性定量最有力的检验仪器。由于γ能谱仪,特别是实验室用的高纯锗γ能谱仪,是放射性检测的专用仪器,配备该仪器的检验检疫部门实验室并不多。而鉴于目前放射性检验的迫切需求,该仪器估计在以后一段时期将成为重点购买的仪器设备。正因为γ能谱仪并不是实验室常用仪器,所以很多检验检疫人员对该仪器还比较陌生。本文简单介绍了实验室用的高纯锗γ能谱仪的结构、类型,并详细说明一些主要指标和验收过程,目的是为检验检疫实验室更好地选购和验收γ能谱仪提供参考意见。1 γ能谱仪简介不同的放射性核素衰变将发射具有不同能量的特征γ射线。对一个待测的样品,如果能够将其辐射的γ射线和按能量顺序分别记录,就可以获得样品辐射的γ谱(Gamma Spectrum)。根据γ谱上的射线能量和脉冲计数量,很容易判别辐射核素的种类及确定其活度量。图1是40K的γ谱,其横坐标是能量值,以电子伏特(eV)计,纵坐标是计数值。谱中的特征峰对应的能量可以确认为40K的峰,而该特征峰的峰面积计数可以通过效率刻度来计算出40K的活度值。http://ng1.17img.cn/bbsfiles/images/2011/08/201108070710_308885_1896872_3.jpgγ能谱仪就是一种γ射线的测量设备,通过测量分析γ能谱来测定样品中所含的放射性核素及其含量。由于γ能谱仪的原理,它不能直接测量没有γ射线的放射性核素。口岸使用的γ能谱仪一般有两种,一种是便携式的,探头材料主要是碘化钠,也有碘化铯、溴化镧等。便携式γ能谱仪一般不需要液氮制冷,使用方便,但能量分辨率低,用于现场大致的放射性核素定性。而本文讨论的是实验室内的大型能谱仪,探头材料为高纯锗半导体材料,测量时需要用液氮或电制冷。测量时一般放置在铅室中,能对样品中很低含量的放射性核素进行准确地定性和定量。http://ng1.17img.cn/bbsfiles/images/2011/08/201108151009_310307_2961690_3.jpg图2 是一台实验室用的高纯锗γ能谱仪,探测器放在铅室中,铅室下是电制冷系统(大部分是液氮制冷)。键盘旁边是台集成数字化能谱仪。2 γ能谱仪的结构γ能谱仪主要由探测器、高压电源、放大系统、多道分析系统、数据处埋系统等组成,一般还有探测器的冷却装置和铅室等配件。图3 给出了其结构方框图。http://ng1.17img.cn/bbsfiles/images/2011/08/201108151013_310308_2961690_3.jpg图3 γ能谱仪结构方框图探测器(Detector)是能谱仪的核心部件,用来侦测γ射线。现在主要用半导体高纯锗材料作为探测介质来制作各种探测器,因为高纯锗的能量分辨非常好,检测效率也较高。由于高纯锗必须在低温下工作,所以冷却装置是必备的。同时,为了满足测量时的本底要求,需要把探测器放置在铅室中。所以,铅室也是低水平测量所必需的附件。放大系统包括前置放大器(Preamplifier)和主放大器(Amplifier),其功能是将探测器输出的电脉冲线性地放大到可供多道分析记录的幅度。一般γ能谱仪厂商都将探测器和前置放大器做在一起,称为探头。多道分析系统(MultiChannel Analyzer,简称MCA)的功能是将脉冲幅度数字化,然后将不同强度的脉冲在不同的道上进行计数。主放大器输出一定幅度的脉冲信号,幅度大小与γ射线的能量成正比,多道分析器将不同幅度的信号计数统计到相应的道上,就形成了γ谱。将一个大的脉冲幅度范围等分成许多小的区间,这样一个小的区间就称为一个道(Channel)。多道分析系统给出的谱是以道序列为横坐标的,实际测量时需要进行能量刻度,将道转换为能量。数据处理系统(Data Process System),在实验者的需要和安排下,对多道中的计数进行分析,最后输出计算结果。每台γ能谱仪都有专门设计的DSP,通过计算机控制和模拟来完成谱分析。现在γ能谱仪厂商将主放大器、高压电源、多道分析器、数据处理系统都集成在一起,称之为数字化集成谱仪。这种谱仪体积小,自动化程度高,大大方便了实验人员的使用。3 γ能谱仪的指标3.1 能量探测范围γ能谱仪的能量探测范围是由探测器的类型决定的。一般口岸实验室使用的同轴型高纯锗探测器有两种类型,P型和N型。P型锗探测器的能量范围一般为50keV~10MeV,能量分辨和峰形好;N型有更低的能力探测范围,可以达到3keV~10MeV,但能量分辨和峰形稍不如P型。也有一种优化的P型探测器,叫宽能检测器,能量范围在3keV~3MeV,能量分辨也很好,但检测效率稍低。3.2 探测效率探测效率表征探测器对γ射线的探测本领。探测效率越高,探测γ射线的本领也就越大。它是γ能谱仪最重要的指标之一。影响探测效率的因素很多。首先

  • 【分享】环保部门继续在我国部分地区检测出极微量人工放射性核素

    3月29日,环境保护部(国家核安全局)有关负责人就环境辐射监测情况回答了记者关心的问题。  这位负责人介绍说,继黑龙江省、江苏省、上海市、浙江省、安徽省、广东省、广西壮族自治区之后,环保部门又在山东省、天津市、北京市、河北省、河南省、山西省和宁夏回族自治区的监测点气溶胶取样中检测到了极微量的人工放射性核素碘-131,浓度均在10-4贝克/立方米量级及以下;此外,在安徽省、广东省、广西壮族自治区和宁夏回族自治区的监测点气溶胶取样中还检测到了极微量的人工放射性核素铯-137和铯-134,其浓度均在10-5贝克/立方米量级及以下。  由于各地检测出的人工放射性核素所带来的附加辐射剂量极其微弱,小于岩石、土壤、建筑物、食物、太阳等自然辐射源形成的天然本底辐射剂量的十万分之一,仅相当于一人乘坐两千公里飞机所受辐射剂量的千分之一,仍在当地本底辐射水平正常涨落范围之内,因此不会对环境和公众健康造成影响,不需要采取任何防护措施。  另据报道,美国(至少十五个州)、冰岛、芬兰、法国、瑞典、瑞士、俄罗斯、韩国、菲律宾、越南等国都宣布检测到了日本福岛核事故释放出来的人工放射性核素,但数量都极其微小,由此给公众带来的附加辐射剂量很低,最高者(韩国)也只有天然本底辐射剂量的几千分之一,远远低于对环境和公众健康造成伤害的水平。  目前环保部门设在全国其他地区的气溶胶取样监测点尚未确认检测到人工放射性核素。  下图是环境保护部(国家核安全局)3月29日18:00继续发布的全国省会城市和部分地级市辐射环境自动监测站实时连续空气吸收剂量率监测值。监测结果汇总图中绿色曲线代表监测值,蓝色柱体代表天然本底水平,绿色曲线均在蓝色柱体范围内。监测结果表明,目前我国环境辐射水平仍在本底范围内,日本核电事故未对我国环境及境内公众健康产生影响。

  • 【原创大赛】高纯物质的电弧发射光谱法分析中的污染因素

    电弧发射光谱因其固体进样的特点,在难溶样品的分析领域占有一定的地位。而有色行业中,高纯金属及高纯氧化物因其基体的高纯、难溶,种类多样性,杂质含量低等特征,采用电弧发射光谱法更具有独特的优势。国家也制定了一系列的标准方法予以支撑。电弧发射光谱发测定高纯金属中杂质,通常将样品与缓冲剂按一定比例混匀后,装入专用的光谱纯石墨电极中,进行激发、测定。高纯物质中杂质的含量极低,且常含有成岩元素,故样品在分析过程中防污染工作十分重要,在一定程度上会影响实验结果,进而影响该批产品的品质和价格。分析过程中可能会引入污染的几个方面主要有:1. 坩埚:对于一些难激发金属,通常要将其转化成氧化物后再进行样品分析。此时,称取一定量的样品薄铺于具盖陶瓷(或氧化锆)坩埚中,放入马弗炉充分氧化。氧化后样品温度较高,需放凉后拿取,而在降温的过程中,外界空气会流入炉腔,造成样品污染,具盖坩埚在很大程度上减小了污染。2. 氧化温度:样品氧化的温度根据成分不同选择,不能过高,否则坩埚中的基体元素会进入样品中造成污染。3. 研钵:样品与缓冲剂混合通常在研钵中进行,常用的玛瑙研博适用于多数样品混合,但若样品的杂质含量极低,则不建议选用玛瑙材质,可改用有机玻璃材质,且在清洗时不要用含石英砂等质地较硬的清洗剂。4. 电极:装样品所用的电极通常为光谱纯石墨电极,但在电极运输和加工过程中,不可避免会引入污染。先用纯水超声清洗,烘干后,再进行纯化处理,即在电弧上空烧几秒。经过实验对比,发现纯化后的电极成岩元素显著降低,尤其是Si、Mg等。5. 压棒:有色行业因样品种类不同,所用的电极形状和激发方式不同,有些样品选择间接蒸发时,则在装样时需要下压一定距离。通常采用不锈钢材质的压棒进行压样,而质地较差的不锈钢也会引入Fe、Ni等元素污染,应选择质量较好、硬度较高的不锈钢材质。也可以选择直接用石墨电极作为压棒,但石墨压棒不容易看出清洁程度,故换样压样时要更注意棒的清洁,充分考虑压头磨损情况。6. 缓冲剂:为了抑制基体元素的蒸发、促进分析元素持续稳定的蒸发,常需要在样品中加入缓冲剂(或称载体),缓冲剂要求光谱纯,使得杂质含量尽量低,对于含有被测元素的杂质需要严格控控制,可在使用前进行激发检验。7. 电极夹:样品在激发过程中,一部分粉尘会随着排风排出,还有一部分集结在电极夹上,不同种类的样品灰尘飘落可能造成相互污染,故应在每次实验结束后,彻底清洁电极夹及操作室。此外,样品储存过程中也要注意污染。对于高纯物质的分析,洁净间是必须的,作为一个分析人员,在实验的各个环节都应严格把控,尽量减小污染的可能。

  • 《α谱仪校准规范》征求意见稿发布

    [color=#444444] 10月24日,全国电离辐射计量技术委员会发布了《α谱仪校准规范》征求意见稿,并面向全国的计量机构和专家征求意见。[/color][color=#444444][/color][align=left] α谱仪作为一种重要的α放射性的分析仪器,已经广泛应用于环境与卫生评价(氡钍气溶胶测量、食品检验等)、资源勘查(铀矿等)、海洋放射性监测和地质构造勘查等领域,用于开展α衰变核素的识别和α放射性活度的定量分析。[/align][align=left] α谱仪主要由探测器、高压电源、前置放大器、线性放大器、多道脉冲分析器以及数据采集和处理系统组成。如其他用于放射性活度测量的仪器一样,α谱仪这类计量器具测量结果的准确性同样需要通过检定校准的方式溯源至国家标准得以保障。[/align][align=left] 但相比较γ谱仪、低本底α/β测量仪这些同样用于能谱测量、α放射性测量的计量器具而言,目前还没有单独针对α谱仪这类计量器具的计量技术法规来规范检定校准工作。[/align][align=left] 因此,由中国计量科学研究院、国防科技工业电离辐射一级站、上海市计量测试技术研究院和江苏省计量科学研究院联合编制了《α谱仪校准规范》。[/align][align=left] 本规范编制的主要参考资料和依据如下:JJF 1001-2011 《通用计量术语及定义》;JJF 1035-2006 《电离辐射计量术语及定义》;JJF 1059.1-2012《测量[url=http://www.jlck.net/forum-279-1.html]不确定度[/url]评定与表示》;JJF 1071-2010《国家计量校准规范编写规则》;GB/T 4960.1-2010 《核科学技术术语》第1部分:核物理与核化学;GB/T 4960.6-2008 《核科学技术术语》第6部分:核仪器仪表;ISO 13161-2011《水质 - α能谱法测量水中钋210核素活度浓度》;ISO 13167-2015《水质 - 钚、镅、锔和镎放射性核素- α能谱法测量方法》;GB/T 16141-1995 《放射性核素的α能谱分析方法》。[/align][align=left] 本规范的制定,在专业术语、不确定表示、格式规范方面主要参照JJF 1001-2011 《通用计量术语及定义》,JJF 1035-2006 《电离辐射计量术语及定义》JJF 1059.1-2012《测量不确定度评定与表示》,JJF 1071-2010《国家计量校准规范编写规则》,GB/T 4960.1-2010 《核科学技术术语》第1部分:核物理与核化学,和GB/T 4960.6-2008 《核科学技术术语》第6部分:核仪器仪表;校准方法方面,主要参考了国际标准 ISO 13161-2011《水质 - α能谱法测量水中钋210核素活度浓度》,ISO 13167-2015《水质 - 钚、镅、锔和镎放射性核素- α能谱法测量方法》和GB/T 16141-1995 《放射性核素的α能谱分析方法》。[/align][align=left] 依据JJF 1071-2010《国家计量校准规范编写规则》,本规范在组织架构上包括引言、范围、引用文件、术语和计量单位、概述、计量特性、校准条件、校准项目和校准方法、校准结果表达、复校周期间隔和附录几个部分。[/align][align=left] 作为放射性核素活度测量仪器,α谱仪广泛的应用在α衰变核素识别和放射性活度定量分析。本校准规范规定的半导体探测器型α谱仪的探测效率校准方法,也适用于气体探测器型α谱仪的校准。[/align][align=left] 本规范为首次发布。适用于半导体探测器型α谱仪的校准。对于气体探测器型α谱仪,可依据本规范规定的校准项目和方法,但计量特性指标不适用。(更多详情请见附件)。[/align][align=left]附件:[u][url=http://www.zhaojiliang.cn/data/uploads/bdattachment/file/20181025/1540434867675986.doc]Alpha谱仪校准规范_征求意见稿.doc[/url][/u][/align]

  • 【转载】Prodigy直流电弧光谱仪在高纯铜痕量元素检测中的应用研究

    光谱仪采用最新的大面积程序化L-PAD检测器.147(2)4-611-1310-90Se203。电弧激发台所带的斯托伍德气室可采用各种质子流量计控制的气体来降低CN键所造成的干扰,未采用斯托伍德气室。940nm处校准曲线,另外还可能在消解过程中带入污染,具有6个数量级以上的动态范围Prodigy直流电弧采用了固态的。772(2)4-611-1310-90Fe259,元素浓度如表2所示。068nm处的波长采集窗口图1所示为标样中1ppm的Ag在328,激发源所采用的微处理器可自动控制激发电流和持续时间。最早的一些依靠照相版检测技术的仪器甚至沿用至今,980nm处的校准曲线,Te。时序分析等功能,如果采用直流电弧技术,984(2)1-312-1410-90Bi306。020,因为固态检测器技术具有更快的分析能力,因此可同时作为两组元素的内标元素,020,同时。0Zn0,样品电极和上电极的的直径分别为1/4"和1/8",Sb。图4Fe在259。分析参数样品电极和上电极可直接从BayCarbon公司购买。直流电弧光谱技术在众多固体材料的检测中具有许多其他技术难以企及的优势.10.我们归入第一组元素。而对于后烧蚀出的元素我们归入第二组,Ni。需要较长的时间,对于所有样品的分析均采用铜为内标元素,仪器采用800mm焦距光学系统和百万像素大面积程序化固态检测器(L-PAD),010.050.并且可以永久地记录样品的全谱信息.同时由于没有经过溶液稀释.并且在整个激发过程中随着电极及样品的消耗需要不断调整.表3ElementWavelength(nm)LeftBackgroundPositionRightBackgroundPositionIntegrationPeriod(s)Ag328.分析波峰的缺省位值为7.050.772nm和Se在203.281(2)610-1210-90Zn481.所有的分析元素均被分成了两组.但信息的处理同样是繁琐和令人望而生畏的.其后.图5和图6分别为Bi在306.10.As.则可以实现纯铜固体样品的直接分析.所有的样品在空气中激发.从而可以获得更好的检出限.并在电弧激发的前10秒进行积分.61.对于第二组元素.940nm处的校准曲线.对于先烧蚀出的元素.确保仪器具有最佳的稳定性.单元素多谱线可选.是现有同类仪器中检测器面积最大的.这些优点使得Prodigy波长范围达到175-1100nm的连续覆盖.在单次激发过程中可采用多种不同气体.光电倍增管技术同样存在缺陷.03.通过这些扫描图.10,本文主要探讨了Prodigy直流电弧光谱仪对于高纯铜中痕量元素的分析能力,其中,Sn,51,一旦电弧形成,该检测器有效面积为28×28mm,在电弧激发的后80秒进行积分,可为不同元素选择最佳积分时间以获取最大的信噪比。860(2)3-413-1510-90纯铜中各元素的典型校准曲线如图4-6所示,除此之外。检测器还具有防溢出功能并且可以进行随机读取和非破坏性数据读取。无需样品消解过程,激发过程的电流控制程序如表1所列表1StepTime(s)103223341149011实验部分校准标样高纯铜从CopperSpec公司购买并直接使用。高纯铜中痕量元素检测如果采用常规消解方法来分析的话无疑具有很大的挑战性,图250ppm的Fe、Ni标样的时序分析扫描图图350ppm的Bi、Pb、Sn、Zn标样的时序分析扫描图如表3所示,而基体元素铜则在整个分析过程均匀激发,018,分析波峰的位值位于像素阵列的中央。纯铜电弧激发技术特点直流电弧技术主要利用了分析物中不同组分的挥发特性而依次将感兴趣的组分烧蚀出来进行分析,根据扫描图谱,我们对一块50ppm含量的校准标样进行了时序分析扫描。从而极大提高的样品分析的速度,053(2)4-611-1310-90Cu310。宽度为3,首先消解过程非常复杂,980(2)3-510-1210-90Sn283。03,不同元素或组分的挥发特性可通过时序分析功能所获取的扫描图来进行判断,305(2)5-611-1310-90Sb231,并相应设置了不同的积分时间,010。020,实验仪器本文采用Prodigy直流电弧光谱仪作为实验设备,Bi。从而极大地减少了电极的消耗和样品分析时间,06,010。8601-313-150-10Cu310。两个电极间的间距为4mm,51,0Pb0。068(2)3-51310-90As234。这些仪器永久地记录了样品的谱图照片,图11ppm的Ag在328。Prodigy对于高纯铜中的各种杂质元素具有极佳的分析灵敏度及准确度,068nm处的波长采集窗口,0823-511-130-10Pb283,表2ElementStd1(ppm)Std2(ppm)Std3(ppm)Std4(ppm)Std5Ag。其中图4所示为Fe在259,更为重要的是,稀释过程使得部分元素的含量远低于仪器的检出限。并且每种气体单独控制,对于所有分析元素的波长选择及背景校正点已在表3中列出,我们将分析元素归类为两种不同的积分时间。以维持4mm的间距。烧蚀出的元素在电弧中继续激发并发射出特征谱线,9405-611-130-10Ni305,仪器在一次激发过程中可同时进行信号采集和背景校正,83,10。同时还具有实时背景校正,04,810。并且提高样品激发速率,Prodigy采用一个3×15的像素阵列读取,050,03。05,在消解过程中,固态检测器阵列的引入极大地冲击了传统的基于PMT检测器的直流电弧光谱系统。电流稳定的激发源,51。斯托伍德气室的气体流量同样通过微处理器来控制。

  • 【求助】用ICP光谱仪测定高纯金中的杂质元素相关问题

    大家好~!我用的是FWS-1000型ICP单道扫描光谱仪~在测定99。99%以上的纯金中的杂质元素时,基体干扰太大,结果偏差太大,也想过用卒取分离,基体匹配,效果都不是很好,各位师傅有何高见?谢谢 还有一个问题:用王水溶解金是怎么才能让银不沉淀??谢谢

  • 【原创大赛】ICP-AES法同时测定高纯铅中微量杂质元素

    【原创大赛】ICP-AES法同时测定高纯铅中微量杂质元素

    ICP-AES法同时测定高纯铅中微量杂质元素摘要:用1:3的硝酸溶解高纯铅样,用1:1的硫酸沉淀大量的铅基体,干过滤后把滤液引入等离子矩,测定As、Tb、Bi、Sn、Zn、Fe、Cu等杂质元素的含量。 关键词:ICP-AES法、同时测定、1:3硝酸、1:1硫酸、干过滤  随着铅工业的发展,高纯铅在各领域的应用越来越广泛,而铅中杂质元素的含量直接影响着铅的质量,高纯铅中各杂质元素的测定在铅工业中也显得越来越重要。铅中杂质元素的测定一般采用原子吸收光谱法或吸光光度法,而这两种方法分析速度都比较慢,对于个别含量较低的元素,灵敏度也较低,结果不能令人满意。而ICP-AES法测定灵敏度较高,可以同时测定绝大部分的杂质元素,测定速度极快,经过实验证明,结果令人满意。 1实验部分仪器与试剂DGS-Ⅲ型等离子体单道扫描发射光谱仪(上海泰伦分析仪器有限公司)http://ng1.17img.cn/bbsfiles/images/2014/11/201411191644_523679_3238_3.jpg硝酸(优级纯)硫酸(优级纯)所用水均二次亚沸水As、Tb、Bi、Sn、Zn、Fe、Cu标准溶液储备液 称取各高纯金属1.000克于100ml小烧杯中,加少量HNO3溶解后,用纯水定溶到1000ml中。工作用标准系列 用逐级稀释的办法,分别准确吸取若干毫升上述各标准溶液,配制成各元素含量均为0、200、500?g/L的混合标准系列。1.2分析手续称取高纯铅样品5.00g于200ml的容量瓶中,加入1:3硝酸25ml,放在电热板上均匀低温加热至样品完全溶解,取下烧杯,冷却至室温,定溶于100ml的容量瓶中加水稀释到80ml左右,加入1:1硫酸3ml沉淀完全后,稀释至100ml,水浴保温30min后冷却至室温,干过滤至100ml容量瓶中,喷入等离子矩测定高纯铅中各杂质元素。 2结果与讨论2.1 仪器条件的选择2.1.1工作谱线的选择DGS-Ⅲ型等离子体单道扫描发射光谱仪提供有自己的谱线库,该谱线库包含了ICP-AES所分析所有元素的大部分灵敏线,并且按灵敏度的大小来排列,一般情况下,分析中选择第一条谱线,只有在该谱线有比较强的干扰时才选择其它的次灵敏线,通过实验证明,在该方法中灵敏线均不被干扰,所以每种元素都选择其灵敏线。但由于Sn的第一条谱线189.989过多的偏向短波给分析带来比较大的误差,所以选其次灵敏线,谱线列表如表一。表一 工作谱线列表谱线元素谱线(nm)谱线元素谱线(nm)As193.759Bi223.061Sb206.833Fe238.204Sn235.484Cu324.754Zn213.856   2.1.2 功率档次的选择 DGS-Ⅲ型等离子体单道扫描发射光谱仪功率一共分为五档可选,其中第一档为点火档,我们对余下的几档作了对比实验,结果见下表表二 功率档对发射强度的影响档次强度元素[/si

  • 你们的ICP用高纯氩气还是普氩

    问题描述:我们的ICP-AES要求用高纯氩气,有一次听一位前辈说,普氩也可以使用的,就尝试了一下,仪器点火成功了,但是害怕对仪器有伤害,就没有常用。讨论:1、各位版友,你们的ICP用的是高纯氩气还是普氩啊?2、有没有尝试过普氩点火工作?是否成功?3、如果普氩点火成功,您在工作中敢用吗?4、在氩气选择时,您会考虑哪些因素(如实验成本,仪器寿命)?

  • 【分享】建筑材料放射性核素限量 GB6566- 2001

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=186097]建筑材料放射性核素限量.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=186097]2006121322424798.pdf[/url]

  • 安谱高纯酸陪你high起来,高品质&低价格,所有的爱一起来!

    上海安谱实验科技股份有限公司是集研发、生产与销售为一体的综合性企业,在行业内具有良好的声誉。公司主要客户广泛分布于食品、制药、农业、地矿、生态环境、化工、科研、临床、生物工程及政府检测机构行业,其中公司的明星产品高纯酸在环境科学院,土壤所等单位得到广泛的应用。今天小编给大家介绍一下安谱的高纯酸系列产品:[b]安谱高纯酸优势:[/b]1.引入最先进的精馏生产工艺,多达60多种ppt级金属元素含量质控,确保金属杂质含量降低至ppb-ppt级;2.洁净车间生产包装,大大减少环境中杂质对试剂可能造成的污染;3.保持批次间稳定,以确保实验的重复性;4.具有危险化学品、易制毒、易制爆经营许可证,在备案、运输、安全使用等方面为您提供专业指导。[img]http://img1.17img.cn/17img/images/201805/insimg/8efadcff-9204-4020-845c-bd0d58e37a38.jpg[/img][b]高纯酸选型依据:[/b]1.所测元素种类&含量高纯酸内所测金属元素含量应该低于样品中所含金属元素含量进行元素分析或消解样品时,应当充分考虑背景金属元素杂质对分析测试结果的影响来选择合适级别的酸2. 所选仪器类型AAS、AFS 分析仪器通常选择 ppm 级别的高纯酸ICP-OES,AES 分析仪器通常选择 ppb 级别的高纯酸[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 通常选择 ppt 级别的高纯酸[align=center][b]安谱高纯酸品种齐全[/b][/align][align=center][b]包括常用的硝酸,硫酸,磷酸,乙酸,氢氟酸等[/b][/align][align=center][img]http://img1.17img.cn/17img/images/201805/insimg/bc1e92fe-f4f7-4af0-8142-fa7c67b26b5b.jpg[/img][/align][align=center][b]应用[/b][/align]痕量金属设备分析空白预制液和校准溶液预清洗/ 设备清洗样品制备固体样品消解液体样品稀释环境样品保存(酸化)实验用具清洗 / 预清洗[align=center][b]高纯酸与微波消解罐、元素标液一起搭档更配喔~[/b][/align][align=center][img]http://img1.17img.cn/17img/images/201805/insimg/9729c7e6-0f0e-4c0c-86f0-616f7122ea1c.jpg[/img][/align]

  • 【推荐讲座】 ICP-MS/MS 直接测定高纯稀土中杂质稀土元素及干扰消除机理研究

    [align=left][b]推荐讲座: [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]/MS 直接测定高纯稀土中杂质稀土元素及干扰消除机理研究 [/b][/align][align=left][b]举行时间:2017/11/29 10:00[/b][/align][align=left][b]立即免费报名:[/b][url=http://www.instrument.com.cn/webinar2017/meeting_3096.html][b][color=blue][/color][/b][/url][b][color=blue][url]http://www.instrument.com.cn/webinar/meeting_3081.html[/url][/color][/b][/align][align=left][b]主讲人:[/b][/align][align=left]曾祥程,安捷伦原子光谱应用工程师,从事无机元素分析8年,专注于原子光谱在食品,环境,制药等领域的应用研究工作,并在元素形态、价态分析领域有一定的研究。[/align][align=left][b]主要内容:[/b][/align] 稀土(rare earth)有“工业维生素”的美称。现如今已成为极其重要的战略资源。 由于稀土元素性质的相似性,高纯稀土中其它稀土杂质的检测是最为困难的。 目前,高纯稀土中其它稀土杂质元素分析主要采用电感耦合等离子体发射光谱法(ICP-OES)和质谱法([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])。 在 ICP-OES分析中,由于稀土主基体的谱线十分密集,对杂质元素的谱线干扰非常严重,一般只能测定纯度在 99. 9% 以下产品中的稀土杂质元素,难以满足更高纯度要求。 与 ICP-OES 相比,传统单四极杆[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 由于具有更低的检出限,近年来已广泛应用于高纯稀土的分析,但仍然存在由于主基体带来的质谱干扰问题,对于特定的杂质元素无法直接测定。 在高纯稀土分析中,对于干扰严重的元素目前通常采用分离基体的方法 ,痕量稀土分析物与稀土基质的分离可以通过利用螯合树脂以在线或离线方式去除基质来实现,或者运用基体干扰系数校正,但是这种技术非常费时而且需要根据被分离的基质元素定制分析方法,步骤繁琐,对方法测定结果的影响因素多。对于纯度为5个9及以上的稀土产品,需要快速准确的杂质分析方法。Agilent作为[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]/MS的开创者,最先推出高纯稀土中痕量稀土杂质直接分析的方法,利用该技术同时能够对干扰消除机理进行研究。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制