氟碳表面活性剂

仪器信息网氟碳表面活性剂专题为您整合氟碳表面活性剂相关的最新文章,在氟碳表面活性剂专题,您不仅可以免费浏览氟碳表面活性剂的资讯, 同时您还可以浏览氟碳表面活性剂的相关资料、解决方案,参与社区氟碳表面活性剂话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

氟碳表面活性剂相关的耗材

  • 纳谱分析表面活性剂专用色谱柱 ChromCore SAA表面活性剂专用色谱柱
    ChromCore SAA是一款以先进的单分散、高纯、多孔硅胶为基质, 采用独特的表面键合和修饰技术,经优化装填而成的高性能色谱柱,采用混合机理模式,专用于生物制药领域中性表面活性剂含量分析。纳谱分析 表面活性剂专用柱 ChromCore SAA表面活性剂专用色谱柱 参数:纳谱分析 表面活性剂专用柱 ChromCore SAA表面活性剂专用色谱柱 特点:单分散硅胶微球,机械强度高对中性表面活性剂表现出良好选择性,柱效高,峰形好 柱流失低,兼容通用型检测器 柱间重现性一致纳谱分析表面活性剂专用柱 ChromCore SAA表面活性剂专用色谱柱 货号信息:Product NameParticle Size(µ m)Length(mm)ID (mm)4.6ChromCore SAA5250S014-050018-04625S150S014-050018-04615S
  • 9342BN表面活性剂电极
    9342BN表面活性剂电极 9342BN表面活性剂电极(滴定用) 9342BN表面活性剂电极(滴定用) 9342BN表面活性剂电极(滴定用)
  • 表面活性剂离子选择电极
    简介:表面活性剂 离子选择性电极是测量样品中表面活性剂 离子含量的一种有效方法。美国Van London-pHoenix公司出品的表面活性剂 离子选择性电极,具有测量简单,响应快速准确的优点,可以和电位滴定仪配套使用。 应用案例:表面活性剂 测定(离子选择电极法);离子选择性电极法测定地表水,废水中的表面活性剂 ;表面活性剂 离子选择性电极法测定饮料、食品中的表面活性剂。表面活性剂离子选择性电极用于清洁工程的监测。 规格与特点: · 斜率 〉200mv在滴定中 · 重复性 +/- 2% · 干扰 类似的表面活性剂 · 温度范围 0-40度 · 压力范围 0-30psi · 响应速度 30秒达到95%响应 · 储存 长期保存:干燥;短期:稀释的季铵盐阳离子标准溶液 · 测量范围 1ppm &ndash 12,000ppm · PH值范围 2-12PH · 输出阻抗 1-100兆欧 · 维护和清洗 去离子水和稀释的季铵盐阳离子标准溶液 · 温度补偿 无,取决于滴定仪器 · 在线工作 无 应用: 废水;地表水;海水、饮料,清洁工程表面活性剂 检测。 生产商:美国Van London-pHoenix公司是由美国美国Van London公司和美国pHoenix公司合并而成,继承了Van London电极和pHoenix(凤凰)电极的优点。

氟碳表面活性剂相关的仪器

  • 特性 非离子氟碳表面活性剂是高度相容性的有机氟非离子表面活性剂, 能明显降低液体的表面张力,具有优越的界面湿润性能,在用乙二醇单丁醚作溶剂,稀释到50%浓度时,在苯类、酮类、酯类能完全溶解,产生的泡沫能迅速自动消失,在用于水性体系时,用自来水稀释到10%的浓度,可直接溶解在水性涂料中。本品可起到分散、流平作用,应用于溶剂型和水性体系中,用量少,操作简便。 外观:无色透明液体PH值:1粘度(cst/25℃) 200~300密度(p20,g/cm3):1.15±0.05非离子氟碳表面活性剂应用涂料领域:改善溶剂型和水性涂料的流平性,颜料的分散润湿性,解决涂料中出现的鱼眼针孔 涂布干燥后出现的边角缺漆、橘皮、颜料分层、漂浮等问题,与有机硅表面活性剂混合后,提高UV涂料的滑爽性 助焊性:将本品加入水性助焊剂中,能提高焊接点的合格率,节省焊药 是一支通用性极强的有机氟硅表面活性剂,被广泛应用于阻焊剂、涂料、油墨、地板蜡、农药、电子清洗、电镀处理剂等产品。 非离子氟碳表面活性剂使用方法水性涂料中:可直接加入用纯净水稀释表面活性剂到10%的浓度,用量为1-2% 溶剂型涂料中,可用乙二醇单丁醚稀释表面活性剂到10%浓度后,加入涂料中,用量为2%左右。
    留言咨询
  • 阴离子氟碳表面活性剂 特性 阴离子氟碳表面活性剂具有耐酸、耐高温性能的阴离子表面活性剂,有优异的界面湿润性能,具有迅速分散、铺展的能力,与水可以任意比例混溶。本品为高度相容性的有机氟阴离子表面活性剂,能明显降低液体的表面张力,具有优越的界面湿润性能和中等的起泡沫性 能应用于强酸、强氧化剂介质250摄氏度高温体系。本品可起到湿润、分散、流平作用,应用于水性体系和溶剂体系中,有用量少,操作简便、高效、长效、稳定等优点。外观棕褐色透明液体(胺盐)PH值3~4粘度(cst/25℃)200~400密度(p20,g/cm3)1.15±0.05溶解性能与水可以任意比例混溶用于皮革方面:阴离子氟碳表面活性剂作为表面处理剂将皮革进行防油防水处理,使皮革表面光滑,使之具有良好的防污能力,从而提高产品质量 阴离子氟碳表面活性剂在皮革浸浴时加入本品,有助于加速皮革的湿润渗透,减少操作时间,促进生产效率,同时提高产品质量。阴离子氟碳表面活性剂用于徐料及染料方面: 改善涂布质量。涂布干燥后会出现边角缺漆,橘皮,颜料分层、漂浮。加入本品增加涂料的流平性,湿润性,改善涂层光泽,颜料均匀分布,防止涂料起泡 可以防止细菌附着,抑制细菌生长,消除细菌引起的秽臭及污物 应用在大面积电泳涂层,不但使涂层表面更均匀更光滑,而且有更强的耐酸碱和水的性能以优异的界面湿润性、迅速分散性、耐强酸性,一般用作酸性染料的分散,稳定,防止染料漂浮,分离。用于油墨方面:减少油墨的表面张力,使油墨有更好的适应性,在塑料薄膜及一些不易为油墨接受的物质上打印有良好的效果和精确度,提高油墨印刷质量 增强油墨在储藏的过程中的稳定性,防止油墨在一定时间后褪色沉淀。 使用方法阴离子氟碳表面活性剂可用纯净水作为稀释剂,可稀释十倍数使用。建议使用最为0.1~0.5%。
    留言咨询
  • 非离子表面活性剂大多为液态和浆状态,它在水中的溶解度随温度升高而降低。非离子表面活性剂具有良好的洗涤、分散、乳化、起泡、润湿、增溶、抗静电、匀染、防腐蚀、杀菌和保护胶体等多种性能,广泛地用于纺织、造纸、食品、塑料、皮革、毛皮、玻璃、石油、化纤、医药、农药、涂料、染料、化肥、胶片、照相、金属加工、选矿、建材、环保、化妆品、消防和农业等各方面。铸就实验室反应釜主流影响力,助力中国科研事业发展。非离子表面活性剂溶于水时不发生解离,其分子中的亲油基团与离子型表面活性剂的非离子表面活性剂亲油基团大致相同,其亲水基团主要是由具有一定数量的含氧基团(如羟基和聚氧乙烯链)构成。近20多年来,非离子表面活性剂发展极为迅速,应用越来越广泛,今后数年仍会保持这一势头。由于非离子表面活性剂在溶液中不是以离子状态存在,所以它的稳定性高,不易受强电解质存在的影响,也不易受酸、碱的影响,与其他类型表面活性剂能混合使用,相容性好,在各种溶剂中均有良好的溶解性,在固体表面上不发生强烈吸附。
    留言咨询

氟碳表面活性剂相关的试剂

氟碳表面活性剂相关的方案

氟碳表面活性剂相关的论坛

  • 【资料】含氟表面活性剂研究进展

    含氟表面活性剂研究进展含氟表面活性剂是特种表面活性剂中最重要的品种,有很多碳氢表面活性剂不可替代的用途。含氟表面活性剂主要以全氟烷基或全氟烯基或部份氟化了的烷基等作为疏水基部分,然后再按需要引入适当的连接基及亲水基团,根据亲水基团性质的不同分别制得阴离子型、阳离子型、非离子型及两性型等不同系列的含氟表面活性剂产品。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=37708]含氟表面活性剂研究进展[/url]

  • 【分享】含氟表面活性剂研究进展

    含氟表面活性剂是特种表面活性剂中最重要的品种,有很多碳氢表面活性剂不可替代的用途。含氟表面活性剂主要以全氟烷基或全氟烯基或部份氟化了的烷基等作为疏水基部分,然后再按需要引入适当的连接基及亲水基团,根据亲水基团性质的不同分别制得阴离子型、阳离子型、非离子型及两性型等不同系列的含氟表面活性剂产品。1 含氟表面活性剂的特性含氟表面活性剂的独特性能常被概括为“三高”、“两憎”,即高表面活性、高耐热稳定性及高化学稳定性 它的含氟烃基既憎水又憎油。含氟表面活性剂其水溶液的最低表面张力可达到20mN/m以下,甚至到15mN/m左右。一般碳氢链的表面活性剂的应用浓度需在0 1%~1%之间,此时水溶液的表面张力只能降到30~35mN/m,而碳氟链表面活性剂的用量在0、005%~0、1%时,就能使水溶液的表面张力降至20mN/m以下。含氟表面活性剂如此突出的高表面活性以致其水溶液可在烃油表面铺展。含氟表面活性剂有很高的耐热性,如固态的全氟烷基磺酸钾,加热到420℃以上才开始分解,因而可在300℃以上的温度下使用。含氟表面活性剂有很高的化学稳定性,它可抵抗强氧化剂、强酸和强碱的作用,而且在这种溶液中仍能保持良好的表面活性。若将其制成油溶性表面活性剂还可降低有机溶剂的表面张力。研究表明,含氟表面活性剂的高表面活性是由于其分子间的范德华引力小造成的,活性剂分子从水溶液中移至溶液表面所需的张力小,导致了活性剂分子在溶液表面大量的聚集,形成强烈的表面吸附,而这类化合物不仅对水的亲和力小,而且对碳氢化合物的亲和力也较小,因此形成了既憎水又憎油的特性,但它对油/水界面的界面张力作用能力不强,如将含氟表面活性剂与碳氢表面活性剂复配使用,利用含氟表面活性剂能选择性地吸附在水的表面,使表面张力降低 而碳氢表面活性剂能吸附在油/水界面上,使界面张力降低,这样就必定会提高水溶液的润湿性能。2 含氟表面活性剂的应用鉴于含氟表面活性剂具有的特性,它的应用性很强。表1所列为含氟表面活性剂的用途分类简况。 部分应用简介:(1)分散剂 含氟表面活性剂在各种氟树脂的分散聚合时可作分散剂使用。另有研究报导,含氟表面活性剂也可用于PVC的反应过程中。(2)灭火剂 含氟表面活性剂在灭火剂上的应用可分为“轻水”灭火剂、氟蛋白泡沫灭火剂和抗极性溶剂灭火剂三种,其完全控止火的时间可在90sec以内。(3)脱模剂 由含氟表面活性剂制备的脱模剂已形成系列化产品,有溶剂型的,也有水剂型的,它不但可用于高聚物弹性体的加工业,而且在刚性体的加工行业(如:铜、钢管的抽拉、压铸件的冲压加工等)也可使用,并得到用户的高度评价。(4)抗静电剂 由含氟表面活性剂配制的集清洗、防尘为一体的抗静电剂,经测试:对PVC片基处理后,其表面电阻由原来的1012Ω降低至108Ω。用其对录像机磁鼓、磁头表面清洗,效果远比一般的清洁剂或清洁带优越。用此抗静电剂还可对家电、荧屏及其它高档家具、精密仪器等进行表面清洗与防尘,且不产生任何副作用。目前本公司已有此防静电剂产品———“音磁灵”投入市场。(5)流平剂 在颜料、涂料等产品中加入少量含氟表面活性剂后,可防止固结,改善分散性,防止产生气泡,使色泽更均匀。(6)防水防油剂 由含氟表面活性剂制备的防水防油剂,对纤维及织物处理后,既可使其具有防水、防油的性能,又不影响其本身的物理特性。由其处理的一次性纸质具已大量进入市场。(7)其它应用 把含氟表面活性剂加入地板蜡中,可改善地板的光泽,增加其耐磨性及抗污染性。含氟表面活性剂还可用于石油回收用助剂、海面上的集油剂、金属防腐剂及金属光泽处理剂等等。3 含氟表面活性剂的合成含氟表面活性剂的合成一般分三步:首先合成含6~10个碳原子的碳氟化合物,然后制成易于引进各种亲水基团的含氟中间体,最后引进各种亲水性基团制成各类含氟表面活性剂。其中含氟烷基的合成是制备含氟表面活性剂的关键。含氟烷基的工业化生产方法主要是电解氟化法、氟烯烃调聚法和氟烯烃齐聚法。3.1 电解氟化法电解氟化法是将被氟化的物质溶解或分散在无水氟化氢中,在低于8V的直流电压下进行电解。电解中在阴极产生氢气,在阳极有机物被氟化。在此工艺路线中,可将碳氢链烷基的酰氯或磺酰氯直接换成相应的全氟烷基酰氟或磺酰氟产物,由它们出发,可用普通方法制得各类含氟表面活性剂(见下式)。 由于电解氟化反应甚为激烈,易发生C-C链断裂,反应过程中除了生成与原料的碳原子数相同的全氟化合物外,还生成短链的全氟化合物和其它类型的副产物,因此总的产物收率较低。采用此法生产含氟表面活性剂的有美国3M公司,日本大日本油墨公司及东北肥料公司等。3.2 氟烯烃调聚法氟烯烃调聚法最早是由英国HaszeldineRH教授提出的方法,是利用全氟烷基碘等物质作为端基物调节聚合四氟乙烯等含氟单体制得低聚合度的含氟烷基调节物。他在1951年发现三氟碘甲烷可与乙烯和四氟乙烯发生调节聚合反应的工业生产路线。随后美国DuPont公司又开发了用五氟化碘和四氟乙烯进行调聚反应,制得全氟烷基磺化物。C2F5I+nCF2=CF2C2F5(CF2CF2)nI此反应产率虽高,但最终产物为链长不同的混合体(其n数的分布较宽),适当选择良好的反应过程,控制反应工艺条件,确保n数在所需的范围内(n∶2 4)终止反应的继续发展。以减少不希望得到的高沸物(n6)大量生成。作为调聚剂使用的其它物质还有很多,在这一研究领域内已有大量的专利发表,其各自的反应式如下: 采用调聚法生产含氟表面活性剂的有美国杜邦,瑞士汽巴 嘉基,日本旭硝子及大金等公司。从调聚反应所得产物是链长不一的混合物,这样就可合成出不同长短的氟碳链疏水基,若以适当的比例混合使用,更能发挥最终产物的表面活性。3.3 氟烯烃齐聚法氟烯烃齐聚法是由英国ICI公司1965~1969年开发的,它是利用氟烯烃在非质子性溶剂中发生齐聚反应得到高支叉低聚合度的全氟烯烃齐聚物。最常用的有四氟乙烯齐聚法、六氟丙烯齐聚法和六氟环氧丙烷齐聚法三种。四氟乙烯齐聚法得到聚合度以4~6为主的齐聚物,其中五聚体所占比例最大,约占整个混合物的65%左右。由于连接双键碳原子上的氟原子易被亲核试剂取代,所以可通过这一反应来引入所需的连接基团。。四氟乙烯五聚体分子中与双键原子直接相连的氟原子在碱性介质中可与亲核试剂如苯酚等发生取代反应,由此可合成一系列含氟表面活性剂。 六氟环氧丙烷在氟离子的作用下,很容易进行齐聚反应。六氟环氧丙烷的齐聚物因含有酰氟官能团,可发生多种反应,可得多种含氟表面活性剂。 采用齐聚法生产含氟表面活性剂的公司有英国ICI公司、日本neos公司等。4 含氟表面活性剂新进展传统的含氟表面活性剂主要是单链型的,目前双链含氟表面活性剂正引起人们极大的兴趣。已报道的双链含氟表面活性剂主要有两类,第一类是双链均为含氟碳链,第二类是双链分别为碳氟和碳氢链。后一类常被称为杂交型表面活性剂(hybridtypesurfactants)。近年来,含硅的含氟表面活性剂正以其独特性能引起人们的关注。含氟表面活性剂和硅表面活性剂都属于特种表面活性剂。含硅的含氟表面活性剂可望具有含氟表面活性剂在浓度很高的乙醇水溶液中也显示很高的表面活性。它可作为高效消泡剂,不仅可用于水溶液体系,而且可用于非水体系。含硅的含氟表面活性剂也具有优异的润滑作用。也有研究表明,含硅的含氟表面活性剂有很高的抗HIV 1活性。对含氟表面活性剂中碳氟链进行化学修饰以使其具有更多的特殊功能的工作也有了较大进展。与碳氢链锯齿型构型相反,碳氟链具有刚性构型。有人将醚键引入碳氟链,以使碳氟链具有更好的柔顺性及水溶性。而杂原子的引入更使碳氟链多样化。含氟表面活性剂作为工业化产品的作用历史并不很长,它的应用领域还有待进一步开拓,随着对它的性能与应用的逐步研究、认识,相信此类产品的品种与产量必将会不断扩大。我国对于含氟表面活性剂的开发,性能研究及应用领域与国外相比尚有较大差距,随着我国国民经济的发展及综合国力的不断增强,含氟表面活性剂这一新产品,新技术的开发应用,将会呈现出广阔前景。

氟碳表面活性剂相关的资料

氟碳表面活性剂相关的资讯

  • 表面活性剂:从分子到纳米粒子
    p   韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 /p p   表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。 /p p   现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。 /p p br/ /p
  • 应用 | 有机硅表面活性剂在乙醇-水体系中的起泡机制研究
    研究背景泡沫是一种气体分散于液体中的分散体系。通常,纯的液体是不会起泡的。泡沫产生的条件有两个:需要气体和液体充分接触,并使气体分散于液体中;还需要气泡产生的速度明显大于消泡的速度,使得气泡可以聚集成泡沫,行之有效的办法是在液体中加入表面活性剂。对于表面活性剂水基泡沫人们已经做了大量的研究,然而近年来水-低碳醇体系也有着较为广泛的应用, 例如化学清洗、制备多孔材料、杀菌洗手液等。因此,本文着重对FC-7160在乙醇-水溶液和水溶液中的泡沫行为,尤其是泡沫形成后的排液行为、结构变化、表面弹性等,为其以后的实际应用提供理论指导。实验仪器DFA100动态泡沫分析仪、DSA100液滴形状分析仪,德国KRÜSS公司。DFA100动态泡沫分析仪DSA100液滴形状分析仪实验结果与讨论2.1 泡沫高度衰减曲线起泡性和稳定性是表面活性剂溶液泡沫行为中最重要的特征。为了与碳氢表面活性剂对比,本实验选择了阴离子表面活性剂AES-3、非离子表面活性剂AEO-9、两性离子表面活性剂CAB。由图1a可以看出,在水溶液体系中, 实验中所用的碳氢表面活性剂的起泡性和泡沫的稳定性都优于FC-7160,FC-7160的泡沫甚至没有经历tend这个时间段,起泡后立即伴随着泡沫的崩塌。而在50%乙醇-水溶液体系中,如图1b所示,只有FC-7160可以形成泡沫,碳氢表面活性剂的“泡沫”在停止通气后很短的时间内完全消失,不能形成有效的泡沫。 图1 1 g/L不同表面活性剂的泡沫高度随时间的变化:水溶液(a);50%乙醇-水溶液(b)2.2 泡沫的结构与尺寸分布通过动态泡沫仪的结构分析模块,对泡沫中气泡的大小分布和其随时间的变化进行了精细的测量。在图2a中,在50%乙醇-水溶液中,泡沫中的气泡大小均一且近乎圆形,而在水溶液中气泡大小不一,呈现出多边形的结构。在图2b中,在前10 min内,50%乙醇- 水溶液中的气泡面积主要集中在0~0.5 mm2,没有超过1 mm2的气泡,气泡从产生到消失面积都较小;而在水溶液中气泡面积分布较宽,在1 min时,水溶液中的气泡面积就可以达到1~2 mm2。在乙醇的存在下,FC-7160泡沫中的气体扩散过程受到了限制,聚并过程和熟化过程都较慢,气泡较小且均一。图 2 1,5和10 min时(从上到下)1 g/L的FC-7160在50%乙醇-水溶液(左)和水溶液(右)中的泡沫结构图(a);与a相对应的气泡尺寸分布直方图(b)2.3 泡沫的排液过程泡沫的稳定性主要取决于排液快慢和液膜的强度, 排液速度越慢,液壁可以保持一定厚度,泡沫也越稳定。在50%乙醇-水混合体系中,泡沫携带有乙醇和水两种组分,所以排液行为显得更为重要。在水溶液中, FC-7160的泡沫排液过程较短且非常混乱(图3a),所以在水溶液中的泡沫稳定性也较差。在50%乙醇-水溶液中(图3b),FC-7160的排液时间有所延长,泡沫中的液体含量明显高于水溶液中。在乙醇的存在下,由于FC-7160与乙醇分子之间的作用使得液体更容易携带,不易流失,所以泡沫液体含量较大且排液时间延长。图 3 1 g/L的FC-7160在水溶液中(a)和在50%乙醇-水溶液中(b)泡沫液体含量随时间变化2.4 液膜的界面黏弹性表面活性剂在气-液界面的吸附不仅可以降低体系的表面张力,而且也可以使得界面具有黏弹性。当泡沫受到扰动表面积增加时,液膜局面会变薄,变薄处的表面活性剂分子浓度降低,表面活性剂浓度差异导致液膜中产生了表面张力梯度。没有变薄处的表面活性剂分子会迁移到局部变薄处。在这个迁移过程中,液体也会随着表面活性剂分子迁移,液膜厚度和膜的强度也得以恢复,这就是膜的弹性。液膜弹性越大,抵抗外界干扰的能力越强,泡沫也越稳定。界面扩张流变可以反映液膜弹性,界面扩张模量的大小在数学上分为弹性和黏性分量,如E*=E'+iE''所示,其中E*为复合模量,E'为弹性模量,E''为黏性模量。根据文献[19,20]中报道,E*和泡沫稳定性有密切的关系,E*值越大,泡沫越稳定;而弹性模量E'和泡沫的排液行为相关,其大小依赖于tdev的值。从图4中可以看出,这些表面活性剂的E*大小关系为:FC-7160AES-3AEO-9,这和它们在50%乙醇-水溶液中的泡沫稳定性是一致的。对于AES-3和AEO-9, 它们的界面扩张模量几乎为0 mN/m,说明它们在50% 乙醇-水溶液中形成的液膜几乎没有弹性,所以气泡在产生之后立即消失不能形成泡沫。图 4 1 g/L不同表面活性剂在50%乙醇-水溶液中的界面扩张模量E*、弹性模量E'、黏性模量E''结论对有机硅表面活性剂FC-7160和几种典型的碳氢表面活性剂在50%乙醇-水溶液中的泡沫结构、含液量和液膜的表面弹性进行了研究。泡沫稳定性和泡沫液膜之间的界面粘弹性有很大的关系,界面粘弹性可以帮助分析泡沫稳定性的机理。参考文献:牛奇奇,白艳云,台秀梅,王万绪,王国永.有机硅表面活性剂在乙醇-水体系中的起泡机制研究【J】。日用化学工业,2021.
  • 难溶性药物的溶出度测试系列一:表面活性剂(上)
    前言:溶出是药物吸收和暴露的限速步骤,因此,难溶性药物的体外测试尤其具有挑战性和重要性,需要明确此方法必须能够利用这一特征,通过提供有意义的释放速率的解释,或在某些情况下,解释实际的释放机制,从而提供重要的临床相关信息。 难溶性药物在制剂处方和制造工艺中需要特别注意,如减小颗粒大小的方法以及更复杂的制剂操作和工程技术领域,以提高药物的有效性、增加体内浓度和吸收。有一些新兴课题正在进行深入的探索和理解,特别是诸如溶出方法中的漏槽与非漏槽方面的条件、固态性质的贡献、表面活性剂的化学性质、计算机模拟、剂量倾泻和胶囊属性。 目前,正在开发的口服剂型在水性介质中具有不同水平的溶解度,为了促进具有较低水溶性的药物的溶出测试,管理机构允许使用低浓度的表面活性剂,以提高溶解度。1添加主要目的是提高药物在测试介质中的溶解度以实现漏槽条件,由于正在开发的药物中有很多是难溶性的(统称BCSII类和IV类),尤其要注意在溶出介质中加入表面活性剂,并不是方法开发中增加溶解度的唯一选择。 01表面活性剂“表面活性剂”是“表面活性物质”的一组化学物质的通用术语。表面活性剂分子中存在疏水基团(尾部)和亲水基团(头部),决定了表面活性剂是具有两亲属性(亲水性和疏水性环境的亲和性)的有机化合物。因此,表面活性剂分子同时含有水不溶性(油溶性)和水溶性成分。表面活性剂分子将迁移到水表面,其中不溶性疏水基团可以延伸出大部分水相,或者如果水与油混合,则进入油相,而水溶性头部组保持在水相中。表面活性剂分子的这种排列和聚集起着改变水/空气或水/油界面处水的表面性质的作用(图1)。 02在溶出方法开发中的表面活性剂类型 在溶出方法的开发中,表面活性剂可以通过其离子电荷分为四大类用于筛选目的:• 阴离子:例如十二烷基硫酸钠/月桂基硫酸钠(SLS / SDS)• 阳离子:例如十六烷基三甲基溴化铵(CTAB)• 非离子型:如聚山梨酯20和80,泊洛沙姆• 两性/两性离子:例如卵磷脂,椰油酰胺丙基甜菜碱此外,为了体外评估GIT的性能,可以考虑更复杂的“生物相关的”表面活性剂介质体系。这些制剂模拟人GIT中的禁食(FaSSIF)和进食状态(FeSSIF)环境。2FaSSIF和FeSSIF介质配方可商购。 03溶出介质中的表面活性剂浓度 如上所述,基于表面活性剂的介质的溶解度增加是浓度依赖性的,而较高浓度的表面活性剂会溶解更多的药物,3必须优化表面活性剂浓度以平衡溶解度和漏槽条件与检测制造或稳定性变化方法的区分能力。通常,设定表面活性剂浓度的目标是在溶出介质中使用尽可能少的表面活性剂,以实现所需的漏槽条件和方法的稳健性,同时实现并保持对药品关键质量属性的区分。 在早期的开发过程中可以评估溶解性和漏槽条件,但是在开发的后期阶段,例如在验证方法可靠性以检测配方/工艺中的有意变化的过程中,该方法的区分特征往往被揭示出来。另外,对于基于表面活性剂的溶出介质,应该考虑两个因素:(i)应提供表面活性剂介质系统以确保方法可转移性。表面活性剂的各种来源有时在制备时导致可变的pH。SDS介质尤其如此,因为这种表面活性剂典型地来自乙氧基化中和过程。(ii)在表面活性剂介质中使用的填充剂的pH值需要在添加表面活性剂之前进行调整。当表面活性剂改变电极的表面环境时,所得到的溶液应被认为是表观pH值。 04表面活性剂在溶出介质开发中的应用 当表面活性剂被添加到溶出介质时,亲水端将与水性介质结合,疏水尾部遇到排斥力,有效地寻找与之相联系的替代相。相之间的“推拉”降低了水相内的分子间作用力,由此降低了表面和界面张力。事实上,界面张力的降低是表面活性剂增溶的关键驱动力。想象一下一种药物由于高疏水性而不溶于水或溶出介质的情况。添加表面活性剂并将其溶解在介质中,它作为延伸/线性单体或自缔合球形存在,分布在介质中。表面活性剂浓度的进一步增加将最终产生胶束,多个表面活性剂分子的自缔合产生表面活性剂尾部的疏水核心的新胶体相。发生这种相变的浓度称为临界胶束浓度(CMC)。 在纯水相存在下,溶剂与任何疏水表面的相互作用不是在能量上有利的,导致润湿差和低溶解度。疏水性固体(不溶性药物)与溶解的表面活性剂的疏水性尾部之间的相互作用,降低了润湿和溶解固体所需的能量,从而增加了药物的溶解度。通过随后将溶解的物质分配到表面活性剂胶束的疏水核心中可以进一步提高溶解度。在方法开发中选择最佳的表面活性剂浓度必须考虑胶束的存在与否对体外释放的基本机制的影响。 05表面活性剂对溶解气体的影响 如前所述,溶出介质中表面活性剂的存在改变了介质的表面和界面张力。这导致溶解氧在介质中的溶解度的变化。Fliszar等人4评估了含有表面活性剂的溶出介质中溶解氧的作用。使用含有0.5%SLS,2.0%SLS和0.5%吐温80的含水(不含表面活性剂)介质和溶出介质,研究了几种标准制剂对氧溶解的作用。 在这项研究中,含有表面活性剂的介质的氧含量由于表面张力的降低而被发现为7.5-8.5mg/mL。然而,不含表面活性剂的水性介质更低,为5.5mg/mL。不管所用的脱气方法(在真空下搅拌,加热,超声处理,氦气喷射和膜过滤),一旦脱气完成,所有介质准备重新获得或重新生成。初始氧含量和通气达到平衡的持续时间取决于用于脱气的方法(图2-4)。评估氧含量的增加对其溶解的影响。研究证实,含有表面活性剂的介质在初始时间点没有发现任何结果值(误差范围内)(图5和6)。 此外,已知对溶解氧敏感的化合物(泼尼松)在通气和脱气(换句话说,含氧量)反应中的溶出曲线显示出显著的变化,如图7所示。从这项工作可以得出结论,含表面活性剂的介质迅速恢复其平衡氧含量,并且变化具有最小误差。该研究证实,在实验开始之前,介质中的溶解气体达到平衡是很重要的。 LOGAN将持续分享难溶性药物的溶出度测试系列的相关文献! 参考文献:1. Noory, C., Tran, N., Ouderkirk, L., Shah, V. Steps for development of a dissolution test for sparingly water-soluble drug products. Dissolut.Technol., 2000, 7(1), 16–18. 2. Bhagat, N. B., Yadav, A. B., Mail, S. S., Khutale, R. A., Hajare, A. A., Salunkhe,S. S., Nadaf, S. J. A review on development of biorelevant dissolution medium. J. Drug Deliv. Ther., 2014, 4(2), 140–148. 3. Shah, V. P., Konecny, J. J., Everett, R. L., Mc Cullough, B., Noorizadeh,A. C., Skelly, J. P. In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactant. Pharm. Res., 1989, 6(7), 612–618. 4. Fliszar, K. A., Forsyth, R. J., Zhong, L., Martin, G. P. Effects of dissolved gases in surfactant dissolution media. Dissolut. Technol., 2005, 12(3), 6–10.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制