当前位置: 仪器信息网 > 行业主题 > >

分析性质分析仪

仪器信息网分析性质分析仪专题为您提供2024年最新分析性质分析仪价格报价、厂家品牌的相关信息, 包括分析性质分析仪参数、型号等,不管是国产,还是进口品牌的分析性质分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分析性质分析仪相关的耗材配件、试剂标物,还有分析性质分析仪相关的最新资讯、资料,以及分析性质分析仪相关的解决方案。

分析性质分析仪相关的资讯

  • 如何选择热分析仪
    p   热分析仪是一种利用程序控制温度的状态下,测量物质的物理性质和温度的关系一类的仪器。目前已经被广泛得应用在生产实验等许多领域中。大多数客户在选择热分析仪的时候比较茫然,不知道如何选择适合自己的型号。下面我们来简单介绍下热分析仪的一些参数。 /p p style=" text-indent: 2em " 首先我们知道,热分析仪是测量物质的许多理化性质与温度之间的一些关系。那么它能达到的温度是我们最为关心的一个方面。市场上的热分析仪大多数都在1000多摄氏度左右。但是在这上面也有区别。如对应不同材质的待测物品时,所需要的温度也是不一样的。众所周知,玻璃的材质大多数为二氧化硅,其熔点一般在1200℃左右。因此就需要1250℃左右甚至更高的。但是对于一些相对温度需求比较低的,如一些碳酸钙,硫酸钙的岩石之类,大多数温度在800℃左右,选用1000℃的即可。 /p p style=" text-indent: 2em " 其次,需要选择的是哪种类型。市场上大致可分为三种:差热型,热重型,综合型。其中差热型可以对热差温度,灵敏性,量程等一些参数经行测量。热重型则可以对热重温度,灵敏性,量程等经行一些测量。综合型则综合了以上两种的全部性能,能够分别对热重差热进行测量。在测量样品一些不同的性能时,需要选择不同类型的仪器,以及考虑性价比。相对来说,综合型的性价比当然最高,也是许多客户的首选。其他一些如分析法,则是相对应其差热型,热重型来说。差热型一般DTA型的分析法,热重型则是TG-DTG型。 /p
  • 热重分析仪操作规程
    热重分析仪是一种广泛应用于材料科学、化学、生物学等领域的仪器,它通过测量物质的质量变化与温度的关系,帮助研究者了解样品的热性质和反应动力学。本文将介绍如何使用热重分析仪。在操作热重分析仪之前,需要先了解其基本原理。热重分析仪主要基于热力学原理,通过测量样品质量随温度变化的关系,推导出样品的热性质和反应动力学参数。热重分析仪主要由加热系统、称重系统、控制系统和数据处理系统组成。上海和晟 HS-TGA-101 热重分析仪使用热重分析仪需要按照以下步骤操作:开机:先打开电脑,再打开热重分析仪,等待仪器自检完毕。设置温度:根据实验需要设定升温速率、起始温度和终止温度等参数。放置样品:将待测样品放置在样品盘上,确保样品均匀分布在样品盘上。开始实验:点击开始按钮,仪器开始升温并记录样品质量随温度变化的关系。数据处理:将实验数据导入计算机,通过软件进行数据处理和分析。使用热重分析仪时需要注意以下事项:保护气体的纯度:实验过程中需要使用高纯度的氮气等保护气体,以避免样品被氧化。实验前的预处理:对待测样品需要进行预处理,如干燥、脱气等,以去除样品中的水分和气体,确保实验结果的准确性。仪器的维护:定期对热重分析仪进行维护和保养,以保证其正常运行。通过对热重分析仪测量的结果进行分析,可以判断设备的正常运行。例如,如果样品的质量随温度变化关系呈现规律性变化,说明仪器正常运行。如果变化关系异常,则需要检查仪器是否出现故障。总之,热重分析仪是一种重要的实验仪器,通过正确操作和使用可以有效地帮助研究者了解样品的热性质和反应动力学参数。在使用过程中需要注意保护气体的纯度、实验前的预处理以及仪器的维护等方面,以确保实验结果的准确性和设备的正常运行。
  • 浅谈热分析技术与同步热分析仪的应用
    p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 浅谈热分析技术 /strong /span /p p   热分析(Thermal Analysis),顾名思义,可以解释为以热进行分析的一种方法。 /p p   在目前热分析可以达到的温度范围内,从-150℃至1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。 /p p   通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。 /p p   1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理性质与温度的关系的技术。 /p p style=" text-align: center " 数学表达式为:P=f(T) /p p   其中:P代表物质的一种物理量 T为物质温度。 /p p   所谓程序控制温度一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。也就是把温度看作是时间的函数:T=Φ(t),其中t是时间,则P=f(T或t)。 /p p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 热分析的起源和发展 /strong /span /p p   1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。 /p p   1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC),美国PE公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。 /p p   1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。 /p p span style=" font-size: 20px " strong span style=" color: rgb(0, 176, 240) " 热分析研究内容、方法及应用 /span /strong /span /p p strong 热分析方法 /strong /p p style=" text-align: left "   通过对物质加热、冷却等反应实验,热分析可得到如下研究内容: br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/90b4db0f-6c3a-4927-94b6-92d8ef1f996e.jpg" title=" 热分析研究内容.png" alt=" 热分析研究内容.png" / /p p   应用最广泛的方法是 span style=" color: rgb(255, 0, 0) " 热重法(TGA) /span 和 span style=" color: rgb(255, 0, 0) " 差热分析法(DTA) /span ,其次是 span style=" color: rgb(255, 0, 0) " 差示扫描量热法(DSC) /span ,这三者构成了热分析的三大支柱,占到热分析总应用的 span style=" color: rgb(255, 0, 0) " 75% /span 以上。 /p p   热分析只能给出试样的重量变化及吸热或放热情况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。目前,解释曲线最现实的办法就是把热分析与其它仪器串联或间歇联用,常用气相色谱仪、质谱仪、红外光谱仪、X射线衍射仪等对逸出气体和固体残留物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。 /p p strong 热分析仪的应用 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 568" tbody tr class=" firstRow" td width=" 568" colspan=" 5" valign=" top" style=" border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px " p style=" line-height: 125% text-indent: 0em " span style=" font-family:宋体" TGA /span span style=" font-family:宋体" (热重分析仪) span & nbsp & nbsp & nbsp & nbsp DTA /span (差热分析仪) span & nbsp & nbsp & nbsp & nbsp DSC /span (示差扫描量热仪) /span /p p style=" line-height: 125% text-indent: 0em " span style=" font-family:宋体" & nbsp & nbsp & nbsp & nbsp TMA/DMA /span span style=" font-family:宋体" (热机械分析仪) span & nbsp & nbsp & nbsp & nbsp & nbsp EGA /span (复合分析联用) /span /p /td /tr tr td width=" 114" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 橡胶、高分子 /span /p p style=" line-height:125%" span style=" font-family:宋体" 塑料、油墨 /span /p p style=" line-height:125%" span style=" font-family:宋体" 纤维、涂料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 染料、粘着剂 /span /p /td td width=" 114" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 食品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 生物体、液晶 /span /p p style=" line-height:125%" span style=" font-family:宋体" 油脂、肥皂 /span /p p style=" line-height:125%" span style=" font-family:宋体" 洗涤剂 /span /p /td td width=" 119" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 医药、香料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 化妆品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 有机 span / /span 无机药品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 病理检测 /span /p /td td width=" 108" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 电子材料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 木材、造纸 /span /p p style=" line-height:125%" span style=" font-family:宋体" 建筑材料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 工业废弃物 /span /p /td td width=" 114" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 冶金、矿物 /span /p p style=" line-height:125%" span style=" font-family:宋体" 玻璃、电池 /span /p p style=" line-height:125%" span style=" font-family:宋体" 陶瓷、黏土 /span /p p style=" line-height:125%" span style=" font-family:宋体" 纺织、石油 /span /p /td /tr /tbody /table p   热分析具有试样需求量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。 /p p   热分析仪已成为我国现阶段部分行业重要的质控分析方法: /p p   ①金行业里铁合金、保护渣检验等生产前期原料控制过程中,热分析已列为控制最终产品质量的重要分析方法之一 /p p   ②在我国申报新药中,热分析已列为控制药品质量的重要分析方法之一 /p p   ③在煤炭/焦碳行业,热分析已成为测定产品品级的重要分析手段 /p p   ④陶瓷行业的主要原料检测仪器。 /p p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 恒久高温综合热分析仪器简介 /strong /span /p p   HCT-4综合热分析仪是北京恒久实验设备有限公司根据国际热分析协会制定的热重分析法与差热分析法为理论标准,结合国际技术发展情况实现全部自主研发、生产,拥有自主知识产权的国内先进的热重法与差热法综合热分析仪器。该仪器具有温度高,恒温时间长,重复性高等特点。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/8fb6f84f-33a3-4142-8486-70c3f1e68ab6.jpg" title=" HCT-4综合热分析仪.jpg" alt=" HCT-4综合热分析仪.jpg" width=" 400" height=" 316" border=" 0" vspace=" 0" style=" width: 400px height: 316px " / br/ strong span 恒久HCT-4综合热分析仪 /span /strong /p p    strong 差热测量系统: /strong 采用哑铃型平板式差热电偶,它检测到的微伏级差热信号送入差热放大器进行放大。差热放大器为直流放大器,它将微伏级的差热信号放大到0-5伏,送入计算机进行测量采样。 /p p    strong 热重测量系统:采 /strong 用上皿、不等臂、吊带式天平、光电传感器,带有微分、积分校正的测量放大器,电磁式平衡线圈以及电调零线圈等。当天平因试样质量变化而出现微小倾斜时,光电传感器就产生一个相应极性的信号,送到测重放大器,测重放大器输出0-5伏信号,经过A/D转换,送入计算机进行绘图处理。 /p p    strong 温度测量系统: /strong 测温热电偶输出的热电势,先经过热电偶冷端补偿器,补偿器的热敏电阻装在天平主机内。经过冷端补偿的测温电偶热电势由温度放大器进行放大,送入计算机,计算机将自动计算出此热电势的毫伏值。 /p p   HJ热分析工具软件使用微量样品一次采集即可同步得到温度、热重和差热分析曲线,使采集曲线对应性更好,有助于分析辨别物质热效应机理。对TG曲线进行一次微分计算可得到热重微分曲线(DTG曲线),能更清楚地区分相继发生的热重变化反应,精确提供起始反应温度、最大反应速率温度和反应终止温度,方便地为反应动力学计算提供反应速率数据,精确地进行定量分析。 /p p   HCT系列热分析仪器应用范围涉及无机物、有机物、高分子化合物、冶金、地质、电器及电子用品、陶瓷、生物及医学、石油化工、轻工、纺织、农林等领域应用于物质的鉴定、热力学研究、动力学研究,结构理化性能关系的研究。广泛应用于科研所、设计院、高等院校等专业实验室、及应用在化工/安全/矿业等生产检测部门。 /p p style=" text-align: right " strong (供稿:北京恒久) /strong /p
  • 中国氨氮在线分析仪市场解析
    p   近年来,水体污染事件频发,水体富营养化已经成为备受世界关注的问题。水体中氨氮的含量与水体富营养化有着密不可分的关系,氨氮含量的变化可以客观地反映水体受污染的程度。 /p p   为了解中国水质氨氮在线分析仪的应用现状、各品牌占有率以及市场前景等内容,仪器信息网特组织了“氨氮在线分析仪市场”调研活动。此次调研,面对的调研对象包括氨氮在线分析仪用户、氨氮在线分析仪制造/应用领域专家以及部分氨氮在线分析仪生产厂商等。 /p p   《中国氨氮在线分析仪市场调研报告(2018版)》就目前国内市场上氨氮在线分析仪的产品、市场等情况进行了调研分析,内容包括氨氮在线分析仪的不同原理、国内氨氮在线分析仪用户的地域分布、行业分布、单位类型分布、以及主流品牌的产品价格及市场份额等。报告中对用户以及业内专家对于氨氮在线分析仪产品、品牌的评价进行了汇总分析,报告的最后为广大仪器厂商指出了氨氮在线分析仪市场增长潜力所在。 /p p   本次调研活动得到了广大用户、企业以及业内专家的大力支持,共有近四百位来自水中氨氮监测/检测相关行业的专家和实验室用户参与了此次调研,其中将近200家相关用户单位接受了我们的电话访谈。 /p p    span style=" font-size: 18px " strong 节选 /strong /span /p p   第一章 氨氮在线分析仪概述 /p p   1.2氨氮在线分析仪 /p p   据了解,目前可用于氨氮在线分析仪的方法原理主要有6种,分别是纳氏试剂分光光度法仪器、水杨酸分光光度法仪器、氨气敏电极法仪器、电导法仪器、滴定法仪器以及铵离子选择法仪器。据本次调研结果显示,目前国内市场上最常见的氨氮在线分析仪方法原理为......本小结就这几种方法原理进行一个简要概述。 /p p   ...... /p p   第二章 氨氮在线分析仪市场抽样统计分析 /p p   2.2氨氮在线分析仪使用单位行业分布 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/e6d374b8-6adf-4f98-b116-c2327bef4bde.jpg" title=" 用户行业分布.jpg" / /p p style=" text-align: center "   图2.2 单位行业分布 /p p style=" text-align: right "   (数据来源:抽样调研) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/435a47e7-3e1c-459e-b68c-30453c2cb4a4.jpg" title=" 单位性质分布_副本.jpg" / /p p style=" text-align: center "   图2.3 单位性质分布 /p p style=" text-align: right "   (数据来源:抽样调研) /p p   在对本次调研结果进行统计分析后发现,氨氮在线分析仪的用户单位所属行业分布较为广泛,主要集中在...... /p p   第三章 氨氮在线分析仪主流品牌及产品分析 /p p   3.2氨氮在线分析仪主流品牌2017年销量情况 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/a3224644-b3d4-4d0e-a30d-e8ea28609699.jpg" title=" 厂商分析_副本.png" / /p p style=" text-align: center "   图3.1不同品牌氨氮在线分析仪2017年销量占比 /p p style=" text-align: right "   (数据来源:仪器信息网) /p p   据本次调研结果显示,2017年氨氮在线分析仪的市场总量估计在C套左右。据了解,目前我国国内氨氮在线分析仪的生产企业为60多家,其中90%左右为国产厂商,部分外企在国内建有生产基地。 /p p   ...... /p p   报告目录: /p p   第一章 氨氮在线分析仪概述...... 1 /p p   1.1水中的氨氮...... 1 /p p   1.2氨氮在线分析仪...... 1 /p p   1.2.1纳氏试剂分光光度法氨氮在线分析仪...... 2 /p p   1.2.2水杨酸分光光度法氨氮在线分析仪...... 2 /p p   1.2.3氨气敏电极法氨氮在线分析仪...... 3 /p p   第二章 氨氮在线分析仪市场抽样统计分析...... 5 /p p   2.1氨氮在线分析仪使用单位地域分布...... 5 /p p   2.2氨氮在线分析仪使用单位行业分布...... 7 /p p   2.3氨氮在线分析仪使用单位性质分布 ......9 /p p   2.4 2017年氨氮在线分析仪中标信息统计 ......10 /p p   2.4.1中标公告中招标单位性质分析 ......10 /p p   2.4.2中标公告中招标单位地区分布 ......11 /p p   2.5氨氮在线分析仪需求趋势分析 ......12 /p p   2.6氨氮在线分析仪网上询盘量 ......13 /p p   2.7相关分析 ......14 /p p   第三章 氨氮在线分析仪主流品牌及产品分析...... 16 /p p   3.1氨氮在线分析仪主流品牌产品及价格分析...... 16 /p p   3.2氨氮在线分析仪主流品牌2017年销量情况...... 19 /p p   3.3国内市场主流类型氨氮在线分析仪占比分析...... 20 /p p   3.4氨氮在线分析仪使用与维护 ......21 /p p   3.4.1纳氏试剂分光光度法仪器 ......21 /p p   3.4.2水杨酸分光光度法仪器 ......21 /p p   3.4.3氨气敏电极法仪器...... 22 /p p   第四章 氨氮在线分析仪用户反馈分析...... 23 /p p   4.1产品评价及未来发展趋势 ......23 /p p   4.2用户采购行为分析...... 24 /p p   第五章 结论...... 26 /p p   报告链接: span style=" text-decoration: underline color: rgb(192, 0, 0) " a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=150" target=" _self" title=" " style=" text-decoration: underline color: rgb(192, 0, 0) " 《中国氨氮在线分析仪市场调研报告(2018版)》 /a /span /p p    strong 欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /strong /p
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p   何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了? /p p   在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。 /p p style=" TEXT-ALIGN: center" img title=" 图1_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg" / /p p style=" TEXT-ALIGN: center"   strong 图1 /strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图 /p p   目前, strong 非变性质谱技术主要应用在两个方面 /strong :一是 strong 生物制药领域 /strong ,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为 strong 研究蛋白质多聚体 /strong ,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。 /p p   现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。 /p p span style=" COLOR: #002060" strong Orbitrap超高分辨质谱:非变性质谱研究的理想平台 /strong /span /p p   古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。 /p p style=" TEXT-ALIGN: center" img title=" 图2_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图2 /strong Orbitrap质谱平台用于非变性质谱分析 /p p   上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。 /p p style=" TEXT-ALIGN: center" img title=" 图3_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg" / /p p style=" TEXT-ALIGN: center"   strong  图3 /strong Cys-ADC结构示意图 /p p style=" TEXT-ALIGN: center"   图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。 /p p style=" TEXT-ALIGN: center" img title=" 图4_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图4 /strong 使用非变性质谱平台对Cys-ADC进行完整分子量测量。 /p p style=" TEXT-ALIGN: center"   (上),原始色谱/质谱图 (下),解卷积后谱图。 /p p   作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。 /p p style=" TEXT-ALIGN: center" img title=" 图5_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图5 /strong 变性质谱条件下对Cys-ADC进行分子量测量。 /p p style=" TEXT-ALIGN: center"   (上),原始色谱/质谱图 (下),解卷积后谱图。 /p p   对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。 /p p style=" TEXT-ALIGN: center" img title=" 图6_20170406090915_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg" / /p p style=" TEXT-ALIGN: center"   ▲非变性条件可减少复杂组分间信号重叠 /p p style=" TEXT-ALIGN: center" img title=" 非变性2_20170406090518_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg" / /p p style=" TEXT-ALIGN: center"   ▲非变性条件下Lys-ADC完整分子量测量结果 /p p style=" TEXT-ALIGN: center"    strong 图6 /strong 使用非变性质谱平台对Lys-ADC进行完整分子量测量。 /p p    strong 小结 /strong /p p   本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见! /p p   参考文献 /p p   [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83. /p p & nbsp /p
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 牛奶分析仪如何提升乳品口感品质?
    牛奶分析仪如何提升乳品口感品质?通过牛奶分析仪,可以对牛奶的各种特性进行检测和分析,为生产者提供关键数据和信息,从而提升乳品口感品质。更多牛奶分析仪产品信息→https://www.instrument.com.cn/netshow/SH116147/C541293.htm1、成分测定:牛奶分析仪可以测定乳制品中的脂肪、蛋白质、乳糖等成分含量。这些成分直接影响乳品的口感和质地。例如,调整脂肪含量可以改变乳品的口感和口腔感受,使其更加丰富或轻盈。2、理化性质分析:牛奶分析仪可以测定乳制品的密度、冰点、PH值、电导率等理化性质。这些性质影响着乳品的口感和稳定性。例如,PH值和电导率可以指示乳品的酸碱度和盐度,而密度则与口感的浓稠度相关。3、水分控制:牛奶分析仪可以测定乳制品中的水分含量,从而帮助生产者控制产品的水分含量。过高或过低的水分含量都会对口感产生负面影响,因此控制水分含量是提升口感品质的关键之一。4、异物检测:牛奶分析仪可以检测乳制品中的异物和杂质。及时发现并清除异物可以保证产品的纯净度和口感。5、微生物检测:牛奶分析仪可以检测乳制品中的微生物含量,包括有害微生物和益生菌。合理控制微生物含量可以延长产品的保质期,并确保口感品质。综上所述,牛奶分析仪通过提供准确的成分分析和理化性质测定,帮助生产者控制产品的水分含量、微生物含量等关键参数,从而提升乳品口感品质。
  • 使用氧氮氢分析仪分析碳化硅中的氧氮氢元素
    1 绪言在材料科学的浩瀚星空中,碳化硅(SiC)无疑是一颗璀璨的明星。作为无机半导体材料的杰出代表,碳化硅不仅以其独特的物理和化学性质在磨料、耐火材料等领域大放异彩,更在光电、电子等高技术领域展现出无限潜力。然而,要想充分发挥碳化硅的这些优异性能,对其内部元素的精确分析与控制显得尤为重要,特别是氧、氮、氢这三大元素。研究表明,氧含量对碳化硅的等电点和分散性有显著影响:随着氧含量增加,碳化硅微粉的等电点接近石英,水中分散性提升,但过高氧含量则反之,且耐高温性下降,故生产中需严格控制氧含量。适量的氮元素可以调节介电性能、增强其耐高温和抗氧化能力,同时,精确控制氮含量还能优化碳化硅的光电性能,如提升发光效率,进而拓展其在光电子及光电导领域的应用。当前,行业内普遍采用惰性气体熔融法作为检测碳化硅中氧、氮、氢元素含量的主流技术。该方法利用惰性气体作为载气,在高温下促使试样中的目标元素转化为易于检测的气态化合物(CO2、N2、H2),随后通过高灵敏度的非色散型红外检测器与热导检测器,实现对样品中氧、氮、氢含量的直接、精确测量。这一技术的广泛应用,为碳化硅材料的质量控制与性能优化提供了强有力的技术支持。然而,目前大部分氧氮氢分析仪都是是用热导测氢/氮,意味着同一个样品单次只能测氢或者氮,我们使用的宝英光电科技的ONH-316锐风氧氮氢分析仪使用红外测氢技术,能实现氧氮氢联测,达到一次分析同时得到三种元素含量的目的。2 实验部分2.1仪器与试剂仪器:宝英光电科技ONH-316锐风氧氮氢分析仪,高纯氩气做载气,流量为400mL/min,红外吸收法测氧和氢,热导法测定氮。常规分析设置:碳化硅熔点相对较高,大约在2700℃左右,为了防止样品熔融后升华,引起气路堵塞,造成后续测试的影响,所以仪器脱气功率设置为6.0kW,后续分析功率设置为5.5kW。测试的最短分析时间设定为:氧20秒、氮15秒、氢20秒。ONH-316锐风氧氮氢分析仪指标名称性能指标氧氮氢分析范围低氧:0.1ppm~5000ppm高氧:0.5%~20%低氮:0.1ppm~5000ppm高氮:0.5%~50%0.1ppm~5000ppm灵敏度0.01ppm载气高纯氩气2.2样品处理碳化硅粉末经天平称重后直接投样分析测试,无需特殊处理,本实验选择的是样品编号2、3、4的原料样品(非标准物质)进行氧、氮、氢元素检测&zwnj 。2.3实验方法和步骤2.3.1 分析前准备仪器开机,依次打开动力气(工业氮气)和载气(氦气)气瓶,打开仪器电源预热,预热一小时待仪器稳定后,打开冷却水开关,打开计算机电源进入软件,设定合适的分析参数。2.3.2 空白试验仪器基线稳定后,进行空烧做样,用空的坩埚做实验,重复5 ~ 6 次,观察曲线稳定性。待系统稳定下来后,只在进样器中加入镍囊进行分析测定系统氧、氮、氢的空白值,并进行空白补偿。2.3.3 称样称重使用的是梅特勒AL104万分之一天平,将镍囊放置放置于天平上,去皮后称取0.01g左右粉末样,称重完成后,盖上镍囊盖并用洁净的平口钳小心挤压镍囊,排出镍囊内部空气。梅特勒AL104万分之一天平2.3.2 样品测试将石墨坩埚放至仪器下电极凹槽内,点击软件上开始分析按钮,待进料口打开后,投入样品,仪器按照分析自动流程进行氧、氮、氢的熔融分析,绘制分析曲线,通过已经建立的分析方法计算并输出氧、氮、氢的含量。按确定的实验方法,对2、3、4号样品的氧、氮、氢量分别连续进行了两次测试。2.3.5 测定结果数据样品标识氧含量%氮含量%氢含量%25.540621.1330.009785.482419.6960.0107935.129714.8990.010795.139515.9660.0110540.586839.2310.010650.612439.1350.011152.3.6样品释放曲线2.3.7 分析中使用到的耗材石墨坩埚带盖镍囊3 结论从分析曲线上可以看出,样品的释放完全且均匀平滑,从分析数据来看,分析结果的稳定性和重复性都非常好,说明此分析方法非常适合用于碳化硅粉末样品的氧氮氢元素分析。
  • 《2020年分析仪器中标信息统计分析报告》正式发布
    为了解2020年全国分析仪器的市场发展行情及分析仪器在不同地区、不同性质单位的分布情况和重点应用领域等内容。仪器信息网产业研究部特别推出中国分析仪器中标信息分析系列报告,将每月搜集到的中标信息汇总统计分析,旨在为仪器公司制定市场、销售策略提供一定参考。  《2020年分析仪器中标信息统计分析报告》统计了2020年1月1日到12月31日公开发布的分析仪器中标信息,统计中未对单标采购金额设限,凡是采购仪器为检测分析类仪器的中标信息均在统计范围内,因此统计结果更具有说服力。  由于有些单位中标信息公示渠道单一、公示内容不完整、公示方式不正规等一系列问题,完全地将国内所有的中标信息统计在内是不可能的,然而统计学中,科学的抽样调查同样能说明问题,因此《2020年分析仪器中标信息统计分析报告》分析结果对仪器公司发展规划,前景预估等市场行为同样具有重要的参考意义。  同已发布的2019年分析仪器中标信息统计分析相比,2020年中标总金额增加了8.35%。在不同单位类型中,***的采购金额居首。在不同应用市场中,***的采购金额居首。在地区分布中,广东、***、***是2020年的仪器采购大省,这与2020年上半年的排名有所出入。更多详细信息请阅读报告具体内容。  报告主要内容包括:各省份中标金额及占比、采购单位类型及采购金额占比、不同行业仪器采购情况,质谱、色谱、光谱类仪器采购情况分析,及按金额排名前50名的采购包明细等。  报告目录  第一章 中标总体情况概述 1  1.1不同年份中标总金额对比分析 1  1.2不同应用领域中标总金额对比分析 3  1.3不同类型单位中标总金额对比分析 4  第二章 中标金额地区分布及重点地区分析 8  2.1不同省份的中标金额及所占比例 8  2.2不同地区中标金额增长幅度对比 11  2.3重点地区不同性质单位中标金额占比 13  2.3.1广东省 13  2.3.2四川省 14  2.3.3湖北省 16  第三章 采购单位类型及采购金额分布分析 18  3.1采购单位类型及采购金额占比 18  第四章 中标仪器应用领域分析 21  4.1中标仪器应用领域及中标金额占比 21  第五章 质谱、色谱、光谱类仪器采购情况 24  5.1质谱类仪器采购情况 24  5.2色谱类仪器采购情况 26  5.3光谱类仪器采购情况 27  第六章 总结 30  附录:中标金额前50名采购包明细 32  报告节选  第一章 中标总体情况概述  1.1不同年份中标总金额对比分析  据2020年中标统计数据显示,2020年公开发布的国内分析仪器中标总金额为***元,相比2019年的***元,增长了8.35%。与此同时,2020年招中标的包数总计为***,与2019年相比减少了***。图1.1 近三年中标总金额和增长率1.4不同类型单位中标总金额对比分析图1.2 2019年与2020年不同应用领域中标总金额和增长率  如图1.2所示,2020年的仪器招标采购总金额同比增长率最大的是***领域,为***%。降幅最大的为***领域,较2019年下降了***%。第二章 中标金额地区分布及重点地区分析  2.1不同省份的中标金额及所占比例图2.1 2020年各省份中标金额比例  具体省份的数值描述和原因分析...... 第三章 采购单位类型及采购金额分布分析  3.1采购单位类型及采购金额占比  统计结果显示,大专院校是2020年分析仪器的采购大户,比例高达***。其次是***,占比为***。详情见图3.1。图3.1 2020年采购单位类型及金额占比  第四章 中标仪器应用领域分析  4.1中标仪器应用领域及中标金额占比图4.1 2020年不同应用领域中标金额占比  从图4.1可以看出,2020年**领域中标金额占比居首,为*** **领域中标金额占比第二,为*** 再次是**领域中标金额占比***,位列第三。第五章 质谱、色谱、光谱类仪器采购情况  2020年质谱类仪器采购包数总计***包,在总包数中占比为***%。与2019年相比增长了***%。......更多内容详询报告:《2020年分析仪器中标信息统计分析报告》
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 综合热分析仪:探索物质行为的温度之谜
    在材料科学、化学和物理等领域中,热分析技术扮演着关键的角色。综合热分析仪(STA),作为这一技术的重要工具,能够揭示物质在不同温度下的物理和化学变化。本文将深入探讨综合热分析仪的工作原理、应用领域以及其对科研的贡献。上海和晟 HS-STA-002 综合热分析仪综合热分析仪是一种精密的热测量仪器,能够测量物质在加热或冷却过程中的各种热学参数,如温度、热流等。这种仪器通过监测物质在受控温度程序下的物理和化学变化,来研究其与温度的依赖关系。在科研领域,综合热分析仪的应用广泛。例如,它可以用于研究材料的热稳定性、相变行为、分解反应、燃烧特性等。此外,通过测量物质的热学性质,科研人员可以深入了解物质的分子结构和物理化学性质,进一步探究其在现实世界中的性能表现。在材料科学中,综合热分析仪被用于研究新型材料的合成与制备过程。通过监测材料在加热过程中的变化,科研人员可以优化制备工艺,提高材料的性能。总的来说,综合热分析仪是科学研究中的重要工具,它能够帮助科研人员深入了解物质的本质属性,为新材料的开发、新药物的研究以及解决复杂的科学问题提供了强有力的支持。在未来,随着科技的不断进步,综合热分析仪的应用领域将更加广泛,其在科研中的作用也将更加重要。
  • 综合热分析仪:探索物质行为的温度之谜
    在材料科学、化学和物理等领域中,热分析技术扮演着关键的角色。综合热分析仪(STA),作为这一技术的重要工具,能够揭示物质在不同温度下的物理和化学变化。本文将深入探讨综合热分析仪的工作原理、应用领域以及其对科研的贡献。上海和晟 HS-STA-002 综合热分析仪综合热分析仪是一种精密的热测量仪器,能够测量物质在加热或冷却过程中的各种热学参数,如温度、热流等。这种仪器通过监测物质在受控温度程序下的物理和化学变化,来研究其与温度的依赖关系。在科研领域,综合热分析仪的应用广泛。例如,它可以用于研究材料的热稳定性、相变行为、分解反应、燃烧特性等。此外,通过测量物质的热学性质,科研人员可以深入了解物质的分子结构和物理化学性质,进一步探究其在现实世界中的性能表现。在材料科学中,综合热分析仪被用于研究新型材料的合成与制备过程。通过监测材料在加热过程中的变化,科研人员可以优化制备工艺,提高材料的性能。总的来说,综合热分析仪是科学研究中的重要工具,它能够帮助科研人员深入了解物质的本质属性,为新材料的开发、新药物的研究以及解决复杂的科学问题提供了强有力的支持。在未来,随着科技的不断进步,综合热分析仪的应用领域将更加广泛,其在科研中的作用也将更加重要。
  • 非变性质谱高通量、定量分析肽交换MHCI复合物
    大家好,本周为大家分享一篇最近发表在Analytical Chemistry上文章,High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry1。该文章的通讯作者是美国基因泰克公司的Wendy Sandoval研究员。  癌症疫苗是通过利用肿瘤细胞相关抗原,来唤醒人体针对癌症的免疫系统。常见的策略是通过对病人的肿瘤细胞样本进行基因测序来寻找特征性抗原肽,该抗原肽会与I类主要组织相容复合体(MHCI)相结合并呈递至CD8+细胞表面,通过与CD8+细胞表面受体相结合从而诱导免疫反应。为了实现整个过程,研究人员通常会结合基因测序和计算机预测结果设计多个候选抗原肽,每个候选肽都需要通过实验测试来确认它与MHCI分子的结合能力以及相关免疫原性。此外,考虑到编码MHCI的基因具有多态性,候选抗原肽还需要与不同等位基因编码的MHCI分子进行测试。因此,本文开发了一种高通量方法,利用非变形质谱快速筛选候选抗原肽并表征形成的肽-MHCI复合物(pMHCI)。  pMHCI复合物中抗原肽的体外载入一直以来都是难点,因为MHCI复合物(包括HLA和β2M亚基)本身并不稳定,需要长度为8~10的多肽链载入到MHCI的凹槽以保持完整。本文则通过利用紫外光裂解肽-MHCI复合物(UV-MHCI)的肽交换实现抗原肽的载入,具体步骤如图1A所示,通过紫外光照,UV-MHCI中的高亲和肽被切割转为低亲和肽段,该低亲和力肽段极易发生肽交换,通过监测新的pMHCI复合物的形成实现对候选肽的评估。目前常用的检测pMHCI形成的工具包括ELISA、TR-FRET以及2D-LC-MS。然而这些方法仅能提供有限的信息关于肽交换、pMHCI分子质量,对形成的pMHCI复合物无法进一步的表征。事实上,pMHCI复合物对后续诱导免疫反应至关重要。  图1. 癌症疫苗的免疫监测的示意图:A) 筛选流程,B检测方法。  为了确认非变性质谱(nMS)能否用于pMHCI复合物表征以及肽交换率的检测,作者对UV-MHCI以及6个标准肽段进行了考察(图2)。未经UV照射的UV-MHCI MS谱图(图2A)可以观察完整的UV-MHCI复合物以及丢掉紫外光裂解肽的MHCI。MHCI复合物被认为是气相解离产生的,因为没有活性肽的稳定作用,MHCI很难存在于溶液相中,溶液中没有MHCI,“空壳”的MHCI只有可能是质谱中UV-MHCI的气相裂解产生的。图2B证实了这一观点,经紫外光照射后,紫外光裂解肽由高亲和力转为低亲和力,从MHCI上脱落,MHCI解离成HLA和β2M亚基,谱图中能观察到HLA和β2M亚基信号。确认了MHCI是由peptide-bound population产生的信号,作者开始用该方法去定量标准肽的肽交换率。如图2C为UV-MHCI与标准肽孵育并过夜UV照射得到的谱图,仅观察到完整的pMHCI以及“空壳”MHCI的信号,说明实现了100%的完全肽交换。如图2D,肽交换率随孵育时间改变,2小时孵育时间足以实现最大肽交换。  图2. nMS表征UV光照A)前B)后的UV-MHCI复合物,C)nMS测定UV-MHCI与标准肽的肽交换率,D)标准肽肽交换率随时间的变换情况。  为了提高分析通量,减少样本消耗,作者在nMS基础上开发了SEC-nMS和CZE-nMS系统。作者用SEC-nMS系统测定了50个候选肽的交换率,说明该系统能够进行中或大规模的数据采集。相比较SEC-nMS而言,CZE-nMS系统具有更高的灵敏度和通量,样品体积消耗从微升减少至纳升,分析时间也缩短为2 min(图3A)。检测信号与进样量呈线性关系,注射体积为3 nL时,最低检测限为6 ng(图3BCD)。作者测定了67个候选肽跨越4种等位基因编码的MHCI分子的肽交换率(图3E)。此外,通过将UV-MHCI复合物同时与四种以上的候选肽进行孵育可在单个实验中同时检测它们的相对肽交换率以及与MHCI结合的亲和力(图3F)。作者还提出Vc50这个概念,即导致50%的pMHCI复合物发生解离的碰撞电压,可作为评估pMHCI复合物稳定性的重要参数。  图3. 使用CZE-MS系统高通量分析pMHCI复合物  除了检测pMHCI复合物的形成,测定肽交换率,nMS还可以对形成的复合物进行进一步的结构表征。如图4所示,native top-down的分析策略可获得多层次的结构信息。本文使用的Orbitrap Eclipse “Tribrid” 质谱,图4A为完整pMHCI的MS1谱图,图4B为施加源内电压(SID)促使蛋白解离为亚基,图4C是将14+ pMHC单独分离出,为后续HCD活化做准备。图4D为pMHCI复合物经HCD解离后的MS2谱图。图4E和图4F则分别为对肽段以及HLA亚基进行top-down测序的结果。这些多层次的结构信息能够帮助区分HLA亚型、阐明候选肽的序列,包括一些PTMs、二硫键信息。这些结构细节可能会影响候选肽与MHCI分子间的亲和力甚至是后续T细胞受体的识别。  图4. Native top-down分析策略获得pMHCI复合物的多层结构信息  总之,本文将非变性质谱(nMS)与分子排阻(SEC)或毛细管电泳(CZE)分离技术相结合用于高通量筛选pMHCI复合物中的候选肽。该方法能够直观确认pMHCI的完整性,Vc50可作为评估复合物气相稳定性的重要指标,通过native top-down分析策略可获得多层次的结构信息。以上所有确保了后续临床T-细胞实验的正常进行。  撰稿:刘蕊洁  编辑:李惠琳  原文:High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry  参考文献  1. Schachner LF, Phung W, Han G, et al. High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry. Anal Chem. 2022 10.1021/acs.analchem.2c02423. doi:10.1021/acs.analchem.2c02423
  • 日立分析仪器发布日立New STA系列TG-DSC热分析仪新品
    日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View ® )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。创新点:New STA系列新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10µ g以下。此外,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。New STA系列对选配件试样观察系统(Real View ® )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升。 日立New STA系列TG-DSC热分析仪
  • 日立分析仪器发布日立New STA系列TG-DSC热分析仪新品
    日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View ® )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。创新点:New STA系列新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10µ g以下。此外,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。New STA系列对选配件试样观察系统(Real View ® )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升。 日立New STA系列TG-DSC热分析仪
  • 中国总磷/总氮在线分析仪市场发展调研解析
    p   目前,水体的富营养化问题已相当严重,引起人们的普遍重视。水中的总磷/总氮的含量在一定程度上能反映出水环境富营养化的情况,因此总磷/总氮的测定已成为水研究中必不可少的内容。 /p p   总氮包含有机氮和氨氮、硝态氮等,氨氮是水体中的营养素,是水体中的主要耗氧污染物,可导致水富营养化现象产生,对鱼类及某些水生生物有毒害,所以要对其进行监测控制。 /p p   除氨氮外,总氮中含有的其它物质也可能引起水体富营养,同样可引起水质恶化。以前出于治理成本、检测手段等因素,各废水排放标准中对氨氮和总氮的重视程度各有差异,现在国家对两者的监测都比较重视了。在评测水体富营养化特征的时候,既考虑氨氮也考虑总氮是比较全面的评价方式。 /p p   为了及时有效地了解水中总磷/总氮的含量,出现了总磷/总氮在线监测技术。针对中国水质总磷/总氮在线分析仪的应用现状、各品牌占有率以及市场前景等内容,仪器信息网特组织了“总磷/总氮在线分析仪市场调研”活动。 /p p   基于调研结果,我们撰写完成《中国总磷/总氮在线分析仪市场调研报告(2018版)》。《中国总磷/总氮在线分析仪市场调研报告(2018版)》就目前国内市场上总磷/总氮在线分析仪的产品、市场等情况进行了调研分析,内容包括总磷/总氮在线分析仪的不同原理、国内总磷/总氮在线分析仪用户的地域分布、行业分布、单位类型分布、以及主流品牌的产品价格及市场份额等。报告中对用户以及业内专家关于总磷/总氮在线分析仪产品、品牌的评价进行了汇总分析,报告的最后为广大仪器厂商指出了总磷/总氮在线分析仪未来发展方向所在。 /p p   本次调研活动得到了广大用户、企业以及业内专家的大力支持,共有近四百位来自水中总磷/总氮监测/检测相关行业的专家和用户参与了此次调研,其中接近200家相关用户单位接受了我们的电话访谈。 /p p    strong 节选 /strong /p p   第一章 总磷/总氮在线分析仪概述 /p p   1.2 总磷/总氮测定方法 /p p   本次调研结果显示,目前国内市场上最常见的总磷、总氮在线分析仪的设计原理分别是基于《GB/T 11893-1989 水质 总磷的测定 钼酸铵分光光度法》中的钼酸铵分光光度法和《HJ 636-2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》中的紫外分光光度法。本章下面会就这两种方法原理进行一个简要概述。 /p p   ...... /p p   第二章 总磷/总氮在线分析仪市场抽样统计分析 /p p   2.2 总磷/总氮在线分析仪使用单位行业分布 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/42fb64ce-2151-4f74-b297-960defc675ab.jpg" title=" 1.0.jpg" alt=" 1.0.jpg" / /p p style=" text-align: center "   图2.2 单位行业分布 /p p style=" text-align: right "   (数据来源:抽样调研) /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/cdb04e8b-5870-4a67-bd48-67f59b17e93f.jpg" title=" 2.0.jpg" alt=" 2.0.jpg" / /p p style=" text-align: center " 图2.3 单位性质分布 /p p style=" text-align: right "   (数据来源:抽样调研) /p p    /p p   第三章 总磷/总氮在线分析仪市场情况 /p p   根据本次调研结果,本章对2018年总磷/总氮在线分析仪的市场总量以及各大主流品牌所占国内市场的份额进行了一个阐述,并结合前几章对总磷/总氮在线分析仪的市场发展情况进行了分析。 /p p   3.1 总磷/总氮在线分析仪主流品牌2018年市场情况 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b2b3b3f4-59fb-4423-a4c1-36ffd438e2da.jpg" title=" 3.0.jpg" alt=" 3.0.jpg" / /p p style=" text-align: center " 图3.1不同品牌总磷/总氮在线分析仪2018年销量占比 /p p style=" text-align: right "   (数据来源:仪器信息网) /p p    strong 报告目录 /strong /p p   第一章 总磷/总氮在线分析仪概述............... 1 /p p   1.1总磷/总氮概述 ................1 /p p   1.2总磷/总氮测定方法 ...............1 /p p   1.3总磷/总氮在线分析仪............... 3 /p p   第二章 总磷/总氮在线分析仪市场抽样统计分析 .......5 /p p   2.1总磷/总氮在线分析仪使用单位地域分布......5 /p p   2.2总磷/总氮在线分析仪使用单位行业分布 .........7 /p p   2.3总磷/总氮在线分析仪使用单位性质分布 .......8 /p p   2.4 总磷/总氮在线分析仪中标信息统计 ..........9 /p p   2.4.1中标公告中招标单位性质分析 .........9 /p p   2.4.2中标公告中招标单位地区分布........11 /p p   2.5总磷/总氮在线分析仪需求趋势分析 ......13 /p p   2.6总磷/总氮在线分析仪网上询盘量 .........14 /p p   第三章 总磷/总氮在线分析仪市场情况 ................16 /p p   3.1总磷/总氮在线分析仪主流品牌2018年市场情况 .............16 /p p   3.2总磷/总氮在线分析仪市场发展历程 ............18 /p p   第四章 总磷/总氮在线分析仪部份主流产品及生产商介绍 ..23 /p p   4.1进口品牌产品及价格情况 ............23 /p p   4.1.1岛津TNP-4200总磷/总氮在线分析仪 ..........23 /p p   4.1.2哈希NPW-160总磷/总氮在线分析仪 ........25 /p p   4.1.3堀场TPNA-500总磷/总氮在线分析仪 .........27 /p p   4.2国产品牌产品及价格情况 ..........29 /p p   4.2.1湖南力合LFS-2002(TP/TN)总磷/总氮在线分析仪 ......29 /p p   4.2.2聚光科技TPN-2000型总磷/总氮在线分析仪 ....30 /p p   4.2.3中兴仪器C310型总磷/总氮在线分析仪 ........31 /p p   4.2.4广州怡文总磷/总氮在线分析仪 ............32 /p p   4.2.5宇星科技YX-TNP型总磷/总氮在线分析仪 ........34 /p p   4.2.6 朗石仪器PhotoTek 6000 TP/TN在线分析仪 ....35 /p p   4.2.7杭州绿洁总磷总氮在线分析仪..........37 /p p   第五章 总磷/总氮在线分析方法存在问题及未来发展趋势 ..40 /p p   5.1总氮在线监测中存在的问题 ...............40 /p p   5.2总磷在线监测中存在的问题 ............41 /p p   5.3小结 ...................41 /p p   5.4总磷/总氮在线分析仪未来发展趋势 ............42 /p p   第六章 结论.................44 /p p   报告链接: a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=165" target=" _self" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " 《中国总磷/总氮在线分析仪市场调研报告(2018版)》 /span /a /p p   欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /p
  • 热分析仪器的基本结构单元
    p   热分析技术根据被测物理量的物理性质来分共有九大类、17种方法。所组成的热分析仪器就更多了。通常热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其框图如图所示。 /p p /p p style=" text-align: center " img width=" 400" height=" 370" title=" 热分析仪器框图.jpg" alt=" 热分析仪器框图.jpg" src=" https://img1.17img.cn/17img/images/201808/uepic/50c889b4-1faf-48a2-a5d8-4f834ac222d1.jpg" / /p p style=" text-align: center " strong 热分析仪器框图 /strong /p p strong 一、程序温度控制器 /strong /p p   它是使试样在一定温度范围内进行等速升温、降温和恒温。通常使用的升温速率为10℃/min或20℃/min。而程序温度速率可为0.01~999℃/min。近代程序温控仪大多由微机完成程序温度的编制、热电偶的线性化、PID调节以及超温报警等功能。 /p p strong 二、炉体部分 /strong /p p   它是使试样在加热或冷却时得到支撑。炉体部分包括加热元件、耐热瓷管、试样支架、热电偶以及炉体可移动的机械部分等。炉体的温度范围最低为-269℃(液氦制冷),最高可达2800℃(在高真空下用石墨管或钨管加热,用光学高温计测温)。炉体内的均温区要大,试样放在均温区中。因为试样各部分的温度是否均匀对热分析的结果有一定的影响。 /p p strong 三、物理量检测放大单元 /strong /p p   热分析仪器必须能随试样温度的变化及时而准确地检测试样的某些物理性质。 span style=" color: rgb(255, 0, 0) " 由于绝大多数被测物理量是非电量,它们的变化往往又是很微小的,为了及时而准确地检测它们,需要把这些非电量转换成电量,加以放大,再通过定标计算出被测参数。 /span 差示测量方法可以提高测量的 span style=" color: rgb(0, 176, 240) " 灵敏度 /span 和 span style=" color: rgb(0, 176, 240) " 准确度 /span ,因此应用得很普遍。 span style=" color: rgb(255, 0, 0) " 非电量转变为电量可以通过各种传感器来完成。 /span 例如 span style=" color: rgb(0, 176, 240) " 称重传感器、位移传感器、光电传感器、热电偶传感器、声电传感器 /span 等。物理量的检测系统是各种热分析仪器的 span style=" color: rgb(255, 0, 0) " 核心 /span ,也是区分各种热分析仪器的本质部分,它的性能是衡量热分析仪器水平的一个重要标志。 /p p strong 四、微分器 /strong /p p   它是把非电量传感器的放大信号经过一次微分(导数),从微分(对时间)曲线中可以更明显地看出放大信号的拐点、最大斜率等。 /p p strong 五、气氛控制器 /strong /p p   热分析仪器对试样所处的气氛条件有各种要求,因此,大多热分析仪器备有气氛控制系统。热分析对气氛条件的要求有如下原因。 /p p   高温下试样可能在空气中被氧化而完全改变原来的特性,故要求在真空或惰性气氛下升温,或在某种反应气氛下升温。 /p p   热分析与其他分析技术联用时,要求把热分析过程中所产生的气相产物利用流动载气送出。 /p p   要求有适当的气路把热分析过程中所产生的腐蚀性气体或有毒气体排出。 /p p   相当的热分析课题是研究气氛的种类、压力、流动速率以及活性程度等对热分析结果的影响。热分析仪器按气氛条件可分为高真空型、低真空型、常压型、高压型、静态型和流动型等。 /p p strong 六、计算机数据处理系统 /strong /p p   近年来,由于计算机的快速发展、软件的不断完善,大大推动了数据处理系统。首先把采集来的数据进行各种方法的滤波平滑 然后,应用软件对标准物质进行温度校正和焓变校正、长度校正、质量校正以及基线背景线的扣除等。应用软件求取试样的焓变值、熔点、晶相转变温度、玻璃化转变温度、试样成分的组成、膨胀系数等。还有一些软件需要对数学公式进行分析、简化,适合于热分析应用。例如动力学参数的求取、药品纯度的求取。 /p p strong 七、显示和打印 /strong /p p   它是把热分析曲线及其处理结果在显示屏上显示出来,并用彩色喷墨机或激光打印机打印出来。同时在显示屏上用鼠标进行各种操作。 /p
  • 光谱分析仪的五大特点性能
    光谱分析仪器的不足之处是它仍是一个相对的分析方法,试料组成、结构状态、激发条件等难于完全控制,一般需用一套相应的标准样品进行匹配,使光电光谱的应用受到一定的限制,另外光电光谱分析法也仅适用于金属元素及非金属元素的成分分析,对元素的价态的测量仍无能为力,有待于其他分析方法配合使用。 光谱仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。 直读光谱仪的特点 1、自动化程度高、选择性好、操作简单、分析速度快,可同时进行多元素定量分析。如在1~2min之内可以同时对钢中20多个合金元素进行测定,控制冶炼工艺,加速炼钢过程。 2、校准曲线线性范围宽。由于广电倍增管对信号的放大功能很强,对于不同强度的谱线可使用不同的放大倍率(相差可达一万倍),因此广电光谱法可用在同一分析条件对样品中含量相差悬殊的很多元素从高含量到痕量同时进行测定。 3、准确度高。采用摄谱法的光谱分析,因感光板及测光方面引入的误差一般在1%以上,而采用光电法时,测量误差可降至0.2%一下,因而具有较高的准确度,有利于进行样品中高含量元素的分析。 4、检出限低。光电光谱分析放入灵敏度与光源性质、仪器状态、试料组成及元素性质等均有关。一般可对固定的金属、合金或粉末采用火花或电弧光源时,检出限可达0.1~10ug/g。对溶样样品用ICP光源时检出限达1ng/ml~1ug/ml。用真空型光电光谱仪时对碳、硫、磷等非金属也具有较好的检出限。 5、在某些条件下,可测定元素的存在方式,如测定钢铁中的酸溶铝、酸不溶铝等。 光谱分析在物理学、化学、生物学等基础学科以及冶金、地址、机械、化工、农业、环保、食品、医药等领域都有其广泛的用途。特别是在钢铁及有色金属的冶炼中控制冶炼工艺具有极其重要的地位,而在地质系统找矿、环保、农业、生物、样品中微量元素的检测,高纯金属及高纯试剂中痕量杂质的测定以及状态分析方面,光电光谱法都是具有相当有效的一种分析手段,是其他方法无法取代的。 光谱分析仪仪器可快速准确的测定各种金属材质的化学成分。
  • 2020年第一季度热分析仪中标简析
    p   1977年在日本京都召开的国际热分析协会(ICTA, International Conference on Thermal Analysis)第七次会议对热分析进行了如下定义:热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术。 最常用的热分析方法有:差热分析(DTA)、热重分析(TG)、导数热重分析(DTG)、差示扫描量热(DSC)、热机械分析(TMA)和动态热机械分析(DMA)等。热分析技术在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。 /p p   仪器信息网对2020年第一季度热分析仪中的热重分析仪、差示扫描量热仪、同步热分析仪中标情况进行了简要梳理。由于数据为不完全统计,相关数据难免疏漏之处,所得结果仅供读者参考,不能作为决策依据。 /p p   2020年第一季度,由于受到新型冠状病毒防控政策的影响,传统销售方式不可避免的受到了较大的限制,仪器行业第一季度都受到了一定的冲击。根据统计,广东、山西、陕西、上海、河南、辽宁、浙江、江苏、湖南、江西、云南、重庆、山东、北京、内蒙古、福建等省份均在第一季度公布热重分析仪、差示扫描量热仪、同步热分析仪的中标信息。 /p p   经过统计,中标分布情况整理如下: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/68f2f5de-9789-4311-854e-b59ef296cc92.jpg" title=" 2020 1-3月 (3)-3.png" alt=" 2020 1-3月 (3)-3.png" / /p p style=" text-align: center " 各省份中标地图 颜色深度代表该省仪器中标情况(颜色越深表示越活跃) /p p   2020年第一季度的中标单位类型涵盖了高校、研究院所、企业等。以采购中标最多的广东省为例,除华南师范大学、广东药科大学等高校单位外,还有深圳先进电子材料国际创新研究院、中国科学院深圳先进技术研究院等科研院所,以及深圳市燃气集团股份有限公司等企业单位。 /p p   湖北省由于新冠疫情防控政策等因素,第一季度仪器采购趋于停滞。随着城市解封以及6月武汉公布耗资9亿对武汉近千万人进行核酸检测结果等最新进展,在下半年仪器采购需求有望集中爆发。此外江苏、浙江、陕西、广东、河南、湖南、山东、山西、辽宁、北京、上海等地的采购活跃度可能在接下来的数月进一步提升。 /p p br/ /p
  • 在线水质分析仪器—技术、应用与市场(一)
    p    span style=" color: rgb(0, 176, 240) " strong 1、前言 /strong /span /p p   在线水质分析仪器是一类专门的自动化在线分析仪表,仪器通过实时、现场操作,可在无需人工操作的情况下实现从水样采集到数据输出的快速分析 许多结构复杂的在线水质分析仪器已经具有了自动诊断、自动校准、自动清洗、故障报警等功能,以保证分析结果可靠性和仪器的长时间无故障运行。 /p p   目前有两种不同结构和形式的在线水质分析仪器:“在线分析传感器和比较复杂的自动化分析设备或者装置”。按照国际标准化组织(ISO)代号ISO15839《水质-在线传感器/分析设备的规范及性能检验》标准的定义:“在线分析传感器/设备(on-line sensor/analyzing equipment) ,是一种自动测量设备,可以连续(或以给定频率)输出与溶液中测量到的一种或多种被测物的数值成比例的信号。” /p p   随着全球范围内对环境保护、水资源可持续利用以及水安全的日益重视,为满足世界各国日趋严格的环保法规要求和不断发展的水处理工业市场的需求,作为获取水质信息的源头技术,在线水质分析仪器及其应用技术得到了巨大的发展机会。同时,计算机科学、分析化学、材料科学等相关科学技术的进步,也为在线水质分析仪器技术的发展提供了可靠的技术支撑。国际水协会(IWA)的前身国际水污染研究协会(IAWPR)自1973年就开始了组织主题为ICA(Instrumentation-仪表,Control-控制and Automation-自动化)的专题会议,专门推广和研究水处理领域的在线水质分析仪器及过程控制的应用。近来,世界卫生组织(WHO)也在其发布的《再生水饮用回用:安全饮用水生产指南》中指出需要在再生水饮用回用系统全流程的关键控制点实施运行监测,并建议尽量采用在线监测仪器进行数据实时监测和记录。在技术进步和法规的推动下,越来越多的在线水质分析仪器被应用到环境监测、废水排放监测,以及各种水处理工艺的过程控制系统中了。 /p p   在中国,伴随着改革开放40年经济高速发展的城镇化与工业化进程,无论是在城镇化过程中大量的自来水水厂和污水处理厂建设,还是工业化进程中各种火力发电厂、石油化工厂、大型冶金企业、食品酿造厂等高耗水工业企业的兴建,都给予了在线水质分析仪器巨大的市场空间,在此基础上,中国的在线水质分析仪器行业获得了空前的成长机会,中国的在线水质分析仪器技术有了显著的发展和长足的进步,在线水质分析仪器的可靠性得到了市场和权威机构的广泛认可。 /p p   随着政府和公众对水环境保护和饮用水安全的高度重视,以及政府逐年增加的巨额环保资金,特别是在具有中国特色的“自动监测为主,手动监测为辅的监测模式”的环境监测技术路线的框架下,中国已经逐渐发展成为了在线水质分析仪器全球最大的地表水水质自动监测和废水污染源排放自动监测领域的单一市场。 /p p   中国环境保护部门于2001年6月4号发布并同日实施了HBC 6-2001《环保产品认定技术要求 化学需氧量(CODCr)水质在线自动监测仪》行业标准,这是中国第一部用于废水污染源排放自动监测的在线水质分析仪器标准,在接下来的几年中,各个相关政府部门还陆续发布了多部在线水质分析仪器的国家和行业标准。标准的发布实施,加上在线水质分析仪器在实际水质监测中的成功应用,有力地推动了中国水质在线分析仪器市场的发展和技术的进步。 /p p   随着中国环境保护事业和环保市场的持续发展,国务院办公厅于2015年7月印发了《生态环境监测网络建设方案》,提出例如“到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。”的目标,方案还要求“完善重点排污单位污染排放自动监测与异常报警机制,提高污染物超标排放、在线监测设备运行和重要核设施流出物异常等信息追踪、捕获与报警能力以及企业排污状况智能化监控水平”。在2018年1月1日正式实施的“中华人民共和国环境保护税法”第十条中还明确规定了应税污染物的计算方法,“纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算”,通过法律条文的形式进一步确定了在线分析仪器的地位。 /p p    span style=" color: rgb(0, 176, 240) " strong 2、在线水质分析仪器的检测技术简介 /strong /span /p p    strong 2.1在线水质分析仪器的技术发展 /strong /p p   一直以来,在线水质分析仪器技术都是沿着在线分析仪器研发制造技术和在线水质分析仪器应用技术两个方面同时发展的。 /p p   根据ISO标准的定义,有两种形式的在线水质分析仪器:在线分析传感器和比较复杂的自动化分析设备或者装置。 /p p   第一代的在线水质分析仪器常常是以在线分析传感器+显示控制器的形式出现的,仪器通常结构都比较简单,通过传感器直接和被测水样接触获得水质指标的数据。最初可以测量的水质指标,主要是一些简单的物理指标和成分指标,如水温、电导率、PH、ORP、溶解氧等 接着是浊度、悬浮物浓度等光学原理的传感器 随着电化学分析技术的发展,氟离子、铵离子、硝酸盐等多种离子选择电极法原理的在线水质分析传感器也开始进入市场。由于传感器和水样直接接触,无法像实验室人工分析时进行样品预处理及去除样品中干扰物质,在面对水质复杂的水样(高温、高压、含油、硫化物、重金属、悬浮物、高盐度、腐蚀性气体等各种杂质)时的适用性受到很大局限,最初的测量对象主要是地表水、饮用水、市政污水以及工业纯水等水质情况较为简单的水体。 /p p   为了解决传感器测量复杂水样的适用性问题,也为了实现一些实验室人工分析方法步骤比较繁琐或者测试条件要求较高的水质参数的自动分析,随着自动控制技术的采用,结构比较复杂的在线水质分析仪器-水质自动化分析设备或装置开始出现:仪器通过控制一整套的设备或装置的自动运行来完成以前实验室人工分析的步骤,比如:过滤、加热、加显色剂、混合、测量等等 另外,为了保证长时间连续运行的准确度,还需要定时对仪器进行自动校准,以及定期的人工维护。这一类在线水质分析仪器结构复杂,多用于水质成分指标(TOC、SiO2、总磷、总氮、重金属等)和评估性水质综合指标(COD、碱度、硬度、生物毒性等)。 /p p   随着现代科学技术的发展,特别是分析化学、材料科学、电子科学以及包括计算机技术和通讯技术、自动控制技术在内的系统工程成套自动化技术的发展, 再加上水质科学自身的发展与进步,从以下介绍的多个维度共同推动了在线水质分析仪器技术的发展。 /p p   首先,在测量原理方面,除了传统的电化学、光学、光电比色法原理,激光诱导击穿光谱、混合多光谱分析、X射线荧光分析、三维荧光光谱、生物技术等各种新的测量原理被应用到了在线水质分析仪器 同时,流动注射分析技术的发展和应用,使得仪器分析时间大大缩短,增强了在线分析技术实时性的优点。 /p p   其次,水质科学的发展,提出了“替代参数”的概念,为在线水质分析仪器的开发和应用开拓了新的空间。水质替代参数是指一类特定的水质参数,可以综合反映水体的某一类别的水污染情况或水处理过程中某些不能实现在线监测而且实验室分析也非常繁琐水质参数的变化。目前,对饮用水水质安全来讲,反应有机物总量及某些特定成分变化的综合性指标UV254是目前非常重要的水质替代参数,可以通过UV254的实时测量,获得和水中有机物污染相关的其他参数(如,COD、BOD、TOC等)的信息。由于能实时反映水质的变化,测量“替代参数”的在线水质分析仪器在水处理工艺过程控制中有着非常重要的价值。目前其他重要的在线水质替代参数分析仪器还有:浊度、颗粒物、SDI(污染指数)等。 /p p   第三,随着材料科学的发展,在线水质分析仪器传感器的环境适应性也得到了很大提高,表现为:高温材料的采用,使得传感器的最高工作温度范围不断提高 传感器材质采用惰性的材料,可以耐受水中硫化氢、硫化物、高盐、重金属、油污染的探头,可以耐受高强度核辐射的溶解氧和溶解氢探头应用于核电厂 采用钛合金材料,可长时间应用于海洋监测的传感器等等。 /p p   另外,和所有仪器产品一样,在线水质分析仪器中执行数据处理与通讯功能的硬件与软件都采用了电子工业的最新技术。相对于最初的模拟电路,由于数字电路设计要比模拟电路相对简单、自动化程度高,对设计人员的经验水平要求也稍低,数字电路技术的采用和普及,使得仪器设计和批量生产的成本得以大幅下降,仪器的可靠性有了很大的提升。 /p p   目前的在线水质分析仪器的控制器普遍具有了自动运算、统计、图形显示、趋势分析等数据处理功能 同时,仪器一般具有自动诊断、故障报警功能,方便仪器运行及维护人员及时发现和解决仪器的问题 仪器生产商采用通用控制器也已经成为共识,同一种型号的控制器可以同数十种传感器连接,由此给仪器生产企业和使用者两方面都带来了好处:仪器制造厂家可以实现控制器的大批量生产,取得规模效益 同时通用控制器降低了仪器技术服务的复杂程度,也降低了仪器生产厂家的服务成本 带给在线分析仪器使用者的好处也是显而易见的:在保证水处理生产正常运行的同时,可以减少水质分析仪器零备件的库存压力 通用控制器也让操作者减少了学习的时间,可以更快更熟练的掌握仪器的使用及维护,提高生产效率 同时,新型的数字化传感器可以被通用控制器自动识别,具有“即插即用”功能,极大的减轻了安装维护人员的劳动强度。在通讯及数据传输方面,RS232、RS485以及Profibus、Modbus等现场总线技术和TCP/IP等网络协议得到了普遍应用,为实现水质监测数据的实时传输及水处理过程的自动控制提供了支持。 /p p   最后,标准化进一步支持了在线水质分析仪器技术和行业的发展。国际标准化组织(ISO)在2003年制定的代号为ISO15839-2003的标准《水质在线传感器/分析设备-水质规范和性能测试》,定义了在线水质分析仪器的性能特征,建立了评估及测定性能特征参数的测试程序,这个通用性标准给在线水质分析仪器的研发、生产及验收提供了依据。进入21世纪以来的十多年中, 中国也发布了大量有关在线水质分析仪器的国家标准和一系列的行业标准。这些标准的发布与实施,为在线水质分析仪器的应用与发展提供了技术上的可靠保证。 /p p    strong 2.2 水质在线分析仪器的主要检测技术 /strong /p p   作为一种专用于水质分析的特定仪器分析技术,和其他仪器分析技术一样,水质在线分析仪器检测技术的理论基础也是根据水中待测物质的物理化学或者生物化学性质来测定物质的组成及相对含量。根据测定的方法原理不同,主要可以分为电化学分析、光学分析、色谱分析、其他分析方法等4大类。 /p p   电化学分析法(electroanalytical chemistry,也称电分析化学法),是建立在物质在溶液中电化学性质基础上的一类分析方法,它是仪器分析方法中的一个重要分支。电化学分析测量系统是一个由电解质溶液和电极构成的化学电池,通过测量电池的电位、电流、电导等物理量,实现对待测物质的分析。根据测定电化学参数的不同,电化学分析法又分为电位分析法、库仑分析法、伏安分析法(包括极谱分析法)、电导分析法等。 /p p   电化学分析法原理的在线水质分析仪器,是出现最早和应用最普遍的一类在线水质分析仪器。其中,既有较为简单的传感器形式的各种Ph/ORP(氧化还原电位)分析仪、电导率分析仪(目前在工业过程分析中应用十分普遍的酸碱盐浓度计,也都大多是采用电导检测原理的在线分析仪器)、极谱法溶解氧分析仪、基于离子选择电极法的氨氮、氯离子、硝酸盐氮、亚硝酸盐氮分析仪 也有结构比较复杂的自动化分析设备,如基于伏安分析法的各种重金属分析仪,采用电位滴定原理的COD分析仪,高锰酸盐指数分析仪,采用电导分析法的纯水TOC(总有机碳)分析仪等。 /p p   光学分析法(optical analysis),是以物质发射或吸收电磁辐射以及物质与电磁辐射相互作用(发光、吸收、散射、光电子发射等)来对待测样品进行分析的方法。可以分为光谱法和非光谱法两大类。非光谱分析法,是基于物质引起辐射的方向或物理性质的改变,检测被测物质的某种物理光学性质,进行定量、定性分析的方法,非光谱分析法不考虑物质内部能量的变化,包括了折射法、散射光法等。光谱分析法,是以光辐射能与物质组成和结构之间的内在联系或者以光谱或波谱的测量为基础,利用物质的光谱特征,进行定性、定量及结构分析的方法。按物质能级跃迁的方式,光谱分析法又分为三种基本类型:发光光谱法(包括分子荧光分析法、X射线荧光分析法等)、吸收光谱法(包括紫外可见分光光度法、红外分光光度法等)以及散射光谱法(如最近比较热门的拉曼散射光谱法)。 /p p   在线浊度分析仪是目前非光谱分析法在水质在线分析技术最有价值的应用。浊度是水质净化处理最重要的关键性工艺参数,它既可反应水中悬浮物的浓度,同时又是人的感官对水质最直接的评价,全球各国包括世界卫生组织的饮用水标准都把浊度作为了一个必测的指标。浊度的测量原理是利用光的散射原理,当光束接触到水中的悬浮物颗粒表面时,将会散射和吸收通过水样的光线,散射光与入射光成90度直角时,散射光强度与浊度的大小成线性关系,通过检测器测量散射光强度,同标准比较,就能获得水样的浊度值。目前市场上已经有了数十种不同结构、不同量程、不同测试精度、不同安装方式的在线浊度分析仪器产品,可以满足从洁净度极高的膜过滤水到高污染、高悬浮物水样浊度的实时监测。 /p p   目前,采用光谱分析法原理的水质在线分析仪器是能够测量水质参数最多的一类仪器,这其中,既有采用经典比色法原理的总磷分析仪、总氮分析仪、氨氮分析仪、SO2分析仪、六价铬、铜等重金属分析仪 也有X射线荧光分析法原理的铅、砷分析仪 还有紫外荧光原理的水中油(多环芳烃)分析仪等。最近,随着化学计量学和光谱学的发展,采用全光谱扫描方法,可一次分析十多种水质参数的多参数在线水质分析仪也得到越来越多的应用。 /p p   另外,随着流动注射分析技术的出现和大量应用,也为提高“结构比较复杂的自动化分析设备或者装置”这类在线水质分析仪器的分析速度,实现仪器快速自动完成水样采集、处理,试剂混合,乃至最终检测提供了支撑。流动注射分析(Flow Injection Analysis,缩写FIA),是一种“非平衡态”化学分析技术,1974年由丹麦化学家鲁齐卡(Ruzicka J)和汉森(Hansen E H)提出的一种创新的连续流动分析技术。这种技术是把一定体积的试样溶液注入到一个连续流动的、无空气间隔的试剂溶液(或水)载流中,被注入的试样溶液在反应管中形成一个反应单元,并与载流中的试剂混合、反应后,再进入到流通检测器进行测定分析及记录。整个分析过程中试样溶液都在严格控制的条件下在试剂载流中分散,因此,只要待测水样的注射方法,在管道中存留时间、温度和分散过程等条件相同,不要求反应达到平衡状态就可以按照比较的方法,通过标准溶液所绘制的工作曲线测出试样溶液中被测物质的浓度。 /p p   流动注射分析技术的应用,极大的提高了水样分析速度。特别是随着由具有良好耐腐蚀性能的聚乙烯、聚四氟乙烯等材料制成的微型管道系统的出现,仪器对样品以及分析试剂的耐受性大大提高,扩展了仪器对分析方法的适应性,增加了可实现自动分析的水质参数,采用流动注射技术的仪器小型化也成为现实。由于流动注射分析技术具有可以把吸光分析法、荧光分析法、比浊法和离子选择电极分析法等诸多分析方法的流程实现在管道中完成、需要的试剂量小、易于自动连续分析的优点,在水质在线分析仪器领域得到了非常普遍的应用,几乎被所有非传感器形式的在线水质分析仪器所采用。 /p p   最近以来,为满足对水中多种微量成分的实时监测,色谱原理的在线水质分析仪器开始出现,在线离子色谱监测系统监测水中高氯酸盐和氯酸盐、在线气相色谱仪监测水中VOCs(挥发性有机物)的都取得了成功的应用。 /p p   其他原理的在线水质分析仪器中,生物技术原理的产品占据了很大的份额,其中,发光细菌法生物毒性监测仪、微生物燃料电池监测生化需氧量和毒性,核酸酶重金属特异性反应监测重金属,酶底物法监测大肠杆菌、ALP(碱性磷酸酶)法监测细菌总数等原理和方法的在线水质分析仪器最近几年都开始得到市场的认可。 /p p    strong 2.3 国内外水质在线检测的技术差距 /strong /p p   在中国,由于水质在线分析仪器的主要市场,包括工业水处理过程监测与控制、市政自来水与污水处理、环境自动监测等同欧美和日本等主要发达国家相比,起步都较晚,同时也因为支撑水质在线分析仪器研发制造的电子技术、自动控制、软件等基础技术和精密制造产业在中国也主要是改革开放以后的短短几十年里才开始发展起来的,两方面的原因造成了中国水质在线分析仪器以及检测技术发展的差距。 /p p   和其他分析仪器产品一样,可靠性是国内外在线水质分析仪器最大的差距,专门人才的缺乏造成的设计理念和流程的落后、关键元器件的稳定性和供应不足以及在线水质分析仪器行业的制造水平、质量管理水平的差异都是造成可靠性差距的原因。 /p p   水质在线检测技术同国内外差距的另外一点是分析原理创新,同发达国家同行不断应用的新分析原理、新材料、新算法等新技术相比,目前中国水质在线检测仪器主要原理还是以传统的电化学、比色法为主,仪器对水质变化的适应性还不能完全满足目前水处理工业过程控制的要求。 /p p   在绿色分析的认知和应用上,国内外水质在线分析技术也存在一定的差距,绿色分析要求是在分析过程减少多环境的影响,避免(或大幅度减少)使用化学试剂,减少气体、液体和固体废物的产生,避免使用剧毒(包括生态毒性)的试剂 减少样品分析的所需的人力和能耗。目前国内在线水质分析仪器,特别是结构比较复杂的监测型在线水质分析仪器,在试剂使用量、废液产生量以及有毒试剂的使用和能耗方面,同国外先进仪器还有一定的差距。 /p p   最近十多年以来,在“自动监测为主,手动监测为辅的监测模式”的环境监测技术路线的大力推动下,中国监测型水质在线分析仪器技术有了长足的进步和发展。从2002年至今,几乎每年都有上万台/套的在线水质分析仪器及系统实现了安装调试和实际运行。仪器大量的研发制造和实际应用,为行业技术进步提供和积累了宝贵的经验。与此同时,中国发布了数十项在线水质分析仪器及系统的国家标准、行业标准,这些标准的发布和实施,对在线水质分析仪器在中国市场的应用和发展起到了极大的推动作用,有力的支持了中国监测型在线水质分析仪器研发制造技术的发展,多种适应不同水质条件水样的应用技术也得以开发。中国监测型在线水质分析仪器已经有了巨大的进步。总体来看,水污染源排放和水环境自动监测的常规在线水质分析仪器及其应用技术达到了国际领先的水平。 /p p    a href=" https://www.instrument.com.cn/news/20190701/488018.shtml" target=" _blank" strong 在线水质分析仪器—技术、应用与市场(二) /strong /a /p p style=" text-align: right " strong (供稿:重庆昕晟环保科技有限公司& nbsp 总经理程立) /strong /p
  • 新品 | 日立分析仪器推出新款DSC系列热分析仪,用于高级材料开发和质量控制
    英国牛津[2021年1月19日]:日立分析仪器公司(Hitachi High-Tech Analytical Science)是日立高新技术公司旗下的全资子公司,主要从事分析和测量仪器的制造与销售,现已推出全新DSC系列(一种用于高级材料开发和产品质量控制的差示扫描量热仪)。作为日立分析仪器高规格热分析系列的最*新产品,新款DSC可为实验室和制造商提供一个进行详尽和彻底DSC分析的新选择。RealView® 尖*端技术实现分析可视化RealView(选购件)样品装置可在DSC测量期间获取样品视觉信息,实时捕获与DSC直接相关的样品图像。这可帮助识别物理性质变化,而DSC输出中添加的视觉信息使结果解读变得更加容易,尤其是在进行失效分析、异物分析和调查异常结果时亦如此。RealView系统核心的高分辨率摄像机允许在-50ºC极端低温条件下观察样品。RealView系统包括颜色分析(RGB、CMYK和LAB)并可记录样品图片和视频,是使用新款DSC进行研究、教学、故障排除以及受影响区尺寸测量的理想之选。将储存相关结果(注明DSC输出时间和温度),以供日后分析与研究。检测最小热事件在复杂复合材料的开发和制造中,微量添加剂可对性能产生巨大影响,由此对热分析仪识别越来越细微的热事件的能力提出更高要求。新款DSC系列旨在提供当今高级材料热表征所需的最*高性能。新款DSC系列的两种型号均得益于独特的炉膛设计和新开发的传感器,可提供世界一*流的灵敏度和无与伦比的基线重复性。此类新技术可帮助检测和隔离最小热事件(即使是复杂材料中的微量热事件)。用于深度可靠分析的新开发的传感器新款DSC600采用新开发的热电堆型DSC传感器,可为更高级材料开发和失效分析提供最*高的灵敏度和分辨率。此外,新款DSC200型号也针对传感器进行重新设计,在提供高灵敏度和稳定性的同时具有低成本封装。两种型号均采用新型炉膛配置,可提供+/- 5 µW基线重复性。这可确保对痕量材料的可靠和精确检测,提供各种应用领域(包括研发和进出库成品的质量控制)所需的性能。内置安全装置的大容量样品分析除注重性能以外,新款DSC系列还具有许多其他功能,可支持高容量和深入的热分析。自动进样器选购件包括一个独特的四叉样品架,在同时分析多达50件样品时能具有出色的可靠性。此外,还增加创新的安全功能, 用户可以选配具有防夹功能的电动盖,其在加热炉未回落到安全温度前会保持锁定,以防烫伤用户。双重冷却系统可节省时间和成本新款DSC系列所含的双重冷却系统能简化-80ºC温度以下的分析,无需在需要液氮冷却时手动断开电气冷却系统,从而节省用户的时间。内置混合系统允许同时连接两个冷却系统。有三种冷却系统可供选择:空气冷却、电气冷却或液氮冷却。对于那些注重在室温和室温以上温度的条件下进行测量的用户而言,空气冷却系统是理想之选。大多数测量均使用电气冷却系统,这有助于降低成本,同时实现低于室温这一条件。只有在特定测量需要时,例如分析某些橡胶或弹性体的转变,才能选择液氮冷却系统。日立分析仪器产品经理Ashley-Kate McCann表示:“日立设计的新型新款DSC系列可满足研发实验室和质量控制部门在开发新材料方面的需求,并确保聚合物、化学品、陶瓷、金属、石化产品和食品在内的众多材料质量。除全新的传感器和炉膛设计以外,公司还改进了尖*端的RealView样品观察装置。此外,公司还纳入了能直接响应客户要求的新安全功能。这便是为什么我们可以说,在谈及热分析时,日立明显与众不同。”新款DSC600和新款DSC200正在热销中,有需求请联系日立分析仪器。
  • 27位专家齐聚 共话国产分析仪器研制与应用进展 ——第三届“逐梦光电”国产分析仪器研制与应用研讨会暨高端分析仪器发展论坛即将召开
    近年来,国产仪器的发展已经成为大家关注的焦点。随着十四五”规划文件牵引、地方政策支持、国产采购倾斜,支持国产仪器发展,让国产设备及仪器有更多“用武之地”已经成为政府、市场以及公众的共识。而同时,相关国产仪器品牌也在加练内功,在产品性能及应用拓展层面不断深耕,越来越多的国产仪器被大家接受并认可。为响应国家整体布局,更好地为科学研究提供技术服务,卓立汉光将于2022年8月25-26日在上海举行第三届“逐梦光电”国产分析仪器研制与应用研讨会暨高端分析仪器发展论坛。本届会议特别邀请了自中国科学院各个研究所及知名高校的二十余位嘉宾现场分享,从极端环境下的高压可视在线分析到与体外诊断的即时检验技术,从食品安全到环境污染检测,从新一代发光显示器件到二维光电材料调控表征,从空间激光通信到清洁能源等,报告内容涉及的研究面广泛且方向独特,涵盖了光学、卫星通信、生物医学、纳米科学、电化学、拓扑量子学、传感学、激光动力学等多个领域。点击报名》》》本届会议在主题设置上按照分析仪器的类型进行了分类,其中,8月25日为拉曼和荧光技术应用主题,8月26日为光电&激光&等离子体主题,这一点与前两届有所不同。据悉,如此设置,是为了让参会嘉宾可以围绕某一类型的仪器展开系列专题应用报告,通过报告分享及探讨借鉴,充分挖掘分析仪器在各大领域的应用潜力,并期望能以应用为导向,为国产仪器带来更明确,更多样化,更贴近用户需求的发展方向。本次会议采用线上与线下同步直播方式, 仪器信息网将同步直播,会议日程如下:第三届“逐梦光电”国产分析仪器研制与应用研讨会会 议 日 程 会议主题: 拉曼光谱技术应用 分会主席:步扬8.25上午8:40-8:50致开幕辞公司领导北京卓立汉光仪器有限公司8:50-9:20面向POCT的SERS分析策略杨海峰上海师范大学9:20-9:50极端环境下物质性质的原位实验研究梅升华中国科学院深海科学与工程研究所9:50-10:20拉曼光谱数据解析技术及应用朱启兵江南大学10:20-10:35茶歇+线上抽奖+仪器展示10:35-11:05基于激光诱导击穿光谱的重金属检测技术研究步扬中国科学院上海光学精密机械研究所11:05-11:35绿氢制备中的电化学原位拉曼光谱研究蒋昆上海交通大学11:35-12:05火星表面物质光谱探测技术万雄中国科学院上海技术物理研究所12:05-13:30午餐&休息 会议主题: 荧光光谱技术应用 分会主席:何海平8.25下午13:30-14:00深紫外瞬态荧光光谱及在第三代半导体中的应用刘争晖中国科学院苏州纳米技术与纳米仿生研究所14:00-14:30荧光光谱在钙钛矿激子复合研究中的应用何海平浙江大学14:30-15:00固态照明荧光陶瓷的精细结构控制与应用张乐江苏师范大学15:00-15:30窄带隙近红外荧光量子点的设计合成与生物医学应用研究张叶俊中国科学院苏州纳米技术与纳米仿生研究所15:30-15:45茶歇+线上抽奖+仪器展示15:45-16:15面向高清显示的量子点发光材料与器件宋继中郑州大学16:15-16:45极端环境下的纳米定位系统及应用邢健多场低温科技(北京)有限公司16:45-17:15基于氮化镓基发光器件的偏振光场调控与检测王淼中国科学院苏州纳米技术与纳米仿生研究所17:15-17:45量子点配体动力学调控的电荷转移行为濮超丹上海科技大学17:45-17:50产品体验官聘用仪式&致谢  会议主题: 光电技术应用 分会主席:康斌8.26上午9:00-9:30载流子时空演化的飞秒干涉显微成像系统康斌南京大学9:30-10:00大气压辉光放电微等离子体光谱仪研制及应用汪正中国科学院上海硅酸盐研究所10:00-10:30硅基二维材料及其光电探测器李亮中国科学院合肥物质科学研究院10:30-10:45茶歇+线上抽奖+仪器展示10:45-11:15二维超薄钙钛矿的微纳光电特性王琳南京工业大学11:15-11:45钙钛矿光电转换材料的有序调控李亮苏州大学11:45-12:15低温等离子体的产生及其应用章旭明浙江理工大学12:15-13:45午餐&休息会议主题: 激光技术应用 分会主席:陈俊锋8.26下午13:45-14:15超快闪烁体研究与应用进展陈俊锋中国科学院上海硅酸盐研究所14:15-14:45“通达未来的空间信息高速公路”——空间激光通信发展现状与趋势董明佶中国科学院上海微小卫星创新中心14:45-15:15空气激光——大气诊断的远程探针姚金平中国科学院上海光学精密机械研究所15:15-15:30茶歇+线上抽奖+仪器展示15:30-16:00激光技术在激光康普顿光源装置中的应用范功涛中国科学院上海高等研究院16:00-16:30本征二维材料的超线性光电响应袁翔华东师范大学16:30-17:00核壳纳米粒子的可控制备及其用于高灵敏拉曼增强分析研究王琛南京师范大学17:00-17:30短波红外及中波红外胶体量子点焦平面成像技术张硕中芯热成科技(北京)有限责任公司17:30-17:35谢幕&期待报名链接:https://www.instrument.com.cn/webinar/meetings/zolix2022
  • 热分析仪器支持全球突破性研究的10个示例
    作者:Olivier Savard热分析提供了关于材料特性的基本信息,以及材料在现场的可能表现。这一点及其相对简单性,使得像差示扫描量热法(DSC)和热重分析法(TGA)这样的技术对于那些开发用于苛刻应用的新型材料的企业来说非常宝贵,例如药物和医疗器械。以下仅举10个示例说明热分析仪系列如何支持全球突破性的研究。1. LED散热器新材料的发展由于铝的成本低、重量轻,且其性能可通过改变成分来定制,因此聚合物复合散热器是铝的绝佳替代品。人们有意以此方式将石墨烯用作纳米填料,但是它的大表面积使得通过聚合物基质难以均匀分散。为了解决此问题,《Graphene-based thermoplastic composites and their application for LED thermal management》作者Cho等人正在试验石墨烯和聚合物之间的桥接材料,使用差示扫描量热仪来确定复合材料的热稳定性和转变温度。2. 开发具有特定表面特性的聚合物新材料研究的目标之一是创造高强度、低重量和良好热稳定性的材料。此类特性可通过蜂窝结构表现,目前的研究集中在创建具有功能化空腔的微图案化聚合物表面。控制颗粒在此类材料中的分布对于控制它们的特性至关重要。《Amino-functionalizedbreath-figure cavitiesinpolystyrene–alumina hybrid films: effect of particleconcentration and dispersion》的作者Lakshmi等人正在研究聚苯乙烯-氧化铝杂化膜。文中运用差示扫描量热同步重量分析仪来测定苯乙烯改性氧化铝颗粒的有机含量。3. 药物释放的水凝胶表征《Analysis of Water State and Gelation of Methylcellulose Thermo-reversible Hydrogels by Thermal Analysis and NMR》的作者Nishimoto等人一直在研究在制药应用中用作水凝胶的甲基纤维素(MC)。MC水凝胶的某些特性,如凝胶温度的变化,会影响药物的释放。本研究中用差示扫描量热仪来评估MC和聚乙二醇添加剂之间的相互作用。4. 测定合成材料的基本热性质只要热行为是新型合成材料研究的关键部分,热分析即对表征热性质至关重要。例如,《Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions》的作者Ferreira等人一直致力于设计铵基两性离子(ZIs)的热行为。差示扫描量热仪在确定ZIs的基本热性质(包括分解温度)方面发挥了很大作用。5. 壳聚糖接枝苯乙烯工艺的优化开发新型聚合物材料面临的挑战通常是获得合适的特性,在这种情况下,壳聚糖的表面特性通过在其上接枝苯乙烯来改性。对所得材料的表征进行了深入研究,并且热分析在确定共聚物材料所得的热稳定性方面发挥了作用。本研究《Amino-functionalized breath-figure cavities in polystyrene–alumina hybrid films: effect of particle concentration and dispersion》使用了差示扫描量热仪。6. 研究潜在聚变能材料的热性质钛酸锂被视为一种可提供聚变能反应堆所需的氚的潜在材料。钛酸锂通过碳酸锂和二氧化钛之间的反应产生,《Investigating thermal and kinetic parameters of lithium titanate》的作者Sharma和Uniyal对这一反应进行了研究。热重分析(TG)用于全面理解该反应中涉及的动力学机制,用于该研究的热分析仪器为差示扫描量热同步重量分析仪。7. 研究超薄材料的热性质如何变化随着材料变得越来越小,其性能越来越依赖于表面特性,而不是体积特性。这项研究(由《Morphology and phase transitions of n-alkyl alcohol microcrystals》的作者Iwasa等人完成)结合了差示扫描量热法和原子力显微镜来了解表面特性对n-烷基醇微晶相变行为的影响。8. 曝光后药物有效性分析一些药物在光照下会降解。《Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC》的作者Hubicka等人的这项研究集中于氟喹诺酮类抗菌药物的有效性。此类材料会产生光降解,这将降低其抗菌效果,并可能导致副作用。结合UPLC-MS/MS方法,运用差示扫描量热仪来比较辐照前后的样品。9. 了解片剂中的药物释放和溶出度片剂药物在体内的溶解方式是药物研究的一个重要部分。在这项研究中,《The DSC approach to study non-freezing water contents of hydrated hydroxypropylcellulose (HPC)》的作者Talik和Hubicka研究了水合羟丙基纤维素(HPC)的非冷冻水含量,以更好地了解不同溶解度的化合物和不同分子量和黏度的HPC的药物释放。用于研究的热分析仪为差示扫描量热仪。10. 影响材料多晶型转变温度的因素研究多晶型物质可以从一种晶体结构转变为另一种晶体结构。《Tunable Polymorphic Transformation Temperature》的作者Yokata等人研究了三联吡啶(terpy)的多晶型效应,发现转变温度可调,具体取决于起始晶体的研磨水平。研究中运用差示扫描量热仪测定不同条件下的转变温度。
  • 超声法原液粒度及Zeta电位分析仪工作原理
    超声法粒度及Zeta电位分析仪是一种基于超声波传播原理的先进仪器,主要用于测量液体中固体颗粒的尺寸分布和Zeta电位。该方法特别适用于高浓度、高粘度的样品,如电池浆料、混悬剂、电子印刷材料、乳剂和油墨等。以下是对超声法粒度及Zeta电位分析仪工作原理的详细解释。  超声波传播原理  超声波是一种频率高于人类听觉范围的声波,通常定义为频率大于20kHz的声波。超声波在液体中传播时,会遇到颗粒发生散射。散射的强度与颗粒尺寸有关,较大颗粒产生的散射较强,而较小颗粒产生的散射较弱。通过测量散射信号的强弱,可以推断出颗粒的大小。  粒度测量原理  超声法粒度仪的核心部件是一个超声波传感器,它可以发送和接收超声波。当超声波穿过含有颗粒的液体时,部分能量会被颗粒散射回来。散射的能量强度与颗粒尺寸相关,通过计算散射能量的变化,可以确定颗粒的平均尺寸和尺寸分布。  Zeta电位测量原理  Zeta电位是指颗粒在溶液中所携带的净电荷,它是决定颗粒稳定性的一个重要因素。超声法粒度及Zeta电位分析仪通过测量颗粒在电场下的迁移速度来测定Zeta电位。迁移速度取决于颗粒的电荷和周围电解质溶液的性质。通过测量迁移速度,可以计算出Zeta电位值。  测试过程  首先,将待测样品放入超声法粒度及Zeta电位分析仪的测量容器中。然后,仪器发送超声波穿过样品,并记录散射信号。通过对散射信号的分析,可以得出颗粒的粒度分布。接着,仪器施加一个电场,观察颗粒在电场下的运动情况,进而计算出Zeta电位。  应用价值  超声法粒度及Zeta电位分析仪无需对样品进行稀释,可以直接测量原液,避免了稀释可能引起的误差。这对于高浓度、高粘度的样品尤其重要,因为稀释可能会改变样品的性质,导致测量结果失真。因此,该方法在产品研发和生产过程中具有重要的指导意义。  总结来说,超声法粒度及Zeta电位分析仪利用超声波传播和电场迁移的原理,对液体中的颗粒进行精确测量,为科学研究和工业生产提供了有力的支持。
  • 哈里伯顿最新推出GEM镁元素分析仪
    哈里伯顿公司日前宣布推出的元素分析仪器——GEM仪器,能够对复杂矿物地层进行快速精确评价,并进行全面的元素分析,补充现有的随钻钻屑评价服务。与实时数据采集软件结合,可以快速准确地提供现场与边远地区的地层元素可视化结果。   在测井行业,GEM是第一个测量镁元素的仪器,并改善了泥质与页岩中铝的测量。镁是碳酸盐岩和片状硅酸盐常见的成分,也是至今为止最难测量的元素,对储层描述非常重要。用新增的元素(镁、铝和锰)测量,可以更好地确定矿物成分,改善孔隙度、饱和度、渗透率的评价,测量膨胀黏土和岩石力学性质,更精确地估算储量,优化完井和增产设计,提高产量。
  • 蔚县环保局108.90万元采购氮氧化物分析,硫氮分析仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 氮氧化物分析,硫氮分析仪 开标时间: 2021-09-22 08:30 采购金额: 108.90万元 采购单位: 蔚县环保局 采购联系人: 王建明 采购联系方式: 立即查看 招标代理机构: 蔚县恒鹏项目管理有限公司 代理联系人: 贾志福 代理联系方式: 立即查看 详细信息 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 河北省-张家口市-蔚县 状态:公告 更新时间:2021-08-27 V2020 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 发布时间: 2021-08-27 采购项目编号:HPXMGL-2021-053 需要落实的政府采购政策: 采购人名称:蔚县环保局 采购人地址 :蔚县蔚州镇康居南大街 采购人联系方式:王建明 0313-7012749 采购代理机构地址 :张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 采购代理机构联系方式 :贾志福 0313-7018979 采购预算金额:1089000.00 采购用途 : 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 项目实施地点 : 投标人的资格要求 :无 招标文件发售地点 :前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 招标文件发售方式 :其它 招标文件售价 :0 获取文件开始时间:2021-08-30 获取文件结束时间:2021-09-03 时刻说明:9:00-12:00-12:00-17:00 投标截止时间:2021-09-22 08:30 开标时间:2021-09-22 08:30 开标地点:蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 供货时间:签订合同后2个月内完成供货并通过验收 简要技术要求/采购项目的性质: 传真电话: 受理质疑电话: 备注:1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 本公告发布媒体: 项目概况 更换县职教中心省控空气自动站监测设备及配套设施项目招标项目的潜在投标人应在 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。获取招标文件,并于 2021年09月22日08点30分2021年09月22日08点30分 (北京时间)前递交投标文件。 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 发布时间: 2021-08-27 一、项目基本情况 项目编号: HPXMGL-2021-053 项目名称: 更换县职教中心省控空气自动站监测设备及配套设施项目 采购方式: 公开招标 预算金额: 1089000.00 最高限价: 909500.00 采购需求: 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 合同履行期限: 签订合同后2个月内完成供货并通过验收 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2021年08月30日至 2021年09月03日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2021年09月22日08点30分(北京时间) 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 四、响应文件提交 截止时间: 五、开启 时间: 2021年09月22日08点30分 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 蔚县环保局 地址: 蔚县蔚州镇康居南大街 联系方式: 王建明 0313-7012749 2.采购代理机构信息 名 称: 蔚县恒鹏项目管理有限公司 地 址: 张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 联系方式: 贾志福 0313-7018979 3.项目联系方式 项目联系人: 贾志福 电 话: 0313-7018979 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:氮氧化物分析,硫氮分析仪 开标时间:2021-09-22 08:30 预算金额:108.90万元 采购单位:蔚县环保局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:蔚县恒鹏项目管理有限公司 代理联系人:点击查看代理联系方式:点击查看详细信息 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 河北省-张家口市-蔚县 状态:公告 更新时间: 2021-08-27 V2020 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告发布时间: 2021-08-27 采购项目编号:HPXMGL-2021-053 需要落实的政府采购政策: 采购人名称:蔚县环保局 采购人地址 :蔚县蔚州镇康居南大街 采购人联系方式:王建明 0313-7012749 采购代理机构地址 :张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 采购代理机构联系方式 :贾志福 0313-7018979 采购预算金额:1089000.00 采购用途 : 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 项目实施地点 : 投标人的资格要求 :无 招标文件发售地点 :前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 招标文件发售方式 :其它 招标文件售价 :0 获取文件开始时间:2021-08-30 获取文件结束时间:2021-09-03 时刻说明:9:00-12:00-12:00-17:00 投标截止时间:2021-09-22 08:30 开标时间:2021-09-22 08:30 开标地点:蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 供货时间:签订合同后2个月内完成供货并通过验收 简要技术要求/采购项目的性质: 传真电话: 受理质疑电话: 备注:1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 本公告发布媒体: 项目概况 更换县职教中心省控空气自动站监测设备及配套设施项目招标项目的潜在投标人应在 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。获取招标文件,并于 2021年09月22日08点30分2021年09月22日08点30分 (北京时间)前递交投标文件。 更换县职教中心省控空气自动站监测设备及配套设施项目公开招标公告 发布时间: 2021-08-27 一、项目基本情况 项目编号: HPXMGL-2021-053 项目名称: 更换县职教中心省控空气自动站监测设备及配套设施项目 采购方式: 公开招标 预算金额: 1089000.00 最高限价: 909500.00 采购需求: 更换县职教中心省控空气自动站监测设备及配套设施采购,包括二氧化硫分析仪、氮氧化物分析仪、PM2.5分析仪等。 合同履行期限: 签订合同后2个月内完成供货并通过验收 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2021年08月30日至 2021年09月03日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 前往E招冀成电子招标投标交易平台/www.hebeibidding.com自行下载招标文件及相关资料,并在系统中及时查看有无澄清及变更。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2021年09月22日08点30分(北京时间) 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 四、响应文件提交 截止时间: 五、开启 时间: 2021年09月22日08点30分 地点: 蔚县公共资源交易中心一楼开标室(地址:蔚县正和路中段路南) 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、本次招标不采用其他形式的招标资料发送。本项目采取电子方式参与投标,拟投标的单位,应在“E招冀成电子招标投标交易平台/www.hebeibidding.com”上获取招标文件截止时间前在完成招标文件的获取,未及时获取的,造成的后果由供应商自行承担 2、招标文件等资料发布后,即视为已送达所有潜在供应商。潜在供应商未从E招冀成电子招标投标交易平台下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。请及时关注网站本项目的撤销、变更等公告。 3、发布媒体:河北省政府采购网、河北省公共资源交易平台、E招冀成电子招标投标交易平台/www.hebeibidding.com。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 蔚县环保局 地址: 蔚县蔚州镇康居南大街 联系方式: 王建明 0313-7012749 2.采购代理机构信息 名 称: 蔚县恒鹏项目管理有限公司 地 址: 张家口市蔚县蔚州镇前进东路金海居第7幢2单元202号 联系方式: 贾志福 0313-7018979 3.项目联系方式 项目联系人: 贾志福 电 话: 0313-7018979
  • 环境监测行业红利当头 TOC分析仪市场将受何影响
    p   总有机碳(TOC)是表征水体中有机物质总量的综合指标,它代表了水体中所含有机物质的总和,直接反映了水体被有机物质污染的程度。目前,TOC测量己经广泛地应用到江河、湖泊以及海洋监测等方面。对于饮用水、工业用水等的质量控制,TOC同样是重要的测量参数。实际上TOC测量已经成为西方发达国家水质量控制的主要检测手段。 /p p   针对中国水质总有机碳(TOC)分析仪的应用现状、各品牌占有率以及市场现状、前景等内容,仪器信息网特组织了“中国水质总有机碳(TOC)分析仪市场调研”活动。基于调研结果,我们撰写完成《中国水质总有机碳(TOC)分析仪市场调研报告(2019版)》。 /p p   《中国水质总有机碳(TOC)分析仪市场调研报告(2019版)》就目前国内市场上总有机碳(TOC)分析仪的产品、市场等情况进行了分析阐述,内容包括总有机碳(TOC)分析仪不同的测量方法、国内总有机碳(TOC)分析仪用户的地域分布、行业分布、单位类型分布、以及主流品牌的产品价格及市场份额等。 /p p    strong 节选: /strong /p p    strong 总有机碳(TOC)分析仪招标采购市场统计分析 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/6d749a83-fe71-4465-a2e0-17945971e446.jpg" title=" 图1.png" alt=" 图1.png" / /p p style=" text-align: center " strong 中标公告中招标单位性质分布 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/aa13f889-9405-4bdd-abef-439a793f1d1d.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center " strong 不同地区 /strong strong 招标单位平均采购单价 /strong br/ /p p    strong 2019年总有机碳(TOC)分析仪市场综合分析 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/85418872-1d0d-402c-8980-9d08dd163f07.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center " strong 2019年总有机碳(TOC)分析仪部分主流品牌市场份额 /strong /p p    strong 总有机碳(TOC)分析仪重点细分行业市场分析 /strong /p p    strong 环保/水工业行业 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/a8b36d01-1861-4160-a387-09d6aca1cd70.jpg" title=" 图5.png" alt=" 图5.png" / /p p style=" text-align: center "    strong 氧化技术分布 /strong /p p    strong 制药行业 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/3219e0e4-9be8-45d0-9729-a0a3434df10e.jpg" title=" 图6.png" alt=" 图6.png" / /p p style=" text-align: center "    strong 氧化技术分布 /strong /p p   ...... /p p   受相关政策的影响,2010-2014年,总有机碳(TOC)分析仪的采购量大幅增加。另外,在第二章图2.4中,总有机碳(TOC)分析仪的采购量在2018年又有了一个比较明显的增长,结合相关政策,我们分析该增长或与2018年我国水质监测系统的大力建设有关。近一、两年,无论是在地表水、地下水还是海洋等领域,我国都投入了大量资金来进行相关水质监测系统的建设,带动了相关仪器市场的增长。 /p p   ...... /p p    strong span style=" color: rgb(0, 112, 192) " 报告目录 /span /strong /p p   第一章 总有机碳(TOC)分析仪概述 1 /p p   1.1总有机碳(TOC)定义 1 /p p   1.2总有机碳(TOC)分析仪分类概述 1 /p p   1.3总有机碳(TOC)分析仪所用氧化技术 2 /p p   1.3.1高温催化燃烧氧化 2 /p p   1.3.2过硫酸盐氧化 3 /p p   1.3.3紫外氧化 3 /p p   1.3.4紫外-过硫酸盐氧化 4 /p p   1.3.5超临界水氧化技术 4 /p p   1.4 总有机碳(TOC)分析仪所用检测技术 4 /p p   1.4.1非分散红外吸收法(NDIR) 4 /p p   1.4.2直接电导率法 5 /p p   1.4.3薄膜电导率法 5 /p p   1.5几种方法的适用性 6 /p p   第二章 总有机碳(TOC)分析仪技术市场分析 8 /p p   2.1总有机碳(TOC)分析仪氧化技术市场分布 8 /p p   2.2总有机碳(TOC)分析仪检测技术市场分布 9 /p p   2.3总有机碳(TOC)分析仪外围设备应用情况 11 /p p   第三章 总有机碳(TOC)分析仪用户市场抽样统计分析 13 /p p   3.1总有机碳(TOC)分析仪使用单位地域分布 13 /p p   3.2总有机碳(TOC)分析仪使用单位行业分布 15 /p p   3.3总有机碳(TOC)分析仪使用单位性质分布 17 /p p   3.4不同行业总有机碳(TOC)分析仪使用类型分布 19 /p p   3.5总有机碳(TOC)分析仪年需求变化趋势分析 21 /p p   第四章 总有机碳(TOC)分析仪重点细分行业市场分析 23 /p p   4.1环保/水工业行业 23 /p p   4.1.1氧化技术分布 23 /p p   4.1.2检测技术分布 24 /p p   4.1.3外围设备应用分布 25 /p p   4.1.4单位性质分布 25 /p p   4.2制药行业 26 /p p   4.2.1氧化技术分布 26 /p p   4.2.2检测技术分布 27 /p p   4.2.3外围设备应用分布 28 /p p   4.2.4单位性质分布 29 /p p   4.3小结 30 /p p   第五章 总有机碳(TOC)分析仪招标采购市场统计分析 32 /p p   5.1中标公告中招标单位性质分布 32 /p p   5.2中标公告中招标单位地区分布及平均单价 33 /p p   5.3中标时间月度分布规律 34 /p p   第六章 总有机碳(TOC)分析仪市场综合分析 36 /p p   6.1总有机碳(TOC)分析仪部分主流品牌产品及价格分析 36 /p p   6.2 2019年总有机碳(TOC)分析仪市场量及部分主流品牌市场份额 37 /p p   6.3 总有机碳(TOC)分析仪部分主流品牌厂商及相关技术分析 39 /p p   第七章 总有机碳(TOC)分析仪市场发展历程 45 /p p   第八章 总有机碳(TOC)分析仪相关政策/标准 47 /p p   8.1环保行业相关政策/标准 47 /p p   8.2制药行业相关政策/标准 48 /p p   8.3电子行业相关政策/标准 49 /p p   8.4其他行业相关政策/标准 50 /p p   第九章 总结 51 /p p   报告链接: a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=186" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 《中国水质总有机碳(TOC)分析仪市场调研报告(2019版)》 /span /strong /a /p p   欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/47892637-b229-491d-a2f7-38fec0e8524a.jpg" title=" 绿仪社.png" alt=" 绿仪社.png" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多环境监测精彩资讯! /span /p
  • 酶联免疫分析仪|全新操作方法| 便捷的触摸屏输入【新品】
    点击了解更多→酶联免疫分析仪|全新操作方法| 便捷的触摸屏输入【新品】 酶联免疫分析仪(ELISA)是一种广泛应用于生物医学领域的免疫分析技术,主要用于检测和定量生物样品中的抗原、抗体或蛋白质等生物分子。在基础科学研究中,酶联免疫分析仪可以用于研究生物分子的性质、功能和相互作用。例如,通过检测抗体与抗原的结合能力,可以研究抗体的特异性、亲和力和抗原的构象变化等。此外,酶联免疫分析还可以用于研究细胞因子的表达和功能、免疫应答机制以及药物对细胞的影响等。 酶联免疫分析仪被广泛应用于临床诊断和疾病监测中。例如,可以检测和定量血清、尿液、脑脊液等生物样品中的肿瘤标志物、病毒抗体、药物代谢产物等生物分子。通过酶联免疫分析,医生可以根据检测结果对患者进行诊断和制定治疗方案。此外,酶联免疫分析还可以用于评估患者的免疫状态、病情进展和预后等。 酶联免疫分析仪可以用于食品安全和环境监测中。例如,可以检测食品中的细菌、病毒、农药残留等有害物质。通过酶联免疫分析,可以对食品进行快速、准确的检测和分析,保障食品安全。此外,酶联免疫分析还可以用于环境监测中,检测水体、土壤、空气等环境样品中的有害物质,评估环境污染程度。
  • 《中国水质常规五参数在线分析仪市场调研报告(2019版)》已发布
    p   常说的水质五参数指的是水质监测中常规的五个参数,包括:温度、pH、溶解氧、电导率、浊度。作为水质监测的基本指标,水质常规五参数在线分析仪在我国水污染防治中发挥着重要的作用。 /p p   针对中国水质常规五参数在线分析仪的应用现状、各品牌占有率以及市场现状、前景等内容,仪器信息网特组织了“水质常规五参数在线分析仪市场调研”活动。 /p p   基于调研结果,我们撰写完成《中国水质常规五参数在线分析仪市场调研报告(2019版)》。《中国水质常规五参数在线分析仪市场调研报告(2019版)》就目前国内市场上水质常规五参数在线分析仪的产品、市场等情况进行了分析阐述,内容包括水质常规五参数在线分析仪五个参数不同的测量方法、国内水质常规五参数在线分析仪用户的地域分布、行业分布、单位类型分布、以及部分主流品牌的产品价格及市场份额等。 /p p    strong 节选 /strong /p p   第一章 水质常规五参数在线分析仪概述 /p p   1.3水质常规五参数在线分析仪方法标准 /p p   水质常规五参数在线分析仪可同时实现pH值、电导率、溶解氧、浊度及温度的测量,各参数测量传感器的测量原理各不相同,除溶解氧(荧光法)以外,目前国内市场水质常规五参数在线分析仪的测量原理均有相关方法标准支撑。 /p p & nbsp ...... /p p   第二章 水质常规五参数在线分析仪市场抽样统计分析 /p p   2.2水质常规五参数在线分析仪使用单位行业分布 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/11df8e9f-601e-4427-b222-1a3043cc75af.jpg" title=" 图1.png" alt=" 图1.png" / /p p style=" text-align: center "    strong 图2.2单位行业分布 /strong /p p style=" text-align: right " strong   (数据来源:抽样调研) /strong /p p    /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/bd892757-870e-4f6b-8cd9-774a0eba8eab.jpg" title=" 图2.png" alt=" 图2.png" / /p p style=" text-align: center " strong 图2.3单位性质分布 /strong /p p style=" text-align: right " strong   (数据来源:抽样调研) /strong /p p   第五章 水质常规五参数在线分析仪市场综合分析 /p p   根据本次调研结果,本章对2018年水质常规五参数在线分析仪的市场总量以及各大主流品牌所占国内市场的份额进行了一个阐述,并对水质常规五参数在线分析仪主流厂商的经营情况进行了精要介绍。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/1fb0afb1-44e3-42f9-a9cf-fb178d3e9956.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center "   strong  图5.1水质常规五参数在线分析仪主流品牌2018年销量占比 /strong /p p style=" text-align: right " strong   (数据来源:仪器信息网) /strong /p p    strong 报告目录 /strong /p p   第一章 水质常规五参数在线分析仪概述 1 /p p   1.1水质常规五参数定义 1 /p p   1.2水质常规五参数在线分析仪主要模块 2 /p p   1.3水质常规五参数在线分析仪方法标准 3 /p p   1.4传感器简介 4 /p p   1.4.1 pH传感器 4 /p p   1.4.2溶解氧传感器 5 /p p   1.4.3电导率传感器 6 /p p   1.4.4浊度传感器 6 /p p   1.4.5温度传感器 7 /p p   第二章 水质常规五参数在线分析仪市场抽样统计分析 8 /p p   2.1水质常规五参数在线分析仪使用单位地域分布 8 /p p   2.2水质常规五参数在线分析仪使用单位行业分布 10 /p p   2.3水质常规五参数在线分析仪使用单位性质分布 12 /p p   第三章 水质常规五参数在线分析仪中标信息统计分析 13 /p p   3.1中标公告中招标单位性质分布 13 /p p   3.2中标公告中招标单位地区分布 14 /p p   3.3中标时间分布规律 16 /p p   3.4国家地表水水质自动监测站 17 /p p   第四章 水质自动监测产业政策分析 19 /p p   4.1我国水质自动监测发展历程 19 /p p   4.2产业政策分析 20 /p p   第五章 水质常规五参数在线分析仪市场综合分析 24 /p p   5.1 2018年水质常规五参数在线分析仪市场量及主流品牌市场份额 24 /p p   5.2部分主流国产品牌生产商及产品分析 26 /p p   5.2.1湖南力合 26 /p p   5.2.2中兴仪器 27 /p p   5.2.3江苏德林 28 /p p   5.2.4绿洁科技 28 /p p   5.2.5宇星科技 29 /p p   5.2.6雪迪龙 29 /p p   5.2.7先河环保 30 /p p   5.2.8怡文科技 30 /p p   5.2.9聚光科技 31 /p p   5.3部分主流进口品牌生产商及产品分析 31 /p p   5.3.1 E+H 31 /p p   5.3.2哈希 32 /p p   5.3.3赛莱默& amp WTW 32 /p p   第六章 用户单位采购及使用情况分析 34 /p p   6.1不同类型用户单位用购情况分析 34 /p p   6.2水质常规五参数在线分析仪日常维护 35 /p p   第七章 水质常规五参数在线分析仪未来市场预测 37 /p p   第八章 总结 40 /p p   报告链接: a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=180" target=" _self" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " 《中国水质常规五参数在线分析仪市场调研报告(2019版)》 /span /a /p p   欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/203e63c4-ca64-49d1-8982-baff9000e7a0.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多环境监测精彩资讯! /span br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制