电位分析

仪器信息网电位分析专题为您整合电位分析相关的最新文章,在电位分析专题,您不仅可以免费浏览电位分析的资讯, 同时您还可以浏览电位分析的相关资料、解决方案,参与社区电位分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

电位分析相关的耗材

  • 自动电位滴定仪配件
    自动电位滴定仪配件专业为电位测定,PH值测量,容量分析应用而设计,自动电位滴定仪配件工作达到终点预设电位后,滴定自动停止。自动电位滴定仪配件原理根据电位法原理设计,仪器分电计和滴定系统两大部分,电计采用电子放大控制线路,将指示电极与参比电极间的电位同预先设置的某一终点电位相比较,两信号的差值经放大后控制滴定系统的滴液速度。自动电位滴定仪配件参数测量范围:pH:(0~14.00)pH, mV:(0~±1999)mV分辨率:pH:0.01pH,mV:0.1mV精度: pH:±0.01pH±1bit; mV:±0.03%FS温度测量范围:-5.0℃~105℃温度精度:±0.3℃孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括自动电位滴定仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。孚光精仪还有更多关于自动电位滴定仪价格的消息会在第一时间推送,自动电位滴定仪品牌等更多消息请关注孚光精仪官方网站来了解更多。
  • 自动电位滴定仪配件 FP-TIT4
    自动电位滴定仪配件的是高精度的实验室分析仪器,自动电位滴定仪配件可用于大学和各种研究单位的化学分析,石化,制药等领域的检测具有良好的性能和质量。自动电位滴定仪配件特色:*微处理器技术,液晶屏显示(LCD) *操作界面舒服,具有中文显示,菜单和快捷操作键等;*电位滴定仪具有断电保护功能,存储数据和参数可自动保存; *不同电极匹配PH值测量,酸度,碱滴订测量, 氧化还原滴定,沉淀滴定, 无水滴定等。*具有多种滴定模式:预先滴定,预设终点滴定,空白滴定,手动滴定等;*透射系统性能出众,噪音消除良好, 软件控制搅拌系统; *使用高氯抗酸材料,可无水滴定;自动电位滴定仪配件参数: 计算机软件控制,在计算机上计算和分析,显示。Ph/mV(ORP)/℃ PH范围: 0-14, 分辨率:0.01, 精度 +/-0.01+/-1bit mV范围:+/-1800, 分辨率0.1,精度:+/-0.03%温度:-5-105℃,分辨率0.1℃ 精度:+/-0.3℃+/-1bit自动电位滴定仪和欧洲进口的全自动电位滴定仪,是高精度的实验室分析仪器,可用于大学和各种研究单位的化学分析,石化,制药等领域的检测,具有良好的性能和质量,具有断电保护,存储数据和参数可自动保存等功能。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有自动电位滴定仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于自动电位滴定仪参数,自动电位滴定仪价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • ZDJ-100全自动电位滴定仪
    ZDJ-100全自动电位滴定仪,主要特点:中文显示滴定过程,可进行中英文输入、输出。选择不同电极可进行酸碱滴定、氧化还原滴定、络合滴定、银量法测量、离子浓度测定等实验。可显示动态滴定曲线。具有动态滴定、等量滴定、终点滴定、PH测量等多种测量模式。随机配有滴定监控软件,可监控全部滴定过程,并通过该软件进行版本升级。 ZDJ-100全自动电位滴定仪,教学型仪器可用于分析化学或相关专业中的实验、教学。物美价廉,经济的投入,实用的仪器。ZDJ-100全自动电位滴定仪,技术参数:测量范围 PH值 0~+14.00 电位 -2000~±2000 mv 温度 -15~85℃分辨率 PH值 0.01 电位 0.4mv 温度 0.1℃输入阻抗 1015Ω有效精度优于 ±0.4 mv滴定控制精度 ±0.01ml最小馈液量 0.02ml温度精度(可选配温控装置) ±0.5℃测量模式 动态滴定、等量滴定、终点滴定、PH测量外围接口(可选配微型打印机) 打印机接口; RS232C接口可绘制滴定曲线,外接工作站,监控滴定过程,并对滴定结果进行分析

电位分析相关的仪器

  • BeNano Zeta电位分析仪是丹东百特仪器公司开发的测量颗粒体系Zeta电位的光学检测系统。BeNano Zeta 系统基于电泳光散射原理,样品分散在样品池中,在样品池两端施加一个电场,通过激光照射到电场中的样品上,光电检测器在 12°角检测样品颗粒电泳运动造成的散射光的多普勒频移,进而得到体系的 Zeta 电位信息。基本性能指标Zeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cm最小样品量0.75mL-1.0mLZeta测试粒度范围2nm-120μm系统参数温控范围-15°C-110°C,精度±0.1°C激光光源50mW高性能固体激光器,671nm相关器最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● Zeta电位● Zeta电位分布检测技术● 电泳光散射● 相位分析光散射相关技术相关应用
    留言咨询
  • 仪器简介:仪器名称:Zeta电位分析仪 研究对象:纤维、薄膜、粉末、粒子、固体金属或非金属片等材料。 主要用途:测量材料的表面电荷,了解材料表面上的电荷状况,研究材料表面性能。 主要应用:材料表面改性 材料表面黏附、吸附、脱附等 材料组成 材料亲水性与疏水性 材料洁净处理等 表面活性剂相互作用 SurPASS 3固体电运动分析仪/ 固体表面Zeta 电位仪帮助科研人员在化学与材料科学领域内改善和调整表面特性,设计新型、特定性质的材料,如聚合物、纺织、陶瓷、玻璃、或表面活性剂等。 通过测量宏观固体物表面的流动电流或流动电压(电势),SurPASS 3固体电运动分析仪给出了Zeta 电位这样一个重要的信息。 Zeta 电位是一种界面特性,这对于理解固体材料在很多工艺技术处理方面非常重要。Zeta 电位给出了固体表面电荷、吸附性质等的信息。 SurPASS 3 固体电运动分析仪/ 固体表面Zeta 电位仪拓展丰富了表界面分析知识。 SurPASS 3 固体电运动分析仪/ 固体表面Zeta 电位仪对不同形状和尺寸的固体及粉末材料均适用。 在表面分析中,固体表面 Zeta电位分析仪SurPASS 3基于流动电势和流动电流测量法,从而研究宏观固体表面 Zeta电位。 它可以提供有关表面电荷和相关性质的信息,并可检测表面性质中最微小的变化。 Zeta电位: 范围:所用测量原理决定没有限制再现性:+/-0.5 mV 等电点: 再现性:+/-0.1 pH 平板固体: 最小 35 mm x 15 mm,厚度20 mm, 20 mm x 10 mm,厚度2 mm, 直径为 14 mm 或 15 mm 的圆片 纤维: 最少重量 100 mg 粉末: 最小粒径 25 μm 膜和过滤材料 生物材料 半导体工业 纤维、织物和无纺布 化妆品和洗涤剂 矿物 针对各种形状的固体 各种不同的测量池适用于天然的和人造的纤维和织物、颗粒样品、粗颗粒和平板样品。 突破极限-流动奥妙 快速测量: Zeta电位测量少于2分钟 表面Zeta电位直接分析: 适用于实际样品,无需使用示踪颗粒 主要特点:测量原理 : 在电化学双电流层的模型中,电荷分布形成固定层与可移动层。滑动层将这两层彼此分离。 Zeta 电位指定为在滑动层上固体表面与液相之间电势的衰减。电解质流动的外部力平行应用于固体与液体界面导致固定层与可移动层之间相对运动与电荷分离,由此得出实验的Zeta 电位。 流动电势的大小由液相的流动压差P决定。Zeta 电位即可定义为固体表面的固定层电荷与离子移动层之间的电势,相应的流动电势系数为dU/dP, Zeta 电位表示为: 固体表面特性,粘性,介电常数,电解质电导率K 等都影响Zeta 电位的大小。得出Zeta 电位值时,需要说明电解质溶液的类型,浓度,pH值。 稀释的电解质循环流经装有样品的测量池,由此产生一个压差,其电荷在电化学双电层中相对运动产生并增加流动电压,这个流动电压/ 流动电流(可选择)由置于样品两边的电极检测。SurPASS 3可同时测量出电解质的电导率,温度及pH值。
    留言咨询
  • BeNano 90 Zeta 纳米粒度及Zeta电位分析仪是BeNano 90 + BeNano Zeta二合一的光学检测系统。该系统中集成了动态光散DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等领域的基础研究和质量分析与控制。基本性能指标粒径测试粒径范围0.3nm-15μm★样品量3μL-1mL★检测角度90° & 12°分析算法Cumulants、通用模式、CONTIN、NNLSZeta电位测试技术相位分析光散射检测角度12°Zeta范围无实际限制电泳迁移率范围±20μm.cm/v.s电导率范围0-260mS/cmZeta测试粒度范围2nm-120μm分子量测试分子量范围342Da-2×107Da★趋势测量模式时间和温度粘度测试粘度范围0.01cp-100cp★折光率范围1.3-1.6系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥空气或者氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制0.0001%-100%,手动或自动软件中文和英文符合21CFR Part 11★取决于样品和选件检测参数● 颗粒体系的光强、体积、面积和数量分布● 颗粒体系的Zeta电位及其分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 电泳光散射● 相位分析光散射● 静态光散射相关技术相关应用
    留言咨询

电位分析相关的方案

电位分析相关的论坛

  • 电位分析法

    电位分析法教学目的:1、了解电位分析法的特点,测定pH的原理、参比电极和指示电极。2、掌握酸度计的原理和维护。3、了解电位滴定技术。教学重点与难点:酸度计的原理。教学内容: 一、电化学基础知识1、电极电位: M Mn+ + ne 金属溶解进水中遗留下自由电子,而金属离子受金属表面负电子的吸引聚集在金属表面,达到动态平衡,双电层也就是金属和盐溶液之产生一定电位差,这种电位差叫做电极电位。2、能斯特方程(电极电位方程)对于 aA + bB cC + dD 0.059 a b j = jo × lg (25℃) n c d例: Mn+ + ne M 0.059 0.059 j = jo + lg = jo + lg n n 3、标准电极电位当待测电极氧化态的活度和还原态的活度均为1时,以标准氢电极作参比,

  • 【讨论】电位分析法

    电位分析法是利用物质的电化学性质进行分析的一大类分析方法。 电化学分析法主要包括电位分析法、库仑分析法和伏安分析法与极谱分析法等。 那么电位分析法主要又包括哪些方法?在仪器上是哪些功能,主要应用在哪些方面?

  • 电位分析基础理论

    电位分析是通过在零电流条件下测定两电极间的电位差(电池电动势)所进行的分析测定。 ΔE = E+ - E- + E液接电位 装置:参比电极、指示电极、电位差计; 当测定时,参比电极的电极电位保持不变,电池电动势随指示电极的电极电位而变,而指示电极的电极电位随溶液中待测离子活度而变。理论基础:能斯特方程(电极电位与溶液中待测离子间的定量关系)。 对于氧化还原体系: Ox + ne- = Red

电位分析相关的资料

电位分析相关的资讯

  • 美国DTI公司推出DT-330电声法zeta电位和孔表面电位分析仪
    近日,美国分散技术公司(DTI )推出了新一代DT-330型电声电振法电位分析仪,既可在原浓液环境下测量固体颗粒zeta电位,也可测量块状或粉状固体孔表面电位。同时,公布了最新一代超声法在线粒度分析仪—— DT-500型。 目前,流行的粒度测定方法是激光粒度法(小角激光散射法),但是,这种方法致命的缺点就是必须对样品进行稀释,并且样品最好不带颜色,对光的吸收不能太强。同样,测量zeta电位的动态光散射技术也要求在极稀的分散体系中进行,并且样品粒径不能大于几个微米(一旦颗粒产生定向运动——沉淀,就偏离了该方法的测量原理)。其实,基于同样的瑞利散射原理,如果用声波代替光波,就能够成功地克服上述缺陷。 19世纪七八十年代,亨利、廷德尔和雷诺首次研究了与胶体相关的声学现象--声音在雾中的传播。散射理论的创始人洛德瑞利也将他的散射理论中的书命名为“声音理论”。 他把计算方式主要运用到了声音,而不是用在由光学的研究中。由于理论计算的复杂性, 声学更多的依赖于数学计算而不是其他传统的仪器分析技术。随着计算机快速时代的到来和新理论研究方法的发展,今天很多问题已经在美国DTI公司有了清晰的答案。 享誉世界的DT-1200系列粒度和Zeta电位分析仪, 利用超声波在含有颗粒的连续相中传播时,声与颗粒的相互作用产生的声吸收、耗散和散射所引起的损失效应来测量颗粒粒度及浓度,采用专利电声学测量技术测量胶体体系的Zeta电位。对于高达50%(体积)浓度的样品,无需进行样品稀释或前处理即可直接测量。甚至对于浆糊、凝胶、水泥及用其它仪器很难测量的材料都可用DT-300直接进行测量,粒度适用范围从5nm到1mm。 DT-300超声探头(Zeta Probe)能直接在样品的原始条件下测量zeta电位,允许样品浓度高达50%(体积)。DT-300 结构设计紧凑,外置Zeta电位滴定装置(DT-310).自动滴定装置可自动、快速地判断等电点,可快速得到最佳分散剂和絮凝剂。对粒度和双电层失真进行自动校正。该仪器的软件易于使用,通用性强,非常适用于科研及工厂的优化控制。 在此基础上,DTI公司董事长Andrei Dukhin博士与美国康塔公司首席科学家Matthias Thommes博士通力合作,开创了电声电振效应测量固体孔道内表面zeta电位的专利方法,并用于WAVE系列和DT-300型, 成就了实现两种电位测定的DT-330型。电声电振法理论上没有分析限制,只要固体样品能被某种液体浸润即可进行分析,操作简单。 随着对高浓度在线粒度灵活监测的需求扩大,DTI公司开发了新一代DT-500型在线粒度分析仪,其功能和参数等同于DT-100型超声粒度分析仪,但其样品池采用了一次性的柔性模块(照片上的绿色部分)。它易于安装或取下(几分钟),消除了清洗过程,大大简化维护程序, 降低了应用成本。在样品池顶部和底部的模块组件用于连接到各种不同的管道,可以很容易地根据现场需求进行修改。这种管路修改不会影响仪器的性能。超声发生器和接收器之间的间隙仍然是可自动可调的,其电子控制箱和软件与DT-100是一样的。 该仪器已经应用于美国某制药公司研磨在线监测,并通过了初步的灭菌工序与125℃的蒸汽考验。 美国分散科技公司(DTI)成立于1996年,专注于非均相体系表征的科学仪器业务。 DTI开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、流变学、固体含量、孔隙率,包括CMP浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。DTI享有7项美国专利,并在ISO参与领导组织超声法粒度分布国际标准和电声法测量Zeta电位国际标准的制定。 DTI从成立之初就与美国康塔仪器公司有着广泛的合作,目前康塔仪器公司负责DTI在欧洲大陆,英国及中国大陆的全部业务,WAVE系列由康塔公司负责销售。 利用DT系列仪器,我们能够分析:l 浓浆中粒度分布l 浓浆Zeta电位l 多孔材料的表面Zeta电位l 等电点l 孔隙率l 高频流变学l 表面活性剂优化l 表面活性剂配伍优化l 非水相和水相电导率l 微流变l 固体含量l 德拜长度 在科研领域, 利用DT系列仪器发表的文献主要集中于如下应用:l 方法验证:利用声学与电声学测定粒度分布和Zeta电位。l 纳米技术:颗粒大小和Zeta电位l 生命科学与制药l 陶瓷l CMP研磨浆液:大颗粒含量l 水泥: zeta电位滴定l 矿浆l 颜料l 在极高离子强度下的Zeta电位(海水环境)l 多孔固体的表面Zeta电位l 涂料l 乳制品:液滴大小和脂肪含量l 乳液和微乳液l 化妆品:纳米粒子含量 (1)仪器可以测量的超声衰减谱远远超过50%(体积),但用于从该数据计算PSD的理论将浓度限制在50%(体积);同样,计算ζ电位的理论限定浓度为40%(体积)。在全范围内,等电点的pH值是准确的,但是,ζ电位的绝对值的降低会使体积分数限定在一定范围内。 (2)为滴定实验,可能有必要使用外部循环泵,以提供试剂与相当粘稠的样品之间充分混合。(3)在计算粒度时,因为声波响应与颗粒移动相关,颗粒黏度实际是非常重要。例如,在凝胶或其他结构化系统中,该“微黏度”应该是显著小于用传统流变仪测得的介质黏度,其所测量的黏度比颗粒黏度大得多的。 (4)为zeta电位测量时的粒度范围可能依赖于颗粒与介质的密度对比度。 欲了解更多信息,请联系jeffrey.yang @ quantachrome.com ,或致电800-810-0515 美国康塔仪器北京代表处http://www.quantachrome.com.cn
  • 美国康塔仪器公司推出实时zeta电位分析仪
    颗粒的zeta电位与体系的分散稳定性密切相关,zeta电位是颗粒体系的重要表征。流行的zeta电位测量采用动态光散射技术,但是这种方法在应用上受到极大限制,首先一旦颗粒大于1微米产生定向运动,就超出了该技术的适用范围 其次必须对样品进行稀释至颗粒浓度1000ppm以下。而大多数样品一经稀释状态即已经变化,所测数据不能代表原始状态。微米颗粒的zeta电位测定是使许多学者头痛的问题,现在有了最新的测量手段。   在PittCon 2010 上,美国康塔仪器公司推出图像法实时zeta电位分析仪 Zeta Reader,使上述难题迎刃而解。这种方法基于准确可靠的计算机技术,采用高分辨紫外成像方法,可直接观察到纳米级颗粒,因此无需复杂的相关器,节约了仪器空间。这种技术容易操作,直接照像取样,无论颗粒是否团聚,均可分析颗粒单体。样品可装入任何容器,因此可在线使用。 这种仪器最大的设计特点是:  ()不用样品池,直接将样品从容器中泵入电泳池;  ()快速简便,样品进入电泳池后数秒显示结果;  ()一般无需稀释; ()无需光学参数; ()无需密度值; ()可在线应用;  ()可得到如下数字信息:  ()Zeta 电位 Zeta Potential  ()迁移率 Mobility  ()电率 Specific Conductivity  ()样品pH值 Sample pH  ()样品池电压 Cell Voltage  ()样品池温度 Cell Temperature  ()可选粒度分布图像分析  ()可选综合滴定系统  ()可选动态数据储存和图表生成软件  ()记录电泳池图像  ()粒径范围:亮场-1 to 500 微米,与浓度有关;暗场-20nM 以上.  ()样品粒径:自动/手动采样 – 最小25 ml,无上限  ()手动注射: – 5 ml. (1 滴/ 5 ml 蒸馏去离子水中)  ()温度范围:0 到 62oC. Zeta电位测定:0 到 62oC.  ()悬浮介质:水或有机溶剂  ()电导率范围: 10 to 25,000 ES-v/cm.  ()样品浓度: 大约每升 25 to 4000 mg 悬浮固体 欲知详情,请致电美国康塔仪器公司中国代表处:800-810-0515;010-64400522 美国康塔仪器公司――优化颗粒性能测量技术。
  • EIS双恒电位仪——电化学分析监测的好帮手!
    WaveDriver® 系列双恒电位仪是一个多功能的双电极电化学工作站,有多种配置。在强大的AfterMath® 软件控制下,WaveDriver 200 EIS双恒电位仪能够进行电化学交流阻抗谱(EIS)以及各种单、双电极直流电分析技术。WaveDriver 200是一款真正的集成式双恒电位仪,能够控制在同一个电化学电池中工作的一个或两个工作电极以及一个反电极和参比电极,使该仪器成为旋转圆盘电极(RRDE)伏安法的理想选择。产品特点真正集成的双恒电位仪从软件到电池电缆,WaveDriver 200双恒电位仪设计简单易于操作:不需要复杂的管路连接,也不需要额外的电池电缆或适配器。WaveDriver 200可通过标准的USB数据线连接到笔记本电脑或PC端,并由我们强大的AfterMath软件控制。软件用户界面的设计考虑到了两个工作电极,因此输入双电极技术的实验参数非常简单快捷。应用程序WaveDriver 200在世界各地的学术和工业研究实验室中得到了广泛的应用。该仪器提供范围广泛的可用电流范围(±100 nA至±1 A)和电位范围(±2.5V至±15 V),以及先进的过滤和iR补偿。当使用旋转盘电极(RDE)、旋转环盘电极(RRDE)或旋转圆柱体电极(RCE)进行伏安测量时,背板连接允许控制旋转速率。额外的输入/输出和定时连接允许WaveDriver在光谱电化学等应用中控制第三方仪器。电化学交流阻抗谱EIS我们优秀的工程师和化学家团队将EIS整合到我们的WaveDriver系列恒电位仪中,EIS频率范围(10 µ Hz至1 MHz)。我们已经将强大且易于使用的EIS等效电路整合直接纳入我们的AfterMath软件平台。多种曲线拟合算法和选项使您能够将最棘手的EIS数据拟合到内置的等效电路模型中,或者您也可以设计和绘制自己的等效电路模型。集成曲线拟合和分析我们的软件团队已将EIS曲线拟合无缝集成到AfterMath中。AfterMath EIS曲线拟合工具提供了多种分析方法,包括电路拟合(Circuit Fit)、传输线路(Transmission Line)和Kramers-Kronig关系。与其他软件不同的是,我们的拟合软件还提供了几种拟合方法,包括修正的Levenberg-Marquardt(LM)、Simplex和Powell算法,此外还包括动态选点、统一和参数拟合在内的拟合选项。独特的传输线路拟合AfterMath 提供了一种独特的方法来模拟多孔电极。虽然传输线路模型并不新鲜,但AfterMath为您提供了一些独特的传输线路拟合工具。我们提供了一个非常灵活的基本模型,而不是无法控制模型元素的静态电路,您可以从中自定义模型以适合您的系统。您可以试试将您的三列或五列EIS数据直接导入AfterMath,看看和我们的传输线路拟合有什么不同。可同时查看绘图和拟合在拟合EIS数据时,为什么要在Nyquist图和Bode图之间来回切换?为什么不能同时查看绘图和拟合?我们从许多客户那里听到这种反馈,并设计了AfterMath,以便在拟合过程中同时为您提供两种图。独特的滑块控件使您可以快速改变一个电路元件的值,同时观察该元件对Bode图和Nyquist图的影响。如您对 双恒电位仪 感兴趣,可通过 仪器信息网400-860-5168转3827 和我们取得联系!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制