当前位置: 仪器信息网 > 行业主题 > >

镀铬标准

仪器信息网镀铬标准专题为您提供2024年最新镀铬标准价格报价、厂家品牌的相关信息, 包括镀铬标准参数、型号等,不管是国产,还是进口品牌的镀铬标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合镀铬标准相关的耗材配件、试剂标物,还有镀铬标准相关的最新资讯、资料,以及镀铬标准相关的解决方案。

镀铬标准相关的论坛

  • 求助:镀铬溶液中三价铬含量的方法

    各位好!新手上路,来向各位求助了.哪位朋友能告诉我,测定镀铬溶液中三价铬含量的简单方法?所用仪器及标准液?谢了谢了谢了!!~~~~~Email:lxfangwei@yahoo.com.cn

  • 【转帖】镀铬溶液中铬酐的测定原理与方法

    镀铬溶液中铬酐的测定原理与方法 -------------------------------------------------------------------------------- 发布时间: 2007-8-29 10:26:16 浏览次数: 126 一、分析原理 在硫酸溶液中六价铬被亚铁还原为三价铬: 2H2CrO4+6H2SO4+6FeSO4=Cr2(SO4)3十3Fe2(SO4)3十8H2O以苯基代邻氨基苯甲酸指示反应终点。二、试剂 1.1:1硫酸:量取50毫升分析纯硫酸(比重1.84),缓缓倒入50毫升水中,摇匀。 2.苯基代邻氨基苯甲酸指示剂:称取0.27克苯基代邻氨基苯甲酸溶于5毫升5%碳酸钠溶液中,用水稀释至250毫升。 3.标准硫酸亚铁铵溶液:称取硫酸亚铁铵40克溶于500毫升5:95的稀硫酸中,溶解完毕后,如有浑浊,应过滤。用5:95硫酸稀释至1升,使用前标定。 标定方法:用移液管吸标准 0.lmol重铬酸钾溶液25毫升于500毫升锥形瓶中,加水175毫升及浓硫酸10毫升,冷却。加入苯基代邻氨基苯甲酸指示剂8滴,溶液呈紫红色,用配制好的0.lmol硫酸亚铁铵溶液滴定至紫红色转为绿色为终点。 M=25×0.1000/V 式中:M一标准硫酸亚铁铵溶液的摩尔浓度 V一耗用标准硫酸亚铁铵溶液的毫升数 三、分析方法: 用移液管吸镀铬溶液5毫升于100毫升容量瓶中,加水稀释至刻度并摇匀,用移液管吸此溶液5毫升于250毫升锥形瓶中,加水75毫升1:1硫酸10毫升,再加苯基代邻氨基苯甲酸指示剂3滴,以标准0.lmol硫酸亚铁铵溶液滴定至紫红色变绿色为终点。四、计算: Ccro3=(M×V×0.0333×1000)/0.25 (g/L) 式中:M一标准硫酸亚铁铵溶液的摩尔浓度 V一耗用标准硫酸亚铁铵溶液的毫升数 资讯来源: 镀铬溶液中铬酐的测定原理与方法 发布人: 全球电镀网

  • 德国REIPO清洁抛光膏适于抛光镀铬零件

    德国REIPO清洁抛光膏是一款专为多种材料表面清洁与抛光设计的优质产品,尤其适用于镀铬零件的抛光处理。以下是对该产品在镀铬零件抛光方面的详细介绍: 一、产品概述 REIPO清洁抛光膏源自德国RC Kalle公司,该公司作为清洁产品及其相关配件的领先供应商,以其卓越的产品质量和创新技术赢得了市场的广泛认可。REIPO清洁抛光膏凭借其高效的清洁能力和出色的抛光效果,在镀铬零件的维护和保养中发挥着重要作用。 二、镀铬零件抛光优势 高效去除污渍:REIPO清洁抛光膏能够深入镀铬零件表面,有效去除油渍、指纹、氧化层等顽固污渍,使零件表面恢复光洁。 显著抛光效果:在清洁的同时,该产品能够对镀铬零件表面进行细致的抛光处理,填补微小划痕,提升表面平滑度和光泽度,使零件焕然一新。 保护镀铬层:REIPO清洁抛光膏采用温和配方,不会对镀铬层造成损害,反而能在抛光过程中形成一层保护膜,增强零件的耐腐蚀性和耐磨性。 延长使用寿命:通过定期使用REIPO清洁抛光膏对镀铬零件进行保养,可以显著延长零件的使用寿命,减少因表面磨损和腐蚀导致的更换成本。 三、使用方法 准备阶段:确保镀铬零件表面无大颗粒杂质和严重污垢,可使用软布或专用清洁剂进行初步清洁。 涂抹抛光膏:将适量的REIPO清洁抛光膏均匀涂抹在镀铬零件表面,注意避免过量使用以免造成浪费。 抛光操作:使用软布、海绵或专用抛光工具,在涂抹了抛光膏的镀铬零件表面进行轻轻擦拭或旋转,直至达到所需的抛光效果。对于难以触及的角落和缝隙,可使用细长的抛光棒进行清洁和抛光。 清洗残留:抛光完成后,使用清水或专用清洗剂将镀铬零件表面的抛光膏残留物彻底清洗干净,并用干净的软布擦干。 四、注意事项 在使用REIPO清洁抛光膏时,请确保通风良好,避免长时间吸入产品挥发的气味。 请勿将产品接触眼睛或皮肤,如不慎接触,请立即用大量清水冲洗,并寻求医疗帮助。 请将产品存放在阴凉干燥处,避免阳光直射和高温环境,以延长产品使用寿命。 对于特别敏感或珍贵的镀铬零件,建议在使用前先进行小范围测试,以确保不会对零件造成损害。 综上所述,德国REIPO清洁抛光膏凭借其高效的清洁能力、显著的抛光效果以及对镀铬层的保护作用,成为抛光镀铬零件的理想选择。无论是汽车配件、家具五金还是其他工业领域的镀铬零件,REIPO清洁抛光膏都能提供出色的抛光效果和维护保养方案。

  • 【金秋计划】关于电镀镀铬是否对铬酸雾申请总量的回复

    来信: [font=&][size=16px][color=#4c4c4c]  电镀为重金属行业,镀铬废气排放铬酸雾,请问,铬酸雾是否需要申请废气中铬的总量?[/color][/size][/font] 回复:   电镀废气中铬酸雾所占比例较小,铬酸雾经净化处理后排放的铬浓度很低,《排污许可证申请与核发技术规范 电镀工业》(HJ855—2017)中未要求电镀工业排污单位明确废气中总铬或六价铬的许可排放量。电镀废气中的铬酸雾也未纳入重点重金属污染物排放总量控制范围,目前无需申请铬的总量。

  • 【分享】六价铬镀铬槽、回收槽采样及六价铬检测

    (1)方法摘要:六价铬在酸性介质中可被亚铁还原为三价铬,用苯基代邻氨基苯甲酸作指示剂,用标准硫酸亚铁铵溶液进行滴定,到达滴定终点,溶液由紫红色变绿色。2H2CrO4+6H2SO4+6FeSO4→Cr2(SO4)3+Fe2(SO4)3+8H2O(2)试剂:①1:1硫酸溶液②磷酸 相对密度1.7.③苯基代邻氨基苯甲酸(P• A)指示剂[配制方法见标准液及指示剂制备(3)]④0.1mol/L标准硫酸亚铁铵溶液.[配制方法见标准液及指示剂制备(1)](3)采样及检测六价铬镀铬工艺用移液管吸5ml镀液于100ml容量瓶中,加水稀释至刻度并摇匀。吸取5ml稀液于250ml锥形瓶中(相当于0.25ml),加水75ml,磷酸1ml,硫酸10ml,加苯基代邻氨苯甲酸(PA)3滴,以标准0.1mol/L硫酸亚铁铵溶液滴定至由紫红色变绿色为终点。ρCr6+(g/L)=C×V×52 /(0.25×3)式中:C—标准硫酸亚铁铵溶液的浓度;V—滴定所耗用溶液的体积(ml);52—M Cr6+回收工艺用移液管吸2ml回收液于250ml锥形瓶中,加水75ml,磷酸1ml,硫酸10ml,加苯基代邻氨苯甲酸(PA)3滴,以标准0.1mol/L硫酸亚铁铵溶液滴定至由紫红色变绿色为终点。ρCr6+(g/L)=C×V×52 /(2×3)式中:C—标准硫酸亚铁铵溶液的浓度V—滴定所耗用溶液的体积(ml)52—M Cr6+水洗槽采样及六价铬检测(1)仪器设备a) 分析天平:精度为0.1mg;b) 比色仪器:可产生1cm 光程且可在540 nm 范围使用的分光光度计,或者可产生1cm 或更长光程,装有绿-黄滤色器且最大透射比在540 nm 附近的滤色光度计;c) 实验室用玻璃器具;d) pH 计:其精度应在±0.03,测量范围在0~14。(2)试剂除非另有说明,在分析中仅使用认可的高纯试剂和18MΩ 去离子水或相当纯度的去离子水。a)1,5-二苯碳酰二肼:分析纯;b)1M 磷酸盐缓冲液(pH 7.0):将87.09 g K2HPO4 (分析纯)和68.04 g KH2PO4(分析纯)溶解于700 mL 蒸馏水中,然后移至1L 的容量瓶中稀释至刻度线;c)硝酸:分析纯,(20~25)º C 避光保存,不要使用已经变黄的的浓硝酸,这是由于其中的硝酸根被光致还原成二氧化氮,而后者可把六价铬还原;d)重铬酸钾贮备液:将141.4 mg 在105℃干燥至恒重的重铬酸钾K2Cr2O7 标准物质(GBW06105)溶解于蒸馏水中,然后稀释至1L (50μg/mL 的六价铬);e) 重铬酸钾标准液:取上述配置的重铬酸钾溶液10mL 稀释至100mL (5μg/mL 的六价铬);f) 重铬酸钾示踪储存液(1000 mg/L 六价铬) :将105℃干燥至恒重的2.829g K2Cr2O7 标准物质(GBW06105)用水溶解于1L 的容量瓶中,然后稀释至刻度线。也可使用经认证的1000mg/L Cr(VI)标准液。此溶液应储存于冰箱中,六个月内使用;g) 重铬酸钾K2Cr2O7 示踪溶液(100 mg/L Cr(VI)): 取上述制备的1000 mg Cr(VI)/L 的K2Cr2O7 示踪剂10.0 mL 移入一100mL 的容量瓶,用蒸馏水稀释至刻度线,混合均匀;h) 丙酮:分析纯。(3)水洗液采样与处理a) 配制显色溶液:将0.5g 1,5-二苯碳酰二肼溶解于50mL 丙酮中,搅拌下慢慢加入50mL 水。将此溶液转移至棕色瓶中并储存于冰箱内,若该溶液退色不应使用;b) 取水洗液2ml液加入到50mL 的容量瓶中,加适量纯水,用10%的硝酸调节溶液pH=1.0~2.0;加入2mL 磷酸缓冲液,搅拌均匀后再加入2mL显色溶液,然后用纯水定容到刻度(消解液),静置(5~10)min 以使其充分显色。(4)测试步骤①绘制标准曲线a) 为了减小因分析过程中消解或其它操作造成的六价铬的流失而引起的误差,用与上述制样同样的程序处理标准六价铬试剂;b) 用移液管移取一定量的六价铬标准液置于10mL 的容量瓶中,配制0.1 到5 mg/L 六价铬的系列标准液。如果样品溶液中六价铬的浓度超出了原来的校准曲线范围,应利用其它浓度范围的校准曲线;c) 用与试样同样的方法对标准液进行显色;d) 将适量的标准溶液置于一个1cm 的吸收池中,用比色装置测试其在540nm 处的吸光率;e) 用同样的显色程序制备空白样,减去空白吸光度即得校正后的吸光度;f) 以校正后的吸光率和六价铬的值(μg/mL)为坐标轴,绘制校准曲线。②样品测试a) 将适量的静置后的溶液置于一个1cm 的吸收池中,用比色装置测试其在540nm 处的吸光率;b) 随同样品制备全程空白样,减去空白吸光度即得校正后的该样品的吸光度;c) 校正后的吸光度,根据校准曲线可以得到溶液中有多少mg/L 的六价铬。ρCr=An (mg/L)式中: A—从标准工作曲线上查出的六价铬的含量(mg/L) n— 稀释倍数

  • 【金秋计划】关于六价铬环境空气质量标准问题的回复

    来信: [font=&][size=16px][color=#4c4c4c]  镀铬工序排放铬酸雾,环境空[url=https://insevent.instrument.com.cn/t/bp]气质[/url]量标准中六价铬是否应执行《环境空[url=https://insevent.instrument.com.cn/t/bp]气质[/url]量标准》(GB3095-2012)中附录A参考浓度限值。[/color][/size][/font] 回复:   《关于六价铬环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量标准》的信件收悉,经研究,现答复如下: 《环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量标准》(GB 3095—2012)中“环境空气”指“人群、植物、动物和建筑物所暴露的室外空气”,镀铬工序排放的铬酸雾,应执行相应的大气污染物排放标准,不执行国家《环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量标准》。其中镀铬车间或生产设施排气筒铬酸雾排放标准限值应执行《电镀污染物排放标准》(GB 21900—2008)表5中相应标准限值;镀铬工序无组织排放监控点的铬酸雾限值应执行《大气污染物综合排放标准》(GB 16297—1996)表2中相应标准限值。

  • 【求助】镀梨面铬大体是什么样子?

    在相关标准里面,镀铬层一般有普通铬、微裂纹铬、微孔铬,镀梨面铬在相关的标准里面找不到这个术语,请问梨面铬镀后看起来是什么效果?镀层的大体工艺怎样?

  • 【分享】三价铬镀铬

    22.5 克/升),否则镀液会失去平衡,需要预先电解30~60分钟方可生产。TCR-301开缸盐的浓度太高时, 会引起镀液结晶,使阳极钝化及空气搅拌气管的气孔出现堵塞; 浓度太低时, 会影响镀液的导电性。

  • 【求助】电镀哑铬的盐雾试验标准

    网上查找国标真是难!!!想要找的东西往往找不到!总是被“买呀卖呀”忽弄。哪位朋友可以帮忙找到关于电镀哑铬的盐雾试验标准时间的???谢谢你们哟!

  • 不确定度评定的6个标准步骤

    [b][font=微软雅黑][size=16px]1、[/size][/font][font=微软雅黑][size=16px]第一步:规定被测量[/size][/font][/b][font=微软雅黑][size=16px]清楚地写明需要测量什么,包括被测量和被测量所依赖的输入量(例如被测量、常数、校准标准值等)的关系。只要可能,还应当包括对已知系统影响的修正。这些信息应在标准操作程序(SOP)或其他方法描述中给出。[/size][/font][b][font=微软雅黑][size=16px]2、[/size][/font][font=微软雅黑][size=16px]第二步:识别不确定度的来源[/size][/font][/b][font=微软雅黑][size=16px]列出[url=http://www.anytesting.com/search/q-%E4%B8%8D%E7%A1%AE%E5%AE%9A%E5%BA%A6.html]不确定度[/url]的可能来源。包括步骤一所规定的关系式中所含参数的不确定度来源,也可以有其他的来源。必须包括那些由化学假设所产生的不确定度来源。附录D以框架形式给出了一般步骤。[/size][/font][b][font=微软雅黑][size=16px]3、[/size][/font][font=微软雅黑][size=16px]第三步:不确定度分量的量化[/size][/font][/b][font=微软雅黑][size=16px]即评估识别出的每一个潜在的不确定度来源相关的不确定度分量的大小。可以使用方法确认研究的数据、QC数据等来评估与大量独立来源有关的不确定度的单个分量。使用这些数据可以大大减少不确定度评估的工作量,因为它利用实际的实验数据,可以使不确定度的评估结果可信度更高。[/size][/font][font=微软雅黑][size=16px]另外很重要的是:需考虑现有的数据是否足以反映所有的不确定度来源,是否需要安排其它的实验和研究来确保所有的不确定度来源都得到了充分的考虑。[/size][/font][b][font=微软雅黑][size=16px]4、[/size][/font][font=微软雅黑][size=16px]第四步:计算合成不确定度[/size][/font][/b][font=微软雅黑][size=16px]第三步所述的对总不确定度有贡献的量化分量,它们可能与单个来源有关,也可能与几个不确定度来源的合成效应有关。这些分量必须以标准偏差的形式表示,并根据有关规则进行合成,以得到合成标准不确定度。应当使用适当的包含因子来给出扩展不确定度。[/size][/font][b][font=微软雅黑][size=16px]5、[/size][/font][font=微软雅黑][size=16px]第五步:扩展不确定度[/size][/font][/b][font=微软雅黑][size=16px]这一步通常的做法是:假设测量不确定度符合正态分布。取95%的包含概率,k=2(准确值是1.96,习惯做法取2),那么第4步合成的标准不确定度,乘以包含因子2,就得到扩展不确定度。[/size][/font][font=微软雅黑][size=16px]当然这一步有人取包含因子为99%,那么k=3(准确值是2.56,习惯做法取3)。最终的扩展不确定度等于合成标准不确定度,乘以3。[/size][/font][b][font=微软雅黑][size=16px]6、[/size][/font][font=微软雅黑][size=16px]第六步:报告最终结果[/size][/font][/b][font=微软雅黑][size=16px]在这一步中需要报告出最终测试的结果,报告出扩展不确定度。以及k值。[/size][/font]

  • 新技术让电镀行业不必再谈之色变

    我们的生产线,电耗仅为46kWh/m2,与镀硬铬224kWh/m2相比,降低了79.46%。新鲜水耗为0.06t/m2,与清洁生产标准(新鲜水用量一级指标≤0.1t/m2)相比,降低40%,与普通镀铬工艺水耗0.5t/m2相比,降低88%;镍综合利用率98%,高于清洁生产一级标准(95%)。”在山东省环保厅日前组织召开的新型清洁镍钨磷(Ni-W-P)表面处理工艺技术参数优化及产业化示范鉴定会上,寿光金浴表面技术开发有限公司总经理曹新忠介绍说。 据介绍,此项新技术是由山东大学和寿光金浴表面技术开发有限公司历时10年共同研发而成。那么,这项电镀技术能否有效解决当前电镀污染?是否值得全面推广应用?电镀行业最大挑战在哪? 三大工业污染之一:每年排放约4亿吨废水、5万吨固废和3000万立方米酸性气体 电镀通过电化学原理,实现将一种金属或金属化合物镀覆到新基体上。但由于目前技术局限性,所使用的原料金属无法完全形成所需镀层,其中有相当部分作为废弃物,存在于废水和污泥中。还有小部分气化成有害气体,排放到大气中。 据统计,传统电镀行业每年排放约4亿吨废水、5万吨固体废弃物和3000万立方米酸性气体等污染物。 以传统镀铬为例,其电镀平均效率低于25%,75%以上的铬酸酐分化成剧毒的Cr6+(六价铬)和Cr3+(三价铬),流失于废水污泥中,每年相当于有近6万吨铬酸酐白白浪费,并污染环境。 此外,电镀污泥是电镀废水处理后的“终态物”,产生量虽比废水少得多,但由于废水中的重金属大多转移到污泥内,并会通过植物链进入到人体,损伤肝脏和神经系统,因此危害性更大,被列入国家危险废物名单中的第十七类危险废物。

  • 电镀行业折算问题

    求教各位老师,电镀行业废气浓度折算问题,如下图,废气2按照镀铜,镍的基准排气量折算,废气3按照镀铬的基准排气量折算,那废气1按照镀什么折算呢?[img]https://ng1.17img.cn/bbsfiles/images/2019/04/201904151514057492_7366_3452041_3.png[/img]

  • 【分享】GBZ 17-2002 职业性镉中毒诊断标准

    GBZ 17-2002 职业性镉中毒诊断标准前言 本标准的第6.1条为推荐性的,其余为强制性的。 根据《中华人民共和国职业病防治法》制定本标准。自本标准实施之日起,原标准GB7803-1987与本标准不一致的,以本标准为准。 在接触镉及其化合物的职业活动中可发生急性和慢性中毒。为保护接触者的身体健康,有效地防治镉中毒,曾发布GB7803-1987。 修订后的标准将急性镉中毒分为轻、中、重三级,以指导临床急救工作;将慢性镉中毒尿镉和尿β2-微球蛋白诊断值改为以肌酐校正的一种单位表示,删去目前不常用的尿蛋白电泳检查指标,增加了尿视黄醇结合蛋白测定指标,使慢性轻度镉中毒的诊断更加合理和容易掌握。当长期接触镉化合物的工人尿β2微球蛋白和(或)视黄醇结合蛋白异常增高时,摒除其他病因后,可诊断为轻度镉中毒;当出现慢性肾功能不全,可伴有骨质疏松症、骨质软化症时,则诊断为慢性重度中毒。 本标准的附录A是资料性附录。 本标准由中华人民共和国卫生部提出并归口。 本标准由中国疾病预防控制中心职业卫生与中毒控制所负责起草,参加起草单位有北京大学第三医院、新乡市职业病防治研究所和株洲冶炼厂职工医院。 本标准由中华人民共和国卫生部负责解释。职业性镉中毒诊断标准Diagnostic Criteria of Occupational Cadmium PoisoningGBZ17-2002 职业性镉中毒主要是吸入镉化合物烟、尘所致的疾病。急性中毒以呼吸系统损害为主要表现;慢性中毒引起以肾小管病变为主的肾脏损害,亦可引起其他器官的改变。1 范围 本标准规定了职业性镉中毒的诊断及处理原则。 本标准适用于因职业接触镉化合物烟、尘而发生的急性和慢性中毒,本标准慢性中毒部分在非职业中毒的诊断与治疗中亦可参照执行。2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBT16180 职工工伤与职业病致残程度鉴定 GBZ73 职业性急性化学物中毒性呼吸系统疾病诊断标准 GBZ48 金属烟热诊断标准 WS/T31 尿中镉的火焰原子吸收光谱法 WS/T32 尿中镉的石墨炉原子吸收光谱测定方法 WS/T33 尿中镉的微分电位溶出测定方法 WS/T34 血中镉的石墨炉原子吸收光谱测定方法 WS/T97 尿中肌酐分光光度测定方法3 诊断原则 根据短时间高浓度或长期密切的职业接触史,分别以呼吸系统或肾脏损害为主的临床表现和尿镉测定,参考现场卫生学调查资料,经鉴别诊断排除其他类似疾病后,可作出急性或慢性镉中毒的诊断。4 观察对象 尿镉测定连续两次在5μmol/mol肌酐(5μg/g肌酐)以上,尚无慢性镉中毒的临床表现。5 诊断及分级标准5.1 慢性镉中毒5.1.1 慢性轻度中毒 除尿镉增高外,可有头晕、乏力、嗅觉障碍、腰背及肢体痛等症状,实验室检查发现有以下任何一项改变时,可诊断为慢性轻度镉中毒。 a)尿β2-微球蛋白含量在9.6μmol/mol肌酐(10OOμg/g肌酐)以上; b)尿视黄醇结合蛋白含量在5.1μmol/mol肌酐(1000μg/g肌酐)以上。5.1.2 慢性重度中毒 除慢性轻度中毒的表现外,出现慢性肾功能不全,可伴有骨质疏松症、骨质软化症。5.2 急性镉中毒 5.2.1 急性轻度中毒 短时间内吸入高浓度氧化镉烟尘,在数小时或1天后出现咳嗽、咳痰、胸闷等,两肺呼吸音粗糙,或可有散在的干、湿啰音,胸部X射线表现为肺纹理增多、增粗、延伸,符合急性气管-支气管炎或急性支气管周围炎。5.2.2 急性中度中毒 具有下列表现之一者: a)急性肺炎; b)急性间质性肺水肿。5.2.3 急性重度中毒 具有下列表现之一者: a)急性肺泡性肺水肿; b)急性呼吸窘迫综合征。6 处理原则6.1 治疗原则6.1.1 慢性中毒 以对症支持治疗为主。6.1.2 急性中毒 应迅速脱离现场,保持安静及卧床休息。急救原则与内科相同,视病情需要早期给予短程大剂量糖皮质激素。6.2 其他处理6.2.1 观察对象 应予密切观察,每年复查一次。6.2.2 慢性镉中毒 应调离接触镉及其他有害作业。轻度中毒患者可从事其他工作;重度中毒患者应根据病情适当安排休息或全休。需要进行劳动能力鉴定者,按GB/Tl6180处理。6.2.3 急性镉中毒 轻度中毒患者病情恢复后,一般休息1-2周即可工作。重度中毒患者休息时间可适当延长。7 正确使用本标准的说明见附录A(资料性附录)。附录A(资料性附录)正确使用本标准的说明A.1 本标准适用于各种职业接触镉及其化合物的作业,如金属镉及含镉合金冶炼、焊接、镍-镉电池制造、颜料制造、金属表层镀镉等。经胃肠道摄入所致慢性镉中毒亦主要引起肾脏损害,故本标准的慢性中毒部分在非职业中毒的诊断和治疗中亦可参考使用。A.2 接触氧化镉烟雾引起金属烟热的诊断和处理可参考GBZ48其应与急性镉中毒引起的化学性气管-支气管炎或支气管周围炎相鉴别,并要警惕发生化学性肺炎和肺水肿参见GBZ73。A.3 急性中度和重度镉中毒患者可出现肝、肾损害,但在肝、肾损害前一般已有明显的肺损害表现,故肝、肾损害未列为急性中毒诊断及分级的依据。A.4 尿镉主要与体内镉负荷量及肾镉浓度有关,可用作职业性镉接触和镉吸收的生物标志物。据调查,当尿镉达5-1Oμmol/mo1肌酐时,肾小管功能异常的患病率可达5%-20%,故以5μmol/mol肌酐的尿镉作为现职工人慢性镉中毒的诊断下限值。慢性镉中毒时,尿镉通常超过此值,脱离接触较久者可有所降低,但应高于当地正常参考值上限。A.5 尿镉测定有火焰原子吸收光谱法(WS/T31)、石墨炉原子吸收光谱测定方法(WS/T32)、微分电位溶出测定方法(WS/T33)等,本标准未作强行规定,各地可根据条件,任选一种。A.6 血镉主要反映近期接触量。由于尚不能建立镉的近期吸收量与血镉浓度之间的定量关系,血镉与肾功能异常的剂量一反应关系资料远较尿镉少,因此,未将血镉列为本标准慢性镉中毒的诊断指标。但在急性镉中毒时,血镉增高可作为过量接触镉的佐证。血镉测定的石墨炉原子吸收光谱方法可参考WS/T34。A.·7 慢性镉中毒除表现为肾脏损害外,亦可累及其他器官,但较少见,且缺乏特异性,故诊断依据以肾脏损害为主。A.8 在慢性镉中毒的肾脏损害中,公认的早期改变主要是近端小管重吸收功能减退,故本标准以肾小管性蛋白尿为诊断起点。目前诊断的主要依据是尿β2-微球蛋白、视黄醇结合蛋白筹低分子量蛋白排出增多。测定尿β2-微球蛋白和视黄醇结合蛋白主要有放射免疫分析法和酶联免疫分析法两种,各地可根据自身条件,任选一种。A.9 尿镉、尿β2-微球蛋白和视黄醇结合蛋白测定多用点采样标本,易受尿液稀释度的影响,故上述尿中被测物的浓度均需用尿肌酐(测定方法可参见WS/T97)校正。对肌酐浓度小于0.3g/L或大于3.0g/L的尿样应重新留尿检测。A.l0 病情发展到慢性肾功能不全,可伴有骨质疏松、骨质软化时,已属重度中毒,其诊断依据与其他有关临床学科相同。A.11 慢性镉中毒应注意与其他各种原因引起的肾脏疾病、药物及其他工业毒物中毒、溢出性蛋白尿、Wilson病、特发性Fanconi综合征、营养不良所致的骨质疏松和软化等疾病相鉴别。A.l2 急性和慢性镉中毒均以对症支持治疗为主。由于依地酸钙钠驱镉效果不显著,在慢性中毒时尚可引起镉在体内重新分布后,使肾镉蓄积量增加、肾脏病变加重,因而目前多不主张用依地酸钙钠等驱排药物。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制