当前位置: 仪器信息网 > 行业主题 > >

绘制标准

仪器信息网绘制标准专题为您提供2024年最新绘制标准价格报价、厂家品牌的相关信息, 包括绘制标准参数、型号等,不管是国产,还是进口品牌的绘制标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合绘制标准相关的耗材配件、试剂标物,还有绘制标准相关的最新资讯、资料,以及绘制标准相关的解决方案。

绘制标准相关的资讯

  • 25种白酒国家标准样品图谱已绘制并通过鉴定
    25种白酒国家标准样品通过鉴定 鉴别白酒真伪判定白酒品质有了一批实物依据   6月25日,25种中国名特白酒国家标准样品通过了全国标准样品技术委员会酒类标样分技术委员会组织的鉴定。这批国家标准样品的研制,将为鉴别25种白酒提供可靠的实物依据。   据全国标准样品技术委员会酒类标样分技术委员会秘书长、辽宁省标准样品开发中心主任杨明介绍,近年来,假冒国家名优白酒和地方名特白酒的技术含量越来越高,急需国家标准样品作为质量监管和质量仲裁的依据。自2007年年初国家标准委下达了这批国家标准样品项目计划后,辽宁省标准样品开发中心组织国内权威的技术机构,按照相关国家标准确定的方法,对包括贵州茅台酒、五粮液、汾酒、道光廿五、红星二锅头、牛栏山二锅头等25种白酒的酒精度、总酸、总酯、甲醇、杂醇油、固形物、己酸乙酯、乙酸乙酯、乳酸乙酯、丁酸乙酯和铅等理化指标进行定值标定。   杨明介绍,在这批国家标准样品的研制过程中,还绘制出25种白酒的国家标准样品气相色谱图谱。该图提供了每种白酒的香味成分的流出曲线特征,还可以从中找出25种白酒的有关微量成分及其量比关系规律特征,从而为鉴别假冒伪劣商品提供参考依据。感官品评是白酒国家标准样品技术文献中不可缺少的重要内容,在25日的鉴定会上,30多位国家白酒评委组成的专家组给出了25项白酒国家标准样品的感官评语,为25种白酒提供感官鉴定依据。   标准样品是标准存在的另一种形式。标准样品与文字标准相比更直观、更具体,有更强的对比性与参考性,并与文字标准相互对应、相辅相成,是文字标准的具体体现,可以补充文字标准的不足。我国酒类国家标准样品的研制自20世纪80年代中期起步,近年来,国家标准样品在规范白酒生产和流通上越来越发挥出独特的作用,已得到普遍的认同。   这批国家标准样品可以作为监管部门及白酒生产企业、酒类经营单位执法检查、鉴别对照、检验分析和感官鉴定等工作的实物标准依据。这些国家标准样品不仅可用于检查与校对质检机构对25种白酒质量的分析结果、在仪器分析中用于校对和制作分析工作曲线,还可用于校对白酒分析方法中的标准溶液浓度,检查、考核和改进分析方法,同时可用于考核检测分析人员的技术水平。尤其重要的是,这批国家标准样品还可用于校对白酒分析仪器的误差,并对制修订文字标准、解释和说明文字标准提供辅助的实物依据。这批国家标准样品还是相关生产企业确保白酒质量和品质稳定以及白酒经营单位把好验货关的重要依据。   据悉,通过鉴定的25种白酒国家标准样品近日将报国家标准委,批准正式成为国家标准样品。
  • VOC手工监测-校准曲线绘制避坑指南 (上)-北京博赛德
    在实验室VOC手工监测实验中,校准曲线属于实验室质量控制的范围,一个好的校准曲线不但可以对目标物质进行准确的定性定量,而且能评价稀释系统、浓缩系统、分析系统等是否正常。校准曲线在绘制过程中经常会遇到各种各样的问题,北京博赛德应用工程依据多年经验总结出这份-校准曲线绘制避坑指南,对常见问题进行总结,分析可能的原因并提出有效的解决措施。一、绘制方法及要求绘制校准曲线浓度点数量不少于5个(不含零点),浓度范围应根据环境空气中目标化合物的浓度进行调整。一般情况下,BCTdi浓度点建议≤0.5ppbv,BCT高浓度点建议≤20ppbv。目标物相对响应因子的相对标准偏差(RSD)应≤30%或曲线方程的相关系数≥0.990。采用非线性曲线方程时,应BCT少采用6个浓度点进行校准。二、校准曲线的质控1、标气加湿用于配制标气的真空罐,在配制前应作加湿处理,相对湿度在40-50%之间为宜。加湿后罐内的水蒸气可以置换罐内表面的气体,使其保持在气相,减少内壁对标气的吸附。标气的湿度不足可能导致目标物不能完全地从标气罐或管线中转移到预浓缩仪。同时,环境空气样品存在一定的湿度,对标气加湿可以保证样品与标气之间的基质相近,有利于高沸点和活性组分的分析。2、使用两罐标气建立校准曲线时宜BCT少配置高低两个浓度的标气(建议2ppbv和10ppbv)。当标气配制或保存环节出现问题时,只有1罐标气不容易发现问题,且两个浓度的标气有利于发现系统中存在的吸附或残留等问题。3、单点质控分析测试期间每天分析一次单点质控标气(不能与校准曲线使用相同的标准使用气),评估校准曲线的有效性。未完,待续
  • VOC手工监测-校准曲线绘制避坑指南 (中)-北京博赛德
    VOC手工监测-校准曲线绘制避坑指南 (上)中,我们聊完了绘制方法及要求、校准曲线的质控,接下来我们看看一些常见问题并给出分析。三、常见问题分析1、曲线线性不好当校准曲线RSD超过30%时,可能的原因和解决办法包括:a. 个别物质校准曲线BCT个点因为浓度低做不好,可以在曲线点数满足要求的情况下舍掉BCTdi点;b. 内标不稳定,当内标峰面积的变化超过BCT近一次校准曲线内标峰面积均值的±40%时,表明仪器状态不稳定,需要进一步查找原因;c. 标准气体配制时平衡时间不够,这会导致部分浓度点测试时浓度不稳定。因此在配制标气时每一级稀释都需要平衡BCT少1个小时,对于一些高沸点物质需要的平衡时间可能更长。2、曲线正截距a. 若所有物质的校准曲线均出现正截距情况,可能是低浓度点的进样体积小,导致体积计量不准,这种情况可以采用低、高两个浓度标气来绘制校准曲线,避免小体积进样。对于不使用冷冻剂的预浓缩系统,标气的压力过大也会导致该情况,在配制标气时BCT终罐压力避免过高,或者给标气罐加装减压阀。b. 若部分物质(如高沸点物质等)校准曲线出现正截距,可能是整个系统中有目标物残留,可排查以下环节:(1)延长预浓缩系统烘烤时间或提高烘烤温度,判断预浓缩仪是否有残留;(2)排查清罐和配气系统是否安装除烃阱,或测试不同体积的氮气空白,判断氮气是否有残留;(3)运行不同体积的吹扫过程,判断氦气是否有残留;(4)进不同体积的内标气,判断内标中是否有目标物;(5)若以上环节均没有问题,残留很可能出现在标气罐上,在清洗标气罐时,建议加热加湿清洗,增加清洗循环次数;在清洗完成后进行罐清洗空白抽查;专罐专用,标气罐避免与污染源采样罐混用。未完待续
  • VOC手工监测-校准曲线绘制避坑指南 (下)-北京博赛德
    VOC手工监测-校准曲线绘制避坑指南 (中),我们总结了两个常见问题,今天我们继续探讨校准曲线的另外两个问题:3、曲线负截距a. 若所有物质的校准曲线均出现负截距情况,可能是低浓度点的进样体积小,导致体积计量不准,可以采用低、高两个浓度标气来绘制校准曲线,避免小体积进样。也可能是系统漏气,需要对系统进行检漏。b. 若部分物质(如高沸点物质等)校准曲线出现负截距,可能是整个系统对目标物有吸附,可初步排查以下环节:(1)确保系统与样品接触的部分均经过惰性涂覆,且有惰性测试报告;(2)清洗离子源,确保质谱离子源干净;(3)确保捕集阱温度传感器经过校准,仪器方法设置合理。若初步排查没有问题,表明预浓缩系统或采样罐被颗粒物污染,当颗粒物进入采样罐或分析系统时,会对部分目标物有一定吸附,影响测试结果。可排查以下环节:(1)提高预浓缩系统的烘烤温度,延长烘烤时间,根据色谱柱的内径调大柱流速,同时打开分流阀和进样阀,判断预浓缩系统是否被污染;(4)用高纯氮气对样品管线进行吹扫或用甲醇清洗,判断样品管线是否被污染;(5)若以上环节均没有问题,需要对M1、M2、M3进行逐一排查,判断三个冷阱是否被污染,若被污染需要进行更换。当系统出现颗粒物污染时,解决措施比较复杂,耗费人力物力。因此在用采样罐采集环境空气样品时需要加装颗粒过滤装置,避免颗粒物进入采样罐进而污染分析系统;在日常使用时,定期检查过滤装置是否堵塞,定期清洗或更换过滤器,这也可以减少颗粒物对采集的样品产生负面影响的可能性。 4、两罐标气绘制校准曲线的问题使用两罐标气绘制校准曲线可以避免小体积进样时体积计量不准,有利于发现标气配制或保存环节出现的问题以及系统中存在的吸附或残留等问题。不过使用两罐标气绘制校准曲线会出现新的问题,比如每罐标气各自浓度点的线性很好,但校准曲线总体线性不好,并出现正截距或负截距现象。a. 若出现正截距情况,可能是低浓度标气罐没有清洗干净,罐中有目标物残留,可以重新清洗标气罐、增加清洗循环次数,并在日常清洗完成后进行罐清洗空白抽查;也可能是在配气、分析过程中引入了实验室空气,需要在配气和分析前注意:配气前先用高纯氮气吹扫管路,分析前先不要打开标气罐阀门,用预浓缩系统对管路抽真空后再打开阀门。 b. 若出现负截距情况,可能是低浓度标气罐被颗粒物污染或惰性涂层被破坏,导致目标物在罐中被吸附。在日常测试时要专罐专用,避免标气罐与采样罐混用,并且在罐子没有连接仪器时要及时盖上密封帽,避免颗粒物通过阀门进入罐子;此外,还需定期对在用罐子进行惰性检查,保证在用罐子每3年BCT少被检查1次。 影响校准曲线的因素众多,涉及标气罐、清洗、配气、预浓缩、分析等环节的方方面面;校准曲线出现的问题也不尽相同,正截距还是负截距,所有物质还是部分性质相同的物质等等。校准曲线绘制避坑指南分享BCT此完结,本文总结的现象、问题、原因、解决方法可能有所遗漏,欢迎大家留言一起讨论!
  • 珀金埃尔默推出首个细胞全景绘制即用试剂系列
    致力于以创新打造更健康世界的技术型企业珀金埃尔默,最新推出首个细胞全景绘制即用试剂盒PhenoVue™ ,并与其全新的细胞成像试剂系列产品进行全球同步发布。细胞成像新试剂系列全面匹配珀金埃尔默成像微孔板、全自动细胞样品准备系统、高内涵成像系统和大数据智能分析技术,共同组成了针对小分子、siRNA、CRISPR、天然产物库等药物筛选的即用型高通量解决方案。研究人员通过完整的即用型全自动筛选工作流程,能更深入地了解疾病,从而开发出更多针对性的疗法和药物。细胞全景绘制是高通量药物筛选领域的一项前沿技术,该技术将细胞学与生物信息学相结合,可研究诸如化合物、药物、天然产物或siRNA对细胞行为的影响。用不同的荧光探针标记亚细胞结构来“全面绘制” 细胞,通过成像,并基于单细胞图像定量分析这些亚细胞结构和细胞器。然而,在针对这一前沿筛选应用建立实验方案时,很多实验室在独立制备试剂环节经常需要花费大量的时间和精力。为解决这一难题,珀金埃尔默推出的PhenoVue™ 细胞全景绘制即用型试剂盒,以其即用型配方可大大简化研发流程。该新试剂盒系列除了即用型试剂盒,针对灵活的应用需求,还推出了亚细胞结构、细胞器荧光探针和荧光二抗。经验证,这些试剂适用于高通量药物筛选,可大幅提升药物研发企业的研发效率。例如,客户可以将这些试剂与珀金埃尔默的CellCarrier™ Ultra微孔板、Janus自动化样品处理系统、Opera Phenix® Plus高内涵筛选系统、Operetta CLS™ 高内涵筛选系统和Harmony® 高内涵分析软件结合应用。珀金埃尔默副总裁、生命科学事业部总经理Alan Fletcher表示:“研究人员正在利用细胞全景绘制结合高内涵药物筛选系统的领先方案,来促成很多杰出的发现以进一步推动更多创新药物和疗法的出现。此外,最新推出的新型PhenoVue™ 细胞成像试剂,结合全套成像微孔板、自动化样品处理系统和高内涵药物筛选系统和专家服务,将有助于研究人员构建更简洁高效的工作流程,从而享受与单一技术提供商合作带来的便利,加速新药物的研发。”有关珀金埃尔默新型PhenoVue细胞成像试剂的更多信息,敬请访问:www.perkinelmer.com/PhenoVue关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞察。在全球,我们拥有约14000名专业技术人员,服务于190个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2020年,珀金埃尔默年营收达到约38亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 复旦大学冯建峰教授团队首次绘制大脑功能网络动态图谱
    复旦大学冯建峰教授团队首次绘制大脑功能网络动态图谱近日,复旦大学类脑智能科学与技术研究院冯建峰教授团队在BRAIN上在线发表了题为《脑功能网络动态特性的神经、电生理和解剖关联及其在精神疾病中的改变》(“Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders”)的论文,该研究通过核磁共振扫描技术定量刻画人类大脑各区域的动态相互作用模式,揭示了大脑产生动态变化机制,首次绘制了动态脑功能网络图谱。研究发现,大脑功能网络的动态变化程度与人类的智能高度相关。根据这一发现,未来将有可能通过赋予人工智能系统内部各部件动态相互作用的模式,使机器人真正产生人类的思维方式,这一重大成果或将对人工智能的发展带来革命性的影响。该论文被选为Brain编辑推荐和当期封面论文,《英国每日邮报》等海外几十家媒体给予焦点报道。2014年美国麦克阿瑟天才奖得主,宾夕法尼亚大学Skirkanich讲座教授Danielle Bassett专门为此研究撰写了题为“The flexible brain”的评论,该评论认为“这项工作是我们在理解大脑网络动态变化道路上的一块重要基石 (an important stepping-stone)”。“传统智商测试因无法准确反映一个人的真实智力而受到诸多质疑。随着脑成像技术,特别是近年来功能核磁共振技术的发展,为我们定量化人类的大脑,并在此基础上充分洞悉人类智力提供了重大契机。我们的研究工作最初是从理解精神疾病如精神分裂症、抑郁症等疾病的大脑动态变化机制和疾病诊断出发,但却意外的通过这一工作,在解析人类智力上有惊人的发现,相信这将对目前如火如荼的人工智能技术发展带来更大的推动。”近年来,冯建峰教授与其带领的复旦大学团队和英国华威大学团队,一直致力于利用来自世界各地的数以千计被试者的大脑静息态磁共振数据,定量刻化人脑的动态变化,识别人脑不同区域之间动态相互作用的机制以及其在精神疾病中的改变。这项研究发现,人脑中与学习、记忆紧密关联的脑区表现出高度的“可变性”。这意味着这些区域同大脑其他部分之间的连接模式变动更加频繁,可发生在短短几分钟甚至数秒之间。另一方面,人脑中与智力相关性小的区域,包括视觉区、听觉区和感觉运动区,皆表现出了低“可变性”和低“适应性”。一个人的大脑“可变性”越强或越灵活,个体的智力以及其创造力也就越高。目前,人工智能系统并不具备“可变性”和“适应性”。而这两种人类独特的智能特性,已被该研究证实对于人类大脑的学习能力至关重要的。大脑网络动态图谱的绘制,未来可被应用于构造更先进的人工神经网络,使计算机具备学习、成长和自适应的能力。这一研究成果还在脑重大疾病的诊疗上带来重大发现,在精神分裂症患者、自闭症患者以及多动症患者的大脑默认网络中,都可以观察到“可变性”的状态变异。这也意味着,大多数精神疾病的根源来自于大脑可变性或可塑性方面的改变,这一认识可使科学家们能够更有效的治疗甚至是预防精神疾病的发生。据悉,冯建峰教授是上海国家数学中心的首席科学家,2015年受聘为复旦大学新成立的类脑智能科学与技术研究院首任院长。该研究院成立一年多以来,致力于开展脑科学与人工智能交叉前沿研究,在智能算法的发展及其对脑疾病的精准诊断上取得了多项重大突破,其中包括:利用多达数千例的脑疾病数据,开发了大数据驱动的全脑关联性分析方法(BWAS)的统计学方法,利用这一方法可实现在全脑数10亿的功能联接中寻找出病根:发现了精神分裂症病人中以丘脑为中心的脑功能异变网络(2015年Nature子刊Nature Partner Journal Schizophrenia),发现了自闭症儿童与人脸识别、社交相关的神经功能环路的显着变化(2015年Brain);研究发现了抑郁症病人大脑中憎恨环路的减弱和消失(2013年Nature子刊Molecular Psychiatry);同时,团队还发现了与纹状体相关的奖励预期行为受到VPS4A和RAC1基因的调控(2015、2016年PNAS)等,揭示了精神分裂症的脑结构具有“自愈”功能(2016 Psychological Medicine)。这些突破性成果被CNN、福布斯等媒体给予集中报道,被誉为“在脑疾病的寻根和靶向治疗上找到了前所未有的新途径”。目前,研究院正在积极开展国际脑科学研究合作计划。2016年7月,在瑞士召开的人类脑图谱年会美、中、英、法、德等六国闭门会议上,冯建峰教授发起了国际脑科学研究数据字典合作计划,建立了重大脑疾病多尺度数据(遗传、神经、影像、行为和环境等)标准化采集规范,与世界最大的多尺度数据库ADNI, IMAGEN, IMAGEMEND, BIOBANK开展数据共享。“我们正在利用全维度、多中心的生物大数据,发展一系列新型智能算法,期望在脑重大疾病寻根和大脑的定量化研究中,取得更大的突破。”
  • 美国绘制出等离子体波谱图,或将用于太空保护
    近日,美国科学家成功绘制出太空中等离子体波类似斑马线的波谱图,并证明了等离子体波是由围绕地球磁场线呈环状分布的质子激发产生的。等离子体波谱图的绘制可帮助科学家更准确地理解太空辐射和模拟太空环境,或有助于更好地保护宇航员和太空设备。  20世纪60年代,加州大学洛杉矶分校研究生克里斯托弗拉塞尔在范爱伦辐射带(围绕地球的含有高能粒子的圆环)检测到了神秘的等离子体波,它们普遍存在于近地空间,但科学家却一直无法解释这些等离子体波是如何产生的。现在,这一谜题已被解开。  据加州大学洛杉矶分校官网报道,该校地球物理学家尤里施普里茨领导的研究团队通过卫星观察到13个在太空中等间距分布的线,在赤道附近发现了结构稳定的类似斑马线的等离子体波波谱,根据上述结果绘制了等离子体波的模式图。研究人员还发现,围绕地球磁场线呈环状分布的质子能够为等离子体波提供能量,并证明等离子体波是由这些质子激发产生的。  赤道附近的等离子体波能使范爱伦辐射带内的粒子加速到高能状态,并使这些粒子消失在大气层内。这一现象可能对地球磁层、电离层和中高层大气有重要影响,其对太空中电子和离子的加速和扩散可能造成卫星通讯故障甚至使之完全失效,还可能伤害宇航员的健康。  施普里茨说:“等离子体波谱图的绘制有助于科学家更准确地理解太空辐射和模拟太空环境,以及更好地保护宇航员和太空设备。”  现在已经是空间物理和行星学教授的拉塞尔说:“施普里茨的工作非常有意义。我在1966年观察到的神奇现象终于得到了合理解释。”
  • 我国绘制完成首个蒙古族人全基因组序列图谱
    记者18日在内蒙古自治区呼和浩特市召开的&ldquo 世界首例蒙古族人全基因组序列图谱绘制完成成果发布会&rdquo 上获悉,我国科学家绘制完成了全世界首个蒙古族人全基因组序列图谱。   据项目总负责人、内蒙古农业大学生命科学学院动物生物技术重点实验室主任周欢敏介绍,这一研究成果是我国科学家首次独立完成的、具有自主知识产权的蒙古族人全基因组序列图谱,标志着我国的人类学、民族学、人类遗传学及医学健康研究进入了基因组水平。   项目核心研究人员之一、内蒙古民族大学教授白海花说,在这个项目中,科研人员首先对苏尼特王爷家系后代&mdash &mdash 成吉思汗的第三十四代、健康蒙古族男性进行了全基因组测序,并绘制出一个较为完整的蒙古族人全基因组图谱,测序深度和水平达到世界领先水准。   据介绍,项目组还将进行更多样本的蒙古族人全基因组测序分析,构建蒙古族人遗传信息数据库,为今后的医学及其他相关研究提供坚实的基础数据支持。
  • 案例解读|基于朊病毒的肽阵列绘制
    案例解读|基于朊病毒的肽阵列绘制背景解读大洋洲巴布亚新几内亚高原的一个叫Fore的部落还处在原始社会,他们一直沿袭着一种宗教性食尸习惯,所以我们也成功的入侵当地人的机体系统,几年后或者有的更久,食尸者中不少人会便出现了病症,抽搐,关节严重弯曲,后躯萎缩摇摆,而后发展成失语直至完全不能运动,不出一年被染者全部死亡。1996年那年春天,在英国迅速蔓延的“疯牛病”,一时间人们“谈牛色变“,英国的农场主将病死的牛制成“牛肉骨粉”(动物内脏制成的饲料)饲养原本吃植物的菜牛,也随着被变异而大范围的传播,而那些食用被疯牛病污染了的牛肉、牛脊髓的人,有可能染上致命的克罗伊茨费尔德—雅各布氏症(简称克-雅氏症),也就是所说的,人患上了“疯牛病”,其典型临床症状为出现痴呆或神经错乱,视觉模糊,平衡障碍,肌肉收缩等,病人便会“羊瘙痒症”:因精神错乱而死亡。其实,致病的原因便是因为我沿着脊椎潜入了大脑中,使脑部出现海绵状空洞,才引发了后来的一切。关于阮病毒朊病毒与常规病毒一样,有可滤过性、传染性、致病性、对宿主范围的特异性,但它比已知的小的常规病毒还小得多(约30~50nm);电镜下观察不到病毒粒子的结构,且不呈现免疫效应,不诱发干扰素产生,也不受干扰作用。朊病毒对人类的威胁是可以导致人类和家畜患中枢神经系统退化性病变,不治而亡。因此世界卫生组织将朊病毒病和艾滋病并立为危害人体健康的顽疾。朊病毒(prion virus)严格来说不是病毒,是一类不含核酸而仅由蛋白质构成的可自我复制并具感染性的因子。它的复制方式是(尚未明确):1.“模板学说”:在特殊情况下,SC型PrP可作为模板,在特定酶参与下,降低转化所需能量,并催化C型PrP转变为SCPrP2型,形成二聚体,二聚体又会解离。2.“种子学说”:朊病毒(SC型PrP型蛋白)接触到了生物体内正常的C型PrP蛋白,导致C型的变成了SC型。朊病毒蛋白PrPC空间结构螺旋为主,溶解度高,PrPSC空间结构折叠为主,溶解度低,肽链氨基酸排列顺序相同朊病毒蛋白(PRION)是生物体正常基因编码的产物,本不具有感染性和致病性,但是遗传突变可以产生传染型朊病毒,可以将正常的朊病毒异构为传染型朊病毒,其因为结构特殊,无法被细胞内溶酶体中的蛋白酶分解,而在溶酶体中大量积累,涨破溶酶体,使其中的蛋白酶流出而对细胞造成破坏,使神经细胞大量死亡而产生海绵状空洞。疯牛病、羊瘙痒症、库鲁病都是由朊病毒引起。归根结底,朊粒是正常寄主的PrP基因编码的正常蛋白质PrP^c的异构体PrP^sc,它不是遗传信息的载体,不能自我复制,只是感染动物体内正常的PrP^c,导致动物患病。中心法则的正确性无可置疑。方法原理蛋白质-蛋白质的相互作用是活细胞中大多数(不是全部)生物过程的基础。因此,采用现有技术或开发新技术来研究蛋白质之间的相互作用对于阐明哪些氨基酸序列对这些相互作用起着重要作用。这些新的见解反过来可能导致对疾病潜在过程的更好理解,并可能为新的治疗方法提供基础。在这里,我们描述了一种通常用于确定朊病毒特异性抗体表位的羊朊病毒蛋白基肽阵列的新用途,并展望这将产生关于其PrP部分与羊朊蛋白衍生线性肽之间相互作用位点的信息。肽阵列的这种适应性应用表明,通过培养绵羊(ARQ)PrPC与麦芽糖结合蛋白(MBP)融合的成熟部分,PrP部分与绵羊朊病毒衍生肽之间发生了结合,并表明单个PrP分子之间可能发生一些特定的自相互作用;在此说明肽阵列的这种适应性应用是进一步明确哪些不同的氨基酸序列参与蛋白质-蛋白质相互作用的可行方法。中心法则及其补充内容告诉了我们遗传信息的流动方向:DNA的复制,遗传信息流动方向由DNA→DNA;DNA的转录,遗传信息流动方向由DNA→RNA;翻译,遗传信息流动方向由RNA→蛋白质;RNA的复制,遗传信息流动方向由RNA→RNA;RNA的逆转录,遗传信息流动方向由RNA→DNA;蛋白质的复制,遗传信息流动方向由蛋白质→蛋白质。但是究竟在生物体中遗传信息的传递应该包含其6点内容中的几种呢?不同类型的生物,遗传信息的传递过程也有所差异。实验方法传染性海绵状脑病(TSEs)或朊病毒疾病的常见事件是宿主编码的蛋白酶敏感细胞朊病毒蛋白(PrPC)转化为朊病毒蛋白(PrP)的羊瘙痒相关蛋白酶抵抗亚型(PrPSc)的菌株依赖性等位型。PrPSc的形成是一个翻译后的过程,包括将宿主编码的朊病毒蛋白(PrPC)重新折叠(转换)为部分蛋白酶抗性形式(PrPSc)(1)。 这些过程由PrP结构的相似性和应变依赖性变化决定(2-11)。PrP分子之间的选择性自相互作用是这些过程发生的可能的基础,可能受到chaper-one分子的影响;然而,这些过程背后的机制还远未被了解。在这里,我们描述了一个肽阵列的利用,该肽阵列系统地覆盖了细胞朊病毒蛋白的整个成熟部分,以阐明涉及PrPC(12)自身相互作用的相互作用域。为此,利用重组羊PrPC与麦芽糖结合蛋白(MBP-PrP)构建了羊PrP肽阵列。朊病毒肽阵列的基本设置。成熟的PrP-ORF(不包括N-和C-端信号序列)被分成15个mer重叠肽,形成一个网格,每个孔中的氨基酸序列都移动了一个氨基酸。基于ELISA的肽阵列分析检测原理。(A)用于确定抗体表位的肽阵列的标准检测装置;(B)本研究中用于测定肽-蛋白质相互作用的替代装置。实验结果PrPC二级结构和抗体表位与肽阵列结合模式和Kyte–Doolight亲水性图的概述。PrPC示意图,显示信号序列、b-片(S1、S2)、a-螺旋(H1、H2、H3)、二硫桥位点(S-S)和糖基化位点(CHO)。PrP序列与Kyte-Doolittle亲水性图(折线图;阴性为疏水性,阳性为亲水性)以及与绵羊朊病毒肽阵列的相对结合模式(柱状图)。方法解读抗原表位定位是鉴定,表征抗体,抗原和其他蛋白质结合位点的关键过程。 该信息使科学家能够开发出针对各种病毒病原体的新型疗法和疫苗,同时也是了解抗体如何针对不同条件(包括细胞毒素,过敏原,神经元或炎性反应)产生的有效方法。 然而,由于蛋白质和肽结构的复杂性,抗原表位的鉴定和定位可能很困难。当前的抗原表位定位方法,包括X射线共晶体学,低温电子显微镜(cryo-EM)和定点诱变作图,可能会非常耗时且昂贵。
  • JUMP-CP 联盟携手珀金埃尔默建立世界上最大的细胞全景绘制公共数据库
    致力于为打造更健康世界而持续创新的技术型企业,珀金埃尔默日前宣布,它将向形态学分析-细胞全景绘制联盟(JUMP-CP)提供PhenoVue™ 细胞全景绘制试剂盒。由博德研究所(麻省理工学院和哈佛大学共同创建)发起,JUMP-CP包括了全球领先的制药公司和非营利研究机构,专注于创建全球最大的细胞成像公共数据库,并实现共享。建成之后,该数据库将具有超10亿细胞对14万+个小分子和基因干扰的反应信息,将能够帮助科学家在将新疗法推向临床试验之前更好地明确其作用机制。目前针对包含化合物活性和毒性反应以及适用疾病等关键信息的全面、开放性数据库的缺失,已经成为药物研发过程中一个主要瓶颈,延长了研发周期。珀金埃尔默提供的PhenoVue即用型试剂盒,针对灵活的应用需求,提供亚细胞结构、细胞器荧光探针和荧光二抗,还可与高内涵筛选应用相结合。这无疑会让联盟科学家大大受益,也将有助于节省研究人员的时间和资源。珀金埃尔默生命科学事业部高级副总裁 Alan Fletcher 博士在谈到与JUMP-CP联盟合作的重要性时说道:“当今药物研发的主要挑战之一,是如何预测新药在进入人体后会出现的潜在反应。细胞全景绘制无疑是个振奋人心的新方法,它建立在细胞生物学和计算生物学相结合的基础之上,能够帮助研究人员进行更具预测性的药物研发,从而加快新疗法推向市场的进度,降低临床试验的后期失败率。我们很高兴能够参与这一具有开创性的研究和数据库开发,并发挥积极作用。”博德研究院影像平台高级总监 Anne Carpenter 博士表示:“事实证明,细胞全景绘制能够提供一个强大的数据源,来挖掘受到化合物、基因改变或疾病影响的细胞表型。我很高兴地看到JUMP-CP联盟成员携起手来,共同创建这一全球最大的公共基因/化合物细胞全景绘制数据库,这无疑会使全球的药物研究人员受益。”PhenoVue试剂盒是珀金埃尔默提供的用于细胞全景绘制和相关疾病细胞模型工作流程和完整解决方案的一部分,此外还包括 CellCarrier™ Ultra 微孔板、Horizon Discovery Edit-RTM CRISPR 和 DharmaconTM RNAi 试剂和库、定制版 Explorer™ G3 细胞全景绘制工作站、高内涵成像系统Opera Phenix® Plus 和 Operetta CLS™ 、高内涵分析和存储软件系统Harmony® 和 Columbus™ ,以及具有 TIBCO Spotfire® 分析的珀金埃尔默Signals™ Screening 数据和工作流程管理和可视化平台。有关更多信息,请访问以下网址:https://www.perkinelmer.com/category/phenovue-cell-painting-kits https://jump-cellpainting.broadinstitute.org/关于珀金埃尔默珀金埃尔默致力于为打造更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞察。在全球,我们拥有约14000名专业技术人员,服务于190个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2020年,珀金埃尔默年营收达到约38亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com关于About PerkinElmer JUMP细胞绘制联盟马萨诸塞州生命科学中心 (MLSC) 的 Bits to Bytes Capital Call 为JUMP细胞全景绘制联盟的成立提供了部分资金。目前,该联盟正在基于细胞成像、图像分析和高维数据分析创建一种新的数据驱动的药物研发方法。我们相信该研究成果将会解决药物研发的主要瓶颈,同时改变药物应用的进程(在将新疗法应用于患者之前就能够明确其潜在的作用机制)。我们将创建一个前所未有的公共数据库,来验证和加速实施这种基于图像的药物研发策略。 此外,这一宝贵的公共资源还可用于预测化合物的活性和毒性、将药物与疾病状态相匹配等。
  • Nature重磅!华大等机构绘制全球首个非人灵长类动物全细胞图谱
    北京时间4月13日晚,深圳华大生命科学研究院等多国科研机构共同参与绘制的全球首个非人灵长类动物全细胞图谱,发表于国际顶级学术期刊《自然》(Nature)。据悉,该图谱绘制完成是基于DNBelab C4和DNBSEQ测序平台。Nature官网截图该图谱将被用于物种进化、人类疾病以及药物评价和筛选相关的研究,为生物医学的发展提供一个基础性的资源和工具,为疾病诊疗、靶向药物开发提供助力,为人类更好地探究生命的进化提供可能。为了绘制这张“地图”,研究人员基于华大自主开发的单细胞建库和测序平台对猕猴的45个组织或器官的约114万个细胞进行单细胞测序分析,“地图”上的113种颜色代表着113种细胞。这是世界上首个非人灵长类动物全身器官细胞图谱。研究人员还据此搭建了非人灵长类动物百万单细胞交互式资源网站。非人灵长类动物百万单细胞交互式资源网站截图21世纪初,人类基因组草图的问世为生命科学的研究谱写了一本生命“天书”,为生命的数字化提供了基础。然而,遗传信息是由细胞携带的,但是目前,人类对自身细胞的认识还很有限,全面解码细胞的数字化特征将推动生命科学的研究,为生物医学的发展提供基础性的资源和工具。为此,研究人员将目光投向了非人灵长类中和人的基因相似度高达93%的猕猴,绘制了一张猕猴的全身器官的细胞“地图”。“非人灵长类动物相比其他模式动物,在人类疾病特别是认知和神经系统疾病研究中具有显著优势,” 论文的共同通讯作者之一、深圳华大生命科学研究院刘龙奇表示,“猕猴全细胞图谱将为人类疾病机制和临床前研究提供丰富的信息,开拓新的视野。”“有了这张‘地图’就相当于有了一个探索生命细胞分辨率的高精度仪器,可以‘看到’每个器官都有哪些细胞,还可以精细到每个细胞里具体的分子特征及与其他细胞的互作关系。”论文的第一作者、深圳华大生命科学研究院韩磊博士介绍说,“这为我们更好地认识生命的基本结构,探究疾病和细胞的关系打下了基础,也为疾病的精准治疗提供了新的方向。”在本研究中,研究人员找到了各个组织的共有细胞类型及其“特有标签”(特异性标记基因),并发现了多种存在于各个组织中的具有分化潜能的细胞,这类细胞或许可以为之后各类器官损伤修复提供细胞来源,也为哺乳动物组织再生研究提供新的思路。另外,基于这张“地图”,研究人员还构建了包含新冠、乙肝、狂犬病毒等126种病毒易感细胞类型的病毒数据库,这就像一本“病毒字典”,通过它可以快速查询病毒最有可能侵染的细胞类型,同时看到该细胞类型可能分布的器官。有了它,医生在检查新冠肺炎确诊患者肺部情况的时候,也会同步检查肾脏、肝脏和胆囊。因为字典里提到,这几个器官同样分布有新冠病毒可能感染的细胞。研究人员也可以输入特定疾病的致病基因或相关的遗传位点来查询该疾病可能的治病细胞类型,这为预防和治疗病毒性传染病和遗传疾病提供数据支持,为疾病的临床诊断和治疗指明方向。细胞“地图”或许还可以帮助缩短药物研发周期。众所周知,药物研发花费巨大,耗时长。其中的第一步就是要从成千上万种药物中筛选出几种相对有效的药物,需要消耗非常长的时间,且研究人员无法对每一种药物都进行动物试验。那怎么办呢?通过细胞“地图”,研究人员就可以针对靶向的细胞,检测该细胞对于这些药物的反应,从而快速选出几种有效的药物,再进行动物试验。这将大大缩短大规模药物筛选的时间,有助于靶向药的研发和精准治疗。当然,这个神奇“地图”的绘制,离不开单细胞测序技术的进步和测序成本的下降。在过去,要绘制这样一张“地图”,需要大量的时间及高昂的实验成本。而如今,基于华大智造自主开发的单细胞建库平台(DNBelab C4)和DNBSEQ测序技术,科学家可以以低成本、高灵敏度和准确性的方法进行多维的单细胞分析,快速准确地得到具有潜能的细胞,从而开展下一步的研究,为整个生命科学领域提供了一系列宝贵的数据资源。“大规模细胞图谱的绘制工作,对于我们理解器官结构组成、胚胎发育和衰老、人类疾病及生命演化等都具有重要的意义。未来我们还将开发更高通量的单细胞技术以及具备空间分辨率的多组学技术,为全面构建生命单细胞分辨率的时空图谱提供重要工具。”论文的共同通讯作者之一、深圳华大生命科学研究院院长徐讯表示,“同时细胞图谱数据正在迅速增长,其中蕴含巨大的信息量,这些数据解读和挖掘工作需要全球科学家的共同协作和努力。”本研究由深圳华大生命科学研究院联合北京华大生命科学研究院、深圳国家基因库、吉林大学、中国科学院广州生物医药与健康研究院、瑞典卡罗林斯卡医学院、英国剑桥大学、西班牙ICREA研究所、新加坡ASTAR等来自6个国家的35个科研团队共同参与完成。韩磊、魏小雨、刘传宇、庄镇堃、邹轩轩、王智锋和Giacomo Volpe为该论文的共同第一作者,刘龙奇、徐讯、侯勇和Miguel A. Esteban为论文的共同通讯作者。本研究已通过伦理审查,严格遵循相应法规和伦理准则。
  • 上海药物所等绘制出肝内胆管癌的多组学分子特征全景
    肝内胆管癌(intrahepatic cholangiocarcinoma,iCCA)是原发性肝恶性肿瘤,当前手术切除率低,并缺乏有效的靶向/免疫治疗方案。肝内胆管癌具有高度异质性的基因组突变和肿瘤微环境,可能介导其高侵袭性和不良预后。因此,迫切需要对iCCA进行“鸟瞰式”研究,绘制其精确的分子图谱,为系统理解肝内胆管癌异质性及实现个体化治疗提供理论依据。  2021年12月30日,中国科学院上海药物研究所研究员周虎、中科院院士、复旦大学附属中山医院教授樊嘉、复旦大学附属中山医院教授高强,与中科院分子细胞科学卓越创新中心研究员高大明合作,在Cancer Cell上在线发表了题为Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma的研究成果。该研究对262例iCCA患者的肿瘤组织进行蛋白基因组学分析,通过整合基因组、转录组、蛋白质组、磷酸化蛋白质组等多维度数据,为肝内胆管癌的发生发展机制、分子分型、预后监测和个性化治疗策略提供了新思路。  科研人员分析了TP53、KRAS、FGFR2、IDH1/2、BAP1等肝内胆管癌主要驱动突变对蛋白质组和磷酸化蛋白质组的影响。研究发现,中国人群样本中特异性存在黄曲霉毒素突变指纹,与高肿瘤突变负荷和高NK细胞浸润等显著相关。FGFR2的融合和突变可能通过激活Rho GTPase通路来促进iCCA发展,其部分融合蛋白衍生肽具有较强免疫原性,是潜在免疫抗原靶点。科研团队进一步分析了肝内胆管癌染色质拷贝数变异对mRNA及蛋白的顺式和反式调控效应。研究根据蛋白质组数据,将iCCA患者分为炎症(S1)、间质(S2)、代谢(S3)、分化(S4)四种亚型,四种亚型具有差异化的临床特征、突变谱、通路富集以及免疫特征分布,且有显著预后差异。通过降维分析,研究找到了可特异性区分4个亚型的标志物,并验证证实了其用于临床样本分型的可能性。最终,研究确定HKDC1和SLC16A3是iCCA预后相关的生物标志物。  该研究是在国际癌症蛋白质基因组联盟(International Cancer Proteogenome Consortium,ICPC)及国际临床肿瘤蛋白质组学分析联盟(Clinical Proteomic Tumor Analysis Consortium,CPTAC)高质量标准框架下,开展的针对肝内胆管癌大队列的蛋白基因组学分析。该研究全面揭示了肝内胆管癌中基因突变和染色质变异对蛋白质组和磷酸化蛋白质组的影响,从蛋白质组层次提出了四个分子分型和生物标志物,为探索肿瘤异质性和实现个体化治疗提供了线索。该研究所产生的高质量大数据将继续为肝内胆管癌基础与临床研究提供支持。  研究工作得到中科院院士贺福初、美国国立癌症研究院博士Henry Rodriguez、美国贝勒医学院教授章冰、美国华盛顿大学基因研究所教授丁丽、美国西奈山伊坎医学院教授王沛、加拿大渥太华大学教授Daniel Figeys的支持。  论文链接
  • Nature:人类首张蛋白质组草图绘制完成
    日前,两个国际小组均在《自然》杂志上公布了人类蛋白质组第一张草图,这些在大部分非患病人体组织和器官中表达的精选蛋白,为更好的理解疾病状态下发生的机体变化,奠定了坚实的基础。   英国新一期《自然》杂志公布两组科研人员分别绘制的人类蛋白质组草图。这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。   上世纪90年代,人类基因组计划开始成形时,有科学家提出了破译人类蛋白质组的想法。其目标是将人体所有蛋白质归类并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用。但人类蛋白质组的规模和复杂性使此类研究困难重重。   德国慕尼黑工业大学等机构研究人员报告说,尽管人类已对基因组有所了解,但大约2万个编码基因中,哪些会指导合成蛋白质、合成哪些蛋白质都是未知数。为探明这一问题,他们从人体多个组织样本和细胞系中提取蛋白质并将它们&ldquo 切&rdquo 成小块,然后用质谱分析法分析出形成每个蛋白质片段所需的氨基酸序列。   研究人员借助计算机对这些蛋白质片段与基因组进行了大量比对工作,并据此列出一个&ldquo 清单&rdquo ,描绘出哪些组织中的哪些基因表达与蛋白质的形成有关。在另一项研究中,美国约翰斯· 霍普金斯大学研究人员与印度等国同行也采用质谱分析法绘制出一张蛋白质组草图。   这两个团队均发现,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成,&ldquo 假基因&rdquo 是指由于发生突变,丧失原有功能的基因。此外他们还发现了一些与蛋白质产生无关的&ldquo 多余&rdquo 基因。   研究人员表示,绘制人类蛋白质组图谱有助于了解人体内蛋白质的出处、功能和特性,这对于生命科学、医学等领域都有重要意义。
  • 英研制新型空气质量测量设备可绘制城市烟雾图
    人们如今越来越关注糟糕的空气质量对人类健康造成的严重影响。英国科学家日前研制出一种新型空气质量测量设备,能够像“污染监视雷达”一样对城市上空进行“扫描”。该设备可以安装到卫星上,从而提供空气中有害气体的空前详细资料。与此同时,研究人员正在开发能够绘制空气中有害气体三维图的地面设备。   这项技术来自英国的一个对地观测仪器中心(CEOI),该中心负责能够完成自身任务的新系统的研制工作,在空间环境监视技术开发中起着催化作用。英国莱斯特大学的Paul Monks教授是小型空气质量分光计(CompAQS)项目的负责人之一,这是对地观测仪器中心的一个项目,旨在开发一种能够在紫外线和可见光谱部分使用的小型成像分光计,以及众多可以基于卫星平台的潜在应用。作为“城市扫描”计划的一部分,这项已开发出的技术目前正在应用当中,以简单且不间断的方式对广大城市和工业区域上空的空气质量进行监视。   Monks说:“这个已经开发出的设备具有作为小卫星荷载物进行部署的潜力,而且提供与当前使用设备相似的性能,后者在体积上都要大很多。它紧凑的体积,以及通过使用新的光学设计所能达到的功能,意味着制造、平台开发和发射成本都能够最小化。”   Monks补充说:“现在,压倒性的意见一致认为糟糕的空气质量影响着人类健康。据世界卫生组织估计,每年有240万人直接因空气污染而死亡,其中有150万人的死亡是因为室内空气污染。人们处于一个有害气体和颗粒含量不断增加的世界中,这要求世界各国、地区乃至国际范围的公共权力机构要采取行动。”   2009年,莱斯特大学将与萨里卫星技术有限公司制造并安装两个新的CompAQS,作为地面差分吸收光谱(DOAS)系统使用。这些设备将在可视光波区操作,能够在5分钟内绘制出空气中诸如二氧化氮之类有害气体的实时三维图。通过同时分析来自多个设备和多角度几何排列的散射太阳光紫外线/可见光辐射,可以达到实时绘图,而且能够获得关于城市环境动态和成分的空前级别信息。   “城市扫描”设备将比现有的空气质量监视器拥有更多的优势,可以为整个城市地区提供不间断的监视技术。每个拟投入使用的系统都可以覆盖大约25平方千米(9.6平方英里)的范围,能在空间分辨率为50米的情况下对二氧化氮和悬浮颗粒进行实时监视,就像是一个“污染监视雷达”。   “城市扫描”能够收集独特的空气质量监视数据库,而且具有在排放监视、污染测量和空气质量控制方面开启新领域的潜力。这样的测量需要高性能的分光计和探测系统,而且与卫星仪器制造共享许多关键的开发要求。因此,这项技术是为星载分光计开发自然衍生出来的一条路径,通过项目合作伙伴,“城市扫描”的进展正反馈给英国空间工业部门。   Monks说:“对于长期监视和控制人为或自然发生的排放及因此对人类健康造成的短期影响来说,空气成分和质量测量显得至关重要。越来越有必要收集基于长期基础的更详细、更大区域范围而且与对地观测仪器中心保持更高一致性的数据,这在面对挑战时将发挥重要作用。”
  • 美国绘制全球空气污染地图 亚欧最严重
    美国最新绘制的全球空气污染地图,深褐色区域是因空气污染导致居民早逝的地区,蓝色区域是自1850年以来空气污染持续升高的地区   据英国每日邮报报道,目前,美国宇航局地球气象台最新绘制了一张地球空气污染地图,呈现了全球各地弥漫悬浮微粒的污染状况。   图中显示深褐色区域是因空气污染过早死亡的居民区,相反浅褐色区域是空气污染程度较轻,不会导致大量居民死亡的地区 蓝色区域是自1850年污染指数升高的地区,例如:美国南部。   这张地图显示污染最严重的地区是亚洲,尤其是中国。同时,欧洲东部具有较高的煤烟、灰尘和汽车尾气指数,这对于人类健康具有严重危害。   最新研究显示,每年因悬浮微粒(FMP)空气污染导致全球210万人死亡,某些国家的死亡率上升。地球气象台最新绘制的地图可清晰呈现全球空气悬浮微粒污染情况。   图像对比了1850年1月1日至2000年1月1日之间空气悬浮微粒污染数据,显示平均每年1000平方公里范围因空气污染导致的死亡人数分布状况。该项研究发表在近期出版的《环境研究快报》上。   悬浮微粒是由一些微粒构成,例如:灰尘和煤烟,它们的直径为2.5微米,或者更小。由于其体积非常小,被科学定义为悬浮微粒2.5。   悬浮微粒能够进入人体肺部,严重影响人类健康。悬浮微粒2.5通常是由汽车尾气排放。中国东部、印度北部地区悬浮微粒指数已敲响了警钟,同时,整个欧洲地区自工业革命以来大气层中悬浮微粒指数持续升高。
  • 国土资源部:正绘制土壤重金属"人类污染图"
    近日抽检数据&ldquo 镉米再现&rdquo 消息不胫而走,公众哗然。土生万物,清除&ldquo 镉米&rdquo 背后的土壤污染,最重要任务之一就是全面会诊土壤重金属污染现状,绘制土壤重金属&ldquo 人类污染图&rdquo 。   土壤污染,或千百年难除 进入人体,能代代相传。为土壤重金属污染&ldquo 透视&rdquo ,是地质调查工作的重要任务。记者近日从国土资源部、中国地质调查局获悉,我国正建立涵盖81个化学指标(含78种元素)的地球化学基准网:以1∶20万图幅为基准网格单元,每一个网格都布设采样点位,每个点位都采集一个深层土壤样品和一个表层土壤样品。深层样品来自1米以下,基本代表未受人类污染的自然界地球化学背景 表层样品来自地表25厘米以浅,是自然地质背景与人类活动污染的叠加。用表层含量减去深层含量,即得出重金属元素&ldquo 人类污染图&rdquo 。   作为国土资源大调查重要成果及全国土壤污染状况调查专项,全国多目标区域地球化学调查项目也已发现局部地区土壤污染严重。如长江中下游某些区域普遍存在镉、汞、铅、砷等异常。城市及其周边普遍存在汞铅异常,部分城市明显存在放射性异常。湖泊有害元素富集,土壤酸化严重。研究证实,镉、汞等重金属元素与人类污染存在密切关系。重金属元素在土壤表层明显富集并与人口密集区、工矿业区存在密切相关性。与1994~1995年采样相比,土壤重金属污染分布面积显著扩大并向东部人口密集区扩散。   据介绍,从1994年开始,中国地质科学院地球物理地球化学勘查研究所等机构就对全国土壤51个化学元素进行监测,1999年开始对中国东部农田区54个化学元素进行填图,2008年又开始建立覆盖全国的地球化学基准网,对含78种元素的土壤81个化学指标进行探测。数据显示,重金属等污染物指标在大的流域及局部工矿业和农业区上升较快。   地质学家指出,研究表明,我国土壤正出现越来越多本来没有或微不足道的危险元素。土壤一旦被污染,通过自净能力完全复原周期长达千年。为人类健康,必须持续加大对污染行为监管和惩治力度。对已被污染土地,要把污染源搞清楚并加以切断。土壤污染物不仅有重金属,还有大量有机污染物。国土、地质、环境、水利等部门要通力合作为大地&ldquo 排毒&rdquo 。
  • 杨宗银:绘制光谱仪微型化“全景图”
    走进浙江大学信息与电子工程学院智能传感所的百人计划研究员杨宗银的办公室,可以看到电路焊接平台上,电烙铁、电路板、各种零配件一应俱全,办公室俨然是一座实验室。杨宗银(左)指导学生做实验 王崇均/摄“回到浙大任教后,我对自己的办公室做了规划,圆了儿时的梦想。”杨宗银说,“很享受制作机械电路的过程,比打游戏有趣。”继2019年在《科学》杂志刊发世界上最小光谱仪成果后,今年3月,杨宗银作为第一作者撰写的综述,又在线发表于《科学》。该文章首次系统性总结了光谱仪微型化的技术方案和发展历程,引起国际科学界高度关注。150次失败后的成功 把心路写进实验记录本光谱仪是测量光谱线中各个波长强度的设备,可以对物质成份和结构进行测知,广泛应用于科研、生产和生活中。比如一个苹果是否成熟、含糖量如何,通过光谱仪的“火眼金睛”就能一目了然。杨宗银研制的世界上最小光谱仪,直径在一百微米以下,不到头发丝直径的一半。“这么小的尺寸很适合装进我们的手机中,将来或可通过拍摄进行食品安全和健康的监测。”他在谈及未来应用时说,“再过几个月,团队研制的微型高光谱成像样机就将面世。”这样一个比头发丝直径还小的器件,杨宗银前前后后研究了8年。攻读博士期间,杨宗银每天都是剑桥大学电子工程系实验楼最晚走的那个人,但每一次回寝前都对实验结果不甚满意。 “早起努力!” “新idea明天试一下… … 又失败了。”打开杨宗银的实验笔记,上面用英文密密麻麻写着各类实验优化的细节,但每天都有几句中文格外醒目。“刚开始做实验是非常有新鲜感的,但是失败次数越多自己也会感到很无力。”他说,于是自己便在笔记中记下实验中的灵光一闪,或者勉励的话,“每天都期待好的结果,同时又期待新的一天快快到来。”“当时就写了整整三大本笔记本。”杨宗银说,偶尔也会心灰意冷,但是内心的那份热爱总能驱使自己去找失败的原因再尝试一次。2018年8月,历时3年,历经150次失败,实验终于成功,他的论文于第二年5月投稿《科学》杂志,7月便被接受。评审专家评价这个工作是“集合了世界上最先进的材料合成工艺,配上最高超的器件制作水准、实验技巧和巧妙的算法,是一个惊艳之作。”荣誉随之而来,杨宗银获得了剑桥大学国际生全额奖学金和国家优秀自费留学特别优秀奖,还被选为剑桥大学国王学院研究员,是学院第一位华人研究员。交叉与蜕变 兴趣是最好的老师杨宗银这份愈挫愈勇的劲头,在他求学浙大期间就已经打下基础。在浙大读硕士生的杨宗银,在世界上首次“生长”出了彩虹渐变的半导体纳米线。这种材料可以发出五颜六色的光,非常漂亮。这份光亮的背后是他近一万个小时的不断试错改进的艰辛。凭着兴趣与热爱,他在浙大学习时打开了一片新天地。在机械工程学院完成本科学业时,杨宗银就把机器人、机械设计等领域的各类竞赛都参加了一遍,乐在其中,还拿过全国大学生机械创新设计大赛一等奖。浙江大学机械工程学院教授顾大强,在担任杨宗银导师期间,经常教导他“要用最巧妙的机构完成一件复杂的事情”。这种思维训练对杨宗银来说终身受益。后来杨宗银被保送到浙大光电科学与工程学院攻读硕士。他回忆道:“交叉融合的求学经历为我后来研究提供了便利条件,当面临没有现成的设备时,可以直接自己做一个。”“我从小就喜欢做点小发明,比如随着光照自动响的闹钟、光控灯,或者把家里收音机、闹钟等拆开,研究其中的机理。为此也没少挨父母批评。”杨宗银笑称。在硕士期间,杨宗银除了生长出彩虹渐变半导体纳米线,还基于这种材料开发了世界最宽光谱可调谐激光器。就像收音机不同的调台,能够听到不同的节目,不同的激光波长能够对物质进行不同层面的探测。读文献到写文献 绘制一个领域“藏宝图”现如今,传统的光谱仪由于体积庞大已经无法满足日益发展的光谱检测技术的需求,然而,减小光谱仪的分光元件或探测器尺寸将导致光谱分辨率、灵敏度及动态范围显著下降。光谱仪的微型化是目前科技界面临的一项重大技术挑战。回到浙大任职后,杨宗银的研究是将微型光谱仪进一步往应用端迈进。“光电技术终究还是要落实到百姓的实际应用中才更有意义”。其中,向全球科研探索者们展现微型光谱仪领域的“全景”也成为其工作计划之一。杨宗银认为,只是把技术原理和研究进展介绍清楚是远远不够的,还要有全局观,用一个清晰的脉络把全文串起来。一篇好的文献综述,就是认识一个领域的主心骨,是一张“藏宝图”。“我把整个领域几百篇文献捋了好几遍,了然于胸,最后像介绍老朋友一样把它们串起来讲。”杨宗银介绍,“在后续的修改中,我和另外几位合作者讨论了几十次,不厌其烦地对文章进行精雕细琢。记得我在准备文章图片的时候盯着屏幕好几天就为了不让它们有一点瑕疵。”如何用好“藏宝图”?杨宗银也有自己的独家秘籍。担任博导的他,会给新生“打样”,面对面教学生如何读文献管理文献。“每读完一篇文献后,在软件里做个标签,这样日积月累,大量的文献就能理出一个脉络,后续根据这些标签迅速找到需要的文献。”从前沿探究的坚持不懈,到带领学生探索的孜孜不倦。他还会手把手指导学生如何搭建和使用实验仪器,也乐在其中。“如果说,科研的成就感在于做出独创的贡献和价值,”杨宗银说,“那么带学生就是自我价值的延伸。”
  • 我国绘制土壤重金属污染图 元素增多污染扩大
    清除&ldquo 镉米&rdquo 背后的土壤污染,最重要任务之一就是全面会诊土壤重金属污染现状。记者近日从国土资源部、中国地质调查局获悉,我国正在绘制土壤重金属&ldquo 人类污染图&rdquo 。   正在绘制人类污染图   据悉,我国正建立涵盖81个化学指标(含78种元素)的地球化学基准网:以1:20万图幅为基准网格单元,每一个网格都布设采样点位,每个点位各采集一个深层土壤样品和一个表层土壤样品。深层样品来自1米以下,代表未受人类污染的自然界地球化学背景 表层样品来自地表25厘米以浅,是自然地质背景与人类活动污染的叠加。用表层含量减去深层含量,即得出重金属元素&ldquo 人类污染图&rdquo 。   据介绍,从1994年起,中国地质科学院地球物理地球化学勘查研究所等机构就对全国土壤51种化学元素进行监测,1999年起对东部农田区54种化学元素进行填图,2008年起建立全国地球化学基准网,对含78种元素的土壤81个化学指标进行探测。数据显示,重金属等污染物指标在大的流域及局部工矿业和农业区上升较快。   重金属污染显著扩大   全国多目标区域地球化学调查项目已发现局部地区土壤污染严重。如长江中下游某些区域普遍存在镉、汞、铅、砷等异常。城市及其周边普遍存在汞铅异常,部分城市明显存在放射性异常。湖泊有害元素富集,土壤酸化严重。研究证实,镉、汞等重金属元素与人类污染存在密切关系。重金属元素在土壤表层明显富集并与人口密集区、工矿业区存在密切相关性。与1994~1995年采样相比,土壤重金属污染分布面积显著扩大并向东部人口密集区扩散。   土壤危险元素在增多   地质学家指出,研究表明,我国土壤正出现越来越多本来没有或微不足道的危险元素。土壤一旦被污染,通过自净能力完全复原周期长达千年。为人类健康,必须持续加大对污染行为监管和惩治力度。对已被污染土地,要把污染源搞清楚并加以切断。土壤污染物不仅有重金属,还有大量有机污染物。国土、地质、环境、水利等部门要通力合作为大地&ldquo 排毒&rdquo 。   ■链接   湖南&ldquo 镉米&rdquo 背后2/3耕地酸化   加剧重金属污染的危害   近期,湖南大米不时被检出镉超标,&ldquo 鱼米之乡&rdquo 光环被罩上一层阴影。事实上,土壤污染已成我国众多地方的&ldquo 公害&rdquo 。很多业内专家认为,湖南的&ldquo 镉米&rdquo 危机是一场迟早要来的危机。全国1/5耕地重金属污染   湖南省地质研究所专家童潜明认为,我国土壤污染形势已十分严峻。中国水稻研究所与农业部稻米及制品质量监督检验测试中心2010年发布的《我国稻米质量安全现状及发展对策研究》称,我国1/5的耕地受重金属污染,其中镉污染耕地涉及11省25个地区。在湖南、江西等长江以南地带,这一问题更加突出。   童潜明认为,土壤重金属污染的成因,既有工业造成的点源污染,也有农业投入品滥用造成的面源污染。重金属对土壤的污染首先来自于工业&ldquo 三废&rdquo 。湖南是全国闻名的有色金属之乡,有色金属采选开发已有数百年,历史包袱沉重。在衡阳常宁水口山、株洲清水塘、湘潭竹埠港等涉重金属企业密集地区,许多耕地早已不适合继续耕种。来自农业的污染也是土壤重金属污染的重要来源。目前全球每年进入土壤的镉总量为66万公斤左右,其中经施用化肥进入的比例高达55%左右。   30年酸化相当于300年   对土地的&ldquo 掠夺式&rdquo 开发更加剧了重金属进入土壤的步伐。近年来,出于对产量和经济效益的追求,农民大量施用氮肥和磷肥,土壤酸性急速飙升。湖南省权威部门统计显示,由于不合理耕作、过度种植、农用化学品的大量投入,与上世纪80年代第二次土壤普查时比较,目前湖南省耕地土壤pH值已由6.5降至6.0,30年土壤酸化程度相当于自然状态下300年的酸化程度。&ldquo 研究表明,土壤pH值每下降一个单位值,土壤中重金属流活性值就会增加10倍。&rdquo   湖南省一位农业专家说,湖南是目前全国土壤酸化面积最大的一个省,全省耕地中有2/3存在不同程度的酸化现象。土壤酸化带来的直接影响,是增加重金属在土壤中的活性使其更容易被作物吸收,从一定程度上加剧了重金属污染的危害。   湖南将严控污染增量   &ldquo 在经历了镉米危机之后,治理土壤污染的重要性与紧迫性已更加凸显。&rdquo 湖南省环保厅副厅长谢立说,针对全省土壤重金属污染现状,目前环保、国土、农业等部门已在联合开展抽样调查。对重金属造成的土壤污染,湖南省的治理思路是严控增量,逐步消化存量。
  • 科学家绘制世界最大蛋白质图谱
    科学家已经发现了上万种新的蛋白联结,约占蛋白联结总量的四分之一。  为了揭示蛋白质是如何构建细胞与机体,来自多个国家的科学家组成的研究团队筛选了不同生物的细胞,这些细胞从变形虫到蠕虫到老鼠到人类,来源十分广泛。  这项蛋白质科学的壮举,是来自七个国家的三个研究小组合作的结果,由多伦多大学唐纳利中心的Andrew Emili教授和德克萨斯大学奥斯汀分校的EdwardMarcotte教授领导,发现了成百上千种新的蛋白质相互作用,其中细胞内蛋白质的接触作用大约占四分之一。  一个蛋白联结的缺失都会致病。图谱已经帮助科学家锁定病变蛋白。这些数据将通过开放数据库的访问提供给世界各地的研究人员。  虽然十几年前的人类基因组测序无疑是生物学中最伟大的发现之一,然而这只是人们对细胞工作的深入了解的开始。基因只不过是一幅模板,而它的复制品——蛋白质,担任了细胞运转的主要工作。  蛋白间相互联系,共同协作。许多蛋白质结合形成所谓的分子机器并在细胞活动中扮演关键角色,例如合成新的蛋白质,或者是回收旧蛋白,再造新蛋白。但是人类细胞中有上万种蛋白质,其中的大部分我们仍旧不知道它们的作用。  于是有了Emili 和Marcotte的图谱,团队使用最先进的方法,可以提取细胞内数千个分子机器并分析其蛋白构成。然后他们建立了一个类似于社交网站的网络,通过探知未知蛋白与已知蛋白的联结,推知未知蛋白质的功能。例如,未知蛋白与“杂活儿工”蛋白有联结,那么这个未知蛋白极可能也具有细胞修复功能。  今天这项里程碑式的研究收集了九个物种分子机器的信息,分别包含了面包酵母、阿米巴虫、海葵、苍蝇、蠕虫、海胆、青蛙、老鼠和人类,并由此可以绘制出一个生命树图。这个新的图谱将蛋白质结合体数目扩大到已知的十倍有余,并可以让我们观察到它们如何随着时间进行进化的。  “对于我来单单是此项研究的规模就足以吸引人们的眼球,我们已知的每个物种的蛋白联结已达到到原先所知的三倍。我们现在通过蛋白质相互作用网络可以非常可靠的预测,所有动物具有超过一百万种蛋白质相互作用,这从根本上来讲是一个巨大的进步。”Emili说,他也是疾病管理生物标记方面的安大略研究会主席、分子遗传学教授。  研究发现,自从十亿年前原始细胞出现之后,动物生命出现在地球上以前,成千上万种蛋白质协作关系一直保持不变。  “就蛋白质分布而言,人类与其他物种通常是相同的,这不仅印证了我们拥有共同祖先,也对在基因组学的基础上研究多种疾病以及这些疾病如何存在于不同物种中有实际意义。”Marcotte说。  在确定人类疾病的可能原因方面,人们已经证明这个图谱是有用的,例如一种新发现的分子机器名为Commander,由十二个单一的蛋白质组成。人们曾发现一些智力障碍患者的机体里具有编码Commander某些组分的基因,但并不清楚这些蛋白质的机制。  由于Commander存在于所有动物的细胞里,研究生FanTu正在破坏蝌蚪中的蛋白质部件,揭示了胚胎发育阶段脑细胞位置异常,并为复杂的人类起源问题提供了一个可能。  “有了成千上万种蛋白质相互作用,我们的图谱会帮助人们研究蛋白质相互作用和人类疾病的多种联系,这是我们未来几年的研究方向。”Emili博士总结道。
  • 美国西北大学科学家绘制人类血细胞蛋白图谱
    随着蛋白质组学的迅速发展,基于质谱技术的蛋白质组学分析已经在建立表型和蛋白质水平的联结中作出了贡献,这些研究工作包括绘制组织和细胞特异性蛋白质组成等。然而,转录后、翻译后蛋白加工数据,以及mRNA剪接与修饰相结合导致蛋白质多样性数据并不完备。  近日,发表在Science上的一项题为“The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells”的研究中,来自美国西北大学的科学家绘制了人类血细胞蛋白图谱,并进一步研究了蛋白图谱的临床应用价值。研究团队首先通过流式分选获得所需的细胞,共收集了21种人造血细胞和血浆。分析发现共捕获29620种Proteoform(蛋白形态数量总和),数据集比对发现Proteoform是细胞类型更好的标志物。通过对肝移植患者的外周血单核细胞蛋白图谱的应用,发现该血细胞蛋白图谱可以作为临床研究和治疗相关的蛋白质信息。  本研究通过绘制人血液、造血细胞蛋白图谱,对人体中存在的蛋白成分有了进一步认识。并且通过分析特定临床背景下蛋白图谱,证明了其潜在的临床应用价值。这些针对细胞和分子特异性的研究有助于推进蛋白质水平诊断的发展。  论文链接:http://doi.org/10.1126/science.aaz5284
  • 科学家绘制出哺乳动物大脑运动皮层细胞图谱
    美国BRAIN计划于2017年设立了“大脑细胞普查网络”项目(BICCN),旨在对人类、猴和小鼠大脑中的不同细胞进行识别和分类。目前该项目第一部分已经完成,在分子水平上对哺乳动物初级运动皮层细胞类型进行了全面的定位和图谱绘制。近期,该研究成果在《Nature》期刊上同时发表了16篇文章,并以合集的形式呈现。  该系列论文介绍了项目方法、工具、研究结果和产生的数据集。该项目绘制了哺乳动物初始运动皮层多层次、多模式的细胞图谱,具体包括:(1)利用转录组、染色质可及性、DNA甲基化图谱等多组学描绘了运动皮层细胞中的分子遗传景观;(2)跨物种分析揭示了从小鼠到狨猴到人的细胞类型的保守性;(3)原位单细胞转录组学揭示了运动皮层空间图谱;(4)交叉模式分析揭示了神经元类型的生理与解剖特性和基因调控基础。该项目构建的大脑皮层初级运动神经元图谱中,涵盖了小鼠、非人灵长类动物以及人类大脑中神经元的分子、功能以及与其物理状态相关的数据,并向公众开放(https://biccn.org);同时构建了可以直接应用的软件,确保这些数据能够对神经元多样性的性质和起源的研究有帮助。  该研究形成的数据库对于理解运动神经环路是如何工作的提供了研究数据库和操作平台,同时这些研究成果对于制定特定细胞类型的大脑疾病治疗方案至关重要,最终将有助于临床医疗手段和药物研发,实现个性化医疗。   论文链接:  https://www.nature.com/collections/cicghheddj
  • 我科学家绘制成世界首张大熊猫基因组序列图谱
    10月11日,深圳华大基因研究院宣布,大熊猫&ldquo 晶晶&rdquo 基因组框架图绘制完成,大熊猫基因组与狗的基因组最接近。这是我国科学家继完成第一个黄种人基因组后又一生命科学里程碑式的贡献,对其在分子水平上的保护具有重要意义。   自今年3月初启动至今,该项目的科研合作团队已经完成了大熊猫&ldquo 晶晶&rdquo 基因组框架图的测序工作。其染色体21对,基因组与人的大小相似,约为30亿个碱基对,包含2&mdash 3万个基因;在已经进行全基因组测序的物种中,大熊猫基因组与狗的基因组最接近;数据分析结果同时还进一步支持了大多数科学家所持的&ldquo 大熊猫是熊科的一个亚种&rdquo 这种观点,证明了熊科内部各类群的分类情况。该研究成果填补了大熊猫基因组及分子生物学研究的空白,将从基因组学的层面上为大熊猫这种濒危物种的保护、疾病的监控及其人工繁殖提供了科学依据,并为保护我国其它一级保护动物提供范例。   自1999年正式加入&ldquo 国际人类基因组计划&rdquo 以来,华大基因的研究团队一直致力于重要动植物基因组图谱的绘制,曾成功完成了水稻、家蚕、家鸡、家猪等重要基因组计划,在基因组学研究领域一直跻身国际前列。大熊猫基因组只是深圳华大基因研究院&ldquo 生命之树&rdquo 计划的启动项目。该计划将对动物、植物、微生物三个生命学领域的所有具有经济、社会、科学价值的主要物种进行基因组序列的解读与分析。
  • 逐步完善糖分子指纹图谱的全方位绘制,有望实现纳米孔糖测序
    糖是一类具有重要生物学功能的大分子,具有高度复杂的化学结构。目前,糖的结构解析依赖于传统的色谱法、质谱法和核磁法等结构表征手段。虽然这些方法相对成熟,但存在检测步骤复杂、无法实时动态检测等局限性,无法满足糖基础和应用科研需求。与另一类生物大分子核酸已实现高通量测序相比,糖的结构解析技术滞后。生物纳米孔作为高度敏感的传感器,应用于核酸分子以及多肽测序,而在糖测序方向是否可行尚未被证实。  近期,中国科学院上海药物研究所研究员高召兵/副研究员夏冰清(纳米孔方向)、研究员文留青(糖化学方向)与研究员程曦(计算生物学方向)等,设计并构建了一种工程改造的生物纳米孔,识别和捕捉到糖分子官能团乙酰氨基和羧基的特征电信号,描绘了含有这两种官能团不同聚合度糖的电信号指纹图谱,并运用于混合体系中不同糖分子的结构鉴定。该工作为以生物纳米孔为基础的糖测序技术打开一扇门。相关研究成果以Mapping the Acetylamino and Carboxyl Groups on Glycans by Engineered α-Hemolysin Nanopores为题,在线发表在《美国化学会志》(JACS)上,并被选为封面文章。  科研团队将纳米孔α-溶血素(α-HL)的敏感位点113位的甲硫氨酸(M)作了基因工程改造,通过对极性、体积、电荷等氨基酸筛选,获得敏感性、特异性最佳的工程纳米孔M113R。该研究利用该纳米孔清晰地表征了单糖分子中乙酰氨基和羧基两种糖官能团的电流信号,并建立了两种糖官能团结构与电信号对应的指纹图谱。该团队利用分子动力学模拟和基因突变进一步剖析了糖分子进入该纳米孔中的动态过程,明确了纳米孔M113R识别两种官能团的分子机制。基于此,该研究利用两种官能团的特征电信号绘制了含有乙酰氨基和羧基寡糖的指纹图谱。该工作采用指纹图谱在糖混合体系中识别了含有两种基团的单糖、二糖和三糖。这一技术采用工程改造的纳米孔,无需对糖进行额外化学修饰或桥接。这一概念验证研究为高效建立糖分子指纹图谱库奠定了重要基础。  糖类化学信息的高效表征是糖结构解析中的关键挑战。与其他根据化学位移或峰强度信息的技术不同,该研究依据特征电信号分析糖分子结构信息,获得糖分子中特定官能团的特征信号,将分子结构信息与传感事件产生的特征电信号直接联系。研究发现,特征电信号能表征单糖分子的特殊结构,并可同时精确解读寡糖链的聚合度的大小,从多个维度反映糖分子结构的多方面特征。该工作获得的糖电信号指纹图谱是基于纳米孔糖结构鉴定分析的重要一步。同时,该研究提出了基于纳米孔糖测序的可能路线。随着对糖分子更多官能团和其他特定结构的鉴定,该团队逐步完善糖分子指纹图谱的全方位绘制,建立了基于电信号的糖指纹图谱库,有望实现不同于现有技术路线的高效糖结构表征——纳米孔糖测序。
  • 科学家绘制最大规模中国人群乳腺癌基因突变图谱
    复旦大学附属肿瘤医院乳腺外科主任邵志敏团队成功绘制最大规模的中国人群乳腺癌基因突变图谱,首次系统性揭示了中国人群乳腺癌的基因突变特征。相关研究成果近日发表于《自然—通讯》。作为我国女性发病率最高的恶性肿瘤,乳腺癌堪称“红颜杀手”。在上海等大城市中,乳腺癌已经连续20余年位居女性恶性肿瘤前列。邵志敏表示:“相比于欧美发达国家,中国人乳腺癌的5年生存率仍然有不小差距。导致这一差异的主要原因之一在于国人乳腺癌发病特征较为特殊。例如国人乳腺癌患者发病年龄有45至55岁、70至74岁两个高峰,且多数患者发生在绝经前。这些差异提示我们需要探索更适合国人乳腺癌的精准方案。”“基因突变图谱是乳腺癌精准治疗最基础‘参考索引’。” 该论文共同第一作者、复旦大学附属肿瘤医院乳腺外科博士江一舟告诉《中国科学报》,为此我们提出设想,能否从基因层面分析,揭示国人乳腺癌的独有特征?为突破这一“瓶颈”,邵志敏团队筛选了484个与乳腺癌个性化治疗方案高度相关的基因,几乎覆盖所有国内外已经公布过的乳腺癌突变基因,形成了乳腺癌多基因精准检测“目录”。2018年4月至2019年4月期间,研究人员根据多基因精准检测“目录”,收集了1,134例配对的乳腺癌标本和外周血标本,并统计所有乳腺癌患者的基本临床病理信息,全面分析乳腺癌队列的基因组数据,绘制出国内首个千人乳腺癌基因变异图谱。这也是目前最大规模的单中心中国人群乳腺癌基因突变图谱。研究进一步发现,中外乳腺癌突变谱之间的差异主要集中在HR阳性/HER2阴性型,而在HR阳性/HER2阳性型,HR阴性/HER2阳性型和三阴性型中,并无明显差异。专家表示,这项研究成果为国人乳腺癌精准治疗靶点并在临床上成功应用打下了基础。
  • 中国启动十万人基因组计划:绘制国人精细基因组图谱
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/4ff2dbe1-e196-45d3-8e15-c70b870d0740.jpg" / /p p   科学家们希望通过绘制中国人精细基因组图谱,来研究疾病健康和基因遗传的关系。 /p p   此次启动的“中国十万人基因组计划”覆盖地域包含我国主要地区,涉及人群除汉族外,还将选择人口数量在500万以上的壮族、回族等9个少数民族。 /p p   基因是DNA上有遗传效应的片断,人类的生、老、病、死等都与基因有关。而基因组和基因是整体与部分的关系,人类基因约有25000个,基因组研究的目的就是要把人体内这25000个基因的密码解开,从而破译人类的遗传信息。此次基因组计划,就是要绘制我们民族的基因图谱。 /p p   项目首席科学家 王亚东教授:主要目标是研究中国人从健康到疾病是怎么转化的,为中国的医学研究或者是临床诊断、治疗疾病提供参考。 /p p style=" text-align: center " img width=" 500" height=" 352" title=" 002.png" style=" width: 500px height: 352px " src=" http://img1.17img.cn/17img/images/201712/insimg/779230ba-5597-4007-94f3-8ae2367a7247.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   中科院院士 国家人类基因组南方研究中心主任赵国屏:那么这一点做下来以后,实际上是为我们中国人,包括汉族和各个少数民族在内,今后做中国人的疾病健康相关的遗传背景的认识,会有极大的好处。 /p p   按照计划,整个项目将在四年内完成全部的测序与分析任务,这也将是当前世界上推进速度最快的基因组工程。 /p p /p
  • 高分辨非变性质谱绘制人血清蛋白全貌图
    大家好,本周为大家介绍的是一篇发表在Analytical Chemistry上的文章Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry1,文章通讯作者是来自荷兰乌得勒支大学的Albert J. R. Heck教授。  血清中大多数蛋白都是糖基化蛋白,这些糖蛋白对疾病诊断有着重要意义,基于质谱的糖链释放后分析和糖肽分析是目前普遍使用的糖蛋白分析方法,但仍存在一些局限,例如可能遗漏同时发生的翻译后修饰、缺乏对O-糖的研究、遗漏某些糖肽覆盖不到的糖基化位点等。高分辨非变性质谱为完整糖蛋白的分析提供了新的思路,本文开发了一种基于离子交换色谱的分离纯化方法,能够从150μL血清中分离和分析20多种血清(糖)蛋白,质量范围在30-190 kDa之间。  图1为血清糖蛋白的分离和分析方法。150μL血清首先经过亲和柱以快速去除大量的白蛋白、IgG和血清转铁蛋白等,这一步骤使用的是作者内部制造的机器人,可以加快过柱子的速度。接着血清被送入离子交换(IEX)色谱,使用40分钟的梯度时,大多数蛋白在14-27分钟内洗脱,故作者在13-30分钟内每隔0.5分钟收集一次级分,并将每个级分缓冲液换为乙酸铵溶液,最后进行Thermo Exploris Orbitrap质谱仪分析。    图1.血清糖蛋白非变性质谱分析方法  作者使用该方法分离了大约24种血清蛋白,并在文中详细介绍了其中4种蛋白的分析过程:α-1抗胰蛋白酶、补体C3、血红素结合蛋白、铜蓝蛋白。  (1)α-1抗胰蛋白酶(A1AT)是一种丝氨酸蛋白酶抑制剂,在呼吸系统的功能中起重要作用,作者使用唾液酸酶和PNGase F确认了蛋白上的糖型,又通过TCEP的还原处理发现大部分血清样品的A1AT都是半胱氨酸化的,也确认了A1AT存在N端截短的特征,综上,作者共统计出了13个A1AT异质体。针对捐献者提供的血清,作者区分出了携带V237A和E400D突变的A1AT蛋白的供体。  (2)补体C3蛋白在免疫调节过程中发挥作用,在血清中浓度相对较高,分子量为187kDa。与该蛋白共流出的还有两种约137kDa和80kDa的蛋白,在唾液酸酶处理后,只有80kDa的蛋白质量减少很多,证明其存在唾液酸,而C3和137kDa蛋白的糖型上无唾液酸。通过对级分的糖肽分析确定N糖位点在Asn 63和Asn 917。137kDa蛋白鉴定为C3缺失α链后降解而成。  (3)血红素结合蛋白(HPX)在血清中的主要功能是结合和运输游离的血红素,进行血红素和铁的再循环。非变性质谱显示HPX质量范围在58-63 kDa,而蛋白质主链质量仅50 kDa。本文首次解析了血清HPX的蛋白型谱,证明了4-5个N-糖和1个O-聚糖的存在,共17种独特的糖型。  (4)铜蓝蛋白(CER)负责在人体内转运大部分的铜,分子量132kDa,每个CER分子可以携带6-7个铜离子。CER在非变性质谱检测后的分子量比理论质量多409±5Da,作者将其归为6个铜离子和1个钙离子的结合所致,并发现了CER完全去糖后失去结合金属离子的能力。    图2.绘制血清糖蛋白组的全貌图。观察到的血清蛋白质量范围为30-190 kDa,浓度范围为0.2-50g/L  总结:本文开发了一种从少量人血清中分离多种糖蛋白的方法,并通过高分辨非变性质谱表征了蛋白型谱,为蛋白全貌提供完整视图。该方法的优势在于非变性质谱需要的样品处理步骤少,最大程度的还原了蛋白的生理状态,劣势在于目前通过完整质量只解析了20余种蛋白中的8种,后续需要结合自下而上或自上而下的蛋白质组学方法进行辨别。在未来的研究中,作者建议联用分子排阻色谱和离子交换色谱,实现高通量在线血清蛋白分离分析。  撰稿:英语佳 编辑:李惠琳  原文:Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 关于举办“第一届国家气体标准物质研制及应用技术研讨会”的通知
    关于举办&ldquo 第一届国家气体标准物质研制及应用技术研讨会&rdquo 的通知   (第一轮)   随着经济与科学技术的不断发展,气体标准物质的用途日趋广泛,同时对气体标准物质发展提出了新要求。气体标准物质作为气体成分量值的计量标准,在石油化工、环境保护、纯气生产、国际贸易等各行各业的应用中发挥着独特的规范和质量保证作用。从构建和完善我国气体成分量量值溯源体系的战略高度出发,为适应国内外气体标准物质发展的需求,满足国内气体标准物质研制、生产及应用单位的需求,经国家标准物质资源共享平台发起,由中国计量科学研究院和中国测试技术研究院化学研究所联合举办 &ldquo 国家气体标准物质研制及应用&rdquo 系列技术研讨会。第一届会议定于2015年5月13日-15日在成都召开,届时将邀请标准物质领域权威专家围绕&ldquo 气体标准物质研制、应用及量值保障&rdquo 的主题进行技术培训和综合研讨,热忱欢迎全国气体标准物质研制及应用相关技术人员报名参会。   一、会议主题   1. 国家标准物质资源共享平台最新发展现状   2. 气体标准物质的国内外发展现状   3. 气体标准物质的研制   4. 气体标准物质的使用   二、会议时间   2015年5月13日,全天报到 14日-15日,技术培训与研讨(会议具体日程见第二轮通知)。   三、会议地点   成都市,瑞升芭富丽大酒店,成都市成华区玉双路7号。住宿标准详见回执。   四、会议注册   注册费:800元/人,食宿统一安排,费用自理。   五、会议筹办   主办单位:中国测试技术研究院化学研究所、中国计量科学研究院   会务承担单位:四川中测标物科技有限公司   六、联系方式   中国计量科学研究院:王德发   (0)18612204175 010-64525336 wangdf@nim.ac.cn   中国测试技术研究院化学研究所:杨嘉伟   (0)15882020434 028-84403610 21001136@qq.com   四川中测标物科技有限公司:金慧琳   (0)13096377829 028-84403826 13806895@qq.com   附件:1、参会回执   中国测试技术研究院化学研究所   2015年4月7日
  • 我国科学家绘制原发性肝癌高分辨率空间分子图谱
    异质性是癌症预防和治疗的主要挑战。近日,我国海军军医大学的研究团队在《Science Advances》发表了题为“Comprehensive analysis of spatial architecture in primary liver cancer”的文章。  研究人员对7例原发性肝癌患者的21个组织样本进行空间转录组学测序,得到84823个位点信息。通过将空间肿瘤微环境特征从非肿瘤区、边界区到肿瘤区进行渐进式比较,发现肿瘤包膜可能影响肿瘤内空间簇连续性、转录组多样性和免疫细胞浸润,并且发现肿瘤内部不同细胞亚群具有不同优势基因表达、细胞功能、预后以及克隆来源,且肿瘤细胞内部亚群并不独立,在彼此接触的范围(100 μm宽交界区)会发生广泛的配体-受体相互作用,同时发现肿瘤干细胞的富集与原发性肝癌的肿瘤侵袭和迁移呈正相关。通过开发一个新的用于鉴定三级淋巴结构的基因集,他们发现其高评分与原发性肝癌的较好预后显著相关。  该研究系统分析了肿瘤微环境中不同细胞类型或亚群的空间分布特征,绘制了原发性肝癌的高分辨率空间分子图谱。  论文链接:https://www.science.org/doi/10.1126/sciadv.abg3750  注:此研究成果摘自《Science Advances》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 农药企业标准制定与产品分析检测培训会的通知
    中国农药工业协会文件 中农协(2013)18号 召开&ldquo 企业标准制定与产品分析检测培训会&rdquo 通知   各有关单位:   中国农药工业协会将于7月25日在杭州西溪海外海宾馆召开&ldquo 第三届企业标准制定与产品分析检测培训会&rdquo 。   本次培训会邀请行业内长年从事监督检验、标准化管理及农药产品检测标准制定工作的权威专家授课。为加强分析检测人员队伍的建设,确保分析检测人员技术能力的提高,致力于提升农药企业标准化管理人员的专业水平 保证考核工作的科学性、规范性、系统性和持续性 规范农药企业产品质量控制标准化管理。   为做好培训相关工作,保证会议顺利进行,现将有关情况通知如下:   一、会议内容      二、培训时间与地点9   报到时间:2013年7月24日 13:00 至 21:00   培训时间:2013年7月25日~26日(26日下午现场参观拜耳作物科学(中国)有限公司)   培训地点:杭州西溪海外海宾馆(杭州市天目山路329号)   会议统一安排住宿,费用自理。会议不安排接站,请代表自行前往。   三、其他事项   1、参会报名办法:凡即日起至7月10日前报名并交纳会务费,培训费1200元人(含资料、餐费等),款到后发送参会确认单,发票报到时现场领取 7月10日以后及现场报名,培训费1500元/人。   2、汇款单位:中国农药工业协会   帐号:0200022309014426780   开户行:北京市工商行六铺炕支行。   3、参会代表请填写回执表(见附件1,也可登录&ldquo 中国农药工业网www.ccpia.com.cn&rdquo 下载),请于7月10日前发传真、邮寄或电子邮件至中国农药工业协会(传真:010-84885255,邮箱:ccpia_jch@163.com)。   4、会务联系人:   范东升(010-84885920 13683183823)   张 慧(010-84885067 13120203265)   5、本次会议由浙江省农药工业协会协办。 附件:回执表及报告大纲.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制