当前位置: 仪器信息网 > 行业主题 > >

钾钠标准

仪器信息网钾钠标准专题为您提供2024年最新钾钠标准价格报价、厂家品牌的相关信息, 包括钾钠标准参数、型号等,不管是国产,还是进口品牌的钾钠标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钾钠标准相关的耗材配件、试剂标物,还有钾钠标准相关的最新资讯、资料,以及钾钠标准相关的解决方案。

钾钠标准相关的资讯

  • 国家纳米科学中心“微纳技术检测及应用”系列标准宣贯会通知
    标准是经济活动和社会发展的技术支撑,是国家基础性制度的重要方面。新时代推动新质生产力的高质量发展、全面建设社会主义现代化国家,迫切需要进一步加强标准化工作。国家纳米科学中心是全国纳米技术标准化技术委员会(SAC/TC279)、全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)和全国微细气泡技术标准化技术委员会(SAC/TC584)秘书处所在单位,同时,也是国际标准化组织纳米技术委员会(ISO/TC229)和国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)、国际标准化组织微细气泡技术委员会(ISO/TC584)对口单位。为深入贯彻实施《国家标准化发展纲要》以及《2024年全国标准化工作要点》相关要求,国家纳米科学中心拟于5月30日~31日在北京举办“微纳技术检测及应用”标准宣贯会,旨在为纳米技术、颗粒技术和微细气泡技术标准化工作搭建沟通平台,深化标准化交流合作,加强标准化宣传,同时也为从事检测工作的科研和技术人员增进对标准制定、检测标准方法、标准应用等工作的了解提供广阔的平台,促进检测标准化的发展,提升业界标准化技术支撑水平。会议组织单位主办单位:国家纳米科学中心协办单位:上海中晨数字技术设备有限公司会议时间及地点会议时间:2024年5月30日~31日(会议30日09:00开始)注册时间:2024年5月29日15:00-17:00 2024年5月30日08:00-09:00会议地点:北京 国家纳米科学中心(北京市海淀区中关村北二条)会议日程*日程尚在更新中,以现场最终日程为准扫码报名主讲老师▣ 国家市场监督管理总局国家标准技术审评中心▣ 全国纳米技术标准化技术委员会(SAC/TC279)专家▣ 全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)专家▣ 全国微细气泡技术标准化技术委员会(SAC/TC584)专家▣ 纳米技术、颗粒表征、微细气泡等相关技术标准首席起草人参会对象▣ 各省市、各行业和地方从事纳米技术、颗粒表征、微细气泡标准化研究和管理人员▣ 2024年有新标准制修订项目立项的起草团队人员▣ 2024年拟申请新标准制修订项目的起草团队成员▣ 国际标准拟注册及在册专家及项目团队成员注册费及缴费方式▣ 请参加会议人员在线填写以下参会回执▣ 会议费用为1200元/人(主要用于邀请讲课教师及相关标准资料购买)▣ 本次会议食宿费用自理▣ 请于开会前将会议费汇到国家纳米科学中心,备注“标准宣贯会议费+参训人姓名”,并邮件zhoul2024@nanoctr.cn告知汇款结果▣ 会议费为电子发票,邮件到参会代表报名时提供的邮箱账户名称: 国家纳米科学中心开 户 行: 建设银行北京中关村分行账 号:1100 1007 3000 5926 1021展位招商▣ 会议诚招展商,面向本次参会代表和国家纳米科学中心全体师生,提供三天的展示▣ 展商费用为10000元/席(设6席)会议联系人国家纳米科学中心周老师 18311283997 zhoul2024@nanoctr.cn 高老师 010-82545672 13811507217 gaoj@nanoctr.cn
  • 泰州巨纳牵头的一项国家标准正式发布
    近日,国家标准委网站发布2021年第7号国家标准公告,其中由泰州巨纳新能源有限公司牵头起草的国家标准GB/T 40071-2021《纳米技术 石墨烯相关二维材料的层数测量 光学对比度法》正式发布,标准将于2021年12月1日正式实施。.石墨烯相关二维材料(层数不多于10的碳基二维材料,包括石墨烯、双层石墨烯、少层石墨烯、氧化石墨烯等)具有优异的电学、光学、力学、热学等性能,在学术及工业界都引起了人们广泛的兴趣。石墨烯相关二维材料的层数是影响其性能的关键参数。准确测量层数是研究、开发和应用石墨烯相关二维材料的核心问题。光学对比度法作为一种快速、无损和高灵敏度的测量方法,已经被广泛应用于测量石墨烯、双层石墨烯、少层石墨烯等石墨烯相关二维材料的层数。在利用光学对比度法测量层数的过程中,测量结果会受到硅(Si)衬底表面二氧化硅(SiO2)层的厚度,显微物镜的数值孔径,数据的处理方法等各种测试条件的影响。该标准规定了光学对比度法(包括反射光谱法和光学图片法)测量石墨烯、双层石墨烯、少层石墨烯等石墨烯相关二维材料的层数的步骤、仪器参数要求、数据分析、层数判定准则,以提高层数测量结果的可靠性和一致性。该标准属于我国石墨烯领域首批国家标准计划项目之一,是重要的石墨烯相关二维材料层数测量方法标准,该标准由泰州巨纳新能源有限公司、东南大学、泰州石墨烯研究检测平台有限公司等单位主导起草。该标准的制定及发布,将为石墨烯相关二维材料的生产、应用、检验、流通、科研等领域,提供一种快速、无损和高灵敏度的测量方法,标志着我市纳米材料标准化工作已经走到了全国乃至世界的前列。标准的实施对规范我国纳米材料市场,支持高技术含量的产品应用,促进我国纳米材料产业健康快速发展将起到积极的作用。科技创新,日新月异,只有成为先进标准的制定者,才能在激烈的全球化竞争中增强产业核心竞争力,才能抢占战略性新兴产业发展制高点。泰州巨纳新能源有限公司于2010年成立,是国内最早从事石墨烯研究、检测、应用、标准化工作的公司之一。截至目前,公司获批国际标准2项,国家标准项目4项(2项已发布),江苏省地方标准2项,编制联盟标准项目7项(3项已发布);率先发布全国首批石墨烯检测技术领域19项企业标准。2013年组织召开了全国首届石墨烯标准化论坛。2014年起牵头起草我国首批四项石墨烯国家标准计划项目中的两项。2014年5月,正式承担江苏省战略性新兴产业标准化试点工作并于2016年通过验收。2014年被科技部认定为国家火炬计划平台。2016年12月,经国家标准委和中国科学院批准,承担全国纳米技术标准化技术委员会低维纳米结构与性能工作组(编号为SAC/TC279/WG9)秘书处,负责协调和组织全国低维纳米材料的标准化工作。2017年,被评为泰州市标准化先进集体。2018年底,公司牵头起草的中国首个石墨烯国家标准GB/T 30544.13-2018:《纳米科技术语第13部分:石墨烯及相关二维材料》正式发布,同年荣获泰州市首届标准创新奖。2019年,被评为AAAA级标准化良好行为企业。2020年被评为泰州市专利标准融合创新示范企业,同年获批承担全国微细气泡技术标准化技术委员会微细气泡技术应用工作组(编号为SAC/TC584/WG3)秘书处。从2013年起举办多项全国性标准化活动(2013年在泰州举办首届中国石墨烯标准化论坛,2015年在南京和上海举办两次全国石墨烯标准化工作研讨会,2018年在南京、2019年在西安、2020年在无锡举办了低维纳米材料应用与标准研讨会等),打造了行业知名的LDMAS国际会议品牌,在全国乃至国际上形成了巨大的影响力。
  • 俄罗斯将出台新的纳米行业国家标准
    为了规范和进一步推动俄罗斯纳米行业发展,俄罗斯纳米技术公司近日宣布,由该公司的“基础设施和教育项目基金“参与制定的俄罗斯国家纳米行业10项标准将在2013年第一季度出台。   标准将涉及行业生产所需的规范术语、技术规程、操作要求等,出台的10项标准里有3项微电子标准、5项纳米结构陶瓷生产标准和2项聚合材料标准,俄罗斯重点工科大学的教授团队参与了标准的制定。   2012年9月,俄罗斯工业企业联合会已先期批准了两项俄罗斯纳米行业国家标准,分别是:纳米级半导体器件和集成电路生产标准 纳米产品开发、生产与测试计量标准。
  • “纳米抗菌材料国家标准”8月起正式实施
    2008年8月1日起,由全国卫生产业企业管理协会抗菌产业分会等单位负责起草的《纳米无机材料抗菌性能检测方法》国家标准将正式实施。该标准从2004年开始制订,历经4年,是目前我国抗菌产业第一个国家标准。   近年来,随着抗菌产业的发展,纳米无机抗菌材料的应用也日益广泛。但由于没有统一的检验标准,生产厂商和消费者都无从获取权威的验证。即将实施的国家标准规定了纳米无机材料抗菌性能的术语和定义、试验方法、检测报告等内容,为纳米无机抗菌材料的市场规范提供了可靠保障。   该标准的其他主要起草单位还有:国家纳米科技中心、中国科学院过程工程研究所、北京赛特瑞科技发展有限公司、中国疾病预防控制中心环境与健康相关产品安全所和中国科学院理化技术研究所等。
  • 中国合格评定国家认可委员会发布和实施CNAS-GL057:2024《标准物质标准样品选择指南》
    关于发布和实施CNAS-GL057:2024《标准物质标准样品选择指南》的通知
  • 青海省标准化协会公开征求《工业氯化钙中钠镁 钾含量的测定电感耦合等离子体原子发射光谱法》等3项团体标准意见
    各相关单位及专家:按照青海省标准化协会团体标准工作程序,标准起草单位已完成《工业氯化钙中钠镁钾含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》3 项团体标准征求意见稿,根据《青海标准化协会团体标准管理办法》的要求,现在网上公开征求意见,欢迎提出宝贵意见。征求意见截止时间为2023年11月15日,请您在截止日期之前将您的意见反馈至青海标准化协会。协会联系方式协会秘书处:刘伟朝:18297212652、韩建华:13909712796协会邮箱:qhsbzhxh@163.com意见征求涵15.pdf工业氯化钙中钠镁钾含量的测定-文本.pdf附件2:意见反馈表.doc硫酸钾镁肥中钙镁钠含量的测定-文本.pdf工业盐中10种金属离子含量的测定 -文本.pdf
  • 微纳技术计量标准和标准物质研究项目启动
    3月6日,“十二五”国家科技支撑计划重点项目——微纳技术计量标准和标准物质研究启动会在中国计量科学研究院召开。该项目是中国计量院“十二五”期间启动的第二个科技支撑计划项目。   据了解,项目组在前期调研分析基础上制定了微纳结构特性量值溯源体系发展路线图。据此,该项目将在微纳几何结构计量技术研究、微纳结构化学特性计量技术研究、微纳力学特性计量技术研究和微纳计量仪器的核心器件及部件的研制4个方向开展研究。计划建立基标准装置6套、研制标准物质7类19~26种、研制计量用微纳核心器件3类和关键部件1套、建立测量系统4套与测量方法4项,初步建立较为完整的微纳技术计量传递体系,项目成果水平将达到或超过美国等发达国家现有水平。   微纳技术包括微纳米材料、结构、器件、系统的设计制造及测量技术,涵盖了微电子、MEMS/NEMS、纳米技术等高新技术领域,在我国战略性新兴产业发展过程中具有重要作用。近年来,微纳技术的发展对计量学提出了严峻的挑战,高准确度的微纳结构特性计量基标准、标准物质以及微纳器件和部件是保证微纳技术领域快速可持续发展的重要技术支撑。当前,我国微纳技术研究成果已与先进国家相当,产业化进程显著加快,不少产品的产量位居世界前列。但高端产品短缺数量少、品质差,缺乏市场竞争力,高水平的基础研究成果难以产业化。究其原因,主要就是微纳计量技术的研究严重滞后、计量基标准和标准物质严重匮乏,核心技术严重落后,难以支撑我国微纳技术产业化的发展。
  • 中国合格评定国家认可委员会发布CNAS-CL04-A001:2023《标准物质/标准样品生产者能力认可准则在体外诊断试剂领域的应用说明》等认可规范文件
    中国合格评定国家认可委员会关于发布CNAS-CL04-A001:2023《标准物质/标准样品生产者能力认可准则在体外诊断试剂领域的应用说明》CNAS-CL04-A002-2023《标准物质/标准样品生产者能力认可准则在气体领域的应用说明》等认可规范文件的通知。 关于发布CNAS-CL04-A001:2023《标准物质/标准样品生产者能力认可准则在体外诊断试剂领域的应用说明》等认可规范文件的通知相关标准如下:1.CNAS-CL04-A001-2023《标准物质/标准样品生产者能力认可准则在体外诊断试剂领域的应用说明》2.CNAS-CL04-A002-2023《标准物质/标准样品生产者能力认可准则在气体领域的应用说明》
  • 纳博会多国论剑,剑指“纳米标准化”
    p   21世纪,纳米科技将成为推动世界各国经济发展的驱动力之一,在电子、信息、生物、化工、医药、机械、交通、国防等领域有着重要意义和广泛的应用前景,目前纳米技术在一些产业领域已经形成了规模化的产业,如在胶体、纳米乳液、润滑剂、磁性液体、耐蚀涂层、药物控释系统、电子元器件、纳米陶瓷、纳米金属、纳米复合材料、微电子器件等方面的应用越来越普及,其重要性越来越受到世界广泛关注。 /p p   随着纳米技术产业的发展,纳米技术的标准化已经成各国抢占的“制高点”。经济全球化的加快和技术创新的深刻变化,国际竞争已逐渐转化为标准的竞争。特别是在高新技术产业,谁掌握了标准的话语权,谁就掌握了市场的主动权。“得标准者得天下”已逐渐成为一种共识。 /p p   鉴于此,在今年10月苏州举行的第七届纳博会上,大会主办方江苏省纳米技术产业创新中心与苏州纳米科技发展有限公司将专设国际纳米技术圆桌会议,着重探讨“纳米技术产品市场评估:标准化的意义”这一主题,并邀请世界各地涉足纳米技术的机构以及实业家、决策者、专家来分享经验与看法。据主办方透露,国际纳米技术圆桌会议开展到今年已是第四届,这是首次设定主题,而首次设立主题,即剑指“纳米标准化”。 /p p img src=" http://img1.17img.cn/17img/images/201610/insimg/e3478260-3750-41bd-b4ae-73718c2ef6e2.jpg" title=" 1.jpg" / /p p style=" text-align: center "   图为2015第三届国际纳米技术圆桌会议现场 /p p strong 真假难辨 国家标准“借你一双慧眼” /strong /p p   纳米产品的标准化非一日之功。事实上,早在2005年,国家质检总局和国家标准委就联合发布了《纳米材料术语》、《纳米镍粉》7项纳米材料国家标准,这是我国首次批准发布的关于纳米材料的国家标准,也是世界上首次以国家标准形式颁布的纳米材料标准,标志着此后我国“纳米”技术的生产和市场准入都将有权威依据,那些随意用纳米“搭车赚钱”的现象将受到国家标准的严格规范和约束。当年还成立了全国纳米标准化技术委员会,以更好地推进我国纳米技术标准化工作。而这,还远远不够。 /p p   “大体来讲,国家投资纳米技术开发的重要目标之一是为了从新兴的纳米技术市场分一杯羹。过去几年中,这些投资催生的纳米技术产品已经开始进军市场。相关各方,包括决策方,监管方和投资方有意进行市场评估。决策方需要获取这方面信息来应对政府政策对公众社会经济影响,并对政府政策加以改善。投资方需要知道投资回报,监管方需要评估社会和环境影响。虽然有这种需求,但目前还没有能评估纳米技术市场的完善的参考体系。”伊朗国家纳米振兴委员会国际事务主任表示,2015年发表的ISO-TS18110标准应这一需求而提出了大家所需的标准化的定义。本次会议旨在推广这一标准并鼓励各方使用并进一步完善该标准。 /p p   据悉,伊朗建立了定义纳米技术指标的国家标准,该标准采用了涵盖纳米技术市场容量这一内容的ISO18110。 过去4年中,该国一直在根据提到的定义以及相关的操作标准测量其纳米技术市场的规模,通过纳米级别认证阶段的产品才被视为是纳米科技产品。2016国际纳米技术圆桌会议关于“标准化”的主题便是伊朗这边向主办方提议的。 /p p img src=" http://img1.17img.cn/17img/images/201610/insimg/592ad63d-0178-40c2-a9c1-16924a47ff14.jpg" title=" 1.jpg" / /p p style=" text-align: center " 图为2015第三届国际纳米技术圆桌会议现场 /p p    strong 占领先机 争取国际标准话语权 /strong /p p   许多权威人士也曾预测,21世纪的经济增长将由纳米技术来驱动,如果纳米技术的成分如纳米材料、纳米结构作为一种公开的模块在市场上提供,这种驱动力量就更强大。标准化是纳米技术产业化过程中建立模块结构不可缺少的。 /p p   除了国家标准,国际标准同样不容忽视。不是所有其他国家都会认同你的产品所在的国家标准,一个有国家认证的产品,未必能畅通地走向世界。这时候,国际通用标准的重要性就显现了。 /p p   我国标准委主任李忠海曾指出,发展纳米科技的重要战略选择之一,就是高度重视纳米科技的标准化 保证纳米产品产业化健康发展的重要措施之一,就是建立统一、协调、配套的纳米标准体系。随着纳米科技的逐渐成熟和应用前景的明朗化,竞争会日趋激烈,谁的标准出台快,谁的标准科学性强,谁就最可能占领纳米产业化发展的先机,谁就掌握了市场的主动权。对于我国而言,尽管2005年至今,石墨烯等纳米材料标准陆续出台,但总体上,标准的制定仍然滞后于产品的市场开发。 /p p   据报道,世界科技强国对纳米标准化非常重视,在纳米国际标准化活动中积极抢占标准制定主动权。目前,一些发达国家凭借其技术的先进性及先发制人的时机抢先制定了一系列标准,以期在引领技术、主导产业和开辟市场等方面抢占制高点和话语权。 /p p   可见,标准的建立不能亦趋亦步。参与纳米产品国际标准的建立,掌握纳米产品国际标准的话语权,不仅标志着相应的研究开发处于国际领先地位,而且也能给产品所在的企业和国家带来实实在在的市场红利。 /p p   2016国际纳米技术圆桌会议是本届纳博会重要分会之一。据了解,基于今年“纳米技术产品市场评估:标准化的意义”这一主题,俄罗斯、德国、加拿大、伊朗等国将拿出关于纳米技术及产品标准化的国家报告,介绍其为纳米科技市场标准化所做的努力,包括纳米产品的评估、纳米企业的定义、类型及数据库统计等,并探讨标准化在全球共融中的意义。 /p p   “我们希望通过本次会议,不同国家的主要参与者能意识到标准化的定义的以及评估纳米技术经济影响的方法的重要性,由此希望各国积极主动的投入到开发一套完善的全球性体系的工作中来。总体而言,目前需要一套测量纳米市场容量及与其相关的方法,过程的指导体系。此类会议为推动建立完善的公认体系起了至关重要的作用。”伊朗国家纳米振兴委员会国际事务主任说。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201610/insimg/a99c7f8d-e76d-4308-8995-d299d43a74ed.jpg" title=" 1.jpg" / 图为2015第三届国际纳米技术圆桌会议现场 /p p strong   多措并举苏州积极推动纳米相关标准化工作 /strong /p p   作为全球八大纳米技术产业集聚区之一,当然不会忽视标准化工作的重要性。 /p p   2011年5月,苏州市就向国家标准化管理委员会提出申请建立全国首个战略性新兴产业标准化示范区——国家纳米技术产业化标准化示范区,力争将苏州打造成为全国第一的“纳米之城”。同年7月,国家标准委正式批复同意在苏州工业园区开展国家纳米技术产业化标准化示范区的试点工作。国家纳米技术标准化示范开展以来,苏州纳米技术企业标准化水平整体提高,标准影响力明显增强,纳米技术产业竞争力大幅提升。 /p p   2012年7月,全国洁净室与相关受控环境标准化技术委员会纳米受控环境分技术委员会落户苏州工业园区,这是园区第一个纳米技术标委会分技术委员会,也意味着苏州纳米技术研究介入标准领域。 /p p   2015年11月,苏州成立了国内首个新兴产业标准化协作平台,旨在加强苏州相关企业与标准化技术机构的沟通合作,推动实现标准化工作与科技创新、产业发展的快速响应、协同融合,更好发挥标准化在新兴产业发展中的服务、支撑与引领作用。主管部门从扶持产业发展、助推经济转型的高度,重视和支持做好协作平台的运行工作,相关企业则借助协作平台,全面提升标准化工作能力,切实增强标准化领域的话语权。 /p p   此外,园区还出台了《苏州工业园区纳米技术产品目录》《苏州工业园区纳米技术企业、产品认定管理办法》等规范性文件,落实纳米技术企业、产品认定,激发纳米市场良性发展活力。 /p p   东道主苏州这一系列纳米相关标准化工作,为2016国际纳米技术圆桌会议选择“标准化”作为主题奠定了基础,也令10月即将到来的“各国论剑”更具实践指导意义。 /p p br/ /p
  • 宝钢制订钢铁表面纳米尺度薄膜国家标准
    日前,由宝钢股份研究院负责起草的国家标准《辉光放电光谱法定量分析钢铁表面纳米尺度薄膜》,通过了全国微束分析标准化技术委员会的评审。评审专家还建议,鉴于该标准在国际上亦属首次提出,可在适当时候转化为国际标准。   对钢铁表面进行涂镀处理,是目前提高钢铁产品抗腐蚀性能的主要途径,如镀锌、彩涂产品等。随着涂镀工艺的发展,真空镀膜、闪镀等新的表面处理技术可以使薄膜厚度减薄至几百个到几个纳米,不仅降低了生产成本,而且减少了环境污染。但是,如何准确控制和分析纳米尺度薄膜的厚度及成分,国际上一直没有统一标准。   宝钢从2003年开始对纳米尺度薄膜的表征技术展开深入研究,并在国内冶金行业率先应用辉光放电光谱法,积累了丰富的经验。2007年,国家标准委下达了制订《辉光放电光谱法分析钢铁表面纳米尺度薄膜》国家标准的计划。宝钢因在这一领域起步较早,并已具备较强研发实力,理所当然地承担起了该标准的起草工作。   为做好标准的起草工作,宝钢研究院进行了大量的准确度和精密度试验,并与近20家高等院校、科研院所和钢铁同行开展了技术交流,最终完成了标准起草工作,并顺利通过国家评审。
  • 微纳受邀《粒度分析动态光散射法》国家标准宣贯会
    我国在纳米材料相关基础标准已发布实施多项,新技术转化的标准的宣贯工作迫在眉睫,为提高科研技术人员的研究分析能力,相互交流研究心得,同时为执行标准做好充分的准备,北京粉体技术协会、全国颗粒表征与分检及筛网标准化技术委员会、全国纳米技术标准化技术委员会于2013年11月26日在北京国家纳米科学中心联合举办纳米测试标准系列讲座。 作为中国颗粒测试技术的领航者的济南微纳颗粒仪器股份有限公司,被选为系列宣贯的第一讲。与会期间我司陈栋章总工将进行《粒度分析动态光散射法》GB/T 29022-2012/ISO 22412:2008的讲座。欢迎业内广大新老客户及关系单位届时参与此次盛会。济南微纳受邀参加此次会议力验证评定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 钢研纳克拟负责起草ICP-AES国家标准
    仪器信息网讯 2014年10月28日,国家标准委决定发布通知对2014年第二批拟立项国家标准项目(见附件)公开征求意见。其中提出将制定《电感耦合等离子体发射光谱仪》国家推荐标准。主管部门为中国机械工业联合会,归口单位为国工业过程测量和控制标准化技术委员会,起草单位为钢研纳克检测技术有限公司,计划完成时间为2016年。   《电感耦合等离子体发射光谱仪》标准将规定电感耦合等离子体原子发射光谱仪的术语与缩略语、分类、要求、试验方法、检验规则、标志、包装、运输和贮存。   据介绍,制定该标准旨在提升我国ICP光谱仪的生产制造规范性,使仪器性能稳定 通过规范生产提高ICP光谱仪生产企业准入门槛,形成具有竞争力的企业。从而缩小国产仪器同国外仪器的性能差距,提高国产ICP光谱仪的市场占有率。对ICP光谱仪产业发展具有重要和积极的意义。   项目起草单位钢研纳克检测技术有限公司研发生产电感耦合等离子体发射光谱仪始于2006年,2009年10月,钢研纳克开发了单道扫描型ICP-AES Plasma 1000。2014年,钢研纳克推出了 Plasma2000型全谱电感耦合等离子体光谱仪,采用中阶梯光栅光学结构和科研级CCD检测器实现全谱采集,该仪器是钢研纳克&ldquo 国家重大科学仪器设备开发专项&rdquo 成果。(编辑:秦丽娟)
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 钢研纳克获批设立钢铁新材料领域国家标准验证点
    近日,国家标准化管理委员会批准钢研纳克检测技术股份有限公司设立钢铁新材料领域标准验证点。标准在助推我国高质量发展转型过程中的基础性、战略性和引领性作用日益凸显,标准化在我国现代产业体系发展中的支撑和引领作用不言而喻,其中标准的质量至关重要。开展标准验证工作,对标准关键内容的科学性、合理性、先进性、正确性、适用性等进行评价,不仅可以提高标准的质量,为深化标准化工作改革提供技术支持,更有利于提升标准化对产业发展的科技支撑水平。标准验证点的设立正是集合特色领域的资源服务国家重大战略、重大工程、国民经济重要行业、新兴产业和重点项目的标准化发展。NCS CHINA随着材料发展进入数据驱动的高速阶段,钢铁新材料的新产品和新方法的大量涌现,带来标准质量的潜在风险,钢铁新材料领域的标准化需求日益旺盛。建立钢铁新材料领域标准验证点旨在钢铁新材料领域实现资源整合提升标准化科技支撑力量,未来将通过建立标准验证技术体系、建立协同高效工作机制、实施标准验证提升标准质量、融通验证资源创新市场服务、推动验证技术国际交流合作等工作规划推进待验证标准涉及到的产品研发、生产工艺、技术指标、服役应用的适用性和质量提升,实现其全产业链、全流程、全生命周期、全域的标准化技术路径,用标准化、可靠数据支撑新的标准验证体系,实现钢铁新材料领域标准的高质量发展,助力中国钢铁新材料领域与标准验证相关的科研创新成果的有效转化。
  • 中国合格评定国家认可委员会发布CNAS-GL0XX:202X《标准物质/标准样品选择指南》征求意见稿
    相关单位和人员:中国合格评定国家认可委员会(CNAS)组织制定了CNAS-GL0XX:202X《标准物质/标准样品选择指南》。目前已完成文件征求意见稿,现予网上公示征求意见。相关单位和人员如有任何修改建议或意见,请填写附件3《CNAS文件意见征询表》,并于2024年2月18日前反馈至CNAS。联系人:韩春旭联系电话:010-67105292Email: hancx@cnas.org.cn附件1:CNAS-GL0XX:202X《标准物质/标准样品选择指南》征求意见稿附件2:CNAS-GL0XX:202X《标准物质/标准样品选择指南》编制说明附件3:CNAS文件意见征询表
  • 中德纳米技术及纳米标准化前沿论坛在兰举行
    中新网兰州9月5日电 (朱世强)今天上午,中德纳米技术及纳米标准化前沿论坛在兰州大学举行,“这次论坛将对中国纳米技术和纳米的重要应用,以及中德科研领域的交流与合作起到推动作用” 此次论坛主席、原兰州大学校长李发伸教授说。   这次论坛由中德科学基金研究交流中心、兰州大学、北京大学联合主办。其间,将就纳米科技发展现状、新型纳米材料、纳米磁性、纳米器件、纳米加工、纳米光学、纳米技术应用、纳米技术标准化等专题进行研讨,同时将有39场报告,报告内容将围绕纳米技术的最新进展、解读中国纳米科技发展现状、探讨纳米标准和纳米量衡等热点和前沿问题。   据介绍,纳米技术是21世纪最重要的技术领域之一,它的迅猛发展将促进几乎所有工业领域产生一场革命性的变化。纳米材料是未来社会发展极为重要的物质基础,许多科技新领域的突破迫切需要纳米材料和纳米科技的支撑,传统产业的技术提升也急需纳米材料和技术的支持。   中国科研在纳米材料学、纳米机械学、纳米显微学、纳米测量学以及纳米电子学和纳米生物学、纳米技术等研究和应用方面进展迅速。在纳米材料制备与合成、纳米材料计量、测量和表征技术及纳米材料的基础研究、应用研究和开发研究均取得重要成果。   李发伸说,这次论坛在中国的举办,不仅为推进纳米科学、纳米标准研究,建立和加强中德及其他国家科学家在相关领域的合作与交流提供了良好的机遇和平台,也为推进和提高中德两国纳米科学与技术及相关领域的进一步发展起到了积极作用。   中德科学家在2000年到2004年已在两国举办五次以上双边论坛,它是纳米技术和纳米标准化的国际高级论坛。本次会议其间,有纳米材料国际委员会前主席H. Hahn教授、俄罗斯科学院院士伊万诺夫、美国化学学会《ACS NANO》主编Paul Weiss、法国科研中心光子与纳米结构实验室主任研究员王肇中、中科院物理所解思深院士、清华大学薛其坤院士等来自德国、中国、美国、俄罗斯、法国、新加坡六个国家的专家、教授、代表100余人参加。
  • 新《种子法》实施!华大智造参与植物品种DNA鉴定国家标准制定
    自2022年3月1日起,新修订的《中华人民共和国种子法》(以下简称“新《种子法》”)正式施行。新种子法的实施,将为我国种业科技自强自立、种源自主可控提供坚实的法治保障。作为生命科技核心工具缔造者,华大智造以全套生命数字化设备和系统,赋能种业市场监管中的创新技术开发。近年来,种子市场中侵权现象多发,主要粮食作物品种同质化问题明显,影响育种原始创新。此次《种子法》的修改主要涉及到,建立实质性派生品种制度,扩大植物新品种权的保护范围和保护环节,加大侵权赔偿力度,鼓励和支持育种原始创新,净化种业市场等话题,是推动种业振兴行动迈出的重要一步。作为生命科技核心工具缔造者,华大智造以全套生命数字化设备和系统,赋能种业市场监管中的创新技术开发。华大智造参与起草的GB/T 38551-2020植物品种鉴定MNP标记法,是第一个涵盖多种植物品种DNA鉴定的国家标准,也是目前唯一支撑实质性派生品种鉴定的国家标准。MNP标记技术从试剂、仪器、芯片,到核心技术专利、数据系统、分析软件实现全流程国产化,包括采用华大智造MGISEQ-2000测序平台。MNP标记技术全流程国产化可助力解决种业发展“卡脖子”问题,精准高效地进行品种鉴定,实现品种DNA指纹的共建共享,因此可广泛应用到新《种子法》的植物品种知识产权保护行动中。图1. GB/T 38551-2020 植物品种鉴定 MNP标记法图2. GB/T 38551-2020 植物品种鉴定 MNP标记法图3. MNP标记(multiple dispersed nucleotide polymorphisms,多核苷酸多态性标记)此外,华大智造全套生命数字化设备和系统可贯穿在种质资源保护,基因挖掘和育种技术开发等种源基础研究,以及育种产业实践应用中,助力我国种业从科研到产业转化的快速发展。图4. 华大智造农业领域产品配置
  • 专家:奶粉含肉毒杆菌罕见 不会纳入标准体系
    新西兰恒天然乳品含肉毒杆菌事件备受关注。9日,国家食品安全风险评估中心开展公众开放日活动,相关专家称,婴儿奶粉中含有肉毒杆菌的情况十分罕见,对此的监测不会纳入标准体系中。   国家食品安全风险评估中心微生物实验部研究院郭云昌博士说,肉毒杆菌产生肉毒毒素需要苛刻的条件,其中一条是严格厌氧。而这一条,在非真空包装的奶粉中难以实现。尽管肉毒杆菌在环境中广泛存在,但奶粉中的污染比较罕见。从以往经验来看,我国肉毒杆菌污染多为储藏不当的变质肉类食品或家庭自制发酵豆类、谷类制品。   控制肉毒杆菌污染的关键是工艺设计和过程控制而非标准管理,世界各国和地区并无食品中肉毒杆菌及其毒素的限量规定,一般只对密闭发酵、罐头类食品规定符合商业无菌的要求。尽管本次奶粉污染事件是偶发,消费者不必恐慌,但政府监管部门应该高度重视,要综合国内召回产品检测情况和各贸易国的反馈态度以及CAC动向,确定我国今后的管理方式。   国家食品安全风险评估中心技术顾问刘秀梅研究员说,以往也有婴儿肉毒素中毒事件发生,但其与成人中毒有所不同,不是吃了含有毒素的奶粉,而是因为婴儿免疫力低下,身体发育未完全。如果含有芽孢的食物进入婴儿的胃肠道,会定植于体内,生长繁殖,进而产生毒素。但此类事件十分罕见,目前查到的是2001年英国曾发生过这类案例。   刘秀梅说,其实婴儿奶粉中更值得关注的是阪崎肠杆菌。三次国际专家评估会议,三次都在关注阪崎肠杆菌,而没有关注肉毒杆菌。2004年开始获得国际关注,2008年,国内关于婴儿配方奶粉的标准也对阪崎肠杆菌进行了相关规定,相关部门对此也是必检项目。但由于含肉毒杆菌的情况非常罕见,因此,对于奶粉的管理标准中,加入监测肉毒杆菌一项的可能性几乎为零。   怎么预防婴儿奶粉喂养安全呢?   世界卫生组织曾为此专门设置指南,如何合理喂养婴儿配方奶粉。除了厂家保障产品安全外,孩子的母亲往往承担着重要的工作。刘秀梅认为,首先要购买正规厂家生产的可靠产品。2004年阜阳奶粉大头娃娃事件中,涉事产品很多都是小作坊、黑窝点生产的三无产品。其次,喂养方式也很重要。大头娃娃事件中,也暴露了留守儿童被隔代喂养中存在的问题。老人为省钱,减量喂养奶粉。   现在流入中国的被污染的奶粉原料大约有20吨,大部分原料还没有被加工为产品,已经加工为产品的,根据要求已经被召回。流入中国的产品中,到底有没有肉毒杆菌?刘秀梅认为,产品中如果含有肉毒毒素的话,由于其潜伏期很短,一旦进入人体将会迅速发生中毒事件,而目前尚未这种事件。她建议,不要过分担心肉毒杆菌奶粉对孩子健康的危害,因为发生的可能性还是非常低的。   在9日上午国家卫生计生委召开的新闻发布会上,国家食品安全风险评估中心微生物实验部的主任李凤琴研究员也确认这一观点,她表示,到目前为止还没有接到报告因为吃含有肉毒杆菌的奶粉而有人出现不适的病例。   国家卫生计生委新闻发言人、宣传司副司长邓海华说:“国家卫生计生委的职能是标准制定和风险评估,我们接到国际食品安全当局网络通报新西兰污染乳制品问题的邮件之后,及时把有关信息向质检总局、食品药品监管总局进行了通报,配合相关监管部门做好相应的处置工作。我们还组织国家食品安全风险评估中心的相关专家,通过各种有效途径,包括博客、微博、网站、接受媒体采访等等,对于肉毒杆菌的科普知识进行了大量宣传。”
  • 国家标准委开展2023年强制性国家标准复审,食品相关标准51项!
    国家发展改革委、教育部、工业和信息化部、公安部、民政部、自然资源部、生态环境部、住房城乡建设部、农业农村部、国家卫生健康委、应急管理部、国家林草局、国家疾控局、国家矿山安监局、国家药监局办公厅(办公室、综合司):为规范强制性国家标准管理,有序推进强制性国家标准复审工作,推动标准复审常态化和制度化,依据《标准化法》和《强制性国家标准管理办法》(以下简称《管理办法》)有关要求,开展2023年强制性国家标准复审工作,有关事项通知如下:一、复审标准范围截至2023年底,实施满5年或距上次复审满5年的强制性国家标准,纳入本次复审范围,已提出修订项目或已列入修订计划的除外,拟开展复审的标准清单见附件1。未列入附件1中的标准也可根据需要纳入复审范围。二、标准复审内容根据《标准化法》及《管理办法》相关规定,从标准的适用性、规范性、时效性和协调性等方面进行复审,复审内容主要包括以下方面:(一)标准的适用性。标准涉及的产品、过程或服务是否已被淘汰,已被淘汰的,应给出“废止”的结论。标准的适用范围是否详细具体,能够覆盖新产品、新工艺、新技术或新服务,适用范围不够具体或不能覆盖新情况的,应给出“修订”的结论。标准规定的内容是否符合强制性标准的制定范围,属于超范围制定的,应给出“修订”(修订转化为推荐性国家标准)或“废止”的结论。(二)标准的规范性。标准技术内容是否可验证、可操作,若技术内容存在不可验证、不可操作的情况,或者标准中未规定证实方法,应给出“修订”的结论。标准是否为全文强制,若标准为条文强制,应给出“修订”的结论。(三)标准的时效性。与产业发展实际水平和健康、安全、环保最新需求相比,标准技术指标及要求是否需要提升,若因标准的指标缺失或要求过低可能导致安全事故或存在较大安全风险,应给出“修订”的结论。与国际国外最新技术法规或标准相比,是否与国际标准或法规主要技术指标一致,若不一致,原则上应给出“修订”的结论。标准的规范性引用文件是否现行有效,若引用的标准已废止或注日期引用的标准已更新,应给出“修订”的结论。(四)标准的协调性。如出现标准与现行相关法律法规、部门规章、其他强制性国家标准或国家产业政策不协调、不一致的情况,应给出“修订”的结论。三、标准复审工作安排标准复审工作分三个阶段开展:(一)第一阶段:工作组复审阶段。组织起草部门可成立复审工作组或委托有关全国专业标准化技术委员会成立复审工作组,开展强制性国家标准复审工作。复审工作组针对附件1中的具体标准,依据标准复审内容,通过问卷调查、标准实施情况统计分析、企业调研、专家论证等方式,开展标准复审,形成每一项标准的《强制性国家标准复审工作报告》(附件2)。(二)第二阶段:专家论证阶段。组织起草部门组织召开专家论证会,对复审工作组形成的《强制性国家标准复审工作报告》进行论证,给出最终的复审结论。(三)第三阶段:材料报送阶段。组织起草部门于2023年11月30日前,将《强制性国家标准复审结论汇总表》(附件3)和各项标准的《强制性国家标准复审工作报告》报送国家标准委。同时,在强制性国家标准制修订子系统中填报各标准的复审信息和报告。四、复审结论的处理国家标准委对组织起草部门报送的复审结论审核后,按照复审结论类别进行分类处理,具体如下:1. 复审结论为“废止”的标准,将通过全国标准信息公共服务平台向社会公开征求意见,并以书面形式征求该强制性国家标准的实施监督管理部门意见。无重大分歧意见或者经协调一致的,我委将以公告形式废止该强制性国家标准。2. 复审结论为“修订”的标准,组织起草部门应在报送复审结论时同步提出修订项目。国家标准委将按照强制性国家标准的立项程序进行办理。3. 复审结论为“继续有效”的标准,将通过全国标准信息公共服务平台向社会告知标准的复审时间。联系人:市场监管总局标准技术司 付允 陈如意联系方式:010-82262614,010-82262616邮箱:chenruyi@samr.gov.cn国家标准技术审评中心 叶子青联系方式:010-65007855邮箱:yezq@ncse.ac.cn附件:1. 2023年复审标准清单2. 强制性国家标准复审工作报告3. 强制性国家标准复审结论汇总表附件下载:国标委发〔2023〕40号-2023年强标复审通知.doc国家标准化管理委员会 2023年8月3日此次复审标准清单中一共包含170项国家标准,其中包含仪器设备、工业制剂、车辆、环境、食品、医疗器械等;主管部门涵盖:国家发展改革委、教育部、工业和信息化部、公安部、民政部、自然资源部、生态环境部、农业农村部、国家卫生健康委、应急管理部、市场监管总局、国家标准委、国家药监局。食品相关标准如下:序号标准编号标准名称主管部门1GB 21909-2008制糖工业水污染物排放标准生态环境部2GB 4407.1-2008经济作物种子 第1部分:纤维类农业农村部3GB 6141-2008豆科草种子质量分级农业农村部4GB 11767-2003茶树种苗农业农村部5GB 9847-2003苹果苗木农业农村部6GB 19169-2003黑木耳菌种农业农村部7GB 19170-2003香菇菌种农业农村部8GB 19172-2003平菇菌种农业农村部9GB 19179-2003桑蚕原种农业农村部10GB 19171-2003双孢蘑菇菌种农业农村部11GB 29384-2012乙酰甲胺磷原药农业农村部12GB 29382-2012硝磺草酮原药农业农村部13GB 18133-2012马铃薯种薯农业农村部14GB 13078-2017饲料卫生标准农业农村部15GB 34463-2017饲料添加剂 L-抗坏血酸钙农业农村部16GB 34460-2017饲料添加剂 L-抗坏血酸钠农业农村部17GB 34468-2017饲料添加剂 硫酸锰农业农村部18GB 34461-2017饲料添加剂 L-肉碱农业农村部19GB 34457-2017饲料添加剂 磷酸三钙农业农村部20GB 34462-2017饲料添加剂 氯化胆碱农业农村部21GB 9454-2017饲料添加剂 DL-α-生育酚乙酸酯农业农村部22GB 20802-2017饲料添加剂 蛋氨酸铜络(螯)合物农业农村部23GB 21034-2017饲料添加剂 蛋氨酸羟基类似物钙盐农业农村部24GB 22548-2017饲料添加剂 磷酸二氢钙农业农村部25GB 22549-2017饲料添加剂 磷酸氢钙农业农村部26GB 23386-2017饲料添加剂 维生素A棕榈酸酯(粉)农业农村部27GB 34469-2017饲料添加剂 β-胡萝卜素(化学合成)农业农村部28GB 34470-2017饲料添加剂 磷酸二氢钾农业农村部29GB 22489-2017饲料添加剂 蛋氨酸锰络(螯)合物农业农村部30GB 7300-2017饲料添加剂 烟酸农业农村部31GB 34458-2017饲料添加剂 磷酸氢二钾农业农村部32GB 34465-2017饲料添加剂 硫酸亚铁农业农村部33GB 34466-2017饲料添加剂 L-赖氨酸盐酸盐农业农村部34GB 9840-2017饲料添加剂 维生素D3(微粒)农业农村部35GB 34467-2017饲料添加剂 柠檬酸钙农业农村部36GB 7298-2017饲料添加剂 维生素B6(盐酸吡哆醇)农业农村部37GB 7301-2017饲料添加剂 烟酰胺农业农村部38GB 34459-2017饲料添加剂 硫酸铜农业农村部39GB 34456-2017饲料添加剂 磷酸二氢钠农业农村部40GB 7293-2017饲料添加剂 DL-α-生育酚乙酸酯(粉)农业农村部41GB 7294-2017饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3)农业农村部42GB 21694-2017饲料添加剂 蛋氨酸锌络(螯)合物农业农村部43GB 34464-2017饲料添加剂 二甲基嘧啶醇亚硫酸甲萘醌农业农村部44GB 14891.1-1997辐照熟畜禽肉类卫生标准国家卫生健康委45GB 14891.5-1997辐照新鲜水果、蔬菜类卫生标准国家卫生健康委46GB 1986-2007食品添加剂 单、双硬脂酸甘油酯国家卫生健康委47GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯国家卫生健康委48GB 14891.3-1997辐照干果果脯类卫生标准国家卫生健康委49GB 14891.4-1997辐照香辛料类卫生标准国家卫生健康委50GB 14891.7-1997辐照冷冻包装畜禽肉类卫生标准国家卫生健康委51GB 14891.8-1997辐照豆类、谷类及其制品卫生标准国家卫生健康委
  • 我国参与纳米技术国际标准工作取得重要进展
    2011年5月16日至20日,在俄罗斯圣彼得堡召开了第12届国际标准化组织纳米技术委员会(ISO/TC229)全体会议。来自中国、俄罗斯、英国、美国、德国、韩国、日本等二十多个国家以及国际电工委员会(IEC)、欧盟标准化管理委员会(CEN)、新材料与标准凡尔赛科研计划(VAMAS)等国际化组织共一百余名代表参加了此次大会。受国家标准化管理委员会委托,全国纳米技术标准化技术委员会副主任朱星教授率中国代表团参加了本届大会。   本届会议中,中国成功当选为ISO/TC229主席顾问团(CAG,Chairman Advisory Group)成员,该顾问团决定ISO/TC229的重大事宜,每大洲只有两个国家代表,任期两年。这次当选,是国际上对我国纳米技术标准工作不懈努力与积极进取的肯定,这将进一步提高我国在该领域的地位和国际话语权。   由中心陈春英研究员主持的ISO TS 13278“碳纳米管杂质含量ICP-MS测定”国际标准项目在会议上获得全票通过,正式进入出版阶段,即将于2011年7月递交国际标准化组织中央秘书处颁布实施。这项标准是我国在ISO/TC229中主持的第一项标准,也是中心第一项国际标准,其圆满完成为今后我国承担制定更多的纳米技术国际标准打下了良好基础。   中心葛广路副研究员起草的“硫族化镉半导体纳米粒子(量子点)的紫外-可见吸收光谱表征”标准草案,已正式提交ISO进行新工作项目立项,吴晓春研究员起草的“金纳米棒的紫外-可见吸收光谱表征”标准草案,也得到了与会代表的一致认可,建议在实验室比对结果后提交新工作项目。这两个工作项目已经列入了ISO/TC229第二工作组重点推进项目。   在中国作为召集人的第四工作组中,由我国承担制定的纳米材料规范的两个项目(ISO TS 11931-1 纳米碳酸钙和ISO TS 11937-1纳米二氧化钛)也进入了委员会投票阶段。   ISO/TC229是重要的纳米技术国际标准化交流平台,通过参加此次会议,加强了我国与其他国家及组织在纳米技术国际标准化工作的交流与合作。
  • GB 2760-2024《食品安全国家标准 食品添加剂使用标准》国家标准解读
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。其中包括GB 2760-2024《食品安全国家标准 食品添加剂使用标准》。该标准代替 GB2760—2014《食品安全国家标准 食品添加剂使用标准》,将于2025年2月8日正式实施。该标准增加了2016年以来国家卫生健康委员会陆续公布的食品添加剂规定,并对附录A、B、C、D、E、F都有了补充和修订。(一)关于GB 2760与国家卫生健康委有关食品添加剂公告的关系  我国对于食品添加剂新品种实行行政许可,对于许可的食品添加剂品种及使用规定,国家卫生健康委以公告形式予以增补,自公告发布之日起,食品添加剂生产使用者就可以按照公告的规定生产使用批准的食品添加剂。为了方便标准使用者查询,GB 2760-2024纳入了GB 2760-2014 实施以来国家卫生健康委以公告形式批准使用的食品添加剂品种和使用规定,截至国家卫生健康委2023年第5号公告。  (二)关于食品添加剂定义的修订  根据2015年实施的《食品安全法》,在食品添加剂的定义中增加了包含营养强化剂的内容。新品种许可、复配食品营养强化剂等食品营养强化剂的管理可参考食品添加剂相关管理规定执行。  (三)关于附录A的修订  附录A的修订内容主要包括:一是修改了附录A中食品添加剂使用规定的查询方式。将原标准中表A.3的内容体现在表A.1和表A.2中,原表A.2合并入表A.1。二是基于食品添加剂安全性和工艺必要性的最新评估结果,修订了部分食品添加剂品种和/或使用规定。例如删除了落葵红、密蒙黄、酸枣色、2,4-二氯苯氧乙酸、海萝胶、偶氮甲酰胺等经过调查不再具有工艺必要性的食品添加剂品种及其使用规定;删除了罐头类食品中防腐剂、食醋中冰乙酸、果蔬汁浆中纳他霉素、蒸馏酒中β-胡萝卜素和双乙酰酒石酸单双甘油酯等的使用规定。三是修改了部分食品添加剂的使用要求。如增加了阿斯巴甜、安赛蜜与天门冬酰苯丙氨酸甲酯乙酰磺胺酸等在相同食品类别中共同使用时的总量要求;完善了饮料类别中液体饮料与相应的固体饮料食品添加剂使用的对应关系;修订了二氧化硫、卡拉胶、瓜尔胶、脱氢乙酸及其钠盐等的使用规定;将原标准中归类为“其他类”的部分食品类别重新进行了归类,并调整了相应的食品添加剂使用规定等。四是修改了部分食品添加剂的基本信息。例如修改了苯甲酸及其钠盐等食品添加剂的中文名称、中国编码(CNS号),按照国际食品法典标准等的最新规定,修改了爱德万甜等食品添加剂的英文名称和国际编码(INS号)等。  (四)关于附录B的修订  附录B的修订内容主要包括:一是对食品用香料、香精使用原则的修订。为避免食品用香料滥用,在B.1.4进一步明确了具有其他食品添加剂功能或其他食品用途的食品用香料的使用要求,如苯甲酸、肉桂醛、瓜拉纳提取物、双乙酸钠、琥珀酸二钠、磷酸三钙、氨基酸类等;明确食品用香料、食品用香精的标签应符合《食品安全国家标准 食品添加剂标识通则》(GB 29924-2013)的规定,凡添加了食品用香料、香精的预包装食品应按照《食品安全国家标准 预包装食品标签通则》(GB 7718-2011)进行标示;明确食品用香料质量规格应符合《食品安全国家标准 食品用香料通则》(GB 29938-2020)及相关香料产品标准的规定。二是修改完善了部分食品用香料品种。梳理了表B.2和表B.3的食品用香料名单,删除了枯茗油等6个香料品种(其中枯茗油、葫芦巴已为香辛料,玫瑰茄、石榴果汁浓缩物、玉米穗丝已为普通食品,3-乙酰基-2,5-二甲基噻吩行业已不再使用);根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)、食用香料和提取物制造者协会(FEMA)对于香料管理的变化,将大茴香脑、根皮素调整为合成香料;修改和/或增加了柚苷(柚皮甙提取物)等香料的中英文名称、FEMA编号、编码等。  (五)关于附录C的修订  附录C的修订内容主要包括:一是删除了部分食品工业用加工助剂品种。如删除了矿物油,将其使用规定与白油(液体石蜡)的使用规定进行整合;删除了磷酸铵,将其使用规定与磷酸氢二铵和磷酸二氢铵进行整合。二是基于安全性和工艺必要性的最新评估结果,结合行业实际使用情况,修订了部分加工助剂品种和/或使用规定。例如根据JECFA最新评估结果,同时参考美国、欧盟的规定,删除了1,2-二氯乙烷品种和使用规定;基于工艺必要性原则,删除了β-环状糊精用于巴氏杀菌乳、灭菌乳的规定;明确了过氧化氢作为加工助剂使用时的具体功能和使用范围等。三是规范部分加工助剂的中英文名称表述。例如将6号轻汽油(植物油抽提溶剂)修改为“植物油抽提溶剂”,植物活性炭(稻壳活性炭)修改为“植物活性炭(稻壳来源)”,修改了纤维二糖酶等部分酶名称,修改了埃默森篮状菌Talaromyces emersonii等的菌种名称等。  (六)关于附录D的修订  根据修改后食品添加剂的定义,附录D中增加了营养强化剂的编号D.16,并根据《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012)最新修订版的规定增加了营养强化剂的定义。根据《食品安全国家标准 食品用香精》(GB 30616-2020)中关于食品用香料的定义,将D.21食品用香料定义修改为“添加到食品产品中以产生香味、修饰香味或提高香味的物质”。  (七)关于附录E的修订  食品工业的快速发展导致GB 2760-2014中部分食品类别与相关食品行业分类不一致,不能实现对实际食品类别的精准定位。为了使食品分类描述更加科学合理,在对各个食品行业进行广泛调研、征求意见的基础上,进一步规范了部分食品类别的描述。例如,为与相关食品产品的食品安全国家标准保持协调一致,修改了部分食品类别:如根据《食品安全国家标准 酱油》(GB 2717-2018)、《食品安全国家标准 食醋》(GB 2719-2018)、《食品安全国家标准 复合调味料》(GB 31644-2018)等规定,将配制酱油(食品分类号 12.04.02)和配制食醋(食品分类号 12.03.02)这两类产品归入液体复合调味料(食品分类号 12.10.03),将“醋(食品分类号12.03)”修改为“食醋(食品分类号12.03)”等,并对相应的食品添加剂使用规定进行修改。再如:根据行业反馈意见,结合行业现状,修改了部分食品类别,如增加肉丸类食品类别,删除半起泡葡萄酒食品分类,修改了蜜饯凉果的食品分类,调整食糖的食品分类等。GB 2760-2024 食品安全国家标准 食品添加剂使用标准.pdf点击图片获取更多标准解读》》》》》》
  • 国家标准委印发《2023年国家标准立项指南》
    国家标准化管理委员会关于印发《2023年国家标准立项指南》的通知各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委),国务院各有关部门、行业协会办公厅(室),各直属全国专业标准化技术委员会,各有关单位:现将《2023年国家标准立项指南》印发给你们,请根据指南开展相关工作。 国家标准化管理委员会 2023年2月16日(此件公开发布)2023年国家标准立项指南为全面贯彻党的二十大精神,认真落实中央经济工作会议部署,推动落实全国市场监管工作会议要求,深入实施《国家标准化发展纲要》(以下简称《纲要》)和《“十四五”推动高质量发展的国家标准体系建设规划》,按照“讲政治、强监管、促发展、保安全”工作总思路,围绕“一个大市场、两个强国、三个监管、四个安全”的工作着力点,做好2023年国家标准(含标准样品)立项工作,加快构建推动高质量发展的国家标准体系,更好服务经济社会发展大局,特制定本指南。一、总体要求(一)推动全域标准化深度发展。积极推进农业、工业、服务业和社会事业等领域国家标准全覆盖,不断提升工业领域标准,持续加大农业、服务业和社会事业领域国家标准制定力度,优化国家标准体系结构。深入开展“标准化+”行动,围绕现代化产业体系建设、绿色发展、乡村振兴、统一大市场建设等重大战略实施,加快完善标准体系。(二)加强科技创新成果向标准转化。推动标准化与科技创新互动发展,重点支持基础通用、产业共性、新兴产业和融合技术等领域标准研制,优先保障共性关键技术、重大科研项目和应用类科技计划项目成果形成标准项目立项,同步部署技术研发、标准研制与产业推广,加快新技术产业化步伐,助力科技自立自强、解决外国“卡脖子”问题。加强知识产权创造、运用、保护、管理和服务标准化工作,推动创新驱动发展战略实施。(三)促进产业链上下游标准有效衔接。推动短板产业补链、优势产业延链、传统产业升链、新兴产业建链,强化产业链标准协调配套,鼓励上下游相关联全国专业标准化技术委员会(以下简称技术委员会)加强沟通,形成产业链上下游标准有效衔接的国家标准体系,支撑扩大内需和供给侧结构性改革。加快产业链关键环节、关键领域、关键产品的技术攻关和标准研制,发挥关键技术标准在产业协同、技术协作中的纽带和驱动作用,保证产业体系自主可控和安全可靠,确保产业有序链接,国民经济高效循环畅通。(四)稳步推进标准制度型开放。推进中国标准与国际标准体系兼容,积极转化采用国际标准,提升我国标准与国际标准一致性程度。鼓励在参与国际标准制定的同时提出国家标准立项建议,加快我国技术与国际标准接轨。鼓励在提出国家标准立项建议时同步提出国际标准立项申请,加快我国自主技术同步在国际国内应用。鼓励推荐性国家标准与外文版同步申报、同步推进。(五)强化国家标准有效供给。统筹发展与安全,加快建设协调统一的强制性国家标准,强化推荐性标准与强制性标准的协调配套,筑牢保障人身健康和生命财产安全、生态环境安全等安全底线。支持修订、整合现有国家标准,持续提升标准技术水平。建立国家标准采信团体标准机制,将先进适用、符合国家标准制定范围的团体标准转化为国家标准。畅通民营企业、外资企业参与标准化工作渠道,加快推进国家标准数字化转型,推动国家标准管理模式创新,拓展国家标准供给方式和供给渠道。二、立项重点(一)强制性国家标准。重点围绕安全风险大、公众关注度高的热点难点问题,加快重点领域亟需标准制修订。推进支撑法律法规实施、落实强制性标准精简整合结论和复审结论为修订的标准项目立项。重点支持以下领域:1. 初级产品安全标准。包括:种子(种苗)及种畜禽安全、粮食安全、能源安全、战略性矿产资源安全。2. 工业产品安全标准。包括:农药、肥料、饲料添加剂、消费品化学安全、装饰装修材料安全、化妆品安全、五金制品安全、医疗器械安全、锂电池安全、电子产品安全、机动车安全、燃气燃烧器具安全、机械设备安全、特种设备安全等。3. 资源环境安全标准。包括:限制商品过度包装、污染物排放、环境质量、重点用能产品能效、重点行业能耗限额、重点用水产品水效、重点行业用水定额、电磁兼容、生物安全、噪声限值等。4. 公共安全标准。包括:危险化学品安全、工业过程作业安全、工业粉尘防爆、储能电站安全、消防安全、道路交通安全、个体防护装备配备。(二)推荐性国家标准。落实《纲要》提出的推动标准化与科技创新互动发展、提升产业标准化水平、完善绿色发展标准化保障、加快城乡建设和社会建设标准化进程等部署要求,推动标准化工程和行动的落地,2023年重点支持以下领域和方向推荐性国家标准制定。1. 农业农村领域:土壤质量及监测评价、种子(种苗)及种畜禽、动植物疫病防控、节粮减损、农业社会化服务、智慧农业、农产品质量分级、农产品包装储藏及流通、产业帮扶等现代农业全产业链标准。农业投入品质量、畜禽粪污资源化利用、生态保护修复、生物多样性保护及生态效益评估等绿色农业与生态安全标准。乡村基础设施建设、农村人居环境改善、乡村治理、新型城镇化等农村领域标准。2. 消费品食品领域:消费品质量分级、消费品强制性国家标准配套的通用检测方法、个性定制产品、智能产品、绿色产品、文具运动器材、眼视光、工艺美术等标准。婴童用品、老年用品等特殊群体重要消费品标准。饮料、调味品和肉禽蛋制品等食品质量标准。地理标志术语、分类、管理和产品质量等标准。加快重点消费品领域国际标准转化。3. 医疗健康领域:消毒用品、公共卫生、生物技术和中医药标准。高端医疗装备产业与应用、医疗防护器械等医疗器械标准。4. 碳达峰碳中和领域:碳排放核算报告、化石能源清洁低碳利用、新能源与可再生能源、资源循环利用、工业农业交通节能低碳技术、公共机构节能低碳、碳捕集利用与封存、碳汇等标准。风力发电、冷冻空调、压缩机、钢铁、有色、建材等重点领域节能标准。5. 高端装备制造领域:工业母机、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、新能源汽车、电力装备、农机装备、工程机械、储能装备等重点高端装备标准。智能制造、绿色制造、服务型制造等交叉融合领域标准,以及产业链上下游关键环节、关键技术标准。推进重点装备领域国际标准转化。6. 关键基础材料领域:高纯稀有金属材料、高品质特殊钢材、高性能陶瓷、高性能纤维材料、增材制造材料等关键基础材料标准。专用水泥、特种玻璃、再生塑料、特种分离膜以及高性能稀土磁性、催化、储氢材料等标准。7. 新兴技术领域:大数据、人工智能、物联网、智能制造、区块链、量子信息、集成电路、机器人、信息安全、智能网联汽车、新型电力系统、新型储能、数字政府、IPv6、纳米、空间应用、微细气泡、超导等关键技术标准。8. 服务业领域:平台经济、跨境电商、中央厨房等生产性服务标准。智慧物流、多式联运、冷链物流、邮政快递等现代流通标准。银行、证券、保险等金融风险防控和消费者保护标准。机构养老、居家养老、智慧养老和适老化改造等生活性服务标准。旅游、文化、休闲康养、餐饮节约、赛事管理、体育用品、青少年体育,以及家政、物业等民生领域标准。9. 公共服务领域:公共教育、公共就业创业、社会保险、社会救助、全民健身、公共文化等基本公共服务标准。未成年人保护、残疾人服务等重点人群服务标准。文物保护、语言文字、地名管理、社区服务、社会事务、慈善事业和社会工作等公共服务标准。10. 行政管理和服务领域:行政许可规范、政务服务一件事一次办、政务公开、全国一体化政务服务平台建设、营商环境建设等政务服务标准。公共机构节能和碳排放、机关资产管理、机关会议服务、公务用车等机关事务管理标准。11. 公共安全领域:事故调查与分析、矿山安全、重大危险源监控、危险化学品安全与管理、化工园区开发建设管理、消防救援、地震灾害风险防御、自然灾害监测预警和风险普查、人工影响天气、个体防护装备等应急管理和防灾减灾标准。工业雷管、油气井用爆破器材等民用爆炸物品管理和安全标准。人像鉴伪、尸体检验、毒物分析、微量物证检验、声纹检验等法庭科学、司法鉴定标准。12. 城市管理领域:城市标准化综合治理、可持续发展评价与改进、数据资源和基础设施管理与运营、数字运维等城市可持续发展、基础设施建设等标准。13. 公益科技服务领域:地理信息、风能太阳能监测预报、气候品质评价、气候生态评估等标准。科普服务提供、科普资源建设、科普设施设备、科普服务评价等标准。14. 市场监管领域:企业开办、质量管理、信用管理、缺陷召回、风险管理、认证认可、标准化教育等领域标准。(三)国家标准样品。绿色生态、农产品、食品消费品、生物技术、有色金属、新材料、能源等重要支柱产业和新技术领域标准样品。基础标准、产品标准及检测方法标准所需的通用标准样品、纯度标准样品和基体标准样品。配套农药残留、兽药残留、重金属、食品污染物、致病性微生物、食品添加剂等食品领域通用标准、检验方法标准和产品标准实施应用的标准样品。三、申报要求(一)强制性国家标准项目由国务院有关行政主管部门依据职责提出。省级标准化行政主管部门可向国务院标准化行政主管部门或国务院有关行政主管部门提出强制性国家标准的立项建议。(二)推荐性国家标准项目由国务院有关行政主管部门、行业协会、省级标准化行政主管部门和技术委员会征集、遴选和申报。省级标准化行政主管部门申报的项目,由国务院标准化行政主管部门协调相关技术委员会归口。(三)强制性国家标准应严格限定在安全、健康和环保范围之内,有明确的法律法规依据和实施监督部门,并能够依据有关规定对违反强制性国家标准的行为予以处理。国务院有关行政主管部门提出强制性国家标准项目前,应当充分征求其他国务院有关行政主管部门意见。(四)国家标准制修订项目提出前,应系统梳理分析本领域国际标准化组织(ISO)、国际电工委员会(IEC)和国际电信联盟(ITU)的标准,鼓励结合国情采用国际标准,提高我国标准与国际标准的一致性程度。在采标过程中,应严格遵守国际标准组织和其他标准组织版权政策,不得采用未经授权的国际性专业标准组织、区域性国际标准组织、其他国家标准化机构或专业标准组织发布的标准,不得影响履行强制性国家标准文本免费公开的法定义务。(五)鼓励国家标准制修订项目同步申报、同步推进制修订外文版。现行标准中,涉及国际贸易且未采用国际标准的强制性国家标准原则上“应译尽译”,涉及国际贸易、产能和装备合作领域以及全球经济治理相关新兴领域的推荐性国家标准鼓励制定外文版。(六)严格标准制修订周期管理。制定标准应加强预研和前期工作,严格起草过程管理。强制性国家标准的制定项目从计划下达到报送报批稿的期限不得超过24个月,修订项目一般不得超过18个月。推荐性国家标准修订项目和采用国际标准项目完成周期(从下达计划到完成报批)原则上不超过16个月,其他标准项目完成周期原则上不超过18个月。国家标准外文版项目完成周期原则上不超过12个月,与国家标准制修订计划同步执行的外文版项目应在国家标准批准发布后90天内完成报批。针对市场急需、消费需求大的新技术新产品,优先适用国家标准制定快速程序,缩短研制周期。(七)强化标准制修订协调。鼓励与强制性国家标准配套的推荐性国家标准,同步立项、同步制修订、同步发布。在整合修订强制性国家标准项目时,如有技术内容需转化为推荐性国家标准,应同步开展立项和制修订工作。强化复审结果的运用,复审结果为“修订”的国家标准优先立项。(八)国家标准立项采取分类评估方式。制定项目应当进行答辩,各有关方面要提前做好项目申报、答辩等工作。修订项目和采用国际标准项目原则上无需答辩。(九)国家标准样品项目可由国务院有关行政主管部门、行业协会、省级标准化行政主管部门征集、遴选,或由各企事业单位直接提出项目建议,由全国标准样品技术委员会归口。四、申报材料(一)国家标准项目。申报国家标准项目须通过“国家标准制修订工作管理信息系统”填报电子材料。申报材料应包括:1. 标准体系表。申报单位应提交本领域的标准体系表,规划近几年的标准化工作并保持相对稳定。如标准体系表有变化可在系统规定的时间范围内更新维护。2. 项目建议书。项目建议书应填写完整、详实。——军民通用国家标准项目应选择“军民通用的标准项目”,并填写理由及协调情况。——国家重大科技项目支撑项目应选择“国家级科研专项支撑”,并填写“国家重大科技专项名称+项目编号+具体子项目名称”或“其他科技项目名称”。——同步申报国际标准提案的项目应选择“同步制定国际标准”并填写有关情况。——修订项目应在“范围和主要技术内容”栏中重点说明拟修订的主要内容及理由,在“国内外情况简要说明”栏中说明原标准使用及实施效果情况说明。——采标项目应在“国内外情况简要说明”栏中说明所采国际标准技术内容与国内现状的匹配情况。未采标项目应说明不采用国际标准原因。3. 标准草案。申报单位应认真准备标准草案,明确提出主要章节及各章节所规定主要技术内容。4. 预研材料。按照《国家标准管理办法》和《强制性国家标准管理办法》要求提供项目申报书。项目申报书应当说明制定国家标准的必要性、可行性,国内外标准情况、与国际标准一致性程度情况,主要技术要求以及经费预算,填报工作计划,根据制修订周期细化标准起草、征求意见、审查报批等各阶段具体时间安排。对于强制性国家标准,还应在项目申报书中说明与强制性国家标准配套的推荐性标准情况(给出配套标准清单),强制性国家标准实施监督管理部门以及对违反强制性国家标准行为进行处理的有关法律、行政法规、部门规章依据,强制性国家标准所涉及的产品、过程或者服务目录,征求国务院有关部门的情况等。5. 项目申报公文。由申报单位通过“国家标准制修订工作管理信息系统”上传扫描件。(二)国家标准外文版项目与国家标准制修订项目同步申报外文版项目应在通过“国家标准制修订工作管理信息系统”提交国家标准制修订申报材料时,选择“同步制定外文版”选项,未同步申报外文版的应说明不申报理由。对现行国家标准(包括计划项目)申报外文版项目应通过“国家标准外文版管理系统”填报项目建议书。填报“国内外需求情况”内容时,应写明所涉及贸易产品或服务的大概贸易量、技术优势和推广重要性、标准外文版项目预期作用及解决问题、标准外文版项目预期应用国家及地区。(三)国家标准样品项目。申报标准样品研制项目,需提交项目申报公文、项目建议书和可行性研究报告。申报标准样品复制项目,只需提交项目申报公文和项目建议书。(四)申报材料格式。国家标准项目申报材料格式从全国标准信息公共服务平台中的“国家标准制修订工作管理信息系统”(http://zxd.sacinfo.org.cn)下载。国家标准样品项目需登录“国家标准样品项目管理系统”(http://crm.china-cas.org),按要求在线填报申请材料。(五)联系方式。1. 国家标准项目,市场监管总局标准技术司委托国家标准技术审评中心承担具体联系工作。联系人:程瑾瑞、庞晖010-82260708、82262842电子邮件:chengjr@ncse.ac.cn、pangh@ncse.ac.cn通信地址:北京市朝阳区白家庄东里13号楼411室,邮编:100026 2. 国家标准样品项目,市场监管总局标准技术司委托全国标准样品技术委员会承担具体联系工作。联系人:徐大军、石雨婷010-68486136、68483077电子邮件:xdj@china-cas.org、syt@china-cas.org通信地址:北京市海淀区增光路33号中国标协写字楼四层,邮编:1000483. 国家标准外文版项目,市场监管总局标准创新司承担联系工作。联系人:胡恢洵010-82262930 电子邮件:huhuixun@samr.gov.cn通信地址:北京市海淀区马甸东路9号,邮编:100088五、项目管理 (一)国家标准立项计划分四批集中下达,一般在每季度末(即3月、6月、9月、12月末)各下达一批。(二)与国家标准制修订项目同步立项的外文版项目与国家标准立项计划一并下达。其它外文版项目视情况每年集中下达不少于一批立项计划。(三)存在逾期未完成项目的技术委员会减少新项目申报。(四)项目下达后,技术委员会或归口单位应通过“国家标准制修订工作管理信息系统”确认项目工作计划。各有关单位要强化标准项目全生命周期管理,严格控制项目周期,规范资金使用,按要求做好标准制修订各关键环节工作。(五)加强对国家标准制定的管理。国家标准项目下达后,项目名称(范围)、完成时间、归口单位原则上不得变更。确需变更的,技术委员会或归口单位应当通过“国家标准制修订工作管理信息系统”提交申请,经相关部门报国务院标准化行政主管部门批准同意后再行调整,需要延期项目应当在原计划完成时间30天之前提出。
  • 《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读
    单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。近期,国家纳米科学中心牵头制定了国内首项单颗粒电感耦合等离子体质谱法(spICP-MS)国家标准《GB/T 42732-2023 纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》。本文特邀国家纳米科学中心葛广路研究员、郭玉婷高级工程师对该标准进行解读。一、背景 目前,基于纳米技术或含有工程纳米颗粒的产品已广泛使用,并开始影响有关的行业和市场。因此,消费者可能直接或间接地接触到(除天然纳米颗粒外的)工程纳米颗粒。在食品、消费品、毒理学和暴露研究中,工程纳米颗粒的检测成为纳米颗粒应用潜在效益和潜在风险评估的必要部分,迫切需要建立产品、试验样品和环境等复杂基质中痕量纳米颗粒检测方法标准。二、标准概述本标准包括范围、规范性引用文件、术语和定义、缩略语、适用性、步骤、结果、测试报告8章内容和1个资料性附录。本标准描述了使用电感耦合等离子体质谱法(ICP-MS)在时间分辨模式下测定单个纳米颗粒的质量和悬浮液中离子浓度,检测水相悬浮液中纳米颗粒,并表征颗粒数量与质量浓度、颗粒尺寸及数均尺寸分布的方法。三、适用性本方法仅限用于纯纳米颗粒的水相悬浮液、材料或消费品的水相提取液、食品或组织样品的水相消解液、水相毒理学样品或环境水样品。非水相样品处理见标准参考文献。水相环境样品经过过滤和稀释,食品和毒理学样品经过化学或酶消解和稀释。将水相悬浮液中的颗粒数量或质量浓度与原始样品中的浓度联系起来需样品相关提取、效率和基质效应等信息,并由用户进行额外验证。四、主要技术内容本文选取原理、重要参数传输效率和响应值及线性的确定、结果计算方面部分重点内容进行讲解,详细内容及仪器设置、试样制备等相关内容与注意的事项参见标准原文。1 原理单颗粒电感耦合等离子体质谱(spICP-MS)是一种能够在非常低的浓度下检测单个纳米颗粒的方法,此方法适用于水相悬浮液中无机纳米颗粒的尺寸及数均尺寸分布、颗粒数量浓度与质量浓度,悬浮液中离子浓度的测定。将常规的ICP-MS系统设置为以高时间分辨率模式采集数据。水相样品连续进入ICP-MS中,雾化后,一部分纳米颗粒进入等离子体并被原子化和电离。每个原子化的颗粒相对应的离子团为一个信号脉冲。使用合适的驻留时间和适当稀释的纳米颗粒悬浮液,质谱仪可实现单个纳米颗粒检测,称为“单颗粒”ICP-MS。对纳米颗粒悬浮液进行稀释,以避免违反“单颗粒规则”(即在一个驻留时间内有一个以上的颗粒到达检测器)。由于离子团中的离子密度很高,其产生的脉冲信号远高于背景(或基线)信号。脉冲强度、脉冲面积与纳米颗粒中被测元素的质量,也即纳米颗粒直径的立方成正比(假定纳米颗粒的几何形状是球形)。单位时间检测到的脉冲数与待测水相悬浮液中纳米颗粒的数量成正比。2 确定传输效率引入的样品只有一部分到达等离子体,结果的计算需要知道传输效率。使用已知的纳米颗粒标准样品测定传输效率。如果没有可用的纳米颗粒标准样品,可以使用任何其他良好表征过的纳米颗粒悬浮液,重新计算稀释倍数和浓度。纳米颗粒尺寸已知,颗粒浓度未知时,结合分析一系列与纳米颗粒相同元素的离子标准溶液,确定传输效率。3 确定响应值及线性随着纳米颗粒的直径增大,信号响应值将按三次方增加,所以需要对纳米颗粒每种组成每种尺寸范围的响应进行验证。校准最好使用纳米颗粒标准样品,无法获得这样的标准样品时,在相同的样品分析条件下,使用被测元素的离子标准溶液进行此步骤中的校准。分析离子溶液的标准工作液,用线性回归法确定校准曲线的相关系数,校准函数的斜率,即为ICP-MS响应值。4 结果计算4.1 检出限的计算由空白对照样品中的颗粒数量确定颗粒数量浓度检出限,结合平均颗粒质量,计算质量浓度检出限。由刚好能从背景中区分出来的脉冲信号强度决定颗粒尺寸检出限。4.2 颗粒浓度和尺寸、离子浓度的计算由时间扫描中检测到的脉冲数、传输效率、样品流速计算水相样品中的颗粒数量浓度;样品中颗粒信号强度、离子标准溶液的ICP- MS响应值、传输效率、驻留时间、样品流速、纳米颗粒材料的摩尔质量和被测物的摩尔质量计算单个颗粒的质量,假设颗粒为球形,计算得到颗粒的直径。由离子产生的连续基线信号估算样品中的离子浓度。通常,可以用商用软件或将测试数据导入定制的电子表格程序进行处理,以计算纳米颗粒的数量、质量浓度、尺寸(等效球直径)和相应数均尺寸分布,并同时确定样品中存在的离子质量浓度。本标准的资料性附录A给出了定制的电子表格程序处理数据的示例。五、结语本标准等同采用ISO/TS19590:2017 Nanotechnologies—Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry,于2023年8月6日发布,将于2024年3月1日实施,是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。在起草阶段,标准起草工作组选用金纳米颗粒,在国家纳米科学中心、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、安捷伦科技(中国)有限公司、杭州谱育科技发展有限公司,利用不同仪器进行了测试,使用仪器所带软件对颗粒尺寸和颗粒数量浓度进行了处理计算。在征求意见阶段,向四川大学、中国地质大学、武汉大学、清华大学深圳国际研究生院、东北大学、华东师范大学、中山大学、厦门大学、中国科学院过程工程研究所、中国科学院南京土壤研究所、中国科学院生态环境研究中心、上海市食品药品检验研究院、生态环境部南京环境科学研究所、中国科学院高能物理研究所、山东英盛生物技术有限公司等高校、科研院所和企业发送了标准征求意见材料,征求意见专家多为分析化学、纳米科学等领域专家,给本标准提出了具有代表性的意见,在此感谢他们对本项标准制定工作的支持。本文作者: 葛广路 研究员;郭玉婷 高级工程师 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 Email:gegl@nanoctr.cn guoyt@nanoctr.cn
  • 天津检验检疫局纳米测量标准器填补纳米行业国内空白
    近日,天津检验检疫局研制的“纳米尺度测量标准器”获得国家实用新型专利授权。该项目采用国际先进的聚焦离子束刻蚀技术,具有分辨率高、线距均匀、材料稳定、设计独特等特点,可以满足不同形状样品的比对测量需求,有效解决了纳米尺度更准确的测量问题,填补了纳米材料领域标准器国内空白,达到国际先进水平。   随着纳米科技飞速发展,用于测量纳米尺度的高分辨率测量器具一直是人们所关注的课题,为了得到更准确的测量结果,需要有一个更接近于样品尺度的标准物质——纳米标准器。   天津局课题组经过两年的刻苦钻研,通过精选纳米标准器材质,采用先进的聚焦离子束刻蚀技术,研制成功一种新型的用于扫描电镜纳米尺度测量的纳米标准器。该纳米标准器分辨率高,具有78纳米的标准周期线距,远小于目前公认的S1000标准器的线距1000纳米(1微米),是真正意义上的纳米级标准器,并且保证每个刻度周期线距的均匀性和一致性,可使得最小线距整数倍的距离都可以作为标准长度来比对,材料膨胀系数低、性能稳定,设计将横线、竖线、点阵和圆环形状的标准刻度融于一体,可以满足不同形状样品的比对测量需求。
  • 关注!国家标准《纳米技术 动态光散射法粒度分析仪技术要求》正式发布
    2024年7月24日,由国家纳米科学中心牵头,中国计量科学研究院 、北京信立方科技发展股份有限公司等单位参与起草的国家标准GB/T 44223-2024《纳米技术 动态光散射法粒度分析仪技术要求》正式发布,并于2025年2月1日起实施。该标准由TC279(全国纳米技术标准化技术委员会)归口 ,主管部门为中国科学院。随着纳米科技的迅速发展,纳米材料的粒度表征已经成为评估材料特性的关键指标之一。动态光散射法粒度分析仪凭借其卓越的测量能力,成为亚微米及纳米级颗粒粒度分析的常用仪器。然而,现有的标准和技术规范体系尚未覆盖该类仪器的技术要求指标,中国颗粒学会颗粒测试专业委员会、北京粉体技术协会相关专家在组织多次粒度仪量值比对活动的基础上,倡议提出制定针对动态光散射法粒度分析仪设备性能要求和评价的国家标准,以推动颗粒技术的标准化发展。该标准主要介绍了动态光散射法粒度分析仪的主要技术要求,以及仪器准确性、重复性的试验方法。标准主要起草单位包括国家纳米科学中心 、中国计量科学研究院 、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 、珠海真理光学仪器有限公司 、丹东百特仪器有限公司 、华南师范大学 、济南微纳颗粒仪器股份有限公司 、珠海欧美克仪器有限公司 、合肥鸿蒙标准技术研究院有限公司 、广州特种承压设备检测研究院 、上海思百吉仪器系统有限公司 、冷能(广东)科技有限公司 、中国计量大学 、山东理工大学 、北京信立方科技发展股份有限公司 、成都精新粉体测试设备有限公司 、安泰科技股份有限公司 、安东帕(上海)商贸有限公司 、中国合格评定国家认可中心 、北京粉体技术协会 、中国颗粒学会 。为了帮助业内人士深刻理解这一重要标准,以标准规范纳米粒度仪的技术指标,接下来,本网将邀请标准主要起草人——国家纳米科学中心高级工程师朱晓阳对该标准进行深入解读,敬请期待。
  • 太阳镜检测方法国际标准采纳中国意见
    太阳镜检测方法国际标准采纳中国意见 可为全国质检机构和企业节约检测设备购置费数亿元 7月21日,全国个体防护标准化技术委员会眼面部防护分委会接到来自国际标准化组织(ISO)太阳镜测量方法标准工作组的电子邮件,内容是该工作组已将我国提出的测量方法写入ISO太阳镜检测方法国际标准中。 据眼面部防护分委会副主任委员兼秘书长王莉茹介绍,今年5月底召开的ISO眼面部防护分技术委员会2010年年会的一个主要议题,是对太阳镜检测方法国际标准委员会稿的投票结果进行讨论,一旦讨论通过,这项标准将成为国际标准草案,而从国际标准草案到正式的国际标准就只有程序性的工作了。由来自国内科研机构及企事业单位的13名专家组成的中国代表团,在这次会议上再次提出我国观点,经过反复激烈的讨论,会议最终同意将焦度计作为测量方法写入太阳镜检测方法国际标准中。 据了解,我国是太阳镜生产、使用和进出口大国,占世界太阳镜总产量的40%,年出口额为6~7亿美元,而焦度计是国内企业和质监系统用来检测眼镜片和太阳镜光度的主要设备。现行ISO焦度计标准就是由王莉茹作为ISO标准工作组召集人组织修订的。全国除台湾以外的所有省、市质监部门都开展了眼镜质量检测工作,省会所在城市至少有两家配备两台或两台以上焦度计的眼镜产品质检机构,其他城市及发达地区大部分县级市至少有配备一台焦度计的检测机构。大的眼镜生产企业有的甚至配备10多台焦度计。目前,一台焦度计的售价最高为3万元,而由欧洲制造、并写入国际标准的望远镜法测量装置售价至少15万元。按原国际标准规定,太阳镜的测量方法只推荐望远镜法,而不使用焦度计。如果这样,全国质监部门、太阳镜生产企业都不得不再重新购买新的检测设备以满足国际标准的要求,这将给中国市场造成至少几亿元的直接经济损失,而国外设备制造商则可以因此赚取巨大利润。另外一个隐忧是,假如太阳镜的测量方法只推荐望远镜法,国产太阳镜在出口欧美时将再次遭遇技术壁垒。 按照年会达成的意见,这项标准将于今年年底成为国际标准草案。由于承办本次会议的中国标准化研究院和全国个体防护标准化技术委员会眼面部防护分委会,充分而详尽地阐述了将焦度计作为测量方法写入国际标准的理由,得到来自11个国家40余名代表的认可。按ISO的惯例,目前太阳镜测量方法国际标准的委员会稿成为国际标准草案已成定局。另外,本次年会还采纳了中国、澳大利亚等成员国提出的应对防护镜散射光的概念及检测方法保持统一的意见和建议。
  • 标准 | 墨西哥国家环境与自然资源部将生物毒性纳入污水排放监测指标体系
    生物毒性被纳入墨西哥废水排放污染物限值标准近期,墨西哥国家环境和自然资源部在联邦官方公报 (DOF) 上发布了墨西哥官方标准《NOM-001-SEMARNAT-2021》,该标准规定了废水排放中污染物的允许限值,以及在任何水资源利用活动中所需要遵守的水质安全保护措施,该标准对所有类型的废水排放机构将是强制性的,并且将在其运营过程中建立合规性和有效性。《NOM-001-SEMARNAT-2021》更新了墨西哥于1996年发布的官方标准《NOM-001-SEMARNAT-1996》,在新标准中,相应的技术规范、检测指标、测试方法、温度参数、合格评定程序都得以更新,并保持与国际标准(ISO)的一致性,此外,生物毒性也被纳入全新监测指标体系,并更新了相应的检测方法和评估标准。该标准《NOM-001-SEMARNAT-2021》建立了使用海洋生物发光细菌费氏弧菌 (Aliivibrio fischeri) 评估急性毒性的方法。Modern Water 很荣幸能够与墨西哥当地合作伙伴 Equipos para Diagnóstico Analítico, S.A. de C.V. 合作,参与墨西哥该污水排放标准的制定,并基于 Microtox 生物毒性测试技术和生物毒性检测国际标准(ISO 11348-3)给予相关技术性建议,协助当地客户遵守新的急性毒性测试标准,以保证运营的合规性。Microtox LX 实验室生物毒性分析仪Modern Water 作为 Microtox 生物毒性检测技术的开发者和推广者,拥有丰富的生物毒性检测分析技术和经验,使用生物发光细菌作为生物传感器已有30多年的历史。Microtox 生物毒性检测技术简单,快速,经济,方便和可重复性,已成为当今世界上最受认可的生物毒性测定法之一。Microtox 可以在不到1个小时的时间内提供结果,可为全球的市政,工业和政府客户提供快速、准确、可靠的生物毒性检测/预警解决方案。,时长02:01
  • 首届“微纳技术检测及应用”标准宣贯会在京成功举办
    2024年5月30日-31日,首届“微纳技术检测及应用”标准宣贯会在北京成功举办。本次会议由国家纳米科学中心(以下简称“纳米中心”)主办,全国纳米技术标准化技术委员会(SAC/TC279)、全国颗粒标准化分技术委员会(SAC/TC168/SC1)和全国微细气泡技术标准化技术委员会(SAC/TC584)承办,上海中晨数字技术设备有限公司协办,汇聚了来自全国各地的百余位纳米技术、颗粒技术和微细气泡技术研究及应用领域的专家学者和企业界人士,共同探讨和交流微纳技术的最新检测标准与应用前景。会议伊始,北京大学朱星教授、国家纳米科学中心施兴华副主任相继致辞。朱星教授致辞朱星教授表示,在国家领导人的重视下,我国纳米技术标准化工作逐渐与国际接轨,获得了显著进展。特别是自2005年以来,全国纳米技术标准化技术委员会的成立为相关工作奠定了坚实基础。此外,国内科研机构在纳米科技标准制定上取得了重要成果,包括参与国际技术标准的竞争,并成功主持制定多项国际标准项目。此次会议将深入探讨微纳米领域技术标准的制定、推广和应用,为提升我国微纳米领域科技国际竞争力、推动微纳米领域技术产品应用发挥重要作用。施兴华副主任表示,纳米中心专注于原创性的基础应用研究,旨在为我国纳米科技发展提供支撑,并积极参与国际国内纳米技术标准的制定工作。自2009年起,纳米中心成立了全国唯一的中科院纳米标准检测重点实验室,致力于构建纳米技术标准体系,现已成为世界上纳米标准最丰富的国家之一。在国家标准管理委员会和中国科学院的支持下,纳米中心取得了一系列国家标准和国际标准的研制推广成果。未来,纳米中心将继续围绕学术交流、标准化和产业化协同发展,用标准化推动微纳米领域的科技创新,促进相关产业的高质量发展。在国家的宏观战略布局中,标准化成为中坚力量。为了强化这一基础,中共中央、国务院先后印发《国家标准化发展纲要》以及《质量强国建设纲要》。纳米中心作为纳米技术、颗粒技术和微细气泡技术秘书处所在单位,在推动标准化工作中发挥着重要作用。纳米中心高洁教授级高工介绍了纳米技术、颗粒技术及微细气泡技术标准化技术委员会的发展历程、标准体系、标准制修订情况。纳米中心依托其独特的“1+3+1”的架构——即一个中科院标准与检测重点实验室,纳米技术、颗粒技术、微细气泡技术三个标委会与一个国家标准验证点(纳米材料)形成合力,未来将着力于与产业界的密切合作,围绕学术交流一标准化一产业化协同发展,用标准化推动微纳米领域的科技创新,助力微纳米相关产业的高质量发展,服务新质生产力。会议特别邀请了来自国家标准技术审评中心的专家,就国家标准立项申请和制修订的关键要点进行了详尽的分享,为与会人员提供了全面实用的指导。全国颗粒技术标准化分技术委员会主任委员、全国微细气泡技术标准化技术委员会副主任委员兼秘书长李兆军研究员做了“标准立项答辩注意事项”的报告分享,给大家介绍国标委组织立项答辩工作的程序、专家审评要点,常见问题案例,帮助大家梳理立项答辩的思路和方法。国际标准可以消除技术性贸易壁垒,是世界“通用语言”,是国际贸易的通行证,极大地促进了国际间的技术合作与信息共享。正所谓“得标准者得天下”,国际标准已成为市场竞争中不可或缺的制高点。纳米中心葛广路研究员深入解析了参与国际标准化工作的具体路径,详细阐述了国际标准制定的完整流程。此外,他还分享了我国在纳米技术领域国际标准建设方面的进展情况,为与会人员提供了宝贵的参考和启示。为贯彻落实《国家标准化发展纲要》,加快构建推动高质量发展的标准体系,提高标准质量水平,提升标准化服务业发展水平,国家标准化管理委员会积极推动国家标准验证点的建设。其中,纳米中心成功获批国家标准验证点(纳米材料)。纳米中心谢黎明研究员详细阐述了国家标准验证点的功能定位、建设目标以及纳米中心在标准验证方面的能力和验证点的运行模式。该纳米材料标准验证点紧密依托纳米科技的前沿发展,结合标准、方法、技术、设备和基础条件,致力于服务国家重大需求,推动纳米材料领域的标准化工作向更高水平迈进。 在接下来的标准宣贯系列中,纳米中心陈岚研究员以“微细气泡技术及标准化介绍”为题进行了报告、常怀秋研究员进行了电镜技术标准立项及制定的经验分享、朱晓阳高工进行了动态光散射法标准立项及制定的经验分享、刘忍肖研究员进行了光电显示技术标准立项及制定经验的分享。珠海真理光学仪器有限公司董事长兼首席科学家张福根博士进行了“激光粒度分析仪国标的宣贯”,北京航空航天大学柳姝副教授做了“微细气泡水中氢气含量测量标准开发经验分享”的报告。会议也邀请到上海中晨数字技术设备有限公司董事长陈鲁海以“颗粒测量—微纳气泡应用的基石”、澳谱特科技(上海)有限公司创始人刘伟教授以“Zeta电位法标准宣贯”、中科院化学所李杰副研究员以“富勒烯标准经验分享”、泰州巨纳新能源有限公司专家肖婷以“不同粒径测量技术的特点及其应用”为题的精彩报告。报告交流结束后,与会人员参观了纳米中心展厅、纳米加工实验室和纳米检测实验室。 标准是经济活动和社会发展的技术支撑,是国家基础性制度的重要方面。新时代推动新质生产力的高质量发展、全面建设社会主义现代化国家,迫切需要进一步加强标准化工作。本次宣贯会议为纳米技术、颗粒技术和微细气泡技术的标准化工作搭建了一个沟通交流的桥梁,为科研和技术人员提供了一个深入了解标准制定方法、常用标准检测方法、标准应用等方面的广阔平台。这将极大地促进检测标准化的发展,进而提升整个行业的标准化技术支撑水平。会议报告人会议现场参观国家纳米科学中心参会人员合影
  • ISO发布纳米材料分类新标准
    近日,国际标准化组织(ISO)发布一份新的技术报告:《纳米材料分类的新标准——ISO/TR 11360:2010》。该标准为纳米材料的分类提供了更综合、更国际化的方法。   ISO表示,从新的医疗设备到最新的工具以及消费产品,创新的纳米技术推动着时代的发展。通过对纳米材料的理解和对逻辑分类的认识,让这项技术发展地更远、更快、更好。纳米材料的应用十分广泛,从电脑记忆存储到防晒霜都含有纳米技术。目前,各种物理、化学、力学、光学、生物学以及不同的内部/外部结构中都有纳米材料的存在。   据悉,ISO/TR 11360标准引入了一种叫做“纳米树”的系统。将纳米技术的变成逻辑概念,把现有的纳米材料看作纳米领域这棵大树上的一些分支,而纳米技术中最基础和最普遍的元素看作纳米树的主要枝干。各种纳米材料在结构、化学性质和其他方面都有所区别。   新的ISO/TR 11360标准的涵盖了科学、工程学、行业和政府等各方面,将会大大促进行业与消费者之间,以及政府与监管机构的交流和沟通。
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p   strong  各有关单位: /strong /p p   由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。 /p p   拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。 /p p   为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。 /p p   同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。 /p p   会议事项通知如下: /p p   strong  一、时间和地点 /strong /p p   会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议 /p p   会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室 /p p   地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内) /p p strong   二、宣贯内容 /strong /p p   1、拉曼光谱的基本原理与应用介绍 /p p   2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /p p   3、拉曼光谱仪的校准与溯源 /p p   4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。 /p p   strong  三、考核与发证 /strong /p p   培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。 /p p   strong  四、培训费用 /strong /p p   培训费:1500 元/人,包括讲义、标准复印件、培训证书。 /p p   请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款 /p p   信息如下: /p p   账户名:中国计量科学研究院 /p p   开户行:交通银行北京分行和平里支行 /p p   账号:110060224018010008693 /p p   行号:301100000074 /p p   电话:010-64524304 /p p   银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填 span style=" TEXT-ALIGN: center" 写参会回执(附件2)中的开票信息。 /span /p p style=" TEXT-ALIGN: center" img title=" QQ截图20180906104247.jpg" style=" HEIGHT: 701px WIDTH: 600px" border=" 0" alt=" QQ截图20180906104247.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width=" 600" height=" 701" / /p p strong   附件: /strong a title=" 附件2. 宣贯会参会回执(1).docx" style=" FONT-SIZE: 12px COLOR: rgb(0,102,204)" href=" https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx" br/ strong    /strong /a strong /strong a title=" 附件1. CSTM-FC00领域委员会简介(1).pdf" style=" FONT-SIZE: 12px COLOR: #0066cc" href=" https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf" strong 附件1. CSTM-FC00领域委员会简介.pdf br/   附件2. 宣贯会参会回执.docx br/    /strong /a strong /strong a title=" 附件3. 酒店交通(1).pdf" style=" FONT-SIZE: 12px COLOR: #0066cc" href=" https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf" strong 附件3. 酒店交通.pdf /strong br/ /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制