当前位置: 仪器信息网 > 行业主题 > >

裂纹检测

仪器信息网裂纹检测专题为您提供2024年最新裂纹检测价格报价、厂家品牌的相关信息, 包括裂纹检测参数、型号等,不管是国产,还是进口品牌的裂纹检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合裂纹检测相关的耗材配件、试剂标物,还有裂纹检测相关的最新资讯、资料,以及裂纹检测相关的解决方案。

裂纹检测相关的资讯

  • 国内首套电磁超声裂纹检测器完成测试
    12月3日,管道局检测公司研制的国内首套电磁超声裂纹检测器完成整机牵拉试验。   据悉,电磁超声裂纹检测器目前国际上只有三套样机,而管道局检测公司研制的48英寸口径的电磁超声裂纹设备在国际上尚属首套。   天然气管道在运行中,由于应力作用,管体会产生裂纹。随着裂纹的加大,将直接导致管线沿纵向撕裂状爆炸,撕裂长度可达数十公里,危害巨大。管道局检测公司作为国内唯一从事管道漏磁检测的甲类综合检验机构,经过4年潜心研究,历经成千上万次的实验室测试和试验,终于攻克被誉为管道检测史上&ldquo 哥德巴赫猜想&rdquo 的电磁超声裂纹检测技术。
  • 汇凯HKAE1.0型裂纹检测系统达到国际先进水平
    AE(声发射)技术是一种新型的无损检验技术,此种方法是采集和分析一般金属物体产生裂纹时发出的声波信号来判断裂痕的存在及趋势。金属裂纹检测系统能够在校直过程中实时检测工件内部裂纹产生情况,对产生裂纹的工件通过校直系统进行筛选。 产品特点: 相对于常规的无损检测方法,声发射法具有以下的优点: &bull 动态检测,可更客观地评价运行中设备的安全性和可靠性 &bull 声发射灵敏度高,检查覆盖面积大,可以远距离监测 &bull 检测可在设备运行状态中进行 为提高设备的可靠性、安全性和生产效率,本装置采用声发射技术,通过检测伴随材料变形、断裂应力改变而放出的AE波,对其相关参数进行分析评价,进而判断工件是否合格。与自动校直机产品完美结合,实现一机多用,完美替代传统探伤手段
  • 德国开发出检测玻璃幕墙裂纹的传感器
    据德国弗劳恩霍夫研究所网站报道,该所科学家研发的一个特殊传感器系统可以检测到玻璃幕墙上微小的裂纹,并对即将发生的玻璃破碎的危险发出警告。相关技术将在5月18日至20日举行的纽伦堡国际传感器、测试测量技术展上进行展示。   玻璃幕墙体现了现代建筑学与美学结构设计的最佳结合。不过,玻璃幕墙上的玻璃破碎坠落危及行人的情况也时有发生,而迄今为止,相关安全检查一般仅依靠敲打玻璃的声音来判断。这样的检测只能确认已经形成整条裂痕的玻璃,而不能警告即将发生的危险。   现在,位于维尔茨堡的德国弗劳恩霍夫硅酸盐研究所(ISC)与行业合作伙伴共同开发了一个传感器,它可识别5毫米长的微裂纹,并在玻璃实际破裂之前就及时发出维修提示。负责该研究的伯恩哈德布伦纳博士介绍说,他们在一块玻璃上按照一米的间距安装多个压电传感器执行器模块(piezoelektrische Sensor-Aktor-Module),一个传感器执行器模块产生超声波,其他传感器接收这种注册过的超声波。如果超声波信号保持不变,说明玻璃是完好的 如果信号发生变化,就表明玻璃产生了裂痕。通常,这些裂纹从玻璃的边缘产生,最初是不可见。随着时间的推移,例如在环境温度变化的影响下,它才会逐渐扩大。   该传感器通过电缆连接到建筑物的控制系统,所有传入的数据都会被自动分析,当玻璃出现微小裂缝时就会触发警报。研究者还成功将传感器安装到层压玻璃面板间。由于这些传感器在层压玻璃的生产过程中就已经被整合到两块玻璃板之间,因此,它们能在玻璃安装前就检测到玻璃在运输过程中出现的缺陷。   这一新的安全系统不仅可以提前预测玻璃碎裂,还能提供舒适的功能:该传感器执行器模块同温度和光传感器相连,可以根据光照情况选择开关百叶窗,从而控制室内环境。
  • 贝斯特成功召开了2016 年先进的碳复合材料测试——使用在线损伤监测解释裂纹动力学技术交流会
    贝斯特成功召开了2016 年先进的碳复合材料测试——使用在线损伤监测解释裂纹动力学技术交流会。本次交流会在北京唯实酒店举行,旨在为复合材料科研工作者搭建的专业性技术交流平台。本次交流会将由贝斯特(中国)技术公司组办,为用户解读了国际碳复合材料微裂纹动力学检测技术最新技术。本次交流会关注现在最新的力学试验技术的发展,此技术解决了目前力学试验机无法在线测试微裂纹动力学的困境;会议由复合材料科学家R. Sunder博士主讲, 和各位同行交流了复合材料力学测试面临的挑战和解决方法。 R. Sunder博士履历1. 1978-1993,在国家航空航天实验室研究航空疲劳和机体残余强度(1978-1993);2. 1986-1988,镍基高温合金的性能,空军材料实验室,莱特帕特森空军基地,俄亥俄;3. 1992年创立了班加罗尔集成系统解决方案公司(BISS),领先的技术研发和制造商,为全球客户最先进的测试系统。2012年美国ITW集团收购了BISS公司,ITW为纽约证券交易所上市公司,全球财富200强企业。4. 1996至今,研究疲劳的阈值和变幅疲劳。5. ASTM(1985)和ASTM委员会E-8(疲劳与断裂)和D30(复合材料)的成员。超过50多篇同行评审的ASTM特殊技术出版物、国际疲劳杂志、工程材料和结构的疲劳与断裂的单一作者的论文。 参加技术交流的科研人员来自于:空中客车(天津)总装有限公司,北京科技大学,北京航天材料研究院,中国民航科学技术研究院, 中科院化学所、中科院理化技术研究所,北京航空航天大学,以及其它合作公司等。
  • 海洋材料防腐检测利器弯曲预裂纹应力腐蚀试验机研发成功
    一种能够适应大尺寸试样、甚至是原型试样的高温弯曲应力腐蚀试验机成功交付用户,这台弯曲应力腐蚀试验机可以进行大尺寸试样甚至原型试样的弯曲试验,同时,设备配套悬臂梁弯曲夏比试样的弯曲应力试验,悬臂梁弯曲夏比试样的弯曲加载采用砝码加载形式。大尺寸弯曲应力腐蚀试验机采用电子加载形式。配置合适的溶液池即可进行弯曲应力腐蚀试验。受客户要求,百若仪器开发出大尺寸弯曲应力腐蚀试验机,不仅可以进行轴向慢应变应力腐蚀试验,也可进行弯曲腐蚀试验,同时,可以进行悬臂梁夏比试样悬挂弯曲试验。弯曲应力腐蚀试验机也可根据客户的要求进行弯曲应力腐蚀疲劳的试验。YYF-100弯曲加载预裂纹应力腐蚀试验机主要研究在海洋腐蚀环境下的应力敏感性材料特性。专用慢应变速率应力腐蚀试验机,适用环境为微高温常压盐溶液。该设备特点在于除轴向拉伸功能外,增设一套机构用于实现对悬臂试样的弯曲加载,以及一套专用单元用于对夏比试样进行悬挂弯曲试验。该产品完全满足客户要求,得到客户的好评。背景资料:金属材料在拉应力及特定的腐蚀介质的作用下,经过一定的时期,将会产生裂纹及断裂的现象称为应力腐蚀开裂,并且,这种开裂经常以不可预测的低应力脆断出现在材料服役现场,造成事故的发生及材料的损耗,因此,一些科研机构及材料专家一直在致力于研究应力腐蚀开裂的课题,目前,主要以GB/T 15970.7-1995 金属和合金的腐蚀 应力腐蚀试验,GB/T 17898-1999不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法,YB/T 5362-2006 不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法等试验方法进行试验,这些试验方法中的试样以小试样作为研究对象,而大尺寸的往往以有限元分析进行模拟。在实际工作中,材料往往以大尺寸的面貌出现在服役现场,这样,试验所得的数据可能会出现一定的偏差,这些偏差可能会受到腐蚀温度、介质浓度等因素的影响,也可能受到晶粒组织的影响,这样,采用大尺寸试样弯曲应力腐蚀试验的必要性就显得尤为重要。
  • 利用维氏硬度压痕裂纹表征材料的断裂韧度
    可以利用维氏硬度压痕裂纹计算材料的断裂韧度,尤其适合表征硬脆材料的断裂性能。学者提出了很多半经验半定量的关系式。裂纹主要有巴氏(Palmqvist或径向)和中位(Median)裂纹两种形式,有些公式适用于特定的裂纹形式,有些公式对两种(Both)裂纹形式都适用。微米硬度实验设备简单,测试方便,分析直接,不仅在工程实践中有广泛应用,也是评估材料断裂韧度的有效工具。断裂韧度作为衡量材料抵抗裂纹扩展能力的力学性能指标通常用临界应力强度因子KⅠC表示,单位为MPam0.5。字母K为应力场强度因子,反映的是裂纹尖端区域应力场强弱;字母C指的是裂纹扩展的临界情况;下标罗马数字Ⅰ是指裂纹扩展形式为张开型,脆性材料的裂纹扩展类型为Ⅰ型。测量材料KⅠC的方法主要有:山形切口梁法(C. N. B)、单边预裂梁法(S. E. P. B)、表面弯曲裂纹法(S. C. F)、单边切口梁法(S. E. N. B)、单边V形切口梁法(S. E. V. N. B)、短V形切口杆法(S. R)、双扭法(D. T)、双悬臂梁法(D. C. B)、微米划痕法、纳米压痕法和维氏压痕法等。S. R、D. C. B和S. E. P. B法的测试试样难生产、成本高,难以广泛使用;S. E. N. B、S. E. V. N. B和C. N. B法加工试样缺口较困难;D. T法试件的几何尺寸会对测量值产生影响;S. C. F法必须要去除足够深度的表面层来消除残余应力场,才能保证KⅠC不被高估;微米划痕法需要考虑压头的磨损以确保测试结果的准确性;而压痕法具有制备试样简单、测试效率高、以及综合成本低等优点,已被广泛应用于表征陶瓷材料、硬质合金和玻璃材料的断裂韧度。虽然基于Griffith-Irwin平衡断裂力学的压痕法可以反映材料断裂的特征,有效表征材料的断裂韧度,但是使用压痕法确定KⅠC仍然存在不足,依然有争论,比如:诸多半经验半定量的公式在实际应用中受到裂纹模式(径向,中位,横向等)多样复杂的影响,计算的KⅠC结果不可靠;不适用于低泊松比的材料。如何根据不同的材料、不同的压头选择适合的公式和载荷,是当前利用压痕裂纹法表征材料断裂韧度亟需解决的问题。各种依据维氏硬度压痕裂纹长度计算断裂韧度的表达式列于表1,对于不同的裂纹模式有不同的表达式。裂纹主要有两种类型,见图1:一种是基于半椭圆型的中位裂纹(Median crack);另一种是基于半月状的巴氏裂纹(Palmqvist crack)或径向裂纹(Radial crack)。可以基于曲线拟合的方法得到同时适用于两种(Both)裂纹模式的表达式。典型硬脆材料的压痕裂纹见图2,需要测量压痕的接触半径a和裂纹长度c,可以计算得到l=c-a。维氏硬度HV可以由载荷F除以残余压痕面积AV得到:式中,AV考虑了压痕的倾斜表面(sin68°可以由压头形状获得),而不是压痕的投影面积;d (= 2a) 是压痕两个对角线长度的平均值;当F和d的单位分别是mN和μm时,维氏硬度的单位是GPa。值得注意的是工程上使用的维氏硬度没有单位,而且相关标准里面也没有单位,这不利于各种测试方法的比较,无法有效服务于科学研究。可见,即使维氏硬度如此基础、简单、成熟,仍然有待进一步发展。由于仪器化压入的兴起,压入硬度HIT是根据投影面积定义,并且努氏硬度HK也是根据投影面积计算,传统的维氏硬度HV可以通过投影面积转换成梅氏硬度(Meyer hardness)HMV(=2F/d2), 便于各种硬度之间的比较。表1中的维氏硬度HV也可以转换成HMV。表 1 利用维氏硬度HV计算材料的断裂韧度Kc[1]注: ϕ = 3, β2 = 0.059[15], Φ = -1.59-0.34ξ-2.02ξ2+11.23ξ3-24.97ξ4+16.32ξ5, ξ = lg(c/a). E是材料的弹性模量. Hv可以在每个载荷下多次测量取平均值,作为某一载荷下的Hv.图 1 维氏硬度压痕裂纹模式示意图图 2 典型硬脆材料的维氏硬度压痕裂纹[1, 15, 16]作者简介刘明,福州大学机械工程及自动化学院教授,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员,ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学材料科学与工程学院本科、硕士,2012年12月获肯塔基大学(美国)材料科学与工程专业博士学位,法国巴黎高科矿业工程师学校材料研究所博士后,华盛顿州立大学(美国)博士后。2015年4月入职福州大学机械工程及自动化学院机械设计系力学教研室,获评福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn QQ:290716672 微信:hasanzhong参考文献[1] M. Liu, D. Hou, Y. Wang, G. Lakshminarayana, Micromechanical properties of Dy3+ ion-doped (Lu Y1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals by indentation and scratch tests, Ceramics International, 49 (2023) 4482-4504.[2] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.[3] Z. Laiqi, H. Yongan, H. Lei, L. Jun-pin, Determination of empirical equation of fracture toughness for Mo5SiB2 alloy by indentation method, Trans. Mater. Heat Treat., 38 (2017) 178-183.[4] M. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 6 (1987) 355-356.[5] D. Shetty, I. Wright, P. Mincer, A. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.[6] B.R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, J. Mater. Sci., 10 (1975) 113-122.[7] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. Mater. Sci., 22 (1987) 1501-1508.[8] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10 (1975) 2016-2024.[9] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.[10] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1 (1982) 13-16.[11] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.[12] C. Terzioglu, Investigation of some physical properties of Gd added Bi-2223 superconductors, J. Alloys Compd., 509 (2011) 87-93.[13] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett., 1 (1982) 493-495.[14] J.E. Blendell, The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties, Massachusetts Institute of Technology, 1979, pp. 1-47.[15] M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3, Ceramics International, 48 (2022) 992-1005.[16] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 焊缝中出现裂纹,原来还可以是这个原因!
    一个生产部件和组件的制造商向一个供应商订购了一批SS304不锈钢管材。制造商要对1800件管材进行切割和机械加工,然后再通过焊接方式将这些管材制造成更大的子装配件。不久,管理人员在无损检测(NDT)过程中发现了焊缝中有裂纹。接下来,立即叫停所有的生产过程,以对生产质量进行控制,直到查出问题的原因。调查的内容包括根据他们的标准操作程序(SOP)核查焊接保护气体、焊丝和焊接机的设置情况。但是,接着对焊缝的检测仍然表明存在着裂纹。质量控制经理建议对原始管材的材料证书进行核查。不出所有人所料,证书上清楚地表明这些管材就是他们所订购的SS304不锈钢管材。他们还在系统内部进行了其它方面的核查,但是一直没有找到问题的原因。 质量控制经理一筹莫展。还有什么情况他们没有核查?结果发现,他们实际上一直没有核实所接收的管材是否是SS304不锈钢管材。如果在接收这批管材时使用手持式X射线荧光(XRF)技术对货物进行核查,他们就会发现所收到的货物实际上是SS303不锈钢,这个牌号的不锈钢与SS304不锈钢的不同之处是多了硫元素,因而更容易进行机械加工处理,但是在焊接过程中却非常容易出现高温裂纹。如果在收到管材时对管材进行核查,以确保管材与材料证书所述的情况相符,则可以避免出现这种问题。而现在,制造商不仅被迫花费了很多宝贵的时间寻找问题的原因,而且还留下了一些已经开始制造,但是却无法使用的产品。不过,最终制造商还是很幸运,因为他们在出货之前发现了这个问题。如果他们所制造的部件在使用中出现了故障,则问题可能会变得更为严重。 如果这个制造商采用了整体验证计划对来料进行核查,则几乎可以消除加工错误材料的风险。那么,我们为什么会在制造过程中发现使用了错误的材料呢?这是因为每次材料运输时,无论是在工厂、库存商的仓库或服务中心,还是在制造商的仓库,或者在任何制造过程中,都会出现混料的风险。不正确的材料证书、不正确的标记,以及较差的追溯性都会导致材料出现混淆。 要想改变这种不良状况,在每个阶段对材料进行验证至关重要。手持式XRF分析仪就是一种广受欢迎的验证工具。我们的Vanta分析仪有助于制造商在制造过程的每个阶段,验证将要使用的材料是否是希望使用的材料。Vanta分析仪具有检测迅速、坚固耐用的特性,不仅可以在几秒钟之内提供准确的合金识别信息,而且可以在工业环境中持续正常地工作。借助选配的无线连通功能,用户还可以将分析仪连接到奥林巴斯科学云系统,从而可以轻松地将分析仪集成到任何智能制造设施中。奥林巴斯手持式X射线荧光分析仪可对包括镁和铀在内的很多元素进行快速无损分析,可检测出的含量从百万分率到100%。分析仪在检测速度、检出限及可检元素的范围方面具有优质性能。这款分析仪的外壳符合工业设计标准,极为坚固耐用,可以在恶劣的环境中正常工作。新型Vanta系列仪器性能改进:坚固耐用,高效多产仪器配备SD存储卡可使用WI-FI,蓝牙(Bluetooth)适配器进行数据传输可使用USB闪存盘进行方便快速的数据传输Axon技术提高分析结果的精准性IP 55/54—防尘防水坠落测试(MIL-STD-810G)探测器快门闸保护及聚酰亚胺网眼保护
  • 仪器表征,科学家开发了基于分子级裂纹调制策略的新型应变传感器!
    【科学背景】应变传感器是一种关键技术,用于在多种应用中实现高灵敏度的机械感知,如人形机器人的指尖控制和皮肤贴合健康监测设备。然而,现有的应变传感器普遍依赖于裂纹生成机制,这限制了它们在灵敏度、应变范围、稳定性和时间空间分辨率上的综合性能。传统裂纹导电材料在小传感面积与高性能之间存在固有的权衡,其裂纹易于扩展并难以控制,导致传感器在应对大应变和长期稳定性方面的表现有限。为解决这些挑战,天津科技大学生物基纤维材料国家重点实验室刘阳教授、国家重点实验室主任程博闻教授、南开大学Jiajie Liang课题组联合提出了一种分子级裂纹调制策略,采用逐层组装技术在MXene和银纳米线复合薄膜中引入了强、动态和可逆的硫-银(S-Ag)配位键。这种创新策略不仅在传感器中实现了极小的感测面积(仅0.25 mm² ),同时提供了超宽的工作应变范围(0.001-37%)、极高的灵敏度(在0.001%时的增益因子超过500,在35%时超过150,000)、快速的响应时间、低滞后和优异的长期稳定性。此外,基于这种高性能传感元件,研究团队成功实现了每平方厘米100个传感器的可拉伸传感器阵列,展示了高时间空间分辨率的实际应用,如多通道脉冲信号监测系统。【科学亮点】(1)本研究首次采用分子级裂纹调制策略,在MXene和银纳米线复合导电薄膜中引入强、动态和可逆的硫-银(S-Ag)配位键。这一策略通过逐层组装技术,实现了裂纹生成和传播的精确控制。(2)实验结果表明,所制备的基于裂纹的可拉伸应变传感器(S-M/A)具有多重优异的性能特征:传感面积极小(仅0.25 mm² ),但具备超宽的工作应变范围(0.001-37%),高灵敏度(在0.001%应变下的增益因子超过500,35%应变时超过150,000),快速的响应时间(约5毫秒),低滞后和长期稳定性。此外,通过S-Ag配位键的动态调控,传感薄膜能有效地能量耗散,防止裂纹间隙的扩展,从而保持了纳米级别的裂纹结构和传感性能的稳定性。(3)这一研究突破了传统裂纹调制策略的限制,克服了传感面积和性能之间的固有权衡,为高密度、高分辨率的可拉伸应变传感器阵列的实现提供了新的思路和方法。通过高效的组装工艺,作者实现了每平方厘米100个传感器的集成,展示了该传感器阵列在多通道脉冲感测系统中的实际应用,具备优异的时间空间分辨率和监测精度。【科学图文】图1:引入S-Ag配位键到S-M/A感测薄膜中。图2:S-MXene和S-M/A薄膜的表征。图3:S-M/A传感器的应变感测性能。图4:应变感测性能比较。图5:S-M/A感测薄膜的裂纹调制行为。图6:S-M/A传感器阵列在脉冲信号测量中的应用。【科学结论】本文开发了一种基于分子级裂纹调制策略的新型应变传感器,通过引入强、动态和可逆的S-Ag配位键,有效地解决了传统裂纹型传感器中传感面积与性能之间的权衡问题。此技术不仅在传感面积极小的情况下实现了超高灵敏度和广泛的应变范围,还通过动态调控裂纹形态和能量耗散机制,提高了传感器的稳定性和可靠性。通过分子级的设计和制备过程,将有机和无机材料有效地结合在一起,为高性能应变传感器的设计提供了新的思路和方法。此外,本文展示了简便且可扩展的制造工艺,为实现高密度、高分辨率的传感器阵列奠定了基础。这种基于分子级裂纹调制的策略不仅有助于推动应变传感器技术的进步,还为未来在可穿戴设备、健康监测和智能机器人等领域中需求高精度、高稳定性传感器的开发提供了新的理论和实践基础。原文详情:Liu, Y., Xu, Z., Ji, X. et al. Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 15, 5354 (2024). https://doi.org/10.1038/s41467-024-49787-9
  • 锂电池钴酸锂正极材料中的孪晶界引发的裂纹失效
    锂电池钴酸锂正极材料中的孪晶界引发的裂纹失效圆派科学内容简介钴酸锂是目前应用最为广泛锂离子电池正极材料之一,尤其是在便携设备和移动电子设备中的锂离子电池中,这得益于其优越的体积能量密度和稳定的循环性能。然而,其实际所用的能量密度仅占其理论能量密度的一半,仍然有很大的发展提升空间。提高能量密度最常用的办法是提升充电电压,利用更多的锂源,但这样做会迅速加快钴酸锂正极材料的失效,造成电池性能快速衰退,以及安全性问题。这其中的衰退机制繁多而且复杂,裂纹就是其中之一。本报告中,将介绍我们利用电子显微镜相关的分析技术,研究裂纹在钴酸锂正极材料中晶界处的形核和扩展机制,并探讨循环条件不同时,裂纹产生机制的相同和不同之处。为深入理解裂纹,这一普遍存在于层状正极材料中的失效机制,提供从原子尺度的理解认知,这一工作将有助于寻找合适的途径来抑制裂纹的产生。 2010年博士毕业于中科院金属研究所,2010-2013在日本NIMS从事博士后研究,2013-2017在美国太平洋西北国家实验室(PNNL)从事锂电池相关的透射电子显微学研究。于2017年10月加入北京工业大学固体微结构与性能研究所。研究领域是利用透射电子显微学研究锂(钠)离子电池材料的失效机理,基本结构和离子的传输机理。在相关领域发表SCI论文70余篇,包括9篇ESI高被引论文,论文总引用4000余次。以第一/通讯作者发表Nat. Mater., Nat. Energy, Nat. Nanotechnol., Nat. Commun.等在内学术论文20余篇。 直播内容概要 钴酸锂是成熟的第一代锂离子电池正极材料,是Goodenough于八十年代在剑桥大学发现,也正因此他获得了2019年诺贝尔化学奖。由于钴酸锂很好的电化学储能性能表现,主要是其体积能量密度,目前在小型储能移动设备被广泛应用,尤其是IT设备上,几乎是统治性的。研究钴酸锂,主要是提高其利用率,目前利用率还不到60%,研究目的是提高其理论容量到80-90%。钴酸锂的性能衰退机制有多种,主要是由于价态变化,成分改变和晶格畸变而引起的。本课题组主要从电子显微学来研究其失效机制。主要分两大类:体材料失效机制和界面失效机制。重点要提一下徕卡的三离子束切割设备,用这个设备,我们做到了很多用别的设备完成不了的工作,主要是EBSD看孪晶。我们发现用徕卡的氩离子束,加工面积特别大;通过与其它设备做对比,与FIB对比,通过EBSD观察,我们发现氩离子束对样品的损伤层确实比较好。如何实现对LiCoO2颗粒大面积、大数量的统计性观察?以确定孪晶界是否为普遍存在的缺陷结构我们想到了EBSD的方法,但EBSD需要样品非常平整,我们遇到了一个制样的难题,就是如何获得一个大量颗粒的平整样品?我们首先想到了FIB。但是FIB制样,最大的束流也只能切一个几十微米的区域。用FIB大束流高电压,有经验的人都知道FIB会产生很大的电荷累积效应。不能满足我们的要求,其一是它不能满足我们对数量的要求,其二它表面平整度不够,或表面损伤度太大,我们用EBSD分析,看不出来晶格取向。我们也用机械抛光的办法,做了半年时间,都没有成功。然后我们想到了氩离子束切割技术,偶然引进了徕卡,确实切出了不错的样品,切了五六个样品,目标达成。通过统计发现,在钴酸锂里面孪晶占比至少达到40%,孪晶含量或出现频率是非常高的。对高电压循环性能,孪晶会产生很大影响,这给钴酸锂材料学界产生了一个新的信息,因为之前大家认为钴酸锂是单晶,或没有意识到它是孪晶。如果不做成单晶,由于孪晶界的存在,它很容易造成高电压性能的衰退,这是我们对钴酸锂认识的提升。
  • 微结构敏感的增材合金超高周疲劳裂纹萌生/扩展新理论
    增材制造金属作为新一代“高设计自由度”材料,虽具有传统铸轧工艺无法比拟的优势,但其长期服役疲劳性能仍有不足。航空发动机、燃气轮机和高铁等关键零件,在服役过程中承受107~1010及以上的循环载荷,材料微结构敏感性显著增强,实验寿命分散性大,传统基于疲劳极限(107)的疲劳强度与寿命设计理论不再适用。因此研究增材制造金属材料的超高周疲劳(VHCF)失效机理,建立量化内部缺陷和微结构的超高周疲劳裂纹萌生/扩展理论框架具有重要的科学意义和工程应用价值。增材制造金属超高周疲劳裂纹通常萌生于内部缺陷,裂纹萌生阶段通常占总寿命的95%以上。对于内部裂纹尚无合适的原位观测手段捕捉纳米级的裂纹长度变化,同时由于缺陷尺寸与晶粒在同一数量级,材料的各向同性假设不再适用。在理论层面,现有循环内聚区模型难以处理低于应力强度因子阈值的损伤演化,同时塑性变形和损伤是历史相关的内变量,现有数值模拟方法无法处理超高周次的循环载荷数。本研究旨在发展考虑材料微结构的超高周裂纹萌生/扩展机理的力学模型及超高周次循环载荷下的数值加速等效方法。本研究建立了耦合的晶体塑性/循环内聚区模型,引入单元通信机制,建立裂纹萌生演化准则,提出适用于超高周疲劳载荷的加速算法,对增材制造铝合金疲劳裂纹萌生和扩展过程进行预测,并通过实验验证了该方法的有效性。主要成果如下:(1)捕捉到了超高周疲劳早期的裂纹萌生/扩展过程。揭示了增材制造铝合金的VHCF裂纹萌生/扩展机理,建立了1:1还原实验的缺陷、晶粒织构和载荷条件的有限元模型。图1 (a)早期裂纹捕捉,(b)由内部缺陷诱发的次生裂纹,(c)早期裂纹形貌,对应载荷循环数3.63×108,(d)有限元模型及边界条件,(e)内聚区单元网络,(f)缺陷附近的内聚区单元(2)构建了超高周疲劳裂纹萌生及扩展的理论框架。首次将裂纹萌生过程中实体单元计算得到的晶体滑移内变量作为损伤参量引入内聚区模型,建立裂纹萌生和扩展准则,提出了基于向前欧拉法和频率等效的加速算法,实现超高周疲劳裂纹萌生和扩展的全过程模拟,很好地模拟了裂纹萌生早期缺陷附近最大激活滑移系的演化。图2 裂纹萌生早期缺陷附近最大激活滑移系的演化(a) N=1×104, (b) N=5×105, (c) N=2.5×106, (d) N=4.5×106, (e) N=6.5×106, (f) N=8.5×106(3)验证了模型在超高周疲劳载荷下的有效性。计算结果表明由于裂纹表面的相互挤压,裂纹面附近产生大量高局部累积塑性区,有力地支撑了大数往复挤压模型(NCP)所预测的FGA细晶区形成机理。同时模型可以有效地计算裂纹闭合效应,预测的裂纹扩展速率与实验结果吻合很好。图3 模型验证:(a)KAM图, (b)计算结果, (c)裂纹扩展速率该研究成果近期以“A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy”为题,发表在固体力学旗舰期刊Journal of the Mechanics and Physics of Solids 2023,175, 105293上(https://doi.org/10.1016/j.jmps.2023.105293),论文作者为中国科学院力学研究所孙经雨、钱桂安、洪友士等人。该项研究工作得到了国家自然科学基金(12002185,12272377,12072345,11932020)的资助。
  • 贝斯特商品化最新系统:碳纤维复合材料原位微裂纹动力学分析
    复合材料的微裂纹和断裂力学一直是困扰科研人员的难题, 对于类似金属材料的断裂力学研究已经有了丰硕的成果;但是复合材料的断裂力学机理和过程, 一直没有较好的测试技术和设备商品化, 贝斯特公司的研发人员通过多年的科研经验和创新的工作, 开发了碳纤维复合材料微裂纹动力学测试技术, 通过该技术可以在线原位扫描样品在外力作用下,内部裂纹的扩展机理和动力学;为科研人员提供一臂之力。 此系统主要由Nano系列动态试验机和原位扫面测试系统、多通道控制系统和专业软件组成。 涡流检测原理:通过感应磁场和微裂纹相关性测试碳纤维复合材料的裂纹动力学。 由于导电材料不均匀会导致磁导率、电导率不同,使涡流流通路径发生改变,导致涡流的大小、相位发生改变。如果被检测件存在缺陷(如表面裂纹),则会阻碍涡流流过,因涡流只能存在于导体材料中,故导致涡流流通路径的畸变,最终影响涡流磁场,使得涡流强度降低。 构造配置: 技术参数:* 400x400毫米扫描区域* 探针直径1 & 3 mm* 速度Up to 100 mm/s, 同步数据采集up to 5 kHz* 样品厚度 t 8 mm* 3-轴位置控制 X, Y旋转编码器; Z 激光位置反馈* 作为独立的完全集成 “工作站”测试系统控制器。独立的扫描应用* 单通道输出信号,整流直流(0-10V)* X, Y &与负载、行程、应变等信号的记录* 轴向和横向的合规性应用:
  • 北京化工大学再次引进法国Metravib公司橡胶裂纹扩展测试设备
    2015年2月,国内著名橡胶研究机构——北京化工大学材料学院弹性体先进材料研究中心,成功引进和使用法国Metravib公司的橡胶裂纹扩展专业测试设备DMA+1000。 基于DMA+NG系列宽力值、宽频率动态热机械分析仪(DMA)的测试平台,由国际轮胎生产巨头米其林公司和国际最大DMA专业制造商 - 法国Metravib公司共同研发的专门用于橡胶裂纹扩展测试的全新功能。配置了裂纹扩展单元的DMA不仅可以实现对材料粘弹性能、疲劳性能的评估,还可以评估橡胶材料在不同温度、不同加载模式、不同气氛等条件下的裂纹扩展行为。 本次合作为北京化工大学和仪尊科技的再次合作,化工大学的第一台Metravib公司的DMA已使用将近十年,深得专家和学者们的重视和好评。本次装机仪尊公司安排了法国Metravib公司的专家进行现场培训和指导,详细讲解设备使用方法和研究领域。 今后,仪尊公司将继续携最先进最优秀的技术和测试设备,给予用户们最好的体验,期待与您的合作!
  • 祝贺长春机械院慢拉伸预裂纹(恒载荷)应力腐蚀试验机组在中船重工725所得到成功应用
    截止2013年12月17日,长春机械院慢拉伸应力腐蚀试验机组在中船重工725所得到了成功应用,725所成功获得第一批舰船材料应力腐蚀试验对比数据,该数据复合科研预期。慢拉伸预裂纹(恒载荷)应力腐蚀试验机主要用在检测、研究金属材料在极慢的拉应力和腐蚀介质环境双重作用下的力学性能。还可以用于模拟受恒拉伸力零件在腐蚀环境中的抗腐蚀情况,进行恒载荷预裂纹应力腐蚀试验,检测、研究金属材料在恒拉伸应力和腐蚀介质环境双重作用下的破坏性能。该试验机主机加载机架采用TPHS式双立柱框架组合结构,传动平稳、反应灵敏,速度范围极宽,既能实现以极慢的拉伸速度对试样加载,又具有较快的速度,便于调整试验空间装夹试样。整机采用高精度电子测量,机电伺服加载、数字控制器及计算机控制,具有技术先进、精度高、性能可靠,长时稳定等特点。该试验机配用我院独有的筒形腐蚀容器设计,容器可加热水浴,容器内腐蚀介质温度可控,试验时试样贯穿筒形腐蚀容器,试验操作方便、数据精确。中船重工725所是我国专业从事舰船材料研制和工程应用研究的军工研究所,拥有船体结构材料、有色金属材料、非金属材料、腐蚀与防护技术、特种材料、焊接工艺、自然环境试验等多个重点研究领域,是我国舰船装备发展的中坚力量。目前长春机械院与中船重工725所开展的战略合作,已经结出硕果,这必将推动我国船舶事业的发展;希望长春机械院还要加强院所合作,为维护我国海洋权益,把我国建设成一个新型的海洋大国而贡献自己的力量。关注:【长春机械院】微信号:cimachtest
  • 应用分享 | 波纹管开裂失效分析
    波纹管是一种带横向波纹的圆柱形薄壁弹性壳体,其生产历史已有一百多年。直到第二次世界大战时期才用作仪器、仪表的弹性敏感元件和各类管道的联结元件,现已广泛用于矿山、石油、化工、冶金、电力、热力、航海、航天等工程设备中,起密封、吸振、降噪、储能、热补偿和介质隔离作用。 波纹管有多种形式就波的形状而言,以U型波纹管应用广泛,其次还有C型、Ω型、矩形和S型等 就层数而言,则分为单层和多层波纹管。 本例针对某机型机头与容器间壁厚为0.2mm,运行2000多小时发生泄漏的单层U型波纹管,使用金相显微镜,扫描电子显微镜等专业设备对波纹管失效部位做全面分析。 拿到波纹管泄漏样品(图 1),对于搞机械的来讲,很容易想到用气压测试确定波纹管泄漏大致位置。事实也是如此,采用此种方法可以很方便的确认泄漏位置大致位于接头焊缝附近。紧接着去除波纹管接头部保护环及编织网,裸眼观测,对于大一些的裂纹可以直接看到,但是对于微小裂纹或者说想要知道裂纹萌生——发展——失稳的整个过程,就必须要借助于体式显微镜。体视显微镜放大倍数50倍,以其较经典显微镜更为出色的大景深,广泛应用于各种断口的宏观观察和拍照。 图 1 波纹管宏观形貌 图 2为是焊缝附近裂纹。其拍摄照片可以直观的反映出裂纹位置以及近裂纹表面焊接过程中产生的高温氧化色。仅仅观测到裂纹,确定裂纹位置对于查找其产生的根本原因还是远远不够的。想要了解的是整个波纹管寿命周期,从生产到使用究竟是哪个环节的问题导致了其异常开裂,进而引起泄漏。这就需要搜集各个环节的信息,越详细越好,例如:生产制造工艺、材料技术标准、设计技术条件、安装过程、使用过程… … 。通常想要真正了解原因,这些条件都是必要的。 图 2 焊缝部位裂纹局部宏观形貌 接下来要使用的更为精密设备和复杂的制样来观察分析。众所周知,机械行业大多传动部件其加工过程中都要热处理,其目的就是通过改变材料组织进而优化材料机械性能。对于生产检验,一般测试机械性能就可以了,但是对于失效分析,想要查清问题背后的原因,仅测性能是不够的,需要观察组织去了解影响性能背后的原因。观察组织就要用到材料领域的——金相显微镜。这里使用的是金相显微镜,其可在50-1000倍观察样品。图 3、图4和图 5是使用显微镜拍摄的照片。其中开裂确切位置清晰可见——焊接热影响区,同时可见波纹管管壁痕迹,表明母材与焊料熔合不是很好,管壁裂纹起始位置可见细小的晶间裂纹。 图 3 焊缝部位裂纹周围组织局部形貌 图 4 断裂起始位置表面晶间裂纹局部形貌 图 5 表面晶间裂纹周围组织局部形貌 失效分析当中的重头戏——断口分析,其要使用的设备也是失效分析中重量级的设备——扫描电子显微镜,简称SEM。SEM以其出色的放大倍数和观察景深而闻名。随机配备的能谱仪,更使其如虎添翼,使得其在失效分析领域大放异彩。图6 、图7 为使用SEM拍摄到的波纹管断裂面的照片,其清晰告知断裂模式为晶间腐蚀—疲劳断裂。 图 6 断口开裂源部位表面晶间裂纹局部形貌 图 7 断口裂纹扩展区疲劳纹局部形貌 304不锈钢的敏化温度区间大致为425-815℃[1]。在焊接接头的焊接过程中,热影响区热循环峰值温度在600-1000℃。在随后的冷却过程中,如果在304敏化温度区域停留时间过长将会导致材料晶间腐蚀敏感性增加。焊接时可以通过提高焊接速度的方法来增大电流,维持较低的热输入,从而降低晶间腐蚀的倾向,也可以对焊接后的不锈钢进行固溶处理和稳定化处理来降低焊接件晶间腐蚀敏感性[1,2]。 综上,结合各种背景信息以及各种测试分析手段的相互佐证,可以得出造成连接机头和容器波纹管泄漏的原因为波纹管接头焊接工艺不当,使得304表面使用过程中产生晶间腐蚀,进而萌生晶间裂纹在周期性载荷作用下造成波纹管早期疲劳开裂。 参考文献[1]. 张晶莹. 304奥氏体不锈钢的晶间腐蚀与防护.装备制造技术,2012,2:154-155.[2]. 赵强,肖维宝 等.304不锈钢法兰焊接裂纹分析与返修.焊接,2017,2:54-56. 作者阿特拉斯科普柯(无锡)压缩机有限公司 程晓波
  • 自动无损检测技术可剔除“坏蛋”
    新华网北京12月28日电 用摄像头拍摄鸡蛋透光照射的图片,再用类似麦克风的仪器获得鸡蛋被敲击后的声音,可将98%的裂纹鸡蛋检测出来。这项自动无损检测新技术,可有效保证蛋品工业化生产中的鸡蛋质量。   记者从28日举行的中国科协科技期刊与新闻媒体见面会上了解到,由南京农业大学食品科技学院潘磊庆博士等领导的学术团队完成的这一成果刊登于《农业工程学报》2010年第11期上。   鸡蛋富含蛋白质、脂肪、多种维生素和微量元素,是人们日常生活中不可或缺的食品。蛋壳薄且易破碎,细菌会很快侵入和繁殖,引起腐败、变质,影响人们的身体健康。因此,剔除“坏蛋”是鸡蛋生产、经营和加工的重要环节。   “我们依次采用单一的数字图像技术、声学敲击响应技术以及二者信息融合技术检测鸡蛋裂纹,分别模拟人的眼睛、耳朵以及二者并用的方法来检测裂纹鸡蛋。结果表明,采用两种技术信息融合模式的新方法对裂纹鸡蛋的检出率可达98%,能够充分避免裂纹对鸡蛋安全造成的隐患,保证产品质量。”潘磊庆说。   传统方法依靠人工照蛋观察和听蛋壳发出的声音两种方法剔除裂纹鸡蛋。大批量鸡蛋生产时,劳动强度大、生产效率低,而且检测精度易受人工注意力、体力、经验和工作态度的影响。   据悉,为实现裂纹鸡蛋的自动化检测,潘磊庆等科研人员从2004年便开始在国家自然科学基金和科技部“863”项目支持下,开展对鸡蛋裂纹检测的无损技术研究。
  • 致敬!专业检测人员默默守护大众出行安全!
    5月5日14 时许,虎门大桥发生较为明显的抖动,随后双向全封闭。 据最新专家分析,水马是涡振诱因,虎门大桥结构安全。 大桥产生抖动后的第一时间,为确保大桥交通安全万无一失,虎门大桥管养单位已紧急开始对大桥进行全面检查,同时交通运输部已组建专家工作组到现场指导。桥梁的检查离不开每一位专业的检测人员。快速确认大桥抖动的原因,以及确认大桥是否可以安全使用,是至关重要的! 其实,不仅是在桥梁产生抖动的时候。这批专业检测人员,更多的,是会对桥梁进行周期性、系统性的检测和维护。 平均每天有 1.74 亿人次通行于存在结构缺陷的桥梁上。在桥梁的使用寿命内,其结构不断经受重量加载和卸载,这会导致桥梁连接焊缝和螺栓出现裂纹和剪切应力。如果任其发展,这些缺陷最终会造成灾变破坏。专业的检测人员就是为了防止该现象的发生,尽可能快速高效地找到缺陷(例如:腐蚀、疲劳裂纹)所在,而存在的。 焊缝可能存在各种缺陷和断续性 连接桥梁钢支架的焊缝和螺栓特别容易受断续性影响,而断续性会导致腐蚀和裂纹。例如:当焊缝未完全与钢材熔合或是截留气体在焊缝中产生空洞,焊缝强度就会降低。当两个紧固结构受到反方向力作用时便会产生剪切应力,而剪切应力会导致螺栓连接强度变弱。这些薄弱区域构成了强应力集中点,这正是诱发断裂问题的源头。 专业检测人员自然离不开专业的检测设备。专业、可靠的检测设备可以帮助检测人员更准确、更快速的进行判断,进而保障大众的出行安全!传统无损检测 (NDT) 方法 检测桥梁的传统 NDT 方法是液体渗透检测法 (PT),该方法采用液体染料来检测焊缝表面裂纹。虽然 PT 对于材料的要求较低,且相对实惠,但它仅限于检测表面裂纹,无法检测到表面以下的裂纹。此外,PT 还要求检测员直接接触待测表面,而待测表面的粗糙度也可能会影响到检测灵敏度。 射线照相法也是一种用于桥梁检测的传统 NDT 方法,但逐渐被检测员所弃用。射线照相检测借助 X 射线拍摄焊缝/螺栓内部结构图像,据此确定接合部位是否存在任何断续性问题。但是,该方法存在一定的安全风险,因为它会释放辐射并产生化学废料。除此之外,它还需要获得额外批准,并且必须对射线检测附近区域进行清理。不同类别的 NDT 方法 相控阵超声波检测法 (PAUT) 提供了一种安全可靠的替代方案,相比于 PT 和射线照相法,其可提供更优质的数据。相控阵探伤仪通过一个探头将高频声波发射入桥梁支架中。如果支架中存在缺陷(如裂纹或腐蚀),探头将会检测到声波的改变。数据被传回探伤仪并被转换为直观表示形式,检测员可据此识别缺陷。 涡流 (EC) 检测法是检测员采用的另一种先进 NDT 方法。涡流检测法适用于渗透检测法无法探测到的表面以下裂纹。EC 的一大优势是,不同于 PT,其可适用于涂漆或涂层表面。无需去除涂层或涂漆即可进行检测,从而有助于节省时间和成本。提供全聚焦方式(TFM)功能的OmniScan X3相控阵探伤仪OmniScan X3探伤仪是一款功能齐备的相控阵工具箱。这款仪器所提供的性能强大的工具,如:全聚焦方式(TFM)图像和高级成像功能,可使用户更加充满信心地完成检测。
  • 中车戚墅堰所试验检测中心:汽车零部件缺陷表征技术
    2021年2月,日本汽车零部件巨头曝大规模造假,约有11.4万件产品存在伪造刹车装置及其零部件的检查数据,引发网友热议和消费者信任危机。为帮助汽车零部件生产、质控与研究人员及时发现零部件缺陷,避免不合格产品流向市场,本文在上篇介绍汽车零部件缺陷类型及危害的基础上,详细阐述汽车零部件的常用缺陷鉴别技术。一、金相检测技术金相分析技术是失效分析中最重要的方法,主要分为以下几个方面:低倍组织缺陷评定锻造流线检测分析样件显微组织是否符合标准/预期要求评定非金属夹杂物级别测定晶粒度脱碳层检测渗碳层检测判断裂纹类型(淬火裂纹?锻造裂纹?)确定裂纹扩展方式(穿晶?沿晶?).......案例1:金相检测实例——低温冲击功不合格原因分析以下钢板的3个试样中,一个试样低温冲击功不合格,而其他两个试样合格。检测人员通过观察其冲击试样金相组织,发现钢板在板厚发现存在严重的珠光体条带现象,这是造成低温冲击性能不达标和冲击性能值波动较大的主要原因。二、无损检测——(重点介绍X射线无损检测技术)无损检测采用传统的射线照相检测(RT)、射线数字成像检测(DR)及机算机断层扫描技术(CT)技术,在对被检测物体无损伤的条件下,以平面叠加投影或二维断层图像的形式,清晰、准确、直观地展示被检测物体的内部结构、组成、材质及缺损状况。射线检测技术在缺陷表征中的应用主要有以下5个方面:(1)缺陷的识别(2)缺陷尺寸测量(3)三维重建及缺陷提取(可以对材料内部缺陷三维重构,表征缺陷形状和分布)(4)不拆解情况下内部结构分析(5)不拆解情况下装配分析三、化学成分分析材料化学成分分析主要用于排查设计选材是否不当,存在以次充优或以假乱真。四、力学性能为什么要做力学性能测试?(1)根据失效分析的目的、要求及可能性,对硬度、室温拉伸、冲击、弯曲、压扁、疲劳及高温下的力学性能等进行测定(不破坏主要失效特征);(2)评定失效件的工艺与材质是否符合要求;(3)获得材料抵抗变形或断裂的临界值。力学性能不合格的常见原因:(1)热处理工艺不当;(2)取样位置或取样方式不当;(3)材料偏析严重。五、断口分析技术(断口分析三板斧)通过断口的形态分析,可以研究断裂的一些基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。因此,断口分析现已成为对金属构件进行失效分析的重要手段。断口记录了从裂纹萌生、扩展直到断裂的全过程,是全信息的。断口可以说是断裂故障的“第一裂纹”,而其他裂纹可能是第二甚至第三生成的。第一与第二裂纹的模式、原因和机理有时是相同的,有时是不同的,也就是说裂纹有可能只记录了断裂后期的信息,因此断口分析在断裂事故分析中具有核心的地位和作用。断口有时是断裂失效(事故)唯一的“物证”,人证有时是不可靠的,只能作为辅助信息或证据。利用现代分析技术和方法,断口包含的信息是可以“破译"的,析断口可以获取失效的信息。如何进行断口分析?第一板斧:按图索骥提供典型断口宏观照片,学习断口形貌特征,可以独立判断断口类型。第二板斧:顺藤摸瓜寻找到断裂的源头是整个分析的重中之重,否则后期的分析将成为无本之本。第三板斧:一叶知秋从一片树叶的掉落,可以预知秋天的到来。断口的微观和宏观信息也同样存在一定联系,通过断口微观特征观察也可以进一步验证宏观检查的判断结果。综上,断口分析技术可以归纳为以下三点:按图索骥,预判断口类型;顺藤摸瓜,寻找断裂源头;一叶知秋,微观佐证宏观。作者简介:潘安霞:中车戚墅堰机车车辆工艺研究所有限公司失效分析高级工程师,现任全国机械工程学会失效分析分会委员、中国中车技术专家,中车计量理化培训讲师,主要从事轨道交通行业齿轮、紧固件、弹簧等关键零部件失效分析研究工作,著有《紧固件失效分析与案例》。拓展阅读:中车戚墅堰所试验检测中心:汽车零部件缺陷类型及危害
  • 【综述】红外热成像无损检测技术原理及其应用
    常规的无损检测技术如射线检测、超声波检测、磁粉检测、渗透检测等,这些方法在实践应用中都有各自的缺点及局限性。红外热成像无损检测技术是近年来应用逐渐广泛的一种新兴检测技术,广泛应用于航空航天、机械、医疗、石化等领域。与其他的无损检测技术相比,红外热成像技术的特点有:1. 测量速度快,因为红外探测器通过物体表面发射的红外辐射能来测得物体表面的温度,所以响应极快,能测得迅速变化的温度场;2. 非接触性,拍摄红外图片时,红外摄像仪与被测物体是保持一定距离的,对被测温度场没有干扰,操作安全、方便;3. 测量结果直观形象,热像图以彩色或黑白的图像形式对结果进行输出,从图上可以方便地读取各点的温度值,并且热像图中还包含有丰富的与被测物体有关的其它信息;4. 测温范围广,由于是采用辐射测温,与玻璃测温计和热电偶测温计相比,测温范围大大扩展,理论上可从绝对零度到无穷大;5. 测量精度高;6. 易于实现自动化和实时观测。红外热成像无损检测原理红外线是一种电磁波,为0.78~1000 μm,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的旋转和振动而发出辐射能量。红外辐射是其中一种,如果把物体看成是黑体,吸收所有的入射能量,则根据斯蒂芬-玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为:式中:为黑体的光谱辐射度;c1、c2为辐射常数,c1=3.7418×108 Wm-2μm4,c2=1.4388×104 μmK;σ为斯蒂芬-玻尔兹曼常数,为5.67×10-8 Wm-2K-4。实际大部分人工或天然材料都是灰体,与黑体不同,灰体材料的发射率ε≠1,灰体表面能反射一部分入射的长波(λ>3 μm)辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和Map,但无法确定各自的份额。通常假设物体表面为黑体,将Map称为表观辐射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度Tap,即:上述表观温度Tap即为红外探测器测量所得温度,在无损检测中测量距离一般较近,可以忽略大气的影响,故被测物体的表面发射率ε的取值是否准确是影响测量精度的关键因素。检测方式1. 主动式检测为了使被测物体失去热平衡,在红外热成像无损检测时为被测物体注入热量。被测物体内部温度不必达到稳定状态,内部温度不均匀时即可进行红外检测的方法即为主动式红外检测。该种检测方式是人为给试样加载热源的同时或延迟一段时间后测量表面的温度场的分布。从而确定金属、非金属、复合材料内部是否存在孔洞、裂缝等缺陷。2. 被动式检测被动式红外热成像无损检测利用周围环境的温度与物体温度差,在物体与环境进行热交换时,通过对物体表面发出的红外辐射进行检测缺陷的一种方式。这种检测方法不需要加载热源,一般应用于定性化的检测。被测物本身的温度变化就能显示内部的缺陷。它经常被应用于在线检测电子元器件和科研器件及运行中设备的质量控制。红外热成像技术在无损检测中的应用1. 材料热物性参数检测与其它的测温技术相比,红外热像仪能迅速、准确地测量大面积的温 值,且测温范围宽。因此,当需要准确测量较大范围的温度边界条件时,红外热像仪具有其它测温仪器不可比拟的优越性。哈尔滨工业大学的研究人员针对焊接温度场中材料的传热系数随温度升高而变化的情况进行了研究,证明了焊接过程热传导系数反演算法的可行性,结合红外热像法与热电偶测量了LY2铝合金固定TIG点焊过程的焊接温度场,通过计算分别获得了加热和冷却过程的热传导系数随温度变化的曲线。热传导反问题的研究,具有广泛的工程应用前景,近年来在热物性参数的识别、边界形状的识别、边界条件的识别、热源的识别等多方面已经取得了很多研究成果。在进行传热反问题研究时,采用红外热像技术测量研究对象的温度图,可以方便快捷地解决温度边界的测量问题,该方法在热传导反问题的研究中已被广泛采用。2. 结构内部损伤及材料强度的检测目前利用红外热像技术进行的结构损伤研究有混凝土内部损伤检测、混凝土火灾损伤研究、焊缝疲劳裂纹检测、碳纤维增强混凝土内部裂纹检测等,由于损伤部位的导热系数的变化,导致红外热像图中损伤位置温度异常。与常规的探伤方法如X射线、超声波等相比,红外热像技术具有不需要物理接触或耦合剂,操作简单方便、无放射性危害等优点。同济大学的研究人员采用红外热像技术对混凝土火灾损伤进行了实验研究,得出了火灾损伤混凝土红外热像的平均温升随时间的变化曲线,及混凝土红外热像的平均温升与其受火温度与强度损失之间的回归方程。将红外热像技术应用于火灾混凝土检测,在国际上尚属首创,突破了传统的检测模式,为进行混凝土的火灾损伤评价开创了一条新途径。但将该方法运用于实际工程检测中,尚有许多问题需要解决,如混凝土强度等级、碳化深度、级配、火灾类型等对检测结果的可靠性的影响,以及检测时的加热措施等。近年在光热红外技术的基础上发展的超声红外技术发挥了红外技术和超声技术的优点,该方法以超声脉冲作为激发源,当超声脉冲在试件中传播遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温,从而利用红外热像技术可以检测出这些裂纹缺陷。南京大学的研究人员将红外热像仪与超声波发射器结合起来,用超声波发射器对有疲劳裂纹的铝合金试件进行热量输入,拍摄红外热图像,与计算机模拟计算结果进行比较,试验表明超声红外热像技术对裂纹缺陷、不均匀结构及残余应力非常敏感。3. 在建筑节能中检测的应用在建筑物节能检测方面,瑞典早在1966年就开始采用红外热像技术检测建筑物节能保温,美国、德国等许多国家的研究人员也都进行过这方面的研究工作。在我国随着对建筑节能要求的提高,建筑物的节能检测势在必行。目前我国对建筑围护结构传热系数的检测多采用建筑热工法现场测量,红外热像技术只作为辅助手段,通过检测围护结构的传热缺陷,综合评价建筑物的保温性能。目前我国红外热像技术在节能检测领域的研究尚属于起步阶段,还没有确定的指标对建筑物的红外热像图进行节能定量评价,由于建筑物立面形式和饰面材料的多样性,编制专用的图像分析与处理软件和建立墙体内外饰面材料的发射率基础数据库成为该项研究中一个重要环节。4. 在建筑物渗漏检测中的应用建筑物的渗漏有由供水管道引起的渗漏和屋顶或外墙开裂引起的雨水渗漏等,由于渗漏部位的含水率和正常部位不一样,造成在进行热传导的过程中二者温度有差异,因而可以用红外热像仪拍摄湿度异常部位墙面的红外热图像,与现场直接观察结果进行对比分析,可以找出渗漏源的位置。结语红外热像技术在无损检测中的应用前景非常广泛,相应的研究工作也取得了初步的研究成果,并逐步地从定性研究走向定量研究,但总体来说在目前尚属起步阶段,能应用于实际工程中的研究成果不多,且多属一些定性的结论,缺乏相应的操作规范。因此,应加强定量研究工作,提高对红外热像图的处理能力。
  • CISILE 2013之材料检测技术报告集锦
    仪器信息网讯 2013年5月15日,“第十一届中国国际科学仪器及实验室装备展览会(CISILE 2013)”在北京召开。作为CISILE 2013的重要活动之一,2013中国科学仪器及实验室装备高峰论坛同期举行。   本届展会由中国仪器仪表行业协会主办、北京朗普展览有限公司承办。展会为期3天,展位超过850个,汇聚了近600家国内外科学仪器及实验室装备相关展商,集中展示当前科学仪器产业的新产品与新技术。 材料检测技术报告会议现场   作为CISILE 2013的同期活动,由中航工业航材院组织举办的“材料检测技术报告”在中国国际展览中心综合服务楼205会议室召开,主办方特别邀请了6位工作在一线的材料检测专家作了精彩报告。 中国航空工业集团公司北京航空材料研究院赵文侠工程师 报告题目:先进发动机用高温合金超温组织演化与评价   当燃气涡轮在使用中经历了超温状态时则可能严重地损害涡轮叶片的组织,如不排除,可能导致发动机过早失效。赵文侠等人通过观察试验超温失效的涡轮叶片在电子显微镜下的某些显微组织特征,为航空发动机作超温检查提供了参考。 中国航空工业集团公司北京航空材料研究院刘颖韬高工 报告题目:蜂窝积水红外热像检测的研究进展   刘颖韬指出,对于蜂窝结构复合材料的积水问题,红外检测方法具有灵敏度高、检测结果直观、效率高等优点,弥补了X射线、液晶法、超声脉冲回波3种常用检测方法的缺点,不过红外检测方法同样面临着检测设备的便携性、积水量定量评价两个挑战。 中国航空工业集团公司北京航空材料研究院黄新跃博士 报告题目:高温合金疲劳裂纹扩展的过载行为研究   黄新跃选用MTS公司的LANDMARK系列试验机、电阻式高温炉以及裂纹长度监测系统,对三种高温合金进行了高温恒幅裂纹扩展试验,并发现三种高温合金在r=1.6时均有明显的过载迟滞现象,但是迟滞寿命较短。 国家建筑工程质量监督检验中心刘盈高工 报告题目:既有玻璃幕墙粘结可靠性现场检测方法研究   刘盈介绍到,该科研项目成功研制出适用于既有玻璃幕墙粘结安全性现场无损监测/检测的设备,研发了适用于该现场监测/检测工作的有限元分析软件,找到了简便易行的既有玻璃幕墙硅酮结构胶模量测试方法,建立了既有玻璃幕墙粘结安全性现场检测方法。 中国建材检验认证集团股份有限公司孙宏娟博士 报告题目:环境舱技术在建筑材料测试中的应用   孙宏娟介绍到,环境舱技术的典型研究机构包括美国劳伦斯伯克利实验室等,该技术的特征之一就是需要配备各类检测仪器,如挥发性有机物检测仪、红外线光谱仪、激光粒径检测仪等,主要应用在材料测试、组件检测、环境评估以及产品认证等领域。 钢铁研究总院粉末冶金研究室X射线结构分析实验室郑毅高工 报告题目:纳米体尺寸分布的X射线小角散射分析及其应用   郑毅说到,目前纳米颗粒粒度分布测试方法包括电镜+图像分析仪法、光子相关谱法、BET吸附法以及X射线小角散射法,其中X射线小角散射法的测试范围为1-300nm,其优势在于测定结果为一次颗粒的粒度分布,即使颗粒不能很好分散;不过当孔与颗粒处于同一量级时,该法则不能区分。 中国航空工业集团公司北京航空材料研究院刘高扬工程师主持会议
  • CISILE 2015之材料检测技术专题论坛召开
    仪器信息网讯 2015年4月24日上午,第十三届中国国际科学仪器及实验室装备展览会(CISILE 2015)同期在北京国家会议中心召开了&ldquo 材料检测技术专题论坛&rdquo 。据悉,该论坛由中航工业航材院组织举办,30余位从事材料检测工作的专家学者、企业代表参会。 会议现场 北京航空材料研究院 胡本润 报告题目:损伤容限力学性能测试与表征技术研究   损伤容限设计思想,即承认结构在服役期内会带有初始缺陷或在使用中疲劳、腐蚀或偶然损伤等引起的裂纹。因此其结构应该设计成能够容忍裂纹存在,并在给定未维修期内的扩展,但不能导致结构的失效。在这种思想的指导下,胡本润针对材料疲劳裂纹扩展行为及结构件疲劳裂纹扩展行为进行了研究,并基于断裂力学进行了疲劳全寿命预测。 北京航空材料研究院 曲士昱 报告题目:微束分析技术在材料研究领域中的应用   微束分析仪器包括电子探针、扫描电镜、透射电镜、离子探针、二次离子质谱、质子探针、光电子谱、电子衍射仪、能谱仪、波谱仪等,常用于研究微区的化学成分、表面形貌和结构特征。曲士昱在报告中介绍了上述微束分析仪器各自的优势及在材料研究方面的典型应用案例,并指出微束分析技术未来有望发展成为材料组织-结构-成分一体化的分析技术。 高德英特(北京)科技有限公司 陈文徵 报告题目:表面分析技术在能源、电子、半导体及生物医学产业上应用实例   纳米表面成分状态分析仪器公司ULVAC-PHI可以提供X射线微区聚焦扫描光电子能谱仪(XPS),双筒镜俄歇电子能谱仪(AES),飞行时间型二次离子质谱仪(TOF-SIMS)和动态二次离质谱仪(D-SIMS),陈文徵在报告中逐一分享了上述设备在在能源、电子、半导体及生物医学产业方面的具体应用案例。 北京航空材料研究院 杨党纲 报告题目:无损检测设备的研发与应用研究   杨党纲介绍说,北京航空材料研究院自80年代出开始研究超声C扫描技术,有着丰富的研制经验。此外,北京航空材料研究院在叶片壁厚自动测量、叶片型面测量、涡流C扫描等方面开发了多种实用产品,与多家无损检测单位有合作。随后,杨党纲在报告中介绍了喷水超声检测系统、相控阵超声检测技术等产品的功能特点及适用领域。 国家钢铁材料测试中心 刘正 报告题目:LIBS-OPA研究合金铸件表面质量   1962年Jarrell Ash的Brech论文标志着激光烧蚀分析技术的诞生;2012年,钢研纳克生产出了第一台商用化的激光原位分析仪(LIBS-OPA)。刘正介绍说,LIBS-OPA具有定量分析、深度分析、定点分析、线扫描模式、面扫描模式等功能,可方便的进行材料表面和近表面的成分分布分析,给出工艺和产品表面质量的清晰判据,具有较好的前景。 北京理化测试中心 刘伟丽 食品接触有机材料安全评价技术   食品接触材料中的添加剂与食品接触过程中会发生迁移而进入食品,从而对人体健康产生潜在的危害,因此需要对食品接触材料中的添加剂是否安全进行评价。北京理化测试中心目前已开发出掺杂再生料及部分添加剂等两种化学实验分析方法,还利用迁移数据结合数学模型建立了PVC等几种塑料材料中有潜在危害的添加剂迁移模型。 北京航空材料研究院 李帆 冶金化学分析实验室自动化设备研究进展   当前,冶金化学分析实验室的中药分析手段包括试发化学、发射光谱、气体分析等多种方法,这些方法多采用液体进样进行分析,并且手工操作步骤居多,如此一来,不仅劳动强度大,结果的准确度也得不到保证。针对这种需求,李帆等人开发出了自动加标器(加标准溶液)、自动定容仪(稀释定容),代替了传统手工加液,最大限度避免了不同操作者之间的人为误差,并且降低了成本。
  • 飞纳用户专访 - CTI 华测检测谈金属材料失效分析
    华测检测认证集团股份有限公司成立于 2003 年,总部位于深圳,是第三方检测与认证服务的开拓者和领先者,中国检测认证行业首家上市公司(股票代码:300012),为全球客户提供一站式测试、检验、认证、计量、审核、培训及技术服务,致力于在政府、企业和消费者之间传递信任,以“为品质生活传递信任”为使命,全面保障品质与安全,推动合规与创新,实现更健康、更安全、更环保的高质量发展。华测检测认证集团股份有限公司中心材料实验室能够为工业材料领域提供全方位的材料检测、无损检测、失效分析、质量评定和安全评估等服务,适用于金属、高分子等各类原材料以及紧固件、机械零部件、塑料、橡胶等各类成品。近日,我们有幸采访到 CTI 华测检测杭州中心材料实验室,主要负责金属失效分析的温洪波工程师,结合在测试分析中的实际案例,为我们分享了金属材料失效分析的思路和方法,我们一起来看看吧。 失效分析工程师 温洪波Q1. 飞纳电镜 :目前造成金属件失效的主要原因有哪些? 温工 :通常原材料问题、后续加工工艺和热处理不当、金属件工作时受力状况及其工作环境等,都会造成金属件的失效。比如原材料内生和铸造过程中产生的不同类型的夹杂物;工艺不当时会产生裂纹、折叠、过烧等缺陷,以及机加工表面粗糙度较大造成应力集中、热处理不当造成的金相异常、内应力过大、电镀涂层造成的氢脆等;由接触应力导致的磨损、剥落等,这些都是常见的失效方式。Q2. 飞纳电镜 :您在进行失效分析时的一般流程是怎样的呢? 温工 :通常当我们对金属件进行失效分析时,会进行宏观观察、微观检测、化学成分定量检测、金相组织观察以及显微硬度检测等,并结合综合受力状态进行综合分析并得出失效结论。其中作为失效分析必不可少的一个环节,想要确定断裂机制、裂纹局部扩展途径、确认裂纹源以及对异常点进行成分定性分析时,就必须借助扫描电镜来进行微观层面的检测。Q3. 飞纳电镜 :有没有常见的金属材料失效分析的案例分享呢? 温工 :比如外球笼螺纹在装配过程中锁紧螺母时发生断裂,如果客户想要对失效产品进行相应的改进,就必须要找出断裂的微观机制,进而找出产品失效原因。宏观分析图 1 为外球笼螺纹处断裂示意图,在第 2 螺纹处发生断裂,断口匹配不太紧密,存在少量变形。图 2 为其断口宏观形貌,整个断口分为两个区域。区域 A 较光亮,存在发亮的小刻面,为脆性断裂;区域 B 较粗糙,呈现暗黑色,有断后磨损所致的光亮地带,扩展方向如图中黄色箭头所示,图中红色方框为终断区,存在 45° 的剪切唇,因此区域 B 为塑性断裂。根据断口细小的弧形纹路及 A、B 区域断裂特征判断,外球笼在断裂时受扭转力作用,断裂起始于 A 区域。图 1 外球笼螺纹处断裂示意图图 2 断口宏观形貌微观分析在这个失效分析案例中,我们对处理好的样品进行微观机制的探究时,使用飞纳大仓室扫描电镜 Phenom XL G2 可以快速地对断口进行微观形貌观察,以及对断口异常区域进行能谱分析。对外球笼螺纹处断口的 A 区域、B 区域进行微观分析,区域 A 微观形貌为河流花样,为典型的解理形貌。区域 B 微观形貌主要由韧窝 + 珠光体片组成。区域 A - 断裂起始区区域 B - 心部扩展区区域 B - 边缘扩展区区域 B - 终断区再结合失效件的成分分析、金相分析和硬度分析结果,可以综合判断出外球笼螺纹处内部存在孔洞及裂缝,因而产生严重的应力集中,造成锁紧螺母时发生断裂。CTI 华测检测向客户提供详细的分析报告Q4. 飞纳电镜 :目前使用下来,您觉得飞纳电镜怎么样? 温工 :飞纳电镜是我们进行微观层面失效分析的有力工具,对于我们快速判断裂纹机制,寻找裂纹源非常重要。这台设备抽真空不到 30 秒,并且操作很简单,可以自动消磁/消像散,Revisit 样品位置一键回溯、自由切换低真空模式等,对各类样品的检测都非常便捷,基本上只需要几分钟就可以完成一个样品的微观测试。Q5. 飞纳电镜 :当初为什么会选择飞纳电镜呢? 温工 :像我们这样综合性的第三方检测机构,平时接收的样品量很大,种类多样,飞纳电镜对于我们而言,不仅是帮助我们完成了微观形貌和成分的测试,更大的价值是这台扫描电镜提高了我们的检测效率,因其操作简便,缩短了我们的培训时间,节省了我们学习成本,对我们帮助很大。目前 CTI 华测检测杭州中心材料实验室的金属失效分析服务可以涵盖汽车零部件、精密零部件、模具制造、铸锻焊、热处理、表面防护等多类金属相关行业,同时包括机械性能、化学成分分析、金相分析等丰富的金属材料检测服务,欢迎大家问询和参观。
  • 一文掌握超声无损检测技术及行业市场现状
    关于超声无损检测技术1929年,前苏联科学家索科夫率先提出利用超声波穿透物体去探测内部缺陷和结构,建立了早期的超声波成像系统。20世纪60年代,超声检测技术已经成为有效而可靠的无损检测手段,并在工业探伤领域得到广泛应用。进入20世纪90年代,超声无损检测仪器的数字化和电子计算机技术的快速发展催生了超声检测新技术的开发,超声衍射声时技术(TOFD)和相控阵技术(PA)等科技创新方法不断涌现,使得超声检测结果可以进行数据追溯。从技术原理来看,人们能够听到声音是因为声波传到了我们的耳内,声波的频率在20HZ~20,000HZ,频率低于或超过上述范围时人们无法听到声音,频率低于20HZ的声波称为次声波,频率超过20,000HZ的声波称为超声波。声波、次声波、超声波都是机械波,有声速、频率、波长、声压、声强等参数,在界面也会发生反射、折射。机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射、折射和波形转换。这种现象可被用来进行超声波探伤。 传统超声检测采用脉冲法进行检测,高压发生器发出的电压施加在探头上,由于压电效应的存在探头发射出超声波脉冲,通过声耦合介质(如机油或水等)进入材料并在其中传播;遇到缺陷后,部分反射能量沿原途径返回超声探头,超声探头又将其转变为电脉冲,经仪器放大而显示在显示端的荧光屏上。根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。脉冲回波探伤法通常用于锻件、焊缝等的检测。可发现工件内部较小的裂纹、夹渣、缩孔、未焊透等缺欠。被检测物要求形状较简单,并有一定的表面光洁度。为了成批地快速检查管材、棒材、钢板等型材,可采用配备有机械传送、自动报警、标记和分选装置的超声探伤系统。近年来,超声无损检测仪器的数字化和电子计算机技术的快速发展催生了超声检测新技术的开发,超声相控阵技术(PAUT)逐渐成为无损检测行业主要技术发展趋势,应用范围得到了不断推广,传统的常规脉冲回波超声技术正逐渐被超声相控阵技术和全聚焦技术等替代。超声相控阵技术是借鉴相控阵雷达技术的原理发展起来,起先应用于医学领域,最初系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限,随着电子技术和计算机技术的发展,超声相控阵技术逐渐用于工业无损检测,尤其是在核工业与航空航天领域取得了很多技术上的突破,并越来越广泛地应用于锅炉、压力容器、轨道交通、航空航天的无损检测。常规的超声检测通常采用一个压电晶片来产生超声波,一个压电晶片只产生一个固定的声束,其声束传播是预先设定的,在固定材料中不能变更;超声相控阵技术则采用了多个压电晶片,这种晶片排列称为阵列,阵列中的每一个晶片称为阵元,阵列晶片组辐射的总能量形成超声束。通过控制阵列中各阵元的激励(或接受)脉冲的时间延迟,改变由各阵元发射(或接受)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方面的变化,达到检测的目的。关于超声无损检测市场根据市场咨询机构Markets and Markets研究报告显示,2018年全球无损检测市场(NDT)容量约为83亿美元,预计到2024年全球市场规模将达到126亿美元,其中超声检测将占据最大比例的市场份额。2016年超声检测(UT)市场容量为24.4亿美元,预计2022年超声检测市场规模增长至39.3亿美元,2016年至2022年的年复合增长率为8.3%。(数据来源:Markets and Markets)当前美国是超声无损检测市场消费额最高的国家,2015年约占全球无损检测仪器市场的35.6%;其次是欧洲,占据了整个市场容量的26.5%左右。近年来,由于亚太地区基础设施的快速发展和制造业自动化水平的持续提升,中国、印度、日本和韩国等国家已经成为全球无损检测市场的主要增长区域,约占整个市场容量的24.2%。(数据来源:Markets and Markets)随着我国传统产业的转型升级,新兴行业保持高速发展,新材料、新结构和新工业不断涌现,对无损检测行业提供持续发展机遇。与此同时,虽然国内企业总体水平和综合实力有了很大程度的提高,在无损检测基础理论、技术开发、仪器设计和研制及产品应用等方面都已在世界占有重要一席。但在一些高端无损检测仪器制造方面,与欧美等发达国家仍存在一定差距,如在全聚焦相控阵超声检测的应用领域方面,仍然大量采用进口的国际品牌。根据中国海关统计相关数据,2017 年至 2020 年我国进口的无损检测设备(不包含探头和配件)情况如下:从上表可以看出,受超声波探伤检测仪进口额逐年快速上升的影响,我国无损检测设备近年来进口额呈持续上升趋势,其中超声波探伤检测仪进口额占无损检测设备的比例总体逐年上升,2017年至2020年的占比分别为43.68%、45.28%、50.66%和 46.98%。具体从超声无损检测仪来看,根据中国海关统计相关数据,2017年至2020年,我国超声波探伤检测仪(海关编码:90318031, 不包含探头和配件)进口金额分别达48,928.02万元、68,534.43万元、83,382.45万元和 69,819.16万元,进口额总体逐年快速上升,国产进口替代市场空间广阔。关于超声无损检测仪器企业总体而言,目前专门从事超声无损检测仪器研发、生产和销售的公司相对较少,国外主要以奥林巴斯、美国贝克休斯、英国声纳、美国捷特、法国M2M等为主,国内则包括汕超研究所、超声电子、中科创新、多浦乐等。奥林巴斯(Olympus Corporation)成立于1919年,是一家全球性的世界精密光学技术企业,业务领域包括映像领域、医疗领域和生命科学领域等。目前已在日本东京证券交易所、德国慕尼黑证券交易所、柏林证券交易所和美国OTC市场等多地上市,股票代码均为OOPT。奥林巴斯旗下的无损检测子公司(Olympus NDT)可为用户提供品类齐全的超声/涡流探伤设备系列产品,具体包括探伤仪、手持测厚仪、探头、棒材和管材检测系统、NDT系统的仪器设备和工业扫查器。据奥林巴斯2019年4月至2020年3月财年报告,其无损检测设备全球市场占有率为30-40%,竞争对手为贝克休斯。贝克休斯(Baker Hughes)成立于1982年,为全球石油开发和加工工业提供产品和服务的大型企业。贝克休斯系纽约证券交易所上市公司,股票代码为BKR。2016年,通用电气(GE)将其下属油气业务部分(含检测技术公司GE Inspection Technologies)与贝克休斯合并,成为全球第二大油服企业。贝克休斯为无损检测全球领导者,提供优质的无损检测解决方案和服务,其产品包括超声检测设备、涡流检测设备、射线照相系统和高清远程视觉检测等。 英国声纳(Sonatest)成立于1958年,在超声产品无损检测设备及附件的制造和生产都处于全球领先地位,具体产品包含超声波探伤仪、测厚仪、相控阵探伤仪和探头等,主要适用于高衰减材料检测、焊缝、腐蚀检测、大锻件、大铸件、高衰减和非金属材料探伤。英国声纳的下游客户包括波音公司、空中客车、壳牌石油、E.ON电网和网络铁路等国际知名企业。美国捷特(Zetec)始于1968年,是美国罗珀科技公司旗下的子公司,是全球无损检测解决方案的领军企业之一,在加拿大魁北克市设有全球工程和制造中心,并在美国西雅图设有公司总部。美国捷特无损检测产品可以分为超声检测和涡流检测两大系列,具体包括超声检测仪器/软件/检测探头和楔块和涡流检测设备/软件/探头等产品种类,下游客户覆盖电力行业、石油和天然气行业、航空航天、汽车制造、军工、铁路以及重工业和制造业。法国M2M为国际知名数字超声相控阵与涡流设备设计与制造商,由法国原子能委员会(CEA)于2003年设立,总部位于法国巴黎,2008年被Eddyfi Technologies收购。Eddyfi Technologies为世界知名NDT检测科技公司,致力于为航空航天、能源、采矿、发电和运输行业等提供检测设备、软件、传感器等多 元化服务。汕超研究所成立于1982年,位于广东省汕头市。汕超研究所主营业务为医用超声显像诊断系统、医用X射线影像系统、无损检测设备等的研发、生产和销售,是国内医用超声诊断设备领域的知名企业。超声电子成立于1997年,是以电子元器件及超声电子仪器为主要产品的高新技术企业,主要从事印制线路板、液晶显示器及触摸屏、超薄及特种覆铜板、超声电子仪器的研制、生产和销售。超声电子为A股上市公司,股票代码000823,2020年营业收入51.69亿元,其中超声电子仪器的销售额为6,413.85万元。超声电子创建的“汕头”牌系列产品,能够提供丰富多样的医用超声诊断系统和无损检测设备。中科创新成立于2003年,位于湖北武汉市,公司产品主要包括便携式超声波探伤仪和多通道自动化检测设备,并可以为特殊市场用户提供量身定制的个性化服务,一直致力于为钢铁、机械装备制造、特种设备、石油化工、轨道交通、航空航天、船舶制造、电力能源等行业提供超声波无损检测应用解决方案和技术服务。多浦乐成立于2008年,聚焦无损检测设备的研发、生产和销售,致力于为客户提供超声无损检测专业解决方案及检测仪器产品,属国家认定的高新技术企业之一。多浦乐是国内首家推出高性能超声相控阵检测设备的企业,Phascan超声相控阵检测仪于2014年被评为国家重点新产品,并于2017年成为首台中国特检院举办相控阵超声培训所使用的国产检测设备,亦为首台经过中国特检院测试认证的超声相控阵检测设备。多浦乐2020营业收入1.28亿元。
  • 河工大胡宁教授获批重大仪器项目“多模态相控阵非线性超声检测仪”
    据河北工业大学网站消息,近日,由胡宁教授主持申报的国家重大科研仪器研制项目“多模态相控阵非线性超声检测原理及仪器研制”获得国家自然科学基金委员会批准立项(批准号:12227801),项目直接经费845万元。这是河北工业大学今年获批的又一项重大科研项目,也是河北工业大学近年来第二次获批重大仪器项目。“多模态相控阵非线性超声检测原理及仪器研制”项目面向增材制造航空发动机关键零部件中微裂纹和残余应力的可视化与智能化检测的重大需求,拟开发出高分辨力、高灵敏度、高效的多模态相控阵非线性超声检测仪器。仪器的特色体现在原创的多模态非线性超声相控阵探头上,涵盖多模态相控阵工作模式设计和机理研究、多模态超声探头设计与复合增材制造、多模态相控阵超声大数据获取及验证、基于大数据和深度学习算法的微裂纹与残余应力智能评价软件系统、多模态相控阵非线性超声仪器系统集成等五方面的研究内容与重点突破。包括复杂相控阵声场下微裂纹与残余应力特征评估、复杂微裂纹和残余应力的信号解耦、探头面投影微立体光刻-微滴喷射-电射流复合增材制造等三个关键技术难题。该项目将最终实现仪器在现场和远程两种工作模式下对早期微裂纹和残余应力的高精度检测与评价,确保增材制造航空发动机关键零部件的成形质量,为零部件的疲劳寿命和服役性能评估提供指导,助推我国超声无损检测仪器在基础原理、技术创新方面取得突破性进展,填补世界范围内非线性超声检测仪器空白。仪器系统简图
  • 干货| DGS相控阵铸锻件检测您知道多少?
    什么是DGS?DGS曲线是描述规则反射体的距离、回波高及当量大小之间关系的曲线;以横坐标表示实际声程,纵坐标表示规则反射体相对波高,用来描述距离、波幅、当量大小之间的关系曲线,称为DGS曲线。常规超声的DGS检测,以检测铸锻件为主,当然也可以使用DGS进行焊缝的探伤。DGS与DAC的主要区别DAC需要每个客户根据自己的情况、要求和试块,逐点自行绘制曲线。而DGS不需要客户逐点地自己绘制曲线,仪器通过计算碳钢中的声束衰减分布得出的曲线,并内置在仪器中,用户只需要调用DGS曲线即可得到与DAC曲线类似的评定曲线。每一个DAC曲线对应的只是一个当量尺寸的曲线,这样对于不同当量的检测要求,就需要制作大量对应当量的平底孔或者横通孔试块进行曲线绘制。而DGS针对的当量从0.5mm左右开始,一直到平面都有对应的曲线,因而经过校准后,可以直接给出相应的缺陷当量值。DGS曲线基于理想碳钢材料中的声束衰减进行的理论技术得出的,操作人员需要在检测过程中,根据实际情况调整衰减系数,以得到更加接近真实的衰减。而且需要注意的是DGS计算出的曲线未考虑材料衰减的影响。DGS设置只需要一个校准试块即可,无需大量的校准试块。相控阵DGS与常规DGS的区别常规DGS只有一个角度和一组声束,而相控阵DGS有多个角度或者多组声束,每个角度或声束都有DGS曲线,因而相控阵DGS的缺陷计算量更大。常规DGS一般0度探头使用平底孔校准,角度探头用横通孔校准。而相控阵扇形扫查由于是多角度扫查,一般以使用横通孔为主进行校准。常规DGS只能看波形判断缺陷,而相控阵DGS可以看到直观的扇形扫查图像,并判断缺陷的位置。MXU软件的4.4版本包含距离增益定量(DGS)方式,在使用OmniScan MX2或OmniScan SX探伤仪进行检测时,这个DGS方式可以简化检测过程。开发创建DGS1系列和A24 Atlas系列探头的目的是支持MXU软件4.4版本中的DGS功能。两种探头系列可以用在多种检测应用中,例如:对焊缝(包括接触空间有限的焊缝)、桥梁的销钉和螺栓,以及应力腐蚀裂纹的检测。在使用这些探头时,只需执行几个简单的步骤,就可以对软件进行设置,以完成符合规范的DGS检测。DGS1系列探头的特性• 检测较厚的表面:通过使用40°到70°的横波扇形扫查方式,对6.35毫米到19毫米厚的表面进行手动焊缝检测,这类被测样件包括对接接头、角接接头及T型接头。• 覆盖很宽的厚度范围:2.0 MHz和4.0 MHz探头具有这个特性。• 在狭窄的空间中工作:探头楔块组合件拥有较低的剖面,可用于接触式角度声束检测。• 熟悉的外壳类型:使用相控阵技术的标准AMR外壳。• 检测多种样件:可以检测焊缝、应力腐蚀裂纹(SCC)以及实心和空心的重型钢锻件。A24 Atlas系列探头的特性• 使用寿命长:可以更换、透明的防磨面延长了探头的使用寿命。• 覆盖很宽的厚度范围:2.0 MHz和4.0 MHz探头具有这个特性。扇形扫查增加了覆盖范围。• 检测多种样件:可以检测桥梁的销钉和螺栓,以及锻件。
  • 【第三方检测】钢中非金属夹杂物的原位研究应用
    钢中非金属夹杂物是指钢中不具有金属性质的氧化物、硫化物、硅酸盐和氮化物。它们是钢在冶炼过程中由于脱氧剂的加入形成氧化物、硅酸盐和钢在凝固过程中由于某些元素(如硫、氮) 溶解度下降而形成的硫化物、氮化物,这些夹杂物来不及排出而留在钢中。随着近代精炼技术的发展,钢的“洁净度”大大提高,夹杂物在钢中的含量虽然极微,但对钢的性能却具有不可忽视的影响,非金属夹杂物在钢中破坏了金属基体的连续性,致使材料的塑性、韧性降低和疲劳性能降低,使钢的冷热加工性能乃至某些物理性能变坏。钢中夹杂物对钢性能的影响主要在对钢韧性的危害,而且危害程度随钢的强度增高而增加。然而其中夹杂物的数量及分布形态是影响钢材质量的重要指标之一。目前,可以利用扫描电镜分析和原位的动态研究对夹杂物的形态特征及分布进行研究。近日就有学者对于304不锈钢中夹杂物在变形过程中对于材料的微观结构的影响进行了相关的研究。原位(In situ)测试基于原位拉伸测试成果案例1[1]:针对夹杂物对304不锈钢变形行为影响的研究,本文通过原位拉伸的实验手段,采集实验过程中各载荷值下的SEM数据和EBSD数据,以此来分析各阶段夹杂物对304不锈钢基体变形行为的影响。通常,夹杂物对拉伸条件下基体性能影响的问题只能通过近原位测试方法来研究。只能用组织状态基本相同的几个试样拉伸,然后在达到预定载荷时停止装载和卸载试样。然后,抛光每个样品的表面以观察样品表面的变形。这种方法有很多缺点。它不能保证每个样品的均匀性,在典型现象发生时不能准确获得负载值,并且不能在同一区域内获得不同应力状态下的变形。这些缺点使得无法确保因素的独特性。与原位拉伸试验相比,原位拉伸试验具有以下三个优点:1.观测区域可以精确定位,在任何载荷下都可以用坐标求出观测区域;2.准确采集同一区域不同应力状态下的SEM和EBSD信息;3.它能准确地找出微裂纹萌生、扩展和宏观断裂的时刻。图1为304不锈钢的原位拉伸实验全过程,展示了不同载荷状态下材料的微观形貌。图1 原位拉伸微观过程 (a) F=0 N(δ= 0mm) (b) F= 300 N(δ =0.061 mm) (c) F=600 N(δ =0.417mm) (d) F =800 N(δ= 1.102mm) (e)F= 800 N(δ= 1.102mm) (f) F=1130 N(δ =2.233 mm) (g) F图2 不同载荷下夹杂物的形貌(a) F= 600 N (b) F = 700 N (c) F=800 N (d) F=900 N (e) F= 1000 N (f) F= 1100 N.由图2可知,当夹杂物的长轴方向与拉伸载荷方向垂直时,孔洞及微裂纹的扩展趋势最为剧烈,促进断裂行为的发生;当夹杂物的长轴方向与拉伸载荷平行时,孔洞及微裂纹的扩展趋势更为平缓,对于断裂行为的危害作用相比较小。图3 原位观察单晶和多晶MnS颗粒的KAM图 (a) F= 0N (b) F= 300 N (c) F=500 N (d) F= 600 N.由图3可知,原位生成的MnS夹杂物单晶形态和多晶形态并存,在变形过程中两者变形行为有明显差异且对于基体变形行为的影响也不同。结论:本文借助原位拉伸实验的手段进行SEM图的信息采集分析,EBSD数据的信息采集分析来研究MnS夹杂物对基体变形行为的影响。得到的结论如下:1.单晶态的MnS颗粒在变形过程中只会发生和基体界面的脱粘现象,多晶MnS颗粒会多发生内部断裂现象偶尔会发生与基体界面脱粘现象;2.在变形过程中,长轴方向垂直于拉伸方向的MnS颗粒比长轴方向平行于拉伸方向的MnS颗粒对于基体的影响更加的显著,对于基体的破坏作用更强;3.MnS颗粒的存在会促进变形过程中孔洞的形核,为孔洞聚集提供机会,促进材料产生准解理断裂特征,使材料失效提前,强度韧性下降。欧波同材料分析研究中心欧波同材料分析研究中心(以下简称“研究中心”)隶属于欧波同(中国)有限公司,研究中心成立于2016年,是欧波同顺应市场需求重金打造的高端测试分析技术服务品牌。旗下的核心团队由一大批“千人计划”、杰出青年和海归博士组成,可为广大客户提供系统性的检测解决方案。研究中心以客户需求为主导,致力于高端显微分析表征技术在国内各行业的推广,旨在通过高质量、高效率的测试分析服务帮助客户解决在理论研究、新产品开发、工艺(条件)优化、失效分析、质量管控等过程中遇到的一系列材料显微表征和分析的问题。
  • 工业4.0时代,EVIDENT是如何为制造商优化螺栓孔涡流检测潜力的?
    涡流技术可以用于检查导电材料以检测不连续性,同时ECT(涡流检测)能够检测裂纹和腐蚀,主要用于验证受检件的完整性。它还可用于测量金属的电导率和测量涂层和镀层厚度。与其他无损检测(NDT)方法相比,涡流检测在适应工业4.0方面表现出优秀的潜力。由于某些固有特性,ECT技术已经数字化并集成到内嵌式机器人或协作机器人系统内。实现这种集成的一些优点包括:不需要表面接触或耦合剂,从而消除了部件损坏的风险。它速度快,可提供即时结果,因此可实现高速检测。透过涂层和漆层进行检测,因此不涉及表面处理。这些原因也是选择ECT作为磁粉(MT)和渗透检测(PT)替代解决方案的主要依据。工程自动化螺栓孔检测ECT的特质使其成为一种适用于高速且苛刻的生产线环境的易用型高效技术。我们还专门为关键工业应用设计了检测设备。例如,螺栓孔检测是包括汽车和航空航天在内的多种行业的制造和运行中环境所需的应用。需要对部件中的螺栓孔进行验证,以进行质量控制和保证及维护。一些制造商已经在其生产线上安装了NORTEC 600涡流探伤仪和我们经过优化的ECT螺栓孔探针和扫描仪。该探伤仪的功能易于使用,并能集成到自动化、远程控制和机器人系统中。ECT专用螺栓孔扫描仪涡流螺栓孔扫描仪可用于检测螺栓孔内出现的裂纹。集成到自动化嵌入式系统中时,我们的涡流旋转扫描仪可在孔内旋转螺栓孔探针或埋头孔探针,同时由其他部件(例如机器人部件)执行自动步进。这样便可高效地检测金属零件中的多个螺栓孔,从而帮助达到目标生产线速度。为了优化系统配置,我们的扫描仪附带了POWERLINK技术,使NORTEC 600软件能够自动识别型号,并为用户提供预定义的频率、增益和滤波器设置参数。我们的螺栓孔扫描仪的特点:速度范围为600至3000 rpm频率范围为100 Hz ~ 6 MHz探针接头类型:4针Fischer4针LEMO旋转扫描仪的专用涡流探针涡流旋转扫描仪的探针由塑料或不锈钢制成,有不同的尺寸可供放置在受检螺栓孔中。我们还提供埋头孔探针,专门用于检测螺栓孔的埋头孔开口。以下是可供选择的一些型号:解读ECT结果和设置警报当涡流探针检测到螺栓孔中的裂纹时,其阻抗会发生变化,并在涡流仪器的阻抗图和带状图上出现信号。可以设置警报箱来捕获信号的特定变化。仪器通过I/O接头上的模拟输出提供信号的垂直和水平分量。涡流探针在螺栓孔中检测到的裂纹(左)与带状图和阻抗图上超出了警报箱公差范围的相应信号(右)自动化解决方案―嵌入式机器人检测系统如下图所示,可以设计一个将涡流设备与您的PC集成的解决方案。PC控制NORTEC设备,接收警报触发信号,并与机器人或cobot(协作机器人)通信并控制后者。我们看到的示例系统有一个机器人手臂,它被编程为握住旋转扫描仪的探针并将其插入生产线上零件的螺栓孔中。一种潜在机器人检测解决方案的示意图,其中由Evident提供的ECT部件以蓝色标示检测流程的数字化由可实现全新、更富有成效的检测业务模式,涡流检测(ECT)技术可轻松融入嵌入式检测流程数字化改造计划中。一旦集成到数字化系统中,NORTEC 600解决方案产生的输出信号就可以配置为在检测到螺栓孔中的裂纹时触发警报。这种ECT型系统可靠而又快速,可以提高使用者的决策准确性和效率。
  • 超声无损检/监测技术军事应用领域的发展动向与展望
    超声波是频率高于20 kHz的机械波,具有频率高、指向性好、能量集中,穿透性强等特点,应用领域广泛。近些年来,超声波传感技术发展迅速,在医疗健康领域(健康监测、疾病诊断)、工业领域(设备无损探伤、厚度测量、超声成像等)、交通运输领域(无人机、船舶等定位、追踪、导航和监控等)和军事应用领域(生化战剂的测量、航空检测等)得到普及应用。超声无损检/监测技术由于具有速度快、效率高、检测成本低等优势,且能够在极端条件下(高温高压、低温低压)实现无源感知、无线传播获取物理量,在军事应用领域显示出巨大潜力。本文在梳理超声无损检/监测技术的基础上,重点介绍几个发达国家在无损检/监测技术的布局及研究进展,结合军事应用前景,对无损检/监测技术的发展趋势进行探讨与展望。1 超声无损检/监测技术发展历程超声无损检测始于20世纪30年代。1935年,前苏联科学家SOKOLOV首次对超声检测材料中缺陷的技术申请了保护。1945年,美国Firestone公司研制出第一台脉冲回波式超声检测设备。20世纪60年代,超声检测设备在灵敏度、分辨力和放大器线性等主要性能上取得了突破性进展。20世纪70年代以后,电磁超声检测试验成功。1975年,美国康奈尔大学MAXFIELD和HULBER研究了应用于金属缺陷检测的电磁超声换能器(EMAT)。20世纪90年代,电磁超声进入实际商业应用。1989年,Innerspec公司发明了第一台电磁超声检测设备,并于1994年成为第一个电磁超声设备产业化厂家。1995年,美国约翰霍普金斯大学OURSLER和WAGNER采用剪切波,研制了窄带脉冲激光复合EMAT,应用于高温条件下的超声检测。2004年,日本福冈工业大学MURAYAMA等报道了可交替发射和接收高灵敏度的兰姆波和SH波、且不受焊接部分影响的EMAT,可对储罐和管道进行检测。2010年,日本东北大学URAYAMA等报道了降低噪声和改进信号处理的EMAT/EC(涡流)双探针,能够在高温环境下实现对管壁变薄的监测。2016年,英国华威大学THRING等使用聚焦EMAT,利用新的提高分辨率的方法,产生了2 MHz的瑞利波,可检测毫米级深度的缺陷。超声检/监测技术是超声领域应用极为广泛的一门技术,在军事领域应用广泛,其不但可以保证质量和保障安全,而且还可以节约能源和资源,降低成本,提高成品率,获得显著经济效益。2 超声无损检/监测技术发展动向传统无损检测技术由于设备笨重、检测速度慢、可检测范围小及自动化程度低,在检测大规模设施中的潜在损伤中(尤其在复杂环境下)可行性差且花费巨大。因此,大规模设施生命周期内多缺陷的智能化检测问题对无损检测技术提出了新挑战,一方面推动无损检测技术向高速、多物理场及多技术融合等方向发展;另一方面,也促进了无损检测技术与结构健康监测技术的相互融合。2.1 无损检测与结构健康监测相融合的无源无线声表面波传感技术声表面波(SAW)传感器具有强大的抗辐照能力、较宽的温度工作范围、无源工作以及固有的固态单片结构等优点,且可结合雷达射频收发技术实现无线信号感知,保证其在恶劣空间环境中的多参数压线检测性能。此外,声表面波器件可大批量、低成本制造,可进行RFID(射频识别)编码,并且体积和重量都很小,可广泛应用于航空航天工业领域高温高压高辐射等环境。2020年,NASA资助美国佩加森公司研究开发了首个应用于无损检测和结构健康监测的大型声表面波无线多传感器阵列系统。该工作还对无线声表面波温度传感器系统的基本元素进行分析与研究,包括测试框架和传感器阵列、构建用于声表面波器件实施的新RFID编码理论、实现声表面波器件模拟和新实施案例,以及后处理技术的系统配置分析。在美国国家航空航天局的一系列计划中(包括小型航天器计划),充气式飞行器和降落伞是太空交通工具安全与经济运行所必需的两种系统,这些复杂的系统结构给设计、分析和测试新系统带来了挑战。新的无源无线传感器(无需更换电池)可精确测量降落伞和充气结构的应变,从而使工程师们能够更好地理解这些复杂系统的行为,开发出能满足任务需求的更精确的模拟工具和设计结构。该传感器不但具备足够的安全裕度,而且不会产生不必要的额外重量和成本。可单独识别的无线传感器被部署在柔性结构的多个位置上,并由集中式读取器读取,从而确保在系统部署期间动态测量应变。2020年,NASA资助充气式航天器和降落伞用无源无线应变传感器研究,该研究中SENSANNA公司开发了新型无源无线声表面波应变传感器对降落伞和充气结构进行实时应变测量。这些设备可以由约几十个到一百个可单独识别的设备组成,协同工作,并由数据聚合器同时读取数据,可以保证不会出现传感器间的干扰。根据传输功率限制和环境的不同,可以在几十米或更大范围内无线读取传感器标签。为了满足海军探测推进剂的颗粒裂纹,并通过密封火箭发动机壳体进行无线传输数据的需求,2018年美国国防部资助美国智能感知系统公司开发一种新的推进剂健康(PHEM)监测系统。该系统将超声换能器作为信号发生器与传感器进行创新集成,采用超低功耗元件和电子设计。这种超声波推进剂监测传感器与数据传输链路的独特集成,使PHEM可检测推进剂的颗粒裂纹,并通过密封火箭发动机外壳的金属壁完成传感器数据传输,其中,压电传感器和致动器、低功耗电子器件和超级电容器拥有超过10年的使用寿命。因此,PHEM系统能够为军用飞机上的推进剂驱动装置提供长期可靠的监控。该项目的第一阶段通过设计和制造实验室规模的原型,展示PHEM系统的可行性,并展示其探测密封金属壳内推进剂颗粒裂纹和传输数据的能力;项目的第二阶段,通过改进和优化PHEM系统,开发全功能的原型,并证明其符合海军要求。SAW传感器系统可测量温度、应变、氢气以及磁场的变化,小尺寸的优点使其可插入各种应用系统。2019~2021年,NASA持续资助美国佩加森公司研究一套完全可操作的4.3 GHz无源传感器系统,该系统满足航天航空无线电子内部通信要求,研究人员重点开发以下关键技术组件:声表面波无源温度和应变传感器件、新的传感器天线和芯片级传感器天线集成、提供自适应射场收发器的软件定义无线电(SDR)、SDR控制软件和提取关键传感器信息的后处理软件。初步的研究结果表明,所有关键技术组件都可在4.3 GHz和200 MHz带宽下构建和实施,这将是SAW传感器及其无线无源系统技术的飞跃。2.2 用于船舶、管道、容器、混凝土等裂痕的现场无损超声检测技术几十年来,为了减轻重量和降低船舶重心,5xxx系列铝合金一直用作海洋船舶的材料。铝合金的敏化过程会造成晶间腐蚀损伤和应力腐蚀裂痕。美国海军希望能够开发一种快速获取材料状态及其敏感性的方法。2018年,美国海军资助美国技术数据分析公司(TDA)开发一种紧凑的传感器套件和监控系统,以检测5xxx系列铝合金的敏化程度,从而解决批次间的差异问题。TDA公司利用监测系统预测铝合金在敏化过程中容易出现的晶间腐蚀损伤和应力腐蚀裂痕,减少相同材料之间的脆弱性差异,满足美国海军对实时快速获取材料的状态及其敏感性的需求。在这项研究中,TDA公司采用一种原始方法,利用两种非破坏性技术(基于涡流的电导率和超声衰减)分离出两个独立的成分,即高角度晶界的微观结构及边界上物质的敏化状态。根据这些参数,使用近期建立的模型来计算引起批次间差异的敏化度。通常使用手持式超声波仪器对钢制容器、储罐、墙壁和管道进行腐蚀无损监测(包括钢壁的厚度测量),但这种方法既费时又费力,急需一种适用于密封通道的快速检测技术。2018年美国空军资助国际电子机械公司研发密闭通道区域的腐蚀无损评估技术。国际电子机械公司提出了一种快速腐蚀检测器(RCI),该检测器使用电磁超声传感器,内置机器视觉摄像系统,可自动分类腐蚀类型,绘制腐蚀位置和壁厚图,同时不需要应用耦合剂,也可快速覆盖大面积壁面,并允许用户单手高速扫描壁面。用于乏燃料存储的焊接不锈钢干式储罐出现应力腐蚀裂纹时,极易造成严重的环境危害。2019年,美国能源部资助INNESPEC技术公司开发用于材料结构健康实时监测的EMAT连续监测系统。该研究设计了首个冷喷雾EMAT磁致伸缩传感器原型,用于现场监测干储罐的腐蚀和裂纹扩展,同时将破坏和人为干预降至最低。该项目第一阶段评估具有不同粉末压力推进剂配置的便携式低压冷喷涂仪器的性能,以及使用手动喷枪在平坦、圆形或具有复杂几何形状的部件上产生均匀贴片的可行性,并测试在所述情况下使用EMAT产生超声波的效果,最终确定手动磁致伸缩贴片是否适合应用于干储罐监测。冷喷涂还允许人们使用导波来检测之前技术无法检测的区域。该项目的成果将大大促进核安全,防止和减少放射性泄漏及其对环境和人类健康的危害。混凝土裂纹及损伤的检测技术也取得重要进展。2021年,欧盟INFRASTAR计划资助波兰NeoStrain Spzoo公司和德国联邦材料研究所,提出一种利用新型嵌入式超声波传感器进行多结构损伤检测的主动技术。2.3 用于极端条件下实现物理量测量的超声传感技术飞行器在飞行过程中往往面临着极端环境条件(高温、高旋、高压等),在恶劣环境下原位实时获取系统及环境参数,对飞行器的设计与防护具有重要意义。2020年美国国防部资助Physical Sciences公司研究了一种超声波传感器,研究利用超声脉冲回波技术的非侵入性和远程询问能力,测量高超音速飞行器外壳板温度。开发的重点在于陶瓷/碳纤维基壳体等最具挑战性的表面材料方面,该方法可扩展到其他所有类型的材料,包括金属和烧蚀材料。该项目所开发的传感器能够处理来自不同深度多个界面的信号。项目第一阶段将演示高超声速、超音速冲压发动机应用相关材料及温度的原理证明,第二阶段将致力于实际高超声速试验台和飞行平台的系统加固和自动化。美国空军和航空航天工业迫切需要能够在涡轮发动机环境中提供实时监控的恶劣环境传感器。2015年美国空军资助美国环境技术公司(Environetix)研发可提供实时监测且可靠的恶劣环境传感器。该项目第一阶段验证了在1000 ℃高温环境中无线声表面波硅酸镧镓(LGS)温度传感器原型的稳定性,第二阶段对无线LGS声表面波传感器技术进行了成熟度TRL 4确认,并在涡轮发动机测试单元中进行了TRL 6验证。在该项目设计的恶劣环境下,无线无源小型传感器能够在1000 ℃以上对涡轮发动机进行监测,可对航空航天工业产生重大影响,其优势有:① 可靠运行数千小时甚至更长时间,并且可在测试单元的热区轻松运行最少4000小时;② 通过在其他传感器技术无法工作的位置无线监测发动机状况来验证发动机的建模和运行状况;③ 小尺寸和无线传感器操作,保证了密封、护罩和其他关键发动机位置的完整性;④ 去除用以提供所需传感信息的电线,节省了大量人力成本(传感器安装在涡轮机),减轻了重量,同时提高性能和可靠性;⑤ 通过更可靠的温度监测,降低发动机运行(或飞行)成本的同时,提高燃油效率和增加功率。除此之外,无线SAW传感器技术也有许多商业应用,如在发电、石油/天然气勘探、制造过程控制和其他高温恶劣环境中的应用。辐射条件下的超声传感技术研发也受到关注。在核工业中,受限的接触和高厚度部件通常限制了无损检测技术的应用。商用超声检测传感器的辐射耐受性局限在1~2 mGy的累积剂量,难以满足应用需求。英国创新署部署了由英国创新技术和科学有限公司承担的“耐辐射超声波传感器”研究。该公司主要致力于探索新型辐射弹性探测器的构建和测试,为核工业提供一个可靠的超声检测解决方案,以延长检测和监测时间。该研究成果有两种应用场景:① 在裂变核反应堆附近进行高辐射检测;② 在核废料处理场进行低辐射检测。在核工业中,超声波换能器在放射性环境下响应减弱,难以正常工作。针对该情况,英国精密声学有限公司开展耐辐射超声传感器的开发,建造和测试新型抗辐射超声换能器以及各种探头的装配技术,为核工业提供一种可靠的超声换能器解决方案。该项目开发了一系列原型超声探头,以满足特定的在役检测需求。日本NEDO先导研究项目——具有流量监控功能的实时超声波多相流量计研制(2019~2020年,北海道大学承担)共分为3个子课题,分别是:结合超声信号和多相流体动力学定律的数据同化流量计的研制;使用超声多普勒测量多相流体的脉动特性;使用超声脉冲回波扫描测量流体界面。JSPS的国际联合研究基金项目——联合开发在线超声多普勒测定技术(2018~2021年,北海道大学、瑞士联邦技术学院承担),重点开展3个主题研究,主题1是流速分布测量技术和流变控制方程的数据同化,主题2是通过超声波和光可视化调节空间分布的流变学,主题3是假定使用机器学习的流变大开发数据构建系统。2018年该项目已经开发了一种根据超声波多普勒流速分布仪获得的流速分布来测量不透明流体压力分布的方法。2019年,项目开发出一种通过水、油和气三相流中的超声波脉冲来测量相分布和流量的技术。日本防卫厅资助了MUT(超声换能器)声学超材料的声阻抗研究(2018年,日立制作所),该项目基于声阻抗匹配的物理模型,研发利用MEMS(微机电系统)技术实现主动控制声学特性的声学超材料。2.4 用于爆炸物和弹药的无损超声实时检测技术含能材料方面取得的最新成果为开发了铅的替代品,替代弹药配方中传统的苯甲酸铅和叠氮铅。然而,这些无铅高能材料可能对传统的弹药筒黄铜和其他弹药部件具有意想不到的腐蚀性。因此,在未来的部署中,从弹药生命周期(即从生产时间到使用时间)的角度,对弹药部件进行实地测试对于确保武器系统的有效性至关重要。2020年,美国陆军资助林泰克公司与美国西南研究院传感器系统和无损检测技术部合作研究了一种基于涡流和超声波检测的手持式设备,用于对小型武器弹药部件进行现场快速无损腐蚀检测。该研究分为3个阶段,第一阶段是在实验室条件下确定对现代爆炸物和弹药外壳进行无损检测的有效性和方法;第二阶段根据第一阶段确定的方法,开发手持式测试单元原型,并根据适当的军事标准、规格要求进行认证,并进行实地测试;第三阶段预期将用于现代爆炸物和弹药壳的无损检测,并推广到民用领域。军事应用包括小型武器部件(5.56,7.62 mm口径)、爆炸性弹药(M42、M55和M61启动器)、中等口径(20,25,30,40 mm)和潜在大口径(60,81,105,120 mm)弹药。3 结语与展望超声无损检/监测技术在军事领域应用前景广阔,在航天器、飞机、船舶和运输管道等的无损检测、恶劣环境感知、数据融合支持决策等领域发挥重要作用。超声传感技术可进行非破坏性的结构健康监测,能够快速准确检测裂纹、泄漏、腐蚀等缺陷,防止和减少放射性泄漏,促进核安全。超声传感不依赖于照明条件,能够抵抗雾的干扰,在高温高压等恶劣环境下进行实时快速感知,可应用于航空航天以及海上作业等领域。未来超声无损检/监测技术的发展趋势如下:用于无损检测与结构健康监测相融合的无源无线声表面波传感技术成为新的发展方向。传统无损检测技术由于设备笨重、检测速度慢、可检测范围小及自动化程度低等问题,在检测大规模设施中的潜在损伤,特别是在复杂环境下的损伤时,可行性差且花费巨大。大型设施生命周期内多缺陷的智能化检测需要无损检测与结构健康监测相融合的无源无线声表面波传感技术。极端条件下实现物理量的测量仍是未来超声传感技术的发展重点。飞行器在飞行过程中往往伴随着高温、高旋、高压等恶劣环境,因此,恶劣环境下温度、压力等参数的原位实时获取,仍然是超声传感技术在无损检测领域的发展重点。超声传感器向着集成化、微型化、多功能化的方向发展。为满足各种机载、车载、航载的需求,传感器的应用需与机械或电子系统集成使用,推动声表面波传感器系统向着集成化、微型化、多功能化方向发展,因而各种新型材料以及先进制造技术的进步将给超声传感器的发展带来巨大推动力,超声传感器本身无源无线传输的特性,亦将在集成化微型化多功能化方面发挥重要作用。作者:朱相丽1,2,张敬1,2,刘庚冉3,王文4,刘小平1,2工作单位:1.中国科学院 文献情报中心;2.中国科学院大学 经济与管理学院;3.军事科学院 战略评估咨询中心;4.中科院声学研究所第一作者简介:朱相丽,博士,副研究员,主要从事学科战略情报研究、学科态势评估研究和日本科技政策研究工作。
  • 自动与智能无损检测技术及其在工业上的应用
    无损检测技术主要依托于声、光、电、磁等原理内容,从而实现对被检测物体内部缺陷以及不均匀性问题的全过程检测与分析,已成为很多工业生产中用来控制质量的重要方法。近年来,随着新材料、新工艺、新技术等兴起,为了更好地适应时代发展需求,无损检测技术也在不断优化和创新,逐渐朝着自动化、智能化以及图像化等方向发展,并逐步应用到相关行业领域。在即将召开的首届无损检测技术进展与应用网络会议,特别邀请了多位专家进行自动化/智能化无损检测技术相关的分享,部分报告预告如下:吉林大学 张建海副教授《极端工况下材料服役性能原位测试技术》点击报名张建海,吉林大学机械与航空航天工程学院副教授,目前担任吉林省材料服役性能测试国际联合中心副主任,致力于极端工况材料服役性能试验装备与原位测试技术研究,在国家自然科学基金、国防科工局技术基础科研、军委科技委装备预先研究等项目的支持下,重点开展了极端工况材料服役性能试验装备和材料力学性能原位测试技术。开发了超高温双轴材料力学性能试验装备和超声、电磁等原位测试设备等10余套,发表 SCI/EI 检索学术论文20余篇;公开发明专利10余项。耐高温材料及其制品因其优异的力学性能,被广泛应用于航空航天、特种装备、轨道交通装备等重要领域。因其制造或服役环境常伴有高温环境,及复杂载荷的作用,耐高温材料及其制品极易出现性能退化、裂纹萌生与扩展等情况,常常引发恶性事故。张建海副教授将在报告中重点讲述围绕极端工况下材料服役性能和点焊焊接高温熔核成型过程,开展超声无损在线检测技术研究,实现高温制造或服役工况下损伤缺陷与材料力学性能参数与快速精确测试的工作。大连交通大学 赵新玉副教授《曲面叶片几何量测量和缺陷检测》点击报名赵新玉,大连交通大学副教授。中国机械工程学会焊接学会/协会理事,超声检测专委会委员。主持完成国家重点研发计划子课题、国家自然基金、国家重点实验室基金等纵向课题;主持完成中国中车、中国特检等企业科研课题10余项;并以主要完成人身份参与国家重大专项、国家自然基金重点基金、国际合作项目等重点科研任务。曾研发设计多通道超声自动扫描和声场测量系统、高频超声显微系统、64通道超声相控阵系统、双机械手超声检测系统、ITO镀膜高精度激光刻蚀设备等,已在航空航天、汽车制造和军工产品检测中获得应用。报告摘要:航空发动机叶片是典型复杂曲面结构,为实现叶片的自动化超声检测,提出基于曲面点云数据重建的自动化检测轨迹规划方法,在此基础上实现7轴联动复杂曲面自动扫描成像;叶片点云采用线激光轮廓仪配合工件旋转轴自动扫描获取,数据拼接整理后采用数据拟合方法获得曲面轮廓方程,基于曲面上的曲线方程规划加减速扫描轨迹,进一步对各扫描轨迹点进行多轴运动分解,获得包括六轴机械手和工件旋转轴在内的各轴轨迹;实际检测实验表明,轨迹规划算法可以实现叶片自动扫描,获得清晰C扫描图像。中国飞机强度研究所 樊俊铃高级工程师《航空复合材料构件超声自动化检测技术及应用》点击报名樊俊铃,高级工程师,现任中国飞机强度研究所损伤检测与评估技术研究室副主任,中国航空研究院一级专家。承担、参与国家科工局、工信部、装发、自然科学基金、航空基金等各类预研课题10余项,主管、参与完成多个型号的结构强度验证工作,承担我国多型军民机结构试验的无损检测与评估任务,在损伤检测和结构强度领域具有较强的技术能力。长期从事业务领域的相关研究工作,发表论文50余篇,申请专利4项,登记软件著作权3项,荣获集团公司航空报国奖个人三等功等多项奖励。报告摘要:针对航空复合材料结构人工超声检测效率低、成本高、结果可靠性低等技术瓶颈问题,重点开展了超声换能器设计、超声无损检测仿真、超声信号降噪与多模式成像、无损检测自动化系统研制等技术研究,突破了超声仿真分析、专用传感器设计、信号分析等关键技术,研发了多通道、宽带宽阵列传感器,自主开发了复合材料构件阵列超声自动化检测系统,有力的支撑了航空复合材料无损检测,提高了检测效率,缩短检测周期,保证了复合材料无损检测可靠性。北京科技大学 黎敏教授《高品质钢内部质量高精度检测与三维全息表征》(点击报名)黎敏,北京科技大学钢铁协同创新中心,教授,博导。主要开展先进检测技术、工业大数据分析等研究工作。独立负责7项国家自然科学基金等国家和省部级课题,参与鞍钢、首钢、核动力研究院等10余项科研项目,共发表论文50余篇,专著2本,专利8项,转件著作权3项,获省部级科技奖励2项,2013年入选北京市青年英才计划。报告摘要:利用高频超声显微技术对高品质钢内部质量进行三维扫描检测,并通过超声信号特征提取、深度聚类、点云重构等现代信号处理方法,对高品质钢内部的夹杂、缩孔和裂纹等微观缺陷及凝固组织实现高通量表征。钢铁绿色化智能化技术中心 吴少波高级工程师《机器视觉技术及在钢铁生产中的应用》点击报名吴少波,钢铁绿色化智能化技术中心,机器视觉组长,研究方向是钢铁机器视觉,博士,正高级工程师,硕士研究生导师。吴少波同志多年从事钢铁机器视觉智能检测技术研究及工程实践,承担了国家“十二五”、“十三五”、“十四五”等多项科研任务,获得部级科技进步二等奖1项,申请发明专利30余项,申请软件著作权10余项,在国内核心期刊和国际会议上发表相关学术论文10余篇。主持的“铁包自动化热检”课题首次实现了铁包全内衬厚度和全外壳温度的热态在线准确测量,负责了“银亮材直径在线测量和分拣系统”、“喷射锭面及中间包测温系统”、“液固相线检测系统”等项目的研发和应用实施,产生了较好的经济和社会效益。本报告以钢铁智能制造为背景,结合报告人及团组的工业实践,介绍机器视觉图像处理和深度学习技术及在钢铁行业中的典型应用,包括生产质量检测和生产物流检测两大方面,其中生产质量检测包括晶粒度级别、组织类别、表面质量、渣液位、形貌、尺寸、温度等生产质量相关的检测;生产物流检测包括工件/炉包/机车标识、生产工具、关键工况等生产物流相关的检测。钢研纳克 刘光磊高级工程师《管材表面缺陷自动智能检测技术及应用》点击报名刘光磊,钢研纳克检测技术股份有限公司无损检测事业部副总经理,高级工程师。长期从事无损检测方法技术研究及自动化无损检测仪器装备研发等工作。主要参研的国家科研课题5项,参研制修订的标准6项,研发成果获省部级奖3项,获得授权的专利5项。报告摘要:管材表面缺陷自动检测常用超声、涡流、漏磁、磁粉等检测方法。针对采用常规检测方法不能有效检测短小裂纹、凹坑、划伤、结疤、异物碾压等难题,重点开展了CCD视觉检测技术的相机、镜头、光路配置、二维三位成像技术、相机景深自动校准技术及独特的缺陷检测算法,开发具有高性能、高处理速度、高可靠性和高稳定性的视觉检测技术和装备,从而实现管材表面缺陷在线智能检测、分类和记录,有效解决人工目视检测效率低,成本高,精确度低的问题。首届无损检测技术进展与应用网络会议为了推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2022年10月13-14日组织召开首届无损检测技术进展与应用网络会议。会议开设射线检测技术、超声检测技术、自动及智能检测技术、无损检测新技术四大专场,邀请无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开报告,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学、钢研纳克三、参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/NDT)进行报名。2、报名开放时间为即日起至2022年10月14日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 晶圆表面缺陷检测方法综述【上】
    摘要晶圆表面缺陷检测在半导体制造中对控制产品质量起着重要作用,已成为计算机视觉领域的研究热点。然而,现有综述文献中对晶圆缺陷检测方法的归纳和总结不够透彻,缺乏对各种技术优缺点的客观分析和评价,不利于该研究领域的发展。本文系统分析了近年来国内外学者在晶圆表面缺陷检测领域的研究进展。首先,介绍了晶圆表面缺陷模式的分类及其成因。根据特征提取方法的不同,目前主流的方法分为三类:基于图像信号处理的方法、基于机器学习的方法和基于深度学习的方法。此外,还简要介绍了代表性算法的核心思想。然后,对每种方法的创新性进行了比较分析,并讨论了它们的局限性。最后,总结了当前晶圆表面缺陷检测任务中存在的问题和挑战,以及该领域未来的研究趋势以及新的研究思路。1.引言硅晶圆用于制造半导体芯片。所需的图案是通过光刻等工艺在晶圆上形成的,是半导体芯片制造过程中非常重要的载体。在制造过程中,由于环境和工艺参数等因素的影响,晶圆表面会产生缺陷,从而影响晶圆生产的良率。晶圆表面缺陷的准确检测,可以加速制造过程中异常故障的识别以及制造工艺的调整,提高生产效率,降低废品率。晶圆表面缺陷的早期检测往往由经验丰富的检测人员手动进行,存在效率低、精度差、成本高、主观性强等问题,不足以满足现代工业化产品的要求。目前,基于机器视觉的缺陷检测方法[1]在晶圆检测领域已经取代了人工检测。传统的基于机器视觉的缺陷检测方法往往采用手动特征提取,效率低下。基于计算机视觉的检测方法[2]的出现,特别是卷积神经网络等神经网络的出现,解决了数据预处理、特征表示和提取以及模型学习策略的局限性。神经网络以其高效率、高精度、低成本、客观性强等特点,迅速发展,在半导体晶圆表面缺陷检测领域得到广泛应用。近年来,随着智能终端和无线通信设施等电子集成电路的发展,以及摩尔定律的推广,在全球对芯片的需求增加的同时,光刻工艺的精度也有所提高。随着技术的进步,工艺精度已达到10纳米以下[5]。因此,对每个工艺步骤的良率提出了更高的要求,对晶圆制造中的缺陷检测技术提出了更大的挑战。本文主要总结了晶圆表面缺陷检测算法的相关研究,包括传统的图像处理、机器学习和深度学习。根据算法的特点,对相关文献进行了总结和整理,对晶圆缺陷检测领域面临的问题和挑战进行了展望和未来发展。本文旨在帮助快速了解晶圆表面缺陷检测领域的相关方法和技能。2. 晶圆表面缺陷模式在实际生产中,晶圆上的缺陷种类繁多,形状不均匀,增加了晶圆缺陷检测的难度。在晶圆缺陷的类型中,无图案晶圆缺陷和图案化晶圆缺陷是晶圆缺陷的两种主要形式。这两类缺陷是芯片故障的主要原因。无图案晶圆缺陷多发生在晶圆生产的预光刻阶段,即由机器故障引起的晶圆缺陷。划痕缺陷如图1a所示,颗粒污染缺陷如图1b所示。图案化晶圆缺陷多见于晶圆生产的中间工序。曝光时间、显影时间和烘烤后时间不当会导致光刻线条出现缺陷。螺旋激励线圈和叉形电极的微纳制造过程中晶圆表面产生的缺陷如图2所示。开路缺陷如图2 a所示,短路缺陷如图2 b所示,线路污染缺陷如图2 c所示,咬合缺陷如图2d所示。图1.(a)无图案晶圆的划痕缺陷;(b)无图案晶圆中的颗粒污染。图2.(a)开路缺陷,(b)短路缺陷,(c)线路污染,以及(d)图案化晶圆缺陷图中的咬合缺陷。由于上述晶圆缺陷的存在,在对晶圆上所有芯片进行功能完整性测试时,可能会发生芯片故障。芯片工程师用不同的颜色标记测试结果,以区分芯片的位置。在不同操作过程的影响下,晶圆上会产生相应的特定空间图案。晶圆图像数据,即晶圆图,由此生成。正如Hansen等在1997年指出的那样,缺陷芯片通常具有聚集现象或表现出一些系统模式,而这种缺陷模式通常包含有关工艺条件的必要信息。晶圆图不仅可以反映芯片的完整性,还可以准确描述缺陷数据对应的空间位置信息。晶圆图可能在整个晶圆上表现出空间依赖性,芯片工程师通常可以追踪缺陷的原因并根据缺陷类型解决问题。Mirza等将晶圆图缺陷模式分为一般类型和局部类型,即全局随机缺陷和局部缺陷。晶圆图缺陷模式图如图3所示,局部缺陷如图3 a所示,全局随机缺陷如图3b所示。全局随机缺陷是由不确定因素产生的,不确定因素是没有特定聚类现象的不可控因素,例如环境中的灰尘颗粒。只有通过长期的渐进式改进或昂贵的设备大修计划,才能减少全局随机缺陷。局部缺陷是系统固有的,在晶圆生产过程中受到可控因素的影响,如工艺参数、设备问题和操作不当。它们反复出现在晶圆上,并表现出一定程度的聚集。识别和分类局部缺陷,定位设备异常和不适当的工艺参数,对提高晶圆生产良率起着至关重要的作用。图3.(a)局部缺陷模式(b)全局缺陷模式。对于面积大、特征尺寸小、密度低、集成度低的晶圆图案,可以用电子显微镜观察光刻路径,并可直接进行痕量检测。随着芯片电路集成度的显著提高,进行芯片级检测变得越来越困难。这是因为随着集成度的提高,芯片上的元件变得更小、更复杂、更密集,从而导致更多的潜在缺陷。这些缺陷很难通过常规的检测方法进行检测和修复,需要更复杂、更先进的检测技术和工具。晶圆图研究是晶圆缺陷检测的热点。天津大学刘凤珍研究了光刻设备异常引起的晶圆图缺陷。针对晶圆实际生产过程中的缺陷,我们通过设备实验对光刻胶、晶圆粉尘颗粒、晶圆环、划痕、球形、线性等缺陷进行了深入研究,旨在找到缺陷原因,提高生产率。为了确定晶圆模式失效的原因,吴明菊等人从实际制造中收集了811,457张真实晶圆图,创建了WM-811K晶圆图数据集,这是目前应用最广泛的晶圆图。半导体领域专家为该数据集中大约 20% 的晶圆图谱注释了八种缺陷模式类型。八种类型的晶圆图缺陷模式如图4所示。本综述中引用的大多数文章都基于该数据集进行了测试。图4.八种类型的晶圆映射缺陷模式类型:(a)中心、(b)甜甜圈、(c)边缘位置、(d)边缘环、(e)局部、(f)接近满、(g)随机和(h)划痕。3. 基于图像信号处理的晶圆表面缺陷检测图像信号处理是将图像信号转换为数字信号,再通过计算机技术进行处理,实现图像变换、增强和检测。晶圆检测领域常用的有小波变换(WT)、空间滤波(spatial filtering)和模板匹配(template matching)。本节主要介绍这三种算法在晶圆表面缺陷检测中的应用。图像处理算法的比较如表1所示。表 1.图像处理算法的比较。模型算法创新局限小波变换 图像可以分解为多种分辨率,并呈现为具有不同空间频率的局部子图像。防谷物。阈值的选择依赖性很强,适应性差。空间滤波基于空间卷积,去除高频噪声,进行边缘增强。性能取决于阈值参数。模板匹配模板匹配算法抗噪能力强,计算速度快。对特征对象大小敏感。3.1. 小波变换小波变换(WT)是一种信号时频分析和处理技术。首先,通过滤波器将图像信号分解为不同的频率子带,进行小波分解 然后,通过计算小波系数的平均值、标准差或其他统计度量,分析每个系数以检测任何异常或缺陷。异常或缺陷可能表现为小波系数的突然变化或异常值。根据分析结果,使用预定义的阈值来确定信号中的缺陷和异常,并通过识别缺陷所在的时间和频率子带来确定缺陷的位置。小波分解原理图如图5所示,其中L表示低频信息,H表示高频信息。每次对图像进行分解时,图像都会分解为四个频段:LL、LH、HL 和 HH。下层分解重复上层LL带上的分解。小波变换在晶圆缺陷特征的边界处理和多尺度边缘检测中具有良好的性能。图5.小波分解示意图。Yeh等提出了一种基于二维小波变换(2DWT)的方法,该方法通过修正小波变换模量(WTMS)计算尺度系数之间的比值,用于晶圆缺陷像素的定位。通过选择合适的小波基和支撑长度,可以使用少量测试数据实现晶圆缺陷的准确检测。图像预处理阶段耗费大量时间,严重影响检测速度。Wen-Ren Yang等提出了一种基于短时离散小波变换的晶圆微裂纹在线检测系统。无需对晶圆图像进行预处理。通过向晶圆表面发射连续脉冲激光束,通过空间探针阵列采集反射信号,并通过离散小波变换进行分析,以确定微裂纹的反射特性。在加工的情况下,也可以对微裂纹有更好的检测效果。多晶太阳能硅片表面存在大量随机晶片颗粒,导致晶圆传感图像纹理不均匀。针对这一问题,Kim Y等提出了一种基于小波变换的表面检测方法,用于检测太阳能硅片缺陷。为了更好地区分缺陷边缘和晶粒边缘,使用两个连续分解层次的小波细节子图的能量差作为权重,以增强每个分解层次中提出的判别特征。实验结果表明,该方法对指纹和污渍有较好的检测效果,但对边缘锋利的严重微裂纹缺陷无效,不能适用于所有缺陷。3.2. 空间过滤空间滤波是一种成熟的图像增强技术,它是通过直接对灰度值施加空间卷积来实现的。图像处理中的主要作用是图像去噪,分为平滑滤镜和锐化滤镜,广泛应用于缺陷检测领域。图6显示了图像中中值滤波器和均值滤波器在增加噪声后的去噪效果。图6.滤波去噪效果图:(a)原始图像,(b)中值滤波去噪,(c)均值滤光片去噪。Ohshige等提出了一种基于空间频率滤波技术的表面缺陷检测系统。该方法可以有效地检测晶圆上的亚微米缺陷或异物颗粒。晶圆制造中随机缺陷的影响。C.H. Wang提出了一种基于空间滤波、熵模糊c均值和谱聚类的晶圆缺陷检测方法,该方法利用空间滤波对缺陷区域进行去噪和提取,通过熵模糊c均值和谱聚类获得缺陷区域。结合均值和谱聚类的混合算法用于缺陷分类。它解决了传统统计方法无法提取具有有意义的分类的缺陷模式的问题。针对晶圆中的成簇缺陷,Chen SH等开发了一种基于中值滤波和聚类方法的软件工具,所提算法有效地检测了缺陷成簇。通常,空间过滤器的性能与参数高度相关,并且通常很难选择其值。3.3. 模板匹配模板匹配检测是通过计算模板图像与被测图像之间的相似度来实现的,以检测被测图像与模板图像之间的差异区域。Han H等从晶圆图像本身获取的模板混入晶圆制造工艺的设计布局方案中,利用物理空间与像素空间的映射,设计了一种结合现有圆模板匹配检测新方法的晶圆图像检测技术。刘希峰结合SURF图像配准算法,实现了测试晶圆与标准晶圆图案的空间定位匹配。测试图像与标准图像之间的特征点匹配结果如图7所示。将模式识别的轮廓提取技术应用于晶圆缺陷检测。Khalaj等提出了一种新技术,该技术使用高分辨率光谱估计算法提取晶圆缺陷特征并将其与实际图像进行比较,以检测周期性2D信号或图像中不规则和缺陷的位置。图7.测试图像与标准图像之间的特征点匹配结果。下接:晶圆表面缺陷检测方法综述【下】
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制