看到这篇文章,很感兴趣,没能下载下来,下面是相关信息,欢迎有条件的上传附件,hoho:NMR技术在苯基—2’,3’,4’—三羟基苯基酮分子内活泼质子动态特性研究中的应用欧阳捷 北京师范大学分析测试中心 李敏一 北京师范大学分析测试中心 李维超 北京师范大学分析测试中心 邓志威 北京师范大学分析测试中心 摘 要:本文通过一维(ID)、二维(2D)核磁共振波谱法确定了苯基-2’,3’,4’——三羟基苯基酮分子结构,利用二维交换谱(2D EXSY)研究了该分子内活泼质子在二甲亚砜(DMSO)溶液中的动态特性,建立了活泼质子与溶液中水分子间的化学交换网络,并定量计算了化学交换的速率常数。实验结果表明:酚羟基氧形成分子内氢键使得它与自身的羟基氢的共价键被削弱,该活泼质子酸性增强,更容易发生反应。
[font=宋体]校准实验室在学习[/font]CNAS-CL01-A025[font=宋体]:[/font]2022[font=宋体]《检测和校准实验室能力认可准则在校准领域的应用说明》中是可能又会看到附录中[/font]A1.1[font=宋体]相关概念提到“现场校准”、“远程校准”、“在线校准”,应该不陌生,但是最近在和同事交流发现大家对在线校准和动态校准理解上有一定出入,认为平时实验室管路中压力表拿到计量院送检,就是静态校准,那如果溯源机构老师来实验室,在管路中串联标准器,就是动态校准或者叫在线校准。[/font][font=宋体]这样看来,难道在线校准和动态校准是一个意思?[/font][font=宋体]再看[/font]A025[font=宋体]中[/font]A1.1[font=宋体]中的[/font]c[font=宋体]):[/font][font=宋体]在线校准是对处于运行状态下的测量设备进行的校准,如流体输送管道上安装的流量计、工作状态下的电能表等。在线校准的校准条件与被校设备的使用(工作)条件相同,在线校准时应考虑测量标准对测量回路的影响,比如信号回馈对设备的影响。[/font][font=宋体]在此并没有提及动态校准,可见并不是一个意思,也不在[/font]CNAS[font=宋体]认可领域中属于经常性接触的范畴。[/font][font=宋体]那么我们在“[/font][url=http://jjg.spc.org.cn/resmea/view/index][font=宋体][color=windowtext]国家计量规范全文公开系统[/color][/font][/url][font=宋体]”中搜索看看,“动态”所涉及的检定规程、型评大纲、[/font] [font=宋体]其他计量技术规范共计[/font]24[font=宋体]条,“在线”所涉及的检定规程、型评大纲、[/font] [font=宋体]其他计量技术规范共计[/font]14[font=宋体]条,基本全部是化学领域的。[/font][font=宋体]大家从某一个熟悉规范中可以看出动态和在线的不同,侧重点,这个也是一种学习领悟最快的方式。[/font][font=宋体]动态校准可以认为是确定计量器具示值动态变化极限特性的一组操作,并以校准结果方式给其动态变化极[/font][font=宋体]限特性重新赋值,也称动态特性校准或动态计量。动态校准则仅仅关注的是计量器具,校准结果仅仅是对其示值变化的极限特性量值进行重新赋值。与示值变化无关的特性量值不在此例。[/font][font=宋体]之所以这里要说清楚,是[b]国务院关于印发计量发展规划([/b][/font][b]2021[font=宋体]—[/font]2035[font=宋体]年)中的四、强化计量应用,服务重点领域发展:[/font][font=宋体](十三)服务数字中国建设。描述中提到[/font][/b][font=宋体][back=yellow]传感器动态校准[/back][/font][font=宋体]等数字计量设施建设。[/font][font=宋体]那么再看文献资料可见,目前动态领域在我国发展较慢,仅在航天军工领域居多,也是发展需求需要,科研工作者在这方面有较多的经验和积累,也是我们从中学习找文献找老师方向渠道。[/font][font=宋体]实验室计量中,经常会有在线校准,因为体积庞大或者不可以拆卸等原因。现场校准就要考虑人机料法环测等诸多方面,尤其是环境设施以及方法符合性。故溯源机构一般都会有机构实验室内和现场计量的作业规程或作业指导书,一般我们客户也会发现,证书报告给予的不确定度会大一些,比能力表或者溯源在计量院内的。[/font][font=宋体]那么动态校准或计量,意义在于随时间变化的量值是否可以满足实际工作需要的,我们去检测检验机构或者科研院所,他们的试验装置实际就是仿真装置,模拟实际情况的一种设备,比如冰箱开关门试验机,比如耐磨试验机,比如空调性能实验室等,静态计量已经满足不了实际工作仿真的需求,需要计量人员按照客户需求去完善计量规程,制定可行的动态计量方案或校准规范。[/font][font=宋体]大家在动态计量、在线计量以及远程计量上都有需要学习的地方以及挖掘新机遇新想法的途径。这里,必然来自客户企业的需求才是解决问题和提升我国科技工业发展以及计量事业发展的重要来源,帮助解决“测不了,测不到,测不准”的问题,才是王道。[/font]
动态试验材料和部件可能在承受动态载荷时过早失效。因此,材料在交变机械载荷下的性能是一个很重要的指标,必要的数据可通过试验获得。在材料测试中,疲劳分为两类:测定低周疲劳强度 – 低周疲劳(LCF)试验测定有限寿命疲劳强度和高周疲劳强度 – 高周疲劳(HCF)试验/S-N试验ZwickRoell Vibrophore的操作原理是基于电磁驱动的机械谐振性的概念。平均载荷是通过连接主滚珠丝杆的上横梁的移动施加的。动态试验力是由通过系统在共振时的振动系统生成的。所测试的试样具备高刚度时,试验频率达到285Hz是有可能的。静态和动态驱动是单独控制的,因此可以得到任何应力比(应力比R)。试验可以是应力、位移或应变控制。[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209252147348370_4260_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209252147345727_6559_1602049_3.png[/img]
[align=left]微型传感器是一个将被测量的装置,如位移、变形、强制、加速度、湿度、温度和其他物理量转换成电阻值。主要是电阻应变型、压阻型、热阻、热阻、气敏、湿敏电阻传感器器件。[/align]微型传感器中的应变仪具有金属的应变效应,即在外力作用下的机械变形,因此电阻值相应地改变。应变仪主要是金属和半导体。金属应变仪是线型、箔型、薄膜型。半导体应变片具有高灵敏度(通常是线型、箔型的几十倍)、的小横向效应。压阻式微型传感器是根据半导体材料的压阻效应通过半导体材料的衬底上的扩散电阻制造的器件。衬底可以直接用作测量传感元件,并且扩散电阻器在衬底中以桥的形式连接。当基板通过外力变形时,电阻值将改变,并且电桥将产生相应的不平衡输出。用作压阻式微型传感器的基板(或隔膜)主要由硅晶片和钽制成。由敏感材料制成的硅压阻传感器受到越来越多的关注,特别是在测量压力时。并且固态压阻式微型传感器应用的速度是通用的。微型传感器的滞后特性表征前进(输入增加)和反向(输入增加)冲程输入特性曲线之间的不一致程度。通常,使用两条曲线之间的较大差ΔMAX。满量程输出FS的百分比表示滞后可能是由微型传感器内部元件中的能量吸收引起的。微型传感器变化很大,甚至不同工作原理的微型传感器也可用于相同类型的测量。因此,必须使用合适的传感器。(1)微型传感器的测量条件如果错误选择微型传感器,系统的可靠性将会降低。为此,从系统的整体考虑,要清楚地了解使用目的和使用传感器的需要,永远不要使用不合适的微型传感器和不必要的传感器。测量条件如下:测量目的,测量量的选择,测量范围,输入信号的带宽,所需的精度,测量所需的时间以及过量输入的发生频率。(2)微型传感器性能选择微型传感器时,请考虑传感器的以下特性,即精度,稳定性,响应速度,模拟信号或数字号,输出及其电平,被测物体特性的影响,校准周期以及过度 - 反保护。(3)微型传感器的使用条件微型传感器的使用条件是设定位置,环境(湿度、温度、振动等),测量时间,显示器之间的信号传输距离,与外围设备的连接,电源容量。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]
渗透率是薄膜类材料的重要特性,精确测量薄膜、纸张等的水分子渗透率对于评估其作为包装材料在不同水蒸汽分压环境下隔绝水分的功能有着重要的意义。采用动态水分吸附仪法检测渗透率的具体方法如下:将薄膜(纸张)覆盖在样品盘上,将盘内放置干燥剂、饱和食盐水溶液或水来制造一个与环境不同的水蒸汽分压,从而使水分子透过薄膜(纸张),迁移到达另一边。这种水分子的迁移可以通过称量样品盘的重量来检测。 这种方法比NIR检测法耗时长,但是结果非常准确,可以得到薄膜(纸张)材料的精确渗透率。德国Proumid公司的动态水分吸附仪包括一个高灵敏度的天平和能够调节温湿度,气流循环的密闭空间。为渗透率的检测提供最理想的环境。 仪器有六个样品盘,可以同时测量5个薄膜(纸张)样品的渗透率,大大节省了试验时间。
长期以来,国内动态试验机都与国外有较大的差距,很多关键技术都没有突破。近日,基于DSP技术的电液伺服动静万能试验机、基于全数字化技术的高频疲劳试验机等产品已投放市场,这是否标志着国产动态试验机的关键技术有了较大的提高? 另外,据业内有关人士称,国内某些大学教授在动态试验机方面已经取得突破性进展?这个突破有可能会撼动国外动态试验机在中国的市场地位。此事究竟是真是假,欢迎大家前来探讨。
动态试验机应用我们模块化设计的动态测试机用于材料和组件测试,例如在建筑行业。由于模块化设计原则,它们可以适应个人需求。可提供不同尺寸和设计的机架和夹紧装置,用于拉伸、压缩和弯曲测试,以及特殊的试样轴承。特征进一步发展测试气缸具有显著改进的动态和操作安全性的系列(静压轴承,在负载变化的动态操作中无滞后现象,由于无磨损使用而易于维护,最高的制造精度导致小的导向间隙,很少漏油,使用寿命长,可承受高剪切力)测压元件:我们使用坚固的通用称重传感器,结合数字测量电子设备来测量静态和动态拉伸和压缩载荷。液压装置借助现代技术解决方案,满足伺服液压测试系统可靠有效运行的所有要求单通道和多通道钻机的开关设备液压平行夹紧装置:夹紧系统可用于圆形和扁平样本的静态测试,也可用于零交叉的动态测试。夹紧装置设计为液压工作的开放式平行夹紧,仅具有水平夹紧运动。由于平行夹紧,样品被夹紧而没有任何垂直运动,即没有预夹紧力。基于多处理器系统的数字模块化测量和控制电子设备用户友好的Windows界面系列SHM 5-25对于具有静态、膨胀或变化曲线的静态和动态负载拉伸、压缩和弯曲试验测试框架动态力:25 kN手动夹紧的连续可调十字头SHM 50-1000对于静态和动态负载拉伸、压缩和弯曲试验动态测试框架力:50-1000千牛带液压夹紧的连续可调十字头[img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311062351455848_8693_1602049_3.png[/img]
LFV多用途动态和疲劳系统,可达3000knw+b伺服液压多用途LFV系列是通用的高性能测试系统,可在不同的,健壮的配置覆盖范围广泛的单调,动态和疲劳应用,在飞机和航空航天,汽车,生物医学,钢铁,紧固件,铁路或海洋工业,以及世界各地的土木工程和研发测试实验室。这些伺服液压系统是许多实验室在质量控制、产品开发或科学研究领域不可或缺的单元。LFV伺服液压测试系统是模块化的,涵盖了全光谱的测试需求,可以配置为广泛的不同测试设置,包括TMF(热机械疲劳),LCF(低周疲劳),断裂力学,HCF(高周疲劳),高应变率以及组件,制造组件和成品测试。根据应用,我们提供高刚度,符合人体工程学和可靠的负载框架与执行机构集成在机器底座或安装在上十字头。LFV系列可以配置各种握把和夹具,延伸计,环境模拟室和熔炉,不同的软件包和其他附件,以满足您的特定测试需求。关键特性最新的数字控制电子闭环控制和高数据采集速率,自识别传感器编码高刚度的刚性机架,提供优越的轴向和横向刚度,保证稳健、耐用和长期运行增加刚度意味着更高的效率,因为克服框架变形所需的能量在每个加载周期更少为了增加刚度,提供了适当的柱直径和带底座的刚性十字头,这增加了负载框架的重量,反过来提高了负载框架的固有频率,减少了传递到实验室楼层/建筑的振动。试验空间可通过机械和自动提升系统进行调整液压无源夹紧(HH版本)系统确保上部十字头夹紧到立柱上而不施加任何液压压力精确和平行的上十字头运动,以改善对齐(消除机器在样品中的弯曲应变)。双作用和双端等面积伺服驱动器与静压4袋轴承的最佳无摩擦静态和动态性能,几乎无服务运行。高精度的测压元件和数字位移传感器高性能伺服阀(s)增强的安全功能,在测试过程中最好地保护操作人员校准夹具和相关校准验证设备人体工学设计[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209262358414086_3560_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209262358401872_7063_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209262358401872_7063_1602049_3.png[/img]
[b]臭氧老化试验箱[/b]的试验方法分别有两种,一种是静态拉伸及动态拉伸,今天小编简单的为大家讲解动态拉伸,动态拉伸又分连续动态拉伸试验和间断动态拉伸试验,一起来看看他们的试验方法:[align=center][img=,302,302]https://ng1.17img.cn/bbsfiles/images/2021/07/202107141652010496_8491_1037_3.jpg!w302x302.jpg[/img][/align] 1.间断动态拉伸: 本方式是先使试样从伸长率为零至规定的很大伸长率之间往复拉伸下暴露,经一定时间后将试样固定在很大伸长率处,然后在静态拉伸下于相同的含臭氧空气中继续暴露。动态拉伸与静态拉伸交替暴露的时间按试验者的要求周期地循环进行 本方式有两种暴露方法可供选用: a.使试样按预定周期经动态拉伸和静态拉伸交替暴露,至规定暴露时间的末了检测试样,记录表面有无裂纹,或表面龟裂的等级。也可以根据需要检测其他性能的变化 b.试样拉伸的很大伸长率按6.5条中规定的选用一种或多种 按预定周期进行动态拉伸与静态拉伸交替暴露 选择适宜的间隔暴露时间检测试样变化,直至试样表面出现裂纹,或试样达到新要求的龟袈等级和性能变化指标时,结束暴露试验 2.连续动态拉伸: a.使试样从零至很大伸长率之lbl循环拉伸,连续暴露至规定时间后检测试样,记录表面有无裂纹和表面龟裂的等级,或检测其他性能的变化 如果没有特别规定,建议试样拉伸的很大伸长率采用10%,暴露时间定为72h 如需采用其他较适宜的很大伸长率或暴露时间,应在试验报告中说明 b.使试样伸长率从零至按6.5条中规定一种或多种很大伸长率之间循环拉伸,暴露至适当的间隔时间,如2,4,8,16,24,72,96h后检测试样 记录试样表面首先出裂纹的总时间,或表面龟裂的等级 也可以根据实际试验的情况和要求,适当缩短或延长暴露时间和检测周期,或根据需要检测其它性能的变化 以上就是臭氧老化试验箱动态拉伸的试验方法了,您若是有不明白的地方,或者是在试验中遇到什么不懂的问题及异常都可以直接致电厂家进行咨询,祝您使用愉快。
比表面及孔径分布是基于样品对氮气的等温吸附曲线,当氮气分压在0.05~0.35范围内,可根据BET方程计算比表面,当氮气分压≥0.4时,根据毛细凝聚理论计算孔径分布。静态容量法是测量氮气的等温吸附和脱附曲线的理想方法:在一个真空系统中,按设计要求逐步增加或减少氮气压力,利用气体状态方程,计算出每一个氮分压下样品的饱和吸附量或脱附量。和动态法相比,静态容量法比表面及孔隙率分析仪有以下八大优点: 1、精准度更高:氮气的压力是通过压力传感器直接测量得到的,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到; 2、真正达到吸附和脱附平衡:样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡; 3、省液氮:样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,不但节省了时间,而且大大减少了液氮的消耗; 4、测试成本低:只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本; 5、省时:静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间; 6、传感器更精密,测试结果更全面具有说服力:在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围可达到1~300nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品完整的吸附特性,进而可对样品的吸附类型和孔结构作出判断; 7、真正的全自动控制:静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果; 8、预处理更合理:样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。
我的意思是静态试验机有动态的加力效果,而不是简单的动静态试验机,详细说一下吧,客户有台MTS的机器,看着明明是静态试验机,但是客户在做往复试验的时候加力的曲线竟然是类似于动态的正弦曲线,而且频率也固定。据我了解的国内的动态机只能达到这样的加力效果,但是最后只能得到循环次数,或力-时间曲线,想测某次循环的力值和变形等方面就不行了,而MTS的机器加力类似于动态机,得到的力-变形曲线和数值等等却类似于静态机,不知道人家是怎么做的
传统的光谱检测系统为单色仪家光电倍增管(PMT)。SPDA不仅能获得某一波段范围内的检测信息,还具有灵活的积分能力,但是它的灵敏度和动态范围不及PMT,而且噪声较大,线性范围窄,暗电流也大,而CCD却弥补了这些缺点。今天[url=http://www.huaketiancheng.com/][b]光谱发射仪[/b][/url]的小编给大家普及一下CCD具有与光谱仪器密切相关的一些特性: 一、灵敏度高,噪声低。CCD器件具有很高的量子效率,至少为10%,最高可达90%以上。它的电荷转移率几乎达100%,它在低温下工作时几乎无暗电流,噪声几乎接近于零,最新的CCD器件,已经实现了在常温下具有很高的信噪比,极低的暗电流,完全满足了仪器在常温及微量分析上的要求,上述优点使CCD器件的灵敏度超过其他探测器(如PMT何SPDA),检测下限达pg级甚至fg级。 二、光谱范围宽(200~1050nm)。在可见光区(400~500nm)量子效率可高达90%,在远紫外区(200nm)和近红外(100nm)间,量子效率至少为10%,在100~1100nm宽的光谱区域,CCD都有很高的量子效率,而大多数的发射、吸收和散射的光谱仪器都在这区域工作,因此CCD成为各类光谱仪器的理想探测器。 三、动态线性响应范围宽,达10个数量级。CCD具有很宽的响应范围和理想的响应线性,达10个数量级(10?-106),而且在整个动态响应范围内,都能保持线性响应,这对光谱定量分析具有特别意义。 四、几何尺寸稳定,耐过度曝光。CCD经长时间运转,其几何性能、热性能和电性能均很稳定,不怕过度曝光,因此比PMT结实耐用。 五、可以同时多道采样,得到波长-强度-时间的三维谱线图,与光电阴极器件联用,可观察X射线图像。 [url=http://www.huaketiancheng.com/][b]光谱发射仪[/b][/url]小编整理的CCD上述特性,使其成为光谱仪的理想探测器。预计在几年内CCD会成为各种光谱仪器检测器,从而替代光电倍增管。
RT我们想买台动态疲劳试验机听说最好的是MTS 和英斯特朗的,那长春所的机器咋样?性价比会不会高一点?国内还有其它比较好的动态疲劳试验机品牌吗?
最近听说三思纵横的动态疲劳试验机已经研制出来了,年底将召开总结会议。好像这个项目还是国家重大科学仪器设备开发专项中唯一的试验机项目。当初黄志方说,要做出一台达到国际同类产品水准的国产动态疲劳试验机,满足国内用户需求,打破国外垄断。希望不要食言啊!!扛起民族大旗的前提是产品经得起用户考验~~
氧化锌(Zine oxide;Zine white) ,又名锌白,锌氧粉,分子式ZnO,白色六角晶体或粉末,无气味。分子量81.37,熔点1975℃,不溶于水、乙醇,溶于酸、氢氧化钠水溶液、氯化铵,相对密度(水=1)5.606,化学性稳定,主要用途用作油漆的颜料和橡胶的填充料。医药上用于制软膏、锌糊、橡皮膏等。氧化锌的生产方法:间接法,直接法,氨化法ZnO的比表面在20--80M2/g之间(生产工艺的好坏直接影响其比表面的大小)。国家标准是40M2/g。测试方法:第一种采用BET法测试,其预处理温度:200°C。处理时间和处理状态:在抽真空的前提下处理2小时。称样量,依照其比表面的大小,介于700--350mg之间(这里主要针对国内动态比表面仪器而言,以JW-004A系列为例)。此方法的优势在于测试数据比较精确,缺点在于测试时间比较长(一个样大概要45分钟),第二种方法是直接对比法,预处理条件同上。找一个和样品比表面相近的标样来做对比试验。此方法优点是,测试时间快,缺点:数据不够准确,由于和标样的吸附特性(主要是吸附的层数不一样)不一致,导致其得到的比表面偏离,误差大约5%。
0.99(MS)的部分5. 原子光谱的动态范围不都是s型曲线,特别是光电直读型的ICP仪器,它的低浓度部分基本上是线性的,高浓度部分因为有自吸收,所以会出现弯曲,弯向横坐标。s型曲线是摄谱法的特点,它在低浓度范围向上弯曲,主要是相板的乳剂特性造成的。
最早的静态试验机是机械式,如英国早在1880年已生产了杠杆重锤式材料试验机,在1908年又生产了螺母、螺杆加载的万能试验机(电子万能试验机的雏形),这些试验机可进行材料的拉伸、压缩、弯曲和扭转等验,约在90年前,瑞士Amsler公司开发了液压万能试验机,这种试验机较机械式操作简便、输出力大、结构简单、体积紧凑,能完成材料的各种静态力学性能试验。 仅仅了解材料的静态力学性能是远远不够的,在现实生活中大部分的破坏是因为疲劳破坏。根据国外统计,失效的机器零件中50%-90%为疲劳破坏。因此许多发达国家非常重视对疲劳强度的研究。 疲劳问题的产生可追溯到19世纪初叶,产业革命以后,随着蒸汽机车和机动运载工具的发展以及机械设备的广泛应用,运动部件的破坏经常发生。破坏往往发生在零部件的截面突变处。破坏处的名义应力不高,低于材料的强度极限,有时还低于屈服极限。 对疲劳现象首先系统研究的实验者是德国人A.Whler(沃勒),他自1847年起,在担任机车车辆厂厂长和机械厂厂长的23年中,对金属疲劳进行了深入系统的研究。1850年,德国人A.Whler(沃勒)设计了第一台用于机车车轴的疲劳试验机(亦称A.Whler疲劳试验机),用来进行全尺寸机车车轴的疲劳试验。以后他又研制出多种型式的疲劳试验机,并首次用金属试样进行疲劳试验。他在1871年发表的论文中,系统论述了疲劳寿命和循环应力的关系,提出了S-N曲线和疲劳极限的概念,确立了应力幅是疲劳破坏的决定因素,奠定了金属疲劳的基础。因此公认A.Whler(沃勒)是疲劳的奠基人,有“疲劳试验之父”之称。 从19世纪70年代到90年代,Gerber W.(格伯)研究了平均应力对疲劳强度的影响,提出了Gerber抛物线方程,英国人Goodman J.(古德曼)提出了著名的简化直线—Goodman图。1884年Bauschinger J.(包辛格)在验证Whler疲劳试验时,发现了在循环载荷下弹性极限降低的“循环软化”现象,引入了应力—应变迟滞回线的概念。但他的工作当时人们并不重视,直到1952年Keuyon(柯杨)在做铜棒试验时才把它重新提出来,并命名为“包辛格效应”。 20世纪初叶,开始使用金相显微镜来研究疲劳机制。1903年Ewing J.A.(尤因)和Humfery J.C.W.(汉弗莱)在单晶格铝和多晶格铁上发现了循环应力产生的滑移痕迹,指出了疲劳变形是由于与单调变形相类似的滑移所产生。1910年Bairstow(拜尔斯托)研究了循环载荷下应力—应变曲线的变化,测定了迟滞回线,建立了循环硬化与循环软化的概念;并且还进行了程序疲劳试验。在此时期,英国人Gough H.J.(高尔)在疲劳机制的研究上做出了很大贡献;他还进行了弯—扭复合疲劳试验,研究了弯—扭复合应力下的疲劳强度;并在伦敦出版了一本巨著《金属疲劳》。 1929年美国人Peterson R.E.(彼特逊)对尺寸效应进行了一系列试验,提出了应力集中系数的理论值。1929年—1930年英国人Haigh B.P.(海夫)对高强钢和软钢的不同缺口效应做了合理解释。 1945年美国人Miner M.A.(迈因纳)在对疲劳损伤积累问题进行了大量试验研究的基础上,将Palmgren J.V.(帕姆格伦)1924年提出的线性累积损伤理论公式化,形成了著名的Palmgren—Miner线性累积损伤法则(简称Miner法则)。在20世纪40年代前苏联的CepeHceH C.A.(谢联先)还提出了常规疲劳的设计计算公式,奠定了常规疲劳设计的基础。 1952年美国国家航空管理局刘易斯研究所的Manson S.S.(曼森)和Coffin L.F.(科芬),在大量试验的基础上,提出了表达塑性应变与疲劳寿命关系的Manson—Coffin方程,奠定了低周疲劳的基础。20世纪50年代使用电子显微镜,给疲劳机制的研究开拓了新纪元。 用概率统计方法处理疲劳试验数据是从20世纪40年代开始的。1949年Weibull W.(威布尔)发表了对疲劳试验数据进行统计处理的著名方法。1959年Pope J.A.(波普)指出疲劳寿命服从对数正态分布。20世纪60年代开始将统计学应用于疲劳试验和疲劳设计,1963年美国材料试验学会(ASTM)上午E9委员会总结了这方面的研究成果,发表了《疲劳试验与疲劳数据的统计分析指南》(ASTM STP91A)一书。 在上个世纪50年代初,出现了高速响应的永磁式力矩马达,50年代后期又出现了已喷嘴挡板阀为先导级的电液伺服阀,使电液伺服系统成为当时响应最快,控制精度最高的伺服系统。1958年美国勃莱克布恩等公布了他们在麻省理工学院的研究工作,为现代电液伺服系统的理论和实践奠定了基础。60年代各种结构的电液伺服阀的相继问世,特别是以穆格为代表的采用干式力矩马达的级间力反馈的电液伺服阀的出现和各类电反馈技术的应用,进一步提高了电液伺服阀的性能,电液伺服技术日臻成熟,电液伺服系统已成为武器和航空、航天自动控制以及一部分民用技术设备自动控制的重要组成部分。 电液伺服动态疲劳试验机,在此背景下随着电液伺服技术的发展而发展起来。由于它既能进行动态的高低周疲劳试验、程序控制疲劳试验,也能进行静态的恒速率、恒应变、恒应力控制下的试验和各种常规的力学性能试验,还可进行断裂力学试验,根据需要也可以进行部分的振动和冲击试验,也可以对广义范围上材料或构件的疲劳寿命、裂纹扩展、断裂韧性性能测试、实际试件的安全性评价、工况模拟等,因此有着其它任何种类的试验机所不能比拟的优势,是国际疲劳界最推崇的材料试验设备。 20世纪60年代,随着大规模集成电路的出现,研制出了能够模拟零部件服役载荷工况的随机疲劳试验机。20世纪70年代,国外已广泛使用电子计算机控制的电液伺服疲劳试验装置来进行随机疲劳试验。20世纪90年代,已经出现了上下位机结构的全数字的伺服控制器,闭环控制计算速率达到了6kHz,数据传输采用100Mb以太网卡(Ethernet),可以完成控制模式的平滑无扰切换、多通道的协调加载以及各种工况谱的实验室再现。 低周疲劳Manson—Coffin方程、电子显微镜以及电液伺服动态疲劳试验机的出现被国际疲劳研究界认为是疲劳研究的三大贡献,电液伺服动态疲劳试验机由于采用了闭环控制技术,从而在试验中可以模拟实际使用工况,大大促进了疲劳试验的发展。
伺服液压动态测试系统(DTS-130)(沥青)的DTS-130动态测试系统是一种伺服液压试验机,利用高性能伺服阀的数字控制,提供精确的加载波形,最高可达100赫兹。DTS-130适用于在非常低的温度下测试各种工程材料和/或大型沥青样品,是Pavetest最大容量的动态测试系统吗完成标准通用试验机系列。它的基础是Pavetest的领先优势CDAS数字控制器,TestLab软件配件齐全,硬件和软件完美统一。这台机器包括:刚性两柱荷载框架130 kN伺服液压执行机构(100 mm行程)10kw液压电源16通道控制和数据采集系统(CDAS)和TestLab软件测压元件(±130 kN)100毫米执行机构LVDT配件B240-02石油/空气换热器B240-03换热器油/水B240-04冷水机(推荐) xB240-05(或B240-06)连接框架的软管组- Lg 3米或8米(必需)xxB240-07(或B240-08)连接抽油机的软管组-交换油/空气Lg 5米或10米(需要)x B240-09(或B240-10)连接交换油/水的软管组- Lg冷水机5米或10米(推荐) x请求的信息 配件技术规格B231 温控柜,范围-20 +80°CB232 温控柜,范围-40 +80°C[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209182201538872_6835_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209182201529146_8280_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209182201538452_2649_1602049_3.png[/img]
我刚做了伏安特性试验 是采用三电极系统 工作电极为在钛上沉积的金刚石薄膜 测得图如附件所示 请问两个台阶是测得什么物质 该怎么确定??谢谢!!![img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605311142_19346_1688616_3.jpg[/img]
请问哪里可以看到国外试验机的动态呢?
基于动态光散射原理的纳米粒度仪的研制任中京, 陈栋章 (济南微纳颗粒技术有限公司, 济南)摘要:介绍了基于动态光散射原理的纳米粒度仪的工作原理和设计, 重点讲述了我公司自研制的CR128数字相关器的设计原理与性能特点, 以及利用该器件成功研制出的winner801光子相关纳米粒度仪的特性。关键词.. 纳米粒度仪;动态光散射(DLS);光子相关谱(PCS);数字相关器纳米颗粒的尺度一般在1-100nm之间, 是介于原子、分子和固体体相之间的物质状态。由于纳米颗粒具有尺寸小、比表面积大和量子尺寸效应, 使它具有不同于常规固体的新特性。在纳米态下, 颗粒尺寸更是对其性质有着强烈的影响, 纳米材料的粒度大小是衡量纳米材料最重要的参数之一。而常规的基于静态光散射原理的激光粒度仪的测量下限己接近极限, 但仍旧不能对纳米颗粒的粒度测试得出理想的结果甚至无能为力。光子相关光谱(Photon Correlation Spectroscopy,简称PCS)法已被证明是一种适于测量纳米及亚微米颗粒粒度的有效方法。PCS技术也成为动态光散射(Dynamic Light Scattering, 简称DLS) 技术, 主要是研究散射光在某一固定空间位置的涨落现象。其颗粒粒度测量原理建立在颗粒的布朗运动基础之上。由于颗粒的布朗运动, 一定角度下的散射光强将相对于某一平均值随机涨落。PCS技术就是通过这种涨落变化的快慢间接地得到相关颗粒粒度的信息。1 动态光散射基本原理基于动态光散射原理的颗粒粒度测试基本原理如图1.1所示。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441893_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441894_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441895_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441897_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441898_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441899_388_3.jpg最后再对四路基线求其平均值用于数据分析, 以免突变的光强引起光强自相关函数发生畸变。在如上的算法的基础上, 我们所研制的C R 12 8 数字相关器采用F PG A 技术, 以硬件方式实现。如图2 .1所示, 主要由取样时间发生器、取样时间、光子计数器、12 8 相关运算模块、基线运算模块、相关数据存储器、数据输出及控制电路组成。其工作原理为:选取适当的取样时间, 并在该时间段内将输入的光子数连续计数, 并将计数结果进行128 路自相关运算及基线
最近做赤霉素农残登记实验,赤霉素是涂在梨果柄上的,在梨果中的试验结果是赤霉素浓度先升后降,这就遇到一个问题,该怎么应用消解动态方程,该怎么计算赤霉素在梨果中的半衰期?敬请高手专家指教,衷心感谢!
【题名】: 剪切流场中气泡特性及升力特性实验研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10611-1019887613.htm
[color=#00008B]对于力学性能试验,可分为动态试验机和静态试验机,它们倆的主要区别在哪里?了解的不具体,大家来讨论下吧[/color]
日前,由中国计量科学研究院自主研制的疲劳试验机动态力校准装置通过专家鉴定。经鉴定,该装置主要技术指标达到国际先进水平,并填补了国内疲劳试验机动态力校准方法研究方面的空白。 疲劳是指材料在重复或交变应力作用下,所受应力远小于其抗拉强度时,经多次循环后,在无显著外观变形情况下而发生的断裂现象。这种断裂一旦发生,往往将导致灾难性的设备或人身伤亡事故。据了解,汽车零部件的破坏中85%由疲劳引起的,航空工程中有60%~80%的断裂是由结构材料的疲劳破坏引起的。为保证产品、工程质量和人身安全,相关行业主要通过疲劳试验机来测量试件材料的疲劳极限和疲劳寿命等性能指标。
求NF G91-005。关于拉链测试的。不胜感激。NF G91-005-1984, 拉锁.试验方法.机械特性,
现场评审时老师说我们不能提供对试验电源特性如电压稳定度、频率稳定度、总谐波畸变等的确认记录,有哪位知道的帮助解释一下如何确认,谢谢!最好能提供相应的记录表样。
传统的光谱检测系统为单色仪家光电倍增管(PMT)。SPDA不仅能获得某一波段范围内的检测信息,还具有灵活的积分能力,但是它的灵敏度和动态范围不及PMT,而且噪声较大,线性范围窄,暗电流也大,而CCD却弥补了这些缺点。今天[url=http://www.huaketiancheng.com/][b]光谱发射仪[/b][/url]的小编给大家普及一下CCD具有与光谱仪器密切相关的一些特性: 一、灵敏度高,噪声低。CCD器件具有很高的量子效率,至少为10%,最高可达90%以上。它的电荷转移率几乎达100%,它在低温下工作时几乎无暗电流,噪声几乎接近于零,最新的CCD器件,已经实现了在常温下具有很高的信噪比,极低的暗电流,完全满足了仪器在常温及微量分析上的要求,上述优点使CCD器件的灵敏度超过其他探测器(如PMT何SPDA),检测下限达pg级甚至fg级。 二、光谱范围宽(200~1050nm)。在可见光区(400~500nm)量子效率可高达90%,在远紫外区(200nm)和近红外(100nm)间,量子效率至少为10%,在100~1100nm宽的光谱区域,CCD都有很高的量子效率,而大多数的发射、吸收和散射的光谱仪器都在这区域工作,因此CCD成为各类光谱仪器的理想探测器。 三、动态线性响应范围宽,达10个数量级。CCD具有很宽的响应范围和理想的响应线性,达10个数量级(10?-106),而且在整个动态响应范围内,都能保持线性响应,这对光谱定量分析具有特别意义。 四、几何尺寸稳定,耐过度曝光。CCD经长时间运转,其几何性能、热性能和电性能均很稳定,不怕过度曝光,因此比PMT结实耐用。 五、可以同时多道采样,得到波长-强度-时间的三维谱线图,与光电阴极器件联用,可观察X射线图像。
第一,和样品预处理时间有关。以氢氧化镍为例,它的处理时间至少需要8小时,由于其干燥过程容易板结,故处理温度不宜过高(一般90度),这样就导致处理温度不够,用加长时间来弥补。第二,和样品的处理温度有关。以氧化铝为例,它的处理温度一般是300°C。若降低其处理温度,容易造成测试结果偏小,且BET测试曲线线性很差。第三,和处理时的真空度有关。真空度偏低,使得真空室的蒸汽的饱和蒸汽压偏高,同时样品表面处理不干净,这样都造成测试结果偏小(个别样品除外)。第四,和称样量多少有关。样品量的多少和他自身的比表面的大小有关的,一般比表面越大,称样量越少,反之越多。但是在样品管体积一定的情况下,量太多容易造成管路堵塞;太少容易出现脱附峰拖尾。所以选择合适的称样量是很有必要的。第五,和测试样品的自身吸附特性有关。大部分样品处理后的比表面都是大于处理前的比表面,有的样品不处理的时候比表面很大,处理后反而变小,第六,和仪器的类型有关,一般来说,静态容量法测得结果比动态色谱法测得的结果更加准确,这个是由于前者测得是吸附数据,后者得到的是脱附数据。若样品中存在不规则的孔,氮分子进入孔内后,脱附时,由于出口很小,就有可能不出来,造成脱附的数据失真。具体的动态法和静态法的区别,请参照以下对比:静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪(以大部分国产比表面仪为例)国产静态容量法比表面及孔径分析仪(以JW-BK为例)1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙;BET比表面测3~5点,重复精度≤2%[color=#3333
紫外老化试验机的适用范围 紫外老化试验机适用于测试材料及制品。经在阳光、湿度、温度、凝露等气候条件的变化下检验有关产品及材料老化现象程度。在短时间内得到变色、退色等情况。 紫外老化试验机的特性 1.紫外老化试验机内外壳全采用不锈钢板制成。 2.装配8支UVA或UVB紫外灯管,分布前后侧。 3.自行研发针对紫外线耐候箱使用控制仪。 4.暴露方式:蒸汽冷凝暴露,幅射暴露。