当前位置: 仪器信息网 > 行业主题 > >

电镀标准

仪器信息网电镀标准专题为您提供2024年最新电镀标准价格报价、厂家品牌的相关信息, 包括电镀标准参数、型号等,不管是国产,还是进口品牌的电镀标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电镀标准相关的耗材配件、试剂标物,还有电镀标准相关的最新资讯、资料,以及电镀标准相关的解决方案。

电镀标准相关的资讯

  • 电镀污染物排放标准7月1日起实施
    国家《电镀污染物排放标准》将于2010年7月1日起正式实施,新环标大限将至,宁波企业抱团应对,探索集中废污处理,推动表面工业升级。   8日上午,宁波市电镀协会邀请了国内有关专家和企业家,在象山召开“贯彻电镀新环标清洁生产研讨会”。中国表面工程协会电镀分会顾问委员会副主任、中国表面工程协会电镀分会老专家委员会副主任、我国著名电镀专家王一夫说,因环保要求越来越高及综合性因素,全宁波电镀厂已从600多家减少到了200多家。新环标实施后,如无好“偏方”,电镀厂数量还会继续下降,从管理上要求企业从分散型管理到集中型管理。
  • 生态环境部生态环境监测司负责人就《排污单位自行监测技术指南 电镀工业》等五项标准有关问题答记者问
    p   近日,生态环境部发布了《排污单位自行监测技术指南 电镀工业》《排污单位自行监测技术指南 农副食品加工业》《排污单位自行监测技术指南 平板玻璃工业》《排污单位自行监测技术指南 农药制造工业》《排污单位自行监测技术指南 有色金属工业》等五项环境保护标准。生态环境监测司有关负责人就《排污单位自行监测技术指南 电镀工业》等五项标准的意义、制定思路以及主要内容等问题回答了记者的提问。 /p p   问:标准的定位与意义是什么? /p p   答:我国相关法律法规中明确要求排污单位对自身排污状况开展监测,排污单位开展排污状况自行监测是法定的责任和义务。自行监测作为一项技术性很强的工作任务,根据《排污许可管理办法(试行)》(环境保护部令 第48号)第十一条,排污单位自行监测技术指南是排污许可管理的重要技术支撑文件之一。 /p p   电镀工业、农副食品加工业、平板玻璃工业、农药制造工业、有色金属工业等行业的排污许可证申请与核发技术规范已发布实施,而作为自行监测的全面要求,应以自行监测技术指南的规定为准。 /p p   问:标准制定有什么主要思路? /p p   答:五项标准在制定过程中,系统梳理行业排放标准、相关管理制度及排污许可证申请与核发技术规范等对行业排放监管的要求,规定了相应行业企业自行监测的一般要求、监测方案制定、信息记录和报告的基本内容和要求,适用于排污单位在生产运行阶段对其排放的水、气污染物,噪声以及对其周边环境质量影响开展监测,同时对监测点位、监测指标、监测频次、信息记录提出要求。 /p p   问:电镀工业技术指南的主要内容是什么? /p p   答:污染物监测点位和指标,主要依据《电镀污染物排放标准》(GB 21900)进行确定。 /p p   电镀工业排污单位的废水排放监测,流量应采取自动监测,pH值、化学需氧量、总氰化物、总铜、总锌、7种第一类废水污染物,其余指标按月监测。 /p p   专门处理电镀废水的集中式污水处理厂废水流量、pH值、化学需氧量应采取自动监测,氨氮、总氮、总磷、总氰化物、总铜、总锌及7种第一类废水污染物按日监测,其余指标按月监测。 /p p   废气排放监测,有组织废气排放监测均按半年监测,无组织废气排放监测均按年监测。 /p p   问:农副食品加工业技术指南的主要内容是什么? /p p   答:污染物监测点位和指标,主要依据《制糖工业水污染物排放标准》(GB 21909)、《肉类加工工业水污染物排放标准》(GB 13457)、《淀粉工业水污染物排放标准》(GB 25461)以及《污水综合排放标准》(GB 8978)进行确定。 /p p   废水排放是该行业的主要污染排放类型,综合考虑排污单位的控制级别、废水排放去向、自行监测经济成本以及对环境的影响风险,在监测指标、监测频次上做差别性要求。对于重点排污单位,废水总排放口的流量、pH值、化学需氧量、氨氮实施自动监测,直接排放企业废水总排放口的其他污染物按月监测,间接排放企业废水总排放口的其他污染物按季度监测。非重点排污单位则按季度或半年的频次开展监测。本标准还对雨水排放口和直接排放的生活污水排放口监测频次进行了规定。 /p p   有组织废气监测点位主要包括锅炉排放口及其他15种废气排放口,各类排放口的污染物指标有所差异。本标准中多数排放口的监测频次为1次/半年,颗粒粕系统1次/两周,浸出与精炼车间、腥臭废气排放口监测频次为1次/季度。无组织废气监测频次为1次/半年。 /p p   问:平板玻璃工业技术指南的主要内容是什么? /p p   答:污染物监测点位和指标,主要依据《平板玻璃工业大气污染物排放标准》(GB 26453)、《污水综合排放标准》(GB 8978)进行确定。 /p p   废气有组织监测中,玻璃熔窑对应排放口是主要排放口,二氧化硫、氮氧化物、颗粒物,需采用自动监测 氯化氢、氟化物、氨每半年监测1次,其中氨为使用含氨物质作为还原剂的排污单位的选测指标 另外,使用重油、煤焦油、石油焦作为燃料的排污单位还要根据燃料成分检测结果,针对性监测重金属指标,监测频次为半年 在线镀膜工序对应排放口为非连续生产排放,设置监测指标颗粒物、氯化氢、氟化物、锡及其化合物等4项指标,监测频次为半年 此外,原料破碎、储存、配料、煤制气系统等6类工艺对应的排放筒,主要污染物均为颗粒物,监测频次要求为每半年到一年1次。 /p p   废气无组织监测中,根据排污单位所包含的不同工艺及设施,规定颗粒物、氨、硫化氢、非甲烷总烃等4项监测指标,监测频次为每半年到一年1次。 /p p   废水监测中,针对废水总排放口、循环冷却水排放口、脱硫废水处理设施排放口、发生炉灰盘水封水和洗涤煤气的洗涤水排放口、雨水排放口分别提出了监测要求。 /p p   问:农药制造工业技术指南的主要内容是什么? /p p   答:本标准立足当前实施的污染物排放标准,且与正在修订的《杂环类农药工业水污染物排放标准》进行有效衔接,兼顾《排污许可证申请与核发技术规范 农药制造工业》(HJ 862)对农药原药活性成分或农药中间体等特征污染物的管控要求,确定监测指标和监测点位。 /p p   对于农药制造工业直接排放的废水排放监测指标,在废水总排口规定对流量、pH值、化学需氧量、氨氮进行自动监测,规定对悬浮物、石油类、色度最低监测频次仍为日。总磷的最低监测频次定为月。其中,含磷化学农药制造排污单位总磷须采取自动监测。五日生化需氧量、车间或生产设施废水排放口监测项目以及11项有毒有害或优先控制污染物指标和12项农药行业特征污染物最低监测频次定为月。间接排放企业废水总排放口的污染物指标监测频次适当降低。 /p p   对于有组织废气主要排放口的二氧化硫、氮氧化物、颗粒物要求实施自动监测 臭气浓度、特征污染物最低监测频次定为半年 二噁英监测频次定为年 危险废物焚烧炉中一氧化碳、氯化氢等及其他项目最低监测频次定为月。 /p p   无组织废气排放监测指标包括颗粒物、臭气浓度、挥发性有机物、特征污染物最低监测频次定为半年。 /p p   问:有色金属工业技术指南的主要内容是什么? /p p   答:本标准依据《铝工业污染物排放排准》(GB 25465)及修改单、《铅、锌工业污染物排放排准》(GB 25466)及修改单、《铜、镍、钴工业污染物排放排准》(GB 25467)及修改单、《镁、钛工业污染物排放排准》(GB 25468)修改单、《锡、锑、汞工业污染物排放排准》(GB 30770)等行业污染物排放标准,并紧密对接《排污许可证申请与核发技术规范有色金属工业—铝冶炼》等11个行业的排污许可申请与核发技术规范,结合环境管理要求对各冶炼行业监测指标进行了明确。指标选取时充分体现不同生产工序污染特征,突出重点。 /p p   废水总排放口监测,流量、化学需氧量、氨氮、pH值实施自动监测。其他污染物均采取手工监测,总铅、总砷、总镉、总汞按日监测,总锌、总铜、总锡、总锑、总钴、总镍按月监测,悬浮物、硫化物、氟化物、石油类等常规污染物按季度监测。车间或生产设施废水排放口重金属一类污染物监测频次同总排口保持一致。 /p p   对于有组织废气排放监测指标,金属冶炼行业烟气制酸系统、环境集烟系统、炼前处理系统及冶炼过程中主要冶炼炉窑为主要排放源,规定二氧化硫、氮氧化物、颗粒物实行自动监测,行业特征重金属污染物按月监测,硫酸雾、氟化物等制酸废气污染物按季度监测。电解铝、铜、镍、钛冶炼均涉及到电解工艺,根据电解系统污染程度,规定电解铝电解系统排放口二氧化硫、氮氧化物均实行自动监测,氟化物按月监测,铜、镍、钛冶炼行业电解系统排放口可每季度监测一次或者半年监测一次。冶炼与电解工序之外的其他工序排放口均为一般排放口,监测频次可按季度或半年监测一次开展。 /p p   对于无组织废气排放监测指标,每季度至少开展一次监测。 /p
  • 未来五年,对塑料电镀装饰的需求将会增加。您准备好了吗?
    塑料电镀是电镀行业最*大的增长市场之一。制造商正在使用塑料电镀部件来降低成本,包括从汽车标识到洗衣机上的各种装饰性部件。在这些部件镀上镍或铬饰面,以确保具有良好外观。消费者对此似乎并不介意;至2024年,塑料电镀市场规模将达到7.5亿美元。日立分析仪器的镀层分析专家Matt Kreiner在此解释了为什么应准备就绪,以及XRF技术应如何成为质量控制工具包的一部分。面向消费者市场的巨大趋势对塑料电镀的需求由两大面向消费者市场驱动:汽车和家用电器。在汽车行业中,造成塑料电镀组件数量增加的主要原因如下:第一,减轻车辆重量以提高燃料效率,第二,降低生产成本。通过在塑料制作的复杂形状上镀上镍和铬以获得性能良好的饰面,将大幅降低成本。塑料组件也不易腐蚀和磨损。在汽车制造业中,塑料电镀用于车轮盖、门把手、饰件、仪表板、格栅和许多其他组件。即日起至2024年,预计汽车塑料电镀细分市场规模将增长6.5%以上(复合年增长率)。2023年,预计全球家用电器行业规模将从1,740亿美元增至2,030亿美元。在该行业中,塑料电镀旨在降低制造成本。镀镍和镀铬是不锈钢的廉价替代品。而且,制造商仅需改变饰面,即可提供外观截然不同的独特产品,而无需在设计上做出巨大改变。这适用于从烤面包机到大型双门冰箱等大量产品。铬和镍是两种主要饰面;镍用在铬层下方,或者作为完整的饰面。采用的电镀技术是化学镀镍和电镀铬。可使用许多塑料材料,常见的基底类型包括:ABS、聚碳酸酯、聚乙烯和液晶聚合物。塑料电镀的XRF最*佳实践使用装饰电镀的成败均在于质量。质量欠佳的饰面会让消费者失望,并损害供应商的声誉。作为塑料金属表面处理提供商,必须提供高质量的部件。XRF分析无损、准确且快速,是最适合测量饰面厚度的理想技术。然而,当塑料上同时镀有铬和镍层时,某些XRF设备难以识别并难于准确测量。这是因为装饰电镀中的元素拥有非常接近的荧光X射线光谱峰位。处理这类问题的好方法是确保XRF设备配备正确类型的探测器。首先应考虑的探测器类型是硅漂移探测器(即SDD探测器)。SDD探测器比传统正比计数器具有更优的分辨率,可轻松读取不同金属层的谱峰。因此可轻松确保获得正确的电镀厚度,这对确保在组件的整个使用寿命期间提供高质量饰面至关重要。就金属表面处理提供商而言,塑料电镀带来的是真正的增长机会,尤其是在其已为汽车和家用电器制造商供货的情况下。联系我们,了解适用于准确测量镍和铬厚度的XRF光谱仪系列。
  • 【技术知识】表面张力仪在电镀行业中的应用
    以往电镀液的更换或何时再添加接性剂(如促进剂),是以经验值或时间来决定,如此做法是无法量化数据化,不知所以然的做法。电镀液中除了含有欲镀上之金属离子,电解质,错合剂外尚有有机添加剂(光泽剂,结构改良剂,润湿剂),其中润湿剂是影响被镀物(导线架,铜箔基板,构装基板)与金属离子,光泽剂之类等物质之间附着力好坏。镀膜易剥离是因接口活性剂选用不对或是浓度不对所造成。表面张力仪在电镀行业中的应用介绍01如何选定附着力好的电镀液主要是电镀液供货商配方问题,使用者可依供货商所提供电镀液实际去镀看看结果如何而选定,选定后以这新电镀液去测量表面张力值,以这个值当进料检验标准值。电镀液效果好坏还有因选用电镀设备有关,如使用何种电源供应器,选用何种电源供应器技术原理,是整个电镀设备的技术关键点。02制程中电镀液表面张力监控理论上电镀液表面张力愈小,表示电镀液愈容易渗入小缝隙里面,愈容易在被镀物表面润湿,也就是愈容易使用金属离子镀上去。但在品质与经济效益需取得平衡点,故表面张力值需控制在哪一点,这必须有赖使用者去抓。因每一家所考虑的都不一样,故无一定标准。但有一CMC(CriticalMicelleConcentration)点需先抓出来,因为超过CMC点后,表面张力反而不会改变,不但没达到预期效果且浪费接口活性剂。在CMC点之前的任何表面张力值,选一点你们认为制程上的,作为监控的标准值。当CMC点与标准值定下来后,再定时作电镀液取样量测。03结论假设金属离子(欲镀物)浓度是在控制范围内,但因无法渗入较小缝隙内,会造成缝隙内厚度不均匀甚至没镀到,或因润湿性不好除了厚度不均匀外,更是造成易剥离主要原因。表面张力计与底材表面自由能分析仪界面科学领域中,有一物化性质很值得去了解与应用它,尤其在精密化学,半导体,光电等新兴科技产业,在研发,制程改善和品保方面常会碰到界面上瓶颈问题,但因人们没深入去了解此一物化现象,似懂非懂,没有很清晰建立起正确观念,这些观念就是液体表面张力,固体表面自由能与表面自由能分布,和润湿功在实务解释应用上所代表的意义如何,因而无法利用这些观念去发现问题之所在,以谋求解决之道。只要把这物化性质清晰了解后,配合表面张力计和底材表面自由能分析仪的数据,相信可以解决许多表面张力方面的问题。相关仪器A1200自动界面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。广泛用于电力、石油、化工、制药、食品,教学等行业。执行标准适应标准:GB/T6541
  • 电镀业重金属监测未来2年市场规模为3-9亿元
    电镀作为制造业的四大基础工艺之一,广泛应用于各种行业,如高端的电子、航空、航天、能源、核工业,低端的日用五金、汽车配件、文具类产品等,是无法取代的服务性行业。   据不完全统计,2009年我国电镀企业数量(规模以上企业)总计1.5万家,5000多条生产线和2.5~3亿平方米电镀面积生产能力。近几年,随着各地政府对重污染企业的整治,电镀企业数量有减少的趋势。   2008年,环境保护部颁布了《电镀污染物排放标准》(GB21900-2008),标准的颁布为重点行业及重点污染源的管理提供了依据。   排放新标遭遇哪些问题?   需要寻求达标与投资、运行成本之间的平衡   根据电镀水污染物的理化特性、危害性以及污染控制的需要等,新标准共选择了20项污染物作为水污染控制项目,其中金属污染物11项,非金属污染物9项。与欧盟部分国家表面处理废水排放浓度限值比较,标准中金属污染物排放标准严格程度均处于中上游水平。而化学需氧量、磷等非金属污染物几项指标由于列入地表水体污染物排放总量,控制也较严格。   调查发现,各地电镀企业/园区在执行标准中普遍存在一些问题:   首先,COD、氨氮、总氮、总磷等生化指标由于废水生化性比较差,常规AO或A2O工艺无法处理,是超标的主要因子。电镀废水中COD的来源主要为:前处理废水(除油、除蜡)中的酯类 镀液中的各种添加剂(表面活性剂、光亮剂、络合剂等) 还原剂的过量添加产生的&ldquo 假性COD&rdquo 。虽然电镀废水的COD浓度不高(200~300mg/L),但由于其生化性较差而造成常规的生物法无法有效处理。   其次,Cu离子在化学法处理工艺中是重金属离子的主要超标因子。电镀工序产生的络合剂(EDTA、酒石酸钠等)与铜螯合形成络合铜,以及其他工序也会产生相应的含铜络合物,这造成在化学沉淀法中容易破络或沉淀不完全而造成铜超标。   再次,达到标准中水污染物特别排放限值的投资及运行成本压力大。园区或者企业为了达到标准,重金属废水及可回用的废水多数采用了膜技术工艺。调查发现电镀废水大型集中式污水处理厂膜处理的投入成本约占总成本的20%~30%,运行成本约增加25%~40%,中小型电镀废水处理厂膜处理投入成本及运行成本更高,这对于已经改造或新建的电镀废水污水处理厂而言,压力有点大。   园区成主要发展形式   由广泛式分布向集中式发展,但企业入园情况不理想   调查发现,标准颁布4年后,电镀行业及相应治理行业格局已经发生了变化。   首先,行业形态由广泛式分布向集中式分布发展。电镀园区集中化发展已成为电镀行业目前及未来的主要发展模式。电镀园区的建设,能够实现统一生产、统一管理和统一治污,有利于实现对一个地区电镀行业的监管。但同时,电镀企业入园发展也意味着电镀企业规模、自动化程度、管理水平及要求的提高以及近半的搬迁损失和客户流失,这对于政府部门形成了较大的挑战。调查发现,目前全国共有已建及在建的电镀园区或集聚区100多个。   调查发现,虽然广东、重庆等省市均在积极推动电镀企业入园发展,并采取了一定的强制手段,但入园情况仍不太理想。如广东中山、惠州等地的入园率约为50%,而重庆市园区外电镀企业仍占50%以上。   2010年以后,浙江省针对电镀企业制定了越来越严格的综合整治标准和验收标准,发布了一系列的政策。比如浙江省环保厅印发的67号文件中提出,&ldquo 2012年底前,电镀企业众多的县(市、区)建成电镀园区,除保留少数标杆式企业外,原则上所有电镀企业完成搬迁入园或在园区租赁厂房设备整合发展。&rdquo 同时制定了56条电镀企业污染综合整治验收标准,涉及9条废水处理、6条废气治理、3条固废处理验收标准。56条严格的验收标准在浙江省电镀企业中留下了深刻的印象,调研中发现,当地几乎所有电镀企业都会提到这个标准。   浙江省通过两年对电镀企业的综合整治取得了明显成效,如宁波市210家电镀企业(含配套电镀车间)中,位于电镀园区(集聚区)和工业功能区中的共196家,占比达到93.3%。建议其他地区可借鉴浙江省的经验结合本地方特色,采用引导和强制并用的手段,积极引导规模以上企业入园,取缔小、黑、散企业。   第三方运营找到商机   专业治理公司发展迅速,为园区电镀废水治理提供环境服务   新标准颁布后,有技术和有实力的治理企业认为这是一种机遇,迅速开拓市场,做大做强,逐渐垄断市场,而技术实力偏弱的企业只能分浅浅一杯羹。   值得注意的是,随着电镀园区的集中化发展以及排放标准的严格,园区集中式污水处理设施对专业化运营商的需求越来越大,针对电镀行业污染治理的第三方专业运营公司由此得到发展。   目前,各电镀园区的集中式污水处理厂运营模式主要为自运营(政府自运营或投资商自运营)和第三方运营两种模式。   如浙江省主要以第三方运营为主,其中温州已投运的4个电镀园区全部为第三方运营,而宁波、衢州等市也以第三方运营为主。统计发现,浙江省20多个电镀园区75%以上为第三方运营,广东省第三方运营的比例约为50%,重庆市第三方运营比例低于50%。   浙江海拓环境技术有限公司作为第三方运营公司的代表,近几年其运营规模以每年翻番的速度增长。公司成立于2007年,2008年公司营业额约400万元,2012年公司营业额就达1.6亿元。   据了解,海拓环境目前对浙江省12个电镀园区及企业进行第三方运营,总运营规模达到4万吨/天(设计规模)。而随着各地区对标准实施的严格要求及整治力度的加强,第三方运营企业的数量及规模也将呈现出快速发展的趋势。   在线监测开始成新热点   重金属污染企业强制安装,国内外厂家纷纷抢占市场   根据《电镀污染物排放标准》规定,新建设施应按照《污染源自动监控管理办法》的规定,安装污染物排放自动监控设备,并与环保部门的监控中心联网。这对在线监测的发展起到了积极促进作用。同时,随着国家对重金属污染控制的重视,部分省市逐渐开始关注重金属排放的在线监测,重金属监测成为水质在线监测市场一个新的热点领域。   目前国内市场上的重金属监测仪主要有铜、镍、锌、铅、铬、砷、锰等。调查发现,2008年重金属在线监测仪国内需求较少,生产厂家也很少。在《电镀行业污染物排放标准》颁布一年后市场开始预热,直至2010年才开始真正引爆市场,各地政府相继出台政策,强制要求重金属污染企业安装在线监测仪。   在各地需求激增的情况下,老牌的在线仪器厂家利用已有的技术积累和市场渠道策马圈地,占据了大半江山 一些本不是从事环保仪器的厂商也从中看到了商机,加入竞争行列中。同时,国外厂家(比利时的Applitek、澳大利亚的MTI、捷克的Istran、意大利SYSTEA等)也纷纷通过经销商向国内输入产品。   专家预测,未来2~3年,重金属在线监测仪的规模约为5000套。考虑电镀行业重金属在线监测40%的占比,未来2~3年电镀行业重金属在线监测的市场规模约为500~1500套,市场金额约为3~9亿元。   作者单位:李瑞玲 江苏省(宜兴)环保产业研究院 卢然 李小朋 环境保护部环境规划院
  • MPC推出最新电镀添加剂自动分析仪T-100
    法国M.P.C公司的Titraplate CP 电镀添加剂分析系统 独一专门为电镀工业和电镀剂(特别是用于酸性铜和酸性锡电镀液)中添加剂浓度测定的CVS(循环伏安溶出)分析仪。 分析方法 标准加入法测定铜、锡电镀液中荧光增亮剂 校准曲线法测定铜、锡电镀液中Carrier / Leveller 创新技术用于锡荧光增亮剂分析 旋转圆盘电极 转速100~5000rpm 视觉控制 参比电极 Ag/AgCl新型玻璃双接界电极(寿命长,维护简单) Pt辅助电极 增大Pt面积以将gaz发射降至最低 同时推出该公司最新的多样品自动处理系统T-100型,分离式的喷淋电极清洗设计,大幅减小了交叉污染。 详细信息请直接与雷迪美特广州办联系 020-87683635,radiometer@126.com
  • 盛美半导体发布首台应用于化合物半导体制造中晶圆级封装和电镀应用的电镀设备
    作为半导体制造与先进晶圆级封装领域中领先的设备供应商,盛美半导体设备8月31日发布了新产品——Ultra ECP GIII电镀设备,以支持化合物半导体(SiC, GaN)和砷化镓(GaAs) 晶圆级封装。该系列设备还能将金(Au)镀到背面深孔工艺中,具有更好的均匀性和台阶覆盖率。Ultra ECP GIII还配备了全自动平台,支持6英寸平边和V型槽晶圆的批量工艺,同时结合了盛美半导体的第二阳极和高速栅板技术,可实现最佳性能。盛美半导体设备董事长王晖表示:“随着电动汽车、5G通信、RF和AI应用的强劲需求,化合物半导体市场正在蓬勃发展。一直以来,化合物半导体制造工艺的自动化水平有限,并且受到产量的限制。此外,大多数电镀工艺均采用均匀性较差的垂直式电镀设备进行。盛美新研发的Ultra ECP GIII水平式电镀设备克服了这两个困难,以满足化合物半导体不断提升的产量和先进性能需求。”盛美的Ultra ECP GIII设备通过两项技术来实现性能优势:盛美半导体的第二阳极和高速栅板技术。第二阳极技术可通过有效调整晶圆级电镀性能,克服电场分布差异造成的问题,以实现卓越的均匀性控制。它可以应用于优化晶圆边缘区域图形和V型槽区域,并实现3%以内的电镀均匀性。盛美的高速栅板技术可达到更强的搅拌效果,以强化传质,从而显著改善深孔工艺中的台阶覆盖率,同时提升的步骤覆盖率可降低金薄膜厚度,从而为客户节约成本。盛美半导体的Ultra ECP GIII已取得来自中国化合物半导体制造商的两个订单。第一台订单设备采用第二阳极技术的铜-镍-锡-镀银模块,且集成真空预湿腔体和后道清洗腔体,应用于晶圆级封装,已于上月交付。第二台订单设备适用于镀金系统,将于今年下一季度交付客户端。
  • 华东电镀行业分析检测技术交流研讨会顺利召开
    6月19日,由苏州市电镀协会联合天瑞仪器主办的“华东电镀行业分析检测技术交流研讨会”召开,这是苏州电镀行业协会在天瑞仪器举行的第二次会议,来自华东地区的各类电镀企业代表以及江苏、苏州两级电镀协会专家和学者参加了此次会议。   董事长刘召贵博士亲自对来宾进行了公司介绍,苏州电镀协会王万秘书长做了《苏州电镀产业发展报告》,分析了近几年来苏州电镀行业的发展趋势,剖析了当前电镀行业发展中亟需解决的环保和质量控制问题,并对电镀行业的未来进行了展望。   会议现场重点讲解了《XRF在电镀行业的应用及行业解决方案》和《化学分析方法在电镀行业的应用及行业解决方案》,对XRF技术、化学分析方法在电镀行业的深层应用,各企业代表和专家对本次技术讲座及应用兴趣浓厚,反响强烈,提出了不少对实际操作中遇到的问题。   会后,客户和专家学者参观了天瑞仪器实验室和产业园,并对天瑞生产的THINK800A等镀层行业专用仪器表示极大兴趣。     董事长刘召贵博士作公司介绍     电镀协会王万秘书长作对苏州电镀产业做发展报告     现场技术讲座   客户和专家学者参观实验室   了解天瑞仪器:www.skyray-instrument.com
  • 电镀等重金属环保专项行动拉开帷幕
    记者从安阳市环保局获悉,今年,安阳市将继续开展整治违法排污企业、保障群众健康环保专项行动,以解决危害群众健康和影响可持续发展的突出环境问题为重点,进一步加大对重金属污染物排放企业环境违法行为的整治力度,加快推进安阳河综合整治等重点工作。   在集中整治重金属排放企业方面,环保专项行动重点查清重有色金属矿采选及冶炼、含铅蓄电池、皮革及其制品、化学原料及化学制品、电镀、危险废物处置等重金属排放企业及历史遗留重金属废物堆场,彻底取缔国家明令淘汰的“小电镀”、“小制革”、“小冶炼”等落后工艺装备和生产能力,对饮用水源地一级保护区、二级保护区内的重金属排放企业一律取缔。   加快推进重点环保项目建设,继续推进安阳河综合治理工作,确保安阳河水质得到明显改善。全面开展“碧水工程”,提高我市主要河流省市控断面达标率。滑县、林州市所有堆存铬渣要在年底前完成无害化处置。宗村污水处理厂要在11月底之前开展污泥处理处置示范工程建设。唐沟垃圾综合处理场和各县(市)生活垃圾处理场要加快渗滤液处理设施建设进度,尽早投入运行。今年,我市还要完成洪河流域综合整治和金堤河综合整治。   为了保证今年的环保专项行动有效开展,安阳市还成立了由环保、发改、工信等9部门组建的专项行动小组,共同打击环境违法行为。5月至9月为专项行动全面排查和集中整治阶段,环保专项行动小组要对重金属排放企业、污染减排重点行业存在的环境违法问题进行集中整治,严肃查处一批典型违法案件。10月至11月为督察阶段,对督察中发现的问题,新闻媒体将对整改落实情况进行跟踪报道。12月为总结阶段。
  • 网络研讨会|德国析塔表面张力仪对电镀工艺中润湿剂的优化控制
    在电镀工艺中,表面活性剂在镀液中起到润湿零部件的作用,获得光滑的表面。然而,过量的表面活性剂也会导致电镀液产生不必要的气泡。因此在电镀工艺中,表面活性剂含量是一个非常重要的工艺参数,监测表面活性剂浓度对于提高工艺可靠性和质量控制至关重要,一般通过测量电镀液动态表面张力来获得。德国析塔SITA全自动动态及静态表面张力仪测出电镀液表面张力仪,为后续添加表面活性剂浓度提供保证。2021年12月15号,德国析塔SITA将举办在线研讨会,介绍电镀工艺中优化控制的润湿剂的方法,以及德国析塔SITA表面张力仪在电解质测量的实际应用。在研讨会上,来自德国析塔SITA公司的应用专家André Lohse and Tilo Zachmann将介绍以下几个方面内容:1.什么是动态表面张力,如何测量2.介绍德国析塔SITA全自动动态表面张力仪3.德国析塔SITA表面张力仪在电镀工艺和半导体工艺的应用4.实验示范:如何处理样品,如何在最初测试中确定参数,测量结果解释说明发邮件到【marketing@hjunkel.com】,邮件主题写【12月15号网络研讨会】进行登记,我们将在研讨会结束后给您发送资料和视频。马上点击了解更多关于德国析塔SITA全自动动态及静态表面张力仪的产品信息和技术应用。翁开尔是德国析塔SITA中国独家代理,负责析塔SITA系列产品如表面清洁度仪,动态表面张力仪,泡沫仪等在中国的销售、技术支持,马上致电联系佛山翁开尔公司。
  • 华东电镀行业分析检测技术研讨会即将在天瑞仪器召开
    6月19日,&ldquo 华东电镀行业分析检测技术交流研讨会&rdquo 即将在天瑞仪器分析测试研究院召开。此次会议由江苏天瑞仪器股份有限公司和苏州市电镀协会联合主办,中国电镀网做媒体支持,并邀请江苏省机械工业联合会分会秘书长作为此会议特邀嘉宾。 此次研讨会的举办旨在为电镀业内人士介绍当前最新镀层检测方法和现阶段国内外最先进的检测设备。为广大镀层行业人士提供X荧光分析仪器和化学分析类仪器在实际应用中的检测方法,推动苏州地区镀层行业的发展。届时将有苏州市电镀协会领导、专家出席此次会议,与参会的行业客户共同交流讨论。 天瑞仪器积极组织此次会议的召开,为行业客户提供一个学习交流的机会,机会难得,期待广大镀层行业客户的参与。 大会流程: 详情咨询研讨会会务组:0512-57018653 了解天瑞仪器:www.skyray-instrument.com
  • 盛美上海推出新型面板级电镀设备,进一步拓展扇出型面板级封装产品线
    8月8日,作为一家为半导体前道和先进晶圆级封装应用提供晶圆工艺解决方案的卓越供应商的盛美半导体设备(上海)股份有限公司(以下简称“盛美上海”)推出用于扇出型面板级封装(FOPLP)的Ultra ECP ap-p面板级电镀设备。盛美上海的Ultra ECP ap-p面板级电镀设备采用盛美上海自主研发的水平式电镀确保面板具有良好的均匀性和精度。该设备可加工尺寸高达515x510毫米的面板,同时具有600x600毫米版本可供选择。该设备兼容有机基板和玻璃基板,可用于硅通孔(TSV)填充、铜柱、镍和锡银(SnAg)电镀、焊料凸块以及采用铜、镍、锡银和金电镀层的高密度扇出型(HDFO)产品。Ultra ECP ap-p面板级电镀设备采用盛美上海自主研发的技术,可精确控制整个面板的电场。该技术适用于各种制造工艺,可确保整个面板的电镀效果一致,从而确保面板内和面板之间的良好均匀性。此外, Ultra ECP ap-p面板级电镀设备采用水平(平面)电镀方式,能够实现面板传输过程中引起的槽体间污染控制,有效减少了不同电镀液之间的交叉污染,可作为具有亚微米RDL和微柱的大型面板的理想选择。该设备还采用了卓越的自动化和机械臂技术,以确保整个电镀工艺过程中面板被高效和高质量的传输。自动化程序与传统晶圆处理过程类似,但为了处理更大更重的面板,额外添加面板翻转机构以正确定位以及转移面板便于进行面朝下电镀等步骤,确保处理的精确性和高效性。 盛美上海董事长王晖博士表示:“先进封装对于满足低延迟、高带宽和高性价比半导体芯片的需求越来越重要。扇出型面板级封装能够提供高带宽和高密度的芯片互连,因此具有更大的发展潜力。由于可在更大的矩形面板上重新分配芯片,扇出型面板级封装为封装大型图形处理器(GPU)和高密度高带宽内存(HBM)节约了大量成本。我们的Ultra ECP ap-p面板级的水平式电镀设备充分利用我们在传统先进封装的晶圆电镀和铜工艺方面的丰富技术专长,满足市场对扇出型面板级封装不断增长的需求。凭借这项技术,我们能够在面板中实现亚微米级先进封装。”
  • 中国某复合半导体器件制造商选择ClassOne的Solstice CopperMax电镀系统
    p   ClassOne Technology是面向200毫米及更小半导体制造行业的新型电镀和湿法加工工具的主要供应商,近日宣布将其旗舰Solstice& reg CopperMax& #8482 电镀系统多工具销售给中国一家复合半导体制造商。作为中国较大的半导体供应商,也是世界上极具优势的砷化镓(GaAs)晶圆厂之一,ClassOne的新客户将使用CopperMax& #8482 来锚定高度先进电芯的生产,其突破性设计适用于各种前沿半导体市场。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/67dd3b26-ddc9-4ffb-9eef-7298de333c80.jpg" title=" Solstice& reg CopperMax& #8482 .jpg" width=" 400" height=" 296" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 296px " / /p p    span style=" color: rgb(79, 129, 189) " i “ClassOne已成为复合半导体行业严格需求的优选供应商,” /i /span ClassOne首席执行官Byron Exarcos表示。 span style=" color: rgb(79, 129, 189) " i “ClassOne在世界各地领先的复合半导体晶圆厂都有业务,目前在基于GaAs衬底的半导体的开发和制造方面处于全球优势地位。此次销售进一步证实了ClassOne在全球电镀技术领域的优势地位。” /i /span /p p   ClassOne预计未来几个月将有多个类似的销售行为,因为遍布亚洲的半导体制造设施扩展了其对于先进应用的处理能力,包括3D传感,自动驾驶汽车和4G/5G通信等需要高度先进的复合半导体芯片技术的应用。 /p
  • 盛美半导体收到主要集成电路制造商的电镀设备DEMO订单 将于2022年初交付
    10月20日,盛美半导体设备宣布,已收到一家主要集成电路制造商购买其Ultra ECP map镀铜设备的DEMO设备订单。订单确定的交付日期在 2022 年初。图片来源:盛美半导体设备据介绍,Ultra ECP map是在盛美半导体设备已经得到证明的电镀 (ECP) 技术基础之上制造的。该设备配备多阳极局部镀铜功能,可以在先进的技术节点上实现双大马士革铜互连结构铜金属层沉积。该设备可兼容超薄种子层,生产量高、运行时间长,同时能降低耗材成本和运营成本。
  • 8项有色金属行业国家检测标准发布
    2024年3月15日,国家标准化管理委员会发布13项有色金属行业国家标准,其中8项涉及分析检测(如下表)。这些标准均由TC243(全国有色金属标准化技术委员会)归口,TC243SC5(全国有色金属标准化技术委员会贵金属分会)或TC243SC1(全国有色金属标准化技术委员会轻金属分会)执行 ,主管部门为中国有色金属工业协会。序号标准号标准中文名称发布日期实施日期1GB/T 43753.4-2024贵金属合金电镀废水化学分析方法 第4部分:氯离子含量的测定 氯化银浊度法2024-03-152024-10-012GB/T 43753.3-2024贵金属合金电镀废水化学分析方法 第3部分:硫酸盐含量的测定 硫酸钡重量法2024-03-152024-10-013GB/T 43603.2-2024镍铂靶材合金化学分析方法 第2部分:镁、铝、钛、钒、铬、锰、铁、钴、铜、锌、锆、银、钯、锡、钐、铅、硅含量的测定 电感耦合等离子体质谱法2024-03-152024-10-014GB/T 43753.2-2024贵金属合金电镀废水化学分析方法 第2部分:锌、锰、铬、镉、铅、铁、铝、镍、铜、铍含量的测定 电感耦合等离子体原子发射光谱法2024-03-152024-10-015GB/T 43753.1-2024贵金属合金电镀废水化学分析方法 第1部分:金、银、铂、钯、铱含量的测定 电感耦合等离子体原子发射光谱法2024-03-152024-10-016GB/T 6519-2024变形铝、镁合金产品超声波检验方法2024-03-152024-10-017GB/T 43603.3-2024镍铂靶材合金化学分析方法 第3部分:碳含量的测定 高频红外检测法2024-03-152024-10-018GB/T 3246.1-2024变形铝及铝合金制品组织检验方法 第1部分:显微组织检验方法2024-03-152024-10-01
  • 国家市场监督管理总局批准发布《铁矿石 氯含量的测定 X射线荧光光谱法》等109项国家标准和4项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《锰硅合金》等109项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-06-291、 国家标准序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 4008—2024锰硅合金GB/T 4008—20082025-01-012GB/T 4585—2024交流系统用高压瓷和玻璃绝缘子的人工污秽试验GB/T 4585—20042025-01-013GB/T 5169.23—2024电工电子产品着火危险试验 第23部分:试验火焰 聚合物管形材料500W垂直火焰试验方法GB/T 5169.23—20082025-01-014GB/T 5270—2024金属基体上的金属覆盖层 电沉积和化学沉积层 附着强度试验方法评述GB/T 5270—20052025-01-015GB/T 6113.106—2024无线电骚扰和抗扰度测量设备和测量方法规范 第1-6部分:无线电骚扰和抗扰度测量设备 EMC天线校准GB/T 6113.106—20182025-01-016GB/T 6730.88—2024铁矿石 氯含量的测定 X射线荧光光谱法2025-01-017GB/T 7260.3—2024不间断电源系统(UPS)第3部分:确定性能和试验要求的方法GB/T 7260.3—20032025-01-018GB/T 9799—2024金属及其他无机覆盖层 钢铁上经过处理的锌电镀层GB/T 9799—20112025-01-019GB/T 12279.1—2024心血管植入器械 人工心脏瓣膜 第1部分:通用要求2025-07-0110GB/T 12297.2—2024心血管植入器械 人工心脏瓣膜 第2部分:外科植入式人工心脏瓣膜2025-07-0111GB/T 14034.3—2024液压传动连接 金属管接头 第3部分:端面密封2024-06-2912GB/T 15597.1—2024塑料 聚甲基丙烯酸甲酯(PMMA)模塑和挤出材料 第1部分:命名系统和分类基础GB/T 15597.1—20092025-01-0113GB/T 15597.2—2024塑料 聚甲基丙烯酸甲酯(PMMA)模塑和挤出材料 第2部分:试样制备和性能测定GB/T 15597.2—20102025-01-0114GB/T 17692—2024汽车发动机及驱动电机净功率测试方法GB/T 17692—19992025-01-0115GB/T 18029.1—2024轮椅车 第1部分:静态稳定性的测定GB/T 18029.1—20082024-10-0116GB/T 18029.8—2024轮椅车 第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法GB/T 18029.8—20082024-10-0117GB/T 18029.22—2024轮椅车 第22部分:调节程序GB/T 18029.22—20092024-10-0118GB/T 19822—2024铝及铝合金硬质阳极氧化膜规范GB/T 19822—20052025-01-0119GB/T 20290—2024家用电动洗碗机 性能测试方法GB/T 20290—20162025-01-0120GB/T 20554—2024海带GB/T 20554—20062025-01-0121GB/T 21672—2024速冻裹衣虾GB/T 21672—20142025-01-0122GB/T 22459.9—2024耐火泥浆 第9部分:常温抗剪粘接强度试验方法2025-01-0123GB/T 24820—2024实验室家具通用技术条件GB 24820—20092025-01-0124GB/T 26694—2024家具绿色设计评价规范GB/T 26694—20112025-01-0125GB/T 28478—2024户外家具 桌椅类通用技术条件GB 28478—20122025-01-0126GB/T 24861—2024水产品流通管理技术规范GB/T 24861—20102025-01-0127GB/T 24977—2024卫浴家具通用技术条件GB 24977—20102025-01-0128GB/T 27624—2024养殖红鳍东方鲀鲜、冻品加工操作规范GB/T 27624—20112025-01-0129GB/T 27988—2024咸鱼加工技术规范GB/T 27988—20112025-01-0130GB/T 28294—2024钢铁渣复合料GB/T 28294—20122025-01-0131GB/T 30685—2024气瓶直立道路运输技术要求GB/T 30685—20142024-10-0132GB/T 30894—2024咸鱼GB/T 30894—20142025-01-0133GB/T 30947—2024罐装冷藏蟹肉GB/T 30947—20142025-01-0134GB/T 32446—2024玻璃家具通用技术要求GB 28008—2011GB/T 32446—20152025-01-0135GB/T 34747—2024干海参等级规格GB/T 34747—20172025-01-0136GB/T 35607—2024绿色产品评价 家具GB/T 35607—20172025-01-0137GB/T 35608—2024绿色产品评价 绝热材料GB/T 35608—20172025-01-0138GB/T 35612—2024绿色产品评价 木塑制品GB/T 35612—20172025-01-0139GB/T 35603—2024绿色产品评价 卫生陶瓷GB/T 35603—20172025-01-0140GB/T 36192—2024活水产品运输技术规范GB/T 36192—20182025-01-0141GB/T 36395—2024冷冻鱼糜加工技术规范GB/T 36395—20182025-01-0142GB/T 36548—2024电化学储能电站接入电网测试规程GB/T 36548—20182025-01-0143GB/T 39560.12—2024电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯2024-10-0144GB/T 42086.3—2024液压传动连接 法兰连接 第3部分:42 MPa、DN25~DN80方形系列2024-06-2945GB/T 43723—2024普通照明用电源电压不大于交流有效值50V或无纹波直流120V的半集成式LED灯 性能要求2025-01-0146GB/T 43931—2024宇航用微波集成电路芯片通用规范2024-10-0147GB/T 43952—2024医用供应装置2025-07-0148GB/T 44072.1—2024液压传动连接 软管总成 第1部分: 尺寸和要求2025-01-0149序列国家标准编号国 家 标 准 名 称代替标准号实施日期1
  • 8月1日起施行的环保法规、标准
    部门规章 国家危险废物名录(环境保护部令第1号) 具有下列情形之一的固体废物和液态废物,列入本名录:     (一)具有腐蚀性、毒性、易燃性、反应性或者感染性等一种或者几种危险特性的;     (二)不排除具有危险特性,可能对环境或者人体健康造成有害影响,需要按照危险废物进行管理的。 医疗废物属于危险废物。《医疗废物分类目录》根据《医疗废物管理条例》另行制定和公布。 国务院环境保护行政主管部门将根据危险废物环境管理的需要,对本名录进行适时调整并公布。 本名录自2008年8月1日起施行。1998年1月4日原国家环境保护局、国家经济贸易委员会、对外贸易经济合作部、公安部发布的《国家危险废物名录》(环发〔1998〕89号)同时废止。 国家环境保护标准 清洁生产标准 制订技术导则(HJ/T 425-2008) 本标准规定了行业清洁生产标准的框架结构、编制原则、编写规则和工作程序、编制内容和方法以及格式体例的要求。 本标准适用于行业清洁生产标准的编制。 本标准为首次发布。本标准为指导性标准。 清洁生产标准 钢铁行业(烧结)(HJ/T 426-2008) 本标准规定了钢铁行业(烧结)生产企业清洁生产的一般要求。 本标准适用于钢铁行业具有烧结生产工艺企业的清洁生产审核和清洁生产潜力与机会的判断、清洁生产绩效评定和清洁生产绩效公告制度,也适用 于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。本标准为指导性标准。 清洁生产标准 钢铁行业(高炉炼铁)(HJ/T 427-2008) 本标准规定了钢铁行业(高炉炼铁)生产企业清洁生产的一般要求。 本标准适用于钢铁行业具有高炉炼铁生产工艺企业的清洁生产审核和清洁生产潜力与机会的判断、清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。本标准为指导性标准。 清洁生产标准 钢铁行业(炼钢)(HJ/T 428-2008) 本标准规定了钢铁行业(炼钢)生产企业清洁生产的一般要求。 本标准适用于钢铁行业具有炼钢生产工序的钢铁企业的清洁生产审核和清洁生产潜力与机会的判断、清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。本标准为指导性标准。 清洁生产标准 化纤行业(涤纶)(HJ/T 429-2008) 本标准规定了化纤行业(涤纶)生产企业清洁生产的一般要求。 本标准适用于采用对苯二甲酸直接酯化法生产聚酯和以聚酯为原料生产涤纶纤维的企业清洁生产审核和清洁生产潜力与机会的判断,以及清洁生产绩效评定、清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。本标准为指导性标准。 清洁生产标准 电石行业(HJ/T 430-2008) 本标准规定了电石行业清洁生产的一般要求。 本标准适用于电石生产企业的清洁生产审核、清洁生产潜力与机会的判断、清洁生产绩效评定和清洁生产绩效公告制度, 也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。本标准为指导性标准。 建设项目竣工环境保护验收技术规范 港口(HJ 436-2008) 本标准规定了港口建设项目竣工环境保护验收的有关要求和规范。 本标准适用于港口(海港、内河港口)建设项目新建、改建、扩建和技术改造工程竣工环境保护的验收,也可用于建设项目竣工后的日常监督管理。 本标准为首次发布。 制浆造纸工业水污染物排放标准(GB 3544—2008) 本标准规定了制浆造纸企业或生产设施水污染物排放限值。 本标准适用于现有制浆造纸企业或生产设施的水污染物排放管理。 本标准适用于对制浆造纸工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染物排放管理。 本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和 国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,有毒污染物可吸附有机卤素(AOx)、二噁英在本标准规定的监控位置执行相应的排放限值;其他污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,《造纸工业水污染物排放标准》(GB 3544-2001)、《关于修订〈造纸工业水污染物排放标准〉的公告》(环发[2003]152号)废止。 电镀污染物排放标准(GB 21900—2008) 本标准规定了电镀企业和拥有电镀设施的企业的电镀水污染物和大气污染物的排放限值等内容。 本标准适用于现有电镀企业的水污染物排放管理、大气污染物排放管理。 本标准适用于对电镀企业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水、大气污染物排放管理。 本标准也适用于阳极氧化表面处理工艺设施。 本标准适用于法律允许的污染物排放行为;新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,有毒污染物总铬、六价铬、总镍、总镉、总银、总铅、总汞在本标准规定的监控位置执行相应的排放限值;其他污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 本标准实施之日起,电镀企业水和大气污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)和《大气污染物综合排放标准》(GB 16297-1996)中的相关规定。 本标准为首次发布。 羽绒工业水污染物排放标准(GB 21901—2008) 本标准规定了羽绒企业或生产设施水污染物排放限值。 本标准适用于现有羽绒企业或生产设施的水污染物排放管理。 本标准适用于对羽绒工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染物排放管理。 本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,羽绒工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综合 排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 合成革与人造革工业污染物排放标准(GB 21902—2008) 本标准规定了合成革与人造革工业企业特征生产工艺和装置水和大气污染物排放限值。 本标准适用于现有合成革与人造革工业企业特征生产工艺和装置的水和大气污染物排放管理。 本标准适用于对合成革与人造革工业建设企业的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水和大气污染物排放管理。本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,合成革与人造革工业企业的水和大气污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)和 《大气污染物综合排放标准》(GB 16297-1996)中的相关规定。 本标准为首次发布。 发酵类制药工业水污染物排放标准 (GB 21903—2008) 本标准规定了发酵类制药工业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。 本标准适用于发酵类制药工业企业的水污染防治和管理,以及发酵类制药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染防治和管理。 与发酵类药物结构相似的兽药生产企业的水污染防治与管理也适用于本标准。 本标准适用于法律允许的水污染物排放行为。新设立的发酵类制药工业企业的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》和《中华人民共和国环境影响评价法》等法律的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,发酵类制药工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综 合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 化学合成类制药工业水污染物排放标准(GB 21904—2008) 本标准规定了化学合成类制药工业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。 本标准适用于化学合成类制药工业企业的水污染防治和管理,以及化学合成类制药工业建设项目环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染防治和管理。本标准也适用于专供药物生产的医药中间体工厂(如精细化工厂)。与化学合成类药物结构相似的兽药生产企业的水污染防治与管理也适用于本标准。 本标准适用于法律允许的水污染物排放行为。新 设立的化学合成类制药工业企业的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》和《中华人民共和国环境影响评价法》等法律的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,有毒污染物总镉、烷基汞、六价铬、总砷、总铅、总镍、总汞在本标准规定的监控位置执行相应的排放限值;其他污染物的排放控制要求由企业与城 镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,化学合成类制药工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 提取类制药工业水污染物排放标准(GB 21905—2008) 本标准规定了提取类制药(不含中药)工业企业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。 本标准适用于提取类制药工业企业的水污染防治和管理,以及提取类制药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染防治和管理。与提取类制药生产企业生产药物结构相似的兽药生产企业的水污染防治和管理也适用于本标准。 本标准适用于不经过化学修饰或人工合成提取的生化药物、以动植物提取为主的天然药物和海洋生物提取药物生产企业。本标准不适用于用化学合成、半合成等方法制得的生化基本物质的衍生物或类似物、菌体及其提取物、动物器官或组织及小动物制剂类药物的生产企业。 本标准适用于法律允许的水污染物排放行为。新设立的提取类制药工业企业的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》和《中华人民共和国环境影响评价法》等法律的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,提取类制药工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 中药类制药工业水污染物排放标准(GB 21906—2008) 本标准规定了中药类制药工业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。 本标准适用于中药类制药工业企业的水污染防治和管理,以及中药类制药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染防治和管理。 本标准适用于以药用植物和药用动物为主要原料,按照国家药典,生产中药饮片和中成药各种剂型产品的制药工业企业。藏药、蒙药等民族传统医药制药工业企业以及与中药类药物相似的兽药生产企业的水污染防治与管理也适用于本标准。当中药类制药工业企业提取某种特定药物成分时,应执行提取类制药工业水污染物排放标准。 本标准适用于法律允许的水污染物排放行为。新设立的中药类制药工业企业的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》和《中华人民共和国环境影响评价法》等法律的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,有毒污染物总汞、总砷在本标准规定的监控位置执行相应的排放限值;其他污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,中药类制药工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综 合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 生物工程类制药工业水污染物排放标准(GB 21907—2008) 本标准规定了生物工程类制药工业企业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。 本标准适用于生物工程类制药工业企业的水污染防治和管理,以及生物工程类制药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染防治和管理。 本标准适用于采用现代生物技术方法(主要是基因工程技术等)制备作为治疗、诊断等用途的多肽和蛋白质类药物、疫苗等药品的企业。本标准不适用于利用传统微生物发酵技术制备抗生素、维生素等药物的生产企业。生物工程类制药的研发机构可参照本标准执行。利用相似生物工程技术制备兽用药物的企业的水污染物防治与管理也适用于本标准。 本标准适用于法律允许的水污染物排放行为。新设立的生物工程类制药工业企业的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》和《中华人民共和国环境影响评价法》等法律的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,生物工程类制药工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 混装制剂类制药工业水污染物排放标准(GB 21908—2008) 本标准规定了混装制剂类制药工业企业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。 本标准适用于混装制剂类制药工业企业的水污染防治和管理,以及混装制剂类制药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收和建成投产后的水污染防治和管理。通过混合、加工和配制,将药物活性成分制成兽药的生产企业的水污染防治和管理也适用于本标准。本标准不适用于中成药制药企业。 本标准适用于法律允许的污染物排放行为。新设立的混装制剂类制药工业企业的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国环境影响评价法》等法律的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设 置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,混装制剂类制药工业企业的水污染物排放控制按 本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 制糖工业水污染物排放标准(GB 21909—2008) 本标准规定了制糖企业或生产设施水污染物排放限值。 本标准适用于现有制糖企业或生产设施的水污染物排放管理。 本标准适用于对制糖工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染物排放管理。 本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。 本标准规定的水污染物排放控制要求适用于企业向环境水体的排放行为。 企业向设置污水处理厂的城镇排水系统排放废水时,其污染物的排放控制要求由企业与城镇污水处理厂根据其污水处理能力商定或执行相关标准,并报当地环境保护主管部门备案;城镇污水处理厂应保证排放污染物达到相关排放标准要求。建设项目拟向设置污水处理厂的城镇排水系统排放废水时,由建设单位和城镇污水处理厂按前款的规定执行。 自本标准实施之日起,制糖工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)中的相关规定。 本标准为首次发布。 自以上规章、标准实施之日起,下列规章、标准废止: 《国家危险废物名录》(环发〔1998〕89号) 造纸工业水污染物排放标准(GB 3544-2001)
  • 生态环境部发文加强重金属污染防控 一系列标准亟待出台
    日前,生态环境部发布《关于进一步加强重金属污染防控的意见》。主要目标,到2025年,全国重点行业重点重金属污染物排放量比2020年下降5%,重点行业绿色发展水平较快提升,重金属环境管理能力进一步增强,推进治理一批突出历史遗留重金属污染问题;到2035年,建立健全重金属污染防控制度和长效机制,重金属污染治理能力、环境风险防控能力和环境监管能力得到全面提升,重金属环境风险得到全面有效管控。文件内容显示,重点防控的重金属污染物包括铅、汞、镉、铬、砷、铊和锑,并对铅、汞、镉、铬和砷五种重点重金属污染物排放量实施总量控制。重点行业包括重有色金属矿采选业(铜、铅锌、镍钴、锡、锑和汞矿采选),重有色金属冶炼业(铜、铅锌、镍钴、锡、锑和汞冶炼),铅蓄电池制造业,电镀行业,化学原料及化学制品制造业(电石法(聚)氯乙烯制造、铬盐制造、以工业固体废物为原料的锌无机化合物工业),皮革鞣制加工业等。文件特别指出,要健全标准,加强重金属污染监管执法,其中明确提出要完善重金属污染物标准体系。包括,研究修订铅锌、电镀等行业污染物排放标准,加快制定出台废水重金属在线监测系统安装、运行、验收技术规范。修订《重点重金属污染物排放量控制目标完成情况评估细则(试行)》。省级生态环境部门结合本地区突出的重金属污染问题,加强地方排放标准体系建设,对于涉锰、锑、钼等产业分布集中的地区,要加快研究制定地方性生态环境标准,推动解决区域性特色行业污染问题。更多内容如下:关于进一步加强重金属污染防控的意见各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:“十三五”时期,重金属污染防控取得积极成效。同时应该看到,一些地区重金属污染问题仍然突出,威胁生态环境安全和人民群众健康,重金属污染防控任重道远。根据《中共中央 国务院关于深入打好污染防治攻坚战的意见》,为进一步强化重金属污染物排放控制,有效防控涉重金属环境风险,制定本意见。一、指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届历次全会精神,深入贯彻落实习近平生态文明思想,立足新发展阶段,完整、准确、全面贯彻新发展理念,服务构建新发展格局,把握减污降碳协同增效总要求,以改善生态环境质量为核心,以有效防控重金属环境风险为目标,以重点重金属污染物减排为抓手,坚持稳中求进工作总基调,坚持精准治污、科学治污、依法治污,深入开展重点行业重金属污染综合治理,有效管控重点区域重金属污染,切实维护生态环境安全和人民群众健康。二、防控重点重点重金属污染物。重点防控的重金属污染物是铅、汞、镉、铬、砷、铊和锑,并对铅、汞、镉、铬和砷五种重点重金属污染物排放量实施总量控制。重点行业。包括重有色金属矿采选业(铜、铅锌、镍钴、锡、锑和汞矿采选),重有色金属冶炼业(铜、铅锌、镍钴、锡、锑和汞冶炼),铅蓄电池制造业,电镀行业,化学原料及化学制品制造业(电石法(聚)氯乙烯制造、铬盐制造、以工业固体废物为原料的锌无机化合物工业),皮革鞣制加工业等6个行业。重点区域。依据重金属污染物排放状况、环境质量改善和环境风险防控需求,划定重金属污染防控重点区域。鼓励地方根据本地生态环境质量改善目标和重金属污染状况,确定上述要求以外的重点重金属污染物、重点行业和重点区域。三、主要目标到2025年,全国重点行业重点重金属污染物排放量比2020年下降5%,重点行业绿色发展水平较快提升,重金属环境管理能力进一步增强,推进治理一批突出历史遗留重金属污染问题。到2035年,建立健全重金属污染防控制度和长效机制,重金属污染治理能力、环境风险防控能力和环境监管能力得到全面提升,重金属环境风险得到全面有效管控。四、分类管理,完善重金属污染物排放管理制度完善全口径清单动态调整机制。各地生态环境部门全面排查以工业固体废物为原料的锌无机化合物工业企业信息,将其纳入全口径涉重金属重点行业企业清单(以下简称全口径清单);梳理排查以重点行业企业为主的工业园区,建立涉重金属工业园区清单;及时增补新、改、扩建企业信息和漏报企业信息,动态更新全口径清单,并在省(区、市)生态环境厅(局)网站上公布。依法将重点行业企业纳入重点排污单位名录。加强重金属污染物减排分类管理。根据各省(区、市)重金属污染物排放量基数和减排潜力,分档确定减排目标;按重点区域、重点行业以及重点重金属,实施差别化减排政策。各地生态环境部门应进一步摸排企业情况,挖掘减排潜力,以结构调整、升级改造和深度治理为主要手段,将减排目标任务落实到具体企业,推动实施一批重金属减排工程,持续减少重金属污染物排放。推行企业重金属污染物排放总量控制制度。依法将重点行业企业纳入排污许可管理。对于实施排污许可重点管理的企业,排污许可证应当明确重金属污染物排放种类、许可排放浓度、许可排放量等。各地生态环境部门探索将重点行业减排企业重金属污染物排放总量要求落实到排污许可证,减排企业在执行国家和地方污染物排放标准的同时,应当遵守分解落实到本单位的重金属排放总量控制要求。重点行业企业适用的污染物排放标准、重点污染物总量控制要求发生变化,需要对排污许可证进行变更的,审批部门可以依法对排污许可证相应事项进行变更,并载明削减措施、减排量,作为总量替代来源的还应载明出让量和出让去向。到2025年,企业排污许可证环境管理台账、自行监测和执行报告数据基本实现完整、可信,有效支撑重点行业企业排放量管理。探索重金属污染物排放总量替代管理豁免。在统筹区域环境质量改善目标和重金属环境风险防控水平、高标准落实重金属污染治理要求并严格审批前提下,对实施国家重大发展战略直接相关的重点项目,可在环评审批程序实行重金属污染物排放总量替代管理豁免。对利用涉重金属固体废物的重点行业建设项目,特别是以历史遗留涉重金属固体废物为原料的,在满足利用固体废物种类、原料来源、建设地点、工艺设备和污染治理水平等必要条件并严格审批前提下,可在环评审批程序实行重金属污染物排放总量替代管理豁免。五、严格准入,优化涉重金属产业结构和布局严格重点行业企业准入管理。新、改、扩建重点行业建设项目应符合“三线一单”、产业政策、区域环评、规划环评和行业环境准入管控要求。重点区域的新、改、扩建重点行业建设项目应遵循重点重金属污染物排放“减量替代”原则,减量替代比例不低于1.2:1;其他区域遵循“等量替代”原则。建设单位在提交环境影响评价文件时应明确重点重金属污染物排放总量及来源。无明确具体总量来源的,各级生态环境部门不得批准相关环境影响评价文件。总量来源原则上应是同一重点行业内企业削减的重点重金属污染物排放量,当同一重点行业内企业削减量无法满足时可从其他重点行业调剂。严格重点行业建设项目环境影响评价审批,审慎下放审批权限,不得以改革试点为名降低审批要求。依法推动落后产能退出。根据《产业结构调整指导目录》《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》等要求,推动依法淘汰涉重金属落后产能和化解过剩产能。严格执行生态环境保护等相关法规标准,推动经整改仍达不到要求的产能依法依规关闭退出。优化重点行业企业布局。推动涉重金属产业集中优化发展,禁止低端落后产能向长江、黄河中上游地区转移。禁止新建用汞的电石法(聚)氯乙烯生产工艺。新建、扩建的重有色金属冶炼、电镀、制革企业优先选择布设在依法合规设立并经规划环评的产业园区。广东、江苏、辽宁、山东、河北等省份加快推进专业电镀企业入园,力争到2025年底专业电镀企业入园率达到75%。六、突出重点,深化重点行业重金属污染治理加强重点行业企业清洁生产改造。加强重点行业清洁生产工艺的开发和应用。重点行业企业“十四五”期间依法至少开展一轮强制性清洁生产审核。到2025年底,重点行业企业基本达到国内清洁生产先进水平。加强重金属污染源头防控,减少使用高镉、高砷或高铊的矿石原料。加大重有色金属冶炼行业企业生产工艺设备清洁生产改造力度,积极推动竖罐炼锌设备替代改造和铜冶炼转炉吹炼工艺提升改造。电石法(聚)氯乙烯生产企业生产每吨聚氯乙烯用汞量不得超过49.14克,并确保持续稳中有降。推动重金属污染深度治理。自2023年起,重点区域铅锌冶炼和铜冶炼行业企业,执行颗粒物和重点重金属污染物特别排放限值。根据排放标准相关规定和重金属污染防控需求,省级人民政府可增加执行特别排放限值的地域范围。上述执行特别排放限值的地域范围,由省级人民政府通过公告或印发相关文件等适当方式予以公布。重有色金属冶炼企业应加强生产车间低空逸散烟气收集处理,有效减少无组织排放。重有色金属矿采选企业要按照规定完善废石堆场、排土场周边雨污分流设施,建设酸性废水收集与处理设施,处理达标后排放。采用洒水、旋风等简易除尘治理工艺的重有色金属矿采选企业,应加强废气收集,实施过滤除尘等颗粒物治理升级改造工程。开展电镀行业重金属污染综合整治,推进专业电镀园区、专业电镀企业重金属污染深度治理。排放汞及汞化合物的企业应当采用最佳可行技术和最佳环境实践,控制并减少汞及汞化合物的排放和释放。开展涉镉涉铊企业排查整治行动。开展农用地土壤镉等重金属污染源头防治行动,持续推进耕地周边涉镉等重金属行业企业排查整治。全面排查涉铊企业,指导督促涉铊企业建立铊污染风险问题台账并制定问题整改方案。开展重有色金属冶炼、钢铁等典型涉铊企业废水治理设施除铊升级改造,严格执行车间或生产设施废水排放口达标要求。各地生态环境部门构建涉铊企业全链条闭环管理体系,督促企业对矿石原料、主副产品和生产废物中铊成分进行检测分析,实现铊元素可核算可追踪。江西、湖南、广西、贵州、云南、陕西、甘肃等省份要制定铊污染防控方案,强化涉铊企业综合整治,严防铊污染问题发生。加强涉重金属固体废物环境管理。加强重点行业企业废渣场环境管理,完善防渗漏、防流失、防扬散等措施。推动锌湿法冶炼工艺按有关规定配套建设浸出渣无害化处理系统及硫渣处理设施。加强尾矿污染防控,开展长江经济带尾矿库污染治理“回头看”和黄河流域、嘉陵江上游尾矿库污染治理。严格废铅蓄电池、冶炼灰渣、钢厂烟灰等含重金属固体废物收集、贮存、转移、利用处置过程的环境管理,防止二次污染。推进涉重金属历史遗留问题治理。全面推动陕西省白河县硫铁矿区污染系统治理,有序推进丹江口库区及上游等地区历史遗留矿山污染排查整治,因地制宜、“一矿一策”,形成一批可复制可推广的污染治理技术模式。推动“锰三角”地区加快锰产业结构调整,系统开展锰污染治理和生态修复,加强全国其他地区涉锰企业污染整治。坚持问题导向,举一反三,推动地方结合农用地土壤镉等重金属污染防治、清废行动等专项工作,开展废渣、底泥等突出历史遗留重金属污染问题排查,以防控环境风险为核心实施分类整治。对问题复杂、短期难以彻底解决的问题,要以保障人体健康为优先目标做好污染阻隔等风险管控措施,防止污染饮用水水源地、耕地等环境敏感目标。鼓励有条件的地方利用卫星遥感、无人机、大数据等手段开展历史遗留重金属污染问题排查。七、健全标准,加强重金属污染监管执法完善重金属污染物标准体系。研究修订铅锌、电镀等行业污染物排放标准,加快制定出台废水重金属在线监测系统安装、运行、验收技术规范。修订《重点重金属污染物排放量控制目标完成情况评估细则(试行)》。省级生态环境部门结合本地区突出的重金属污染问题,加强地方排放标准体系建设,对于涉锰、锑、钼等产业分布集中的地区,要加快研究制定地方性生态环境标准,推动解决区域性特色行业污染问题。强化重金属污染监控预警。加快推进废水、废气重金属在线监测技术、设备的研发与应用。建立健全重金属污染监控预警体系,提升信息化监管水平。各地生态环境部门在涉铊涉锑行业企业分布密集区域下游,依托水质自动监测站加装铊、锑等特征重金属污染物自动监测系统。排放镉等重金属的企业,应依法对周边大气镉等重金属沉降及耕地土壤重金属进行定期监测,评估大气重金属沉降造成耕地土壤中镉等重金属累积的风险,并采取防控措施。鼓励重点行业企业在重点部位和关键节点应用重金属污染物自动监测、视频监控和用电(能)监控等智能监控手段。强化涉重金属执法监督力度。将重点行业企业及相关堆场、尾矿库等设施纳入“双随机、一公开”抽查检查对象范围,进行重点监管。加大排污许可证后监管力度,对重金属污染物实际排放量超出许可排放量的企业依法依规处理。将对涉重金属行业专项执法检查纳入污染防治攻坚战监督检查考核工作,依法严厉打击超标排放、不正常运行污染治理设施、非法排放、倾倒、收集、贮存、转移、利用、处置含重金属危险废物等违法违规行为,涉嫌犯罪的,依法移送公安机关依法追究刑事责任。强化涉重金属污染应急管理。重点行业企业应依法依规完善环境风险防范和环境安全隐患排查治理措施,制定环境应急预案,储备相关应急物资,定期开展应急演练。各地生态环境部门结合“一河一策一图”将涉重金属污染应急处置预案纳入本地突发环境应急预案,加强应急物资储备,定期开展应急演练,不断提升环境应急处置能力。八、落实责任,促进信息公开和社会共治分解工作任务。省级生态环境部门明确重金属污染防控责任人,加强组织领导,制定工作方案,明确年度减排目标,细化任务分工,逐项落实工作任务,确保各项工作顺利开展。按照一区一策原则,在工作方案中明确各重点区域污染控制、质量改善、风险管控等任务。省级工作方案应于2022年6月30日前报送生态环境部备案。定期调度进展。省级生态环境部门要加强重金属污染防控工作调度和成效评估,每年7月15日前将上半年重点行业建设项目总量替代清单、减排工程实施清单,每年1月底前将上年重金属污染防控工作进展、减排评估结果和动态更新后的全口径企业清单报送生态环境部。生态环境部根据省级生态环境部门工作情况,加强工作指导和技术帮扶。对于进展滞后的地区实施预警,对未执行总量替代政策的进行通报。加强财政金融支持。省级生态环境部门按照土壤污染防控等资金管理相关规定合理使用资金,积极拓宽资金来源渠道,支持涉重金属历史遗留问题治理等工作。收集、贮存、运输、利用、处置涉重金属危险废物的单位,应当按照国家有关规定,投保环境污染责任保险。鼓励各地探索开展重金属污染物排污权交易工作。鼓励公众参与。重点行业企业应依法披露重金属相关环境信息。有条件的企业可设置企业公众开放日。充分发挥行业协会等社会团体作用,督促企业自觉履行社会责任。支持各地建立完善有奖举报制度,将举报重点行业企业非法生产、不正常运行治理设施、超标排放、倾倒转移含重金属废物等列入重点奖励范围。  生态环境部  2022年3月3日
  • 2011年3月1日起施行的环保法规标准
    2011年3月1日起施行的环保法规标准 部门规章 环境行政执法后督察办法(环境保护部令第14号)   为了规范环境行政执法后督察工作,提高环境行政执法效能,制定本办法。   本办法所称环境行政执法后督察,是指环境保护主管部门对环境行政处罚、行政命令等具体行政行为执行情况进行监督检查的行政管理措施。   县级以上人民政府环境保护主管部门负责组织实施环境行政执法后督察。   县级以上人民政府环境保护主管部门应当在环境行政处罚、行政命令等具体行政行为执行期限届满之日起60日内,进行环境行政执法后督察。 环保举报热线工作管理办法(环境保护部令第15号)   为了加强环保举报热线工作的规范化管理,畅通群众举报渠道,维护和保障人民群众的合法环境权益,根据《信访条例》以及环境保护法律、法规的有关规定,制定本办法。   公民、法人或者其他组织通过拨打环保举报热线电话,向各级环境保护主管部门举报环境污染或者生态破坏事项,请求环境保护主管部门依法处理的,适用本办法。   环保举报热线要做到有报必接、违法必查,事事有结果、件件有回音。 国家环境保护标准 水质 词汇 第一部分(HJ 596.1-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第一部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第1部分》(ISO 6107.1-2004),英文词条与ISO 6107.1-2004保持一致。有的词条可能出现两次,但释义不同,适用于不同情况的解释。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇 第三部分~第七部分》(GB 11915-89)废止。 水质 词汇 第二部分(HJ 596.2-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第二部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第2部分》(ISO 6107.2-2006),英文词条与ISO 6107.2-2006保持一致。有的词条可能出现两次,但释义不同,适用于不同情况的解释。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇 第三部分~第七部分》(GB 11915-89)废止。 水质 词汇 第三部分(HJ 596.3-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第三部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第3部分》(ISO 6107.3-1993),英文词条与ISO 6107.3-1993保持一致。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇 第三部分~第七部分》(GB11915-89)废止。 水质 词汇 第四部分(HJ 596.4-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第四部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第4部分》(ISO 6107.4-1993),英文词条与ISO 6107.4-1993保持一致。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇 第三部分~第七部分》(GB 11915-89)废止。 水质 词汇 第五部分(HJ 596.5-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第五部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第5部分》(ISO 6107.5-2004),英文词条与ISO 6107.5-2004保持一致。有的词条可能出现两次,但释义不同,适用于不同情况的解释。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇 第三部分~第七部分》(GB 11915-89)废止。 水质 词汇 第六部分(HJ 596.6-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第六部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第6部分》(ISO 6107.6-2004),英文词条与ISO 6107.6-2004保持一致。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇 第三部分~第七部分》(GB 11915-89)废止。 水质 词汇 第七部分(HJ 596.7-2010)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水质词汇,制定本标准。   本标准规定了专为水质特征提供的术语。   本部分词汇的定义是专为水质特征提供的术语,内容主要包括水质词汇第七部分的术语及定义(包括对应的英文术语),它与目前国内外出版的名词术语可能相同,但应用于不同领域时,它们的定义也可能不同。   本部分词汇等效采用国际标准《水质 词汇—第7部分》(ISO 6107.7-2006),英文词条与ISO 6107.7-2006保持一致。   本标准是对《水质 词汇 第一部分和第二部分》(GB 6816-86)和《水质 词汇 第三部分~第七部分》(GB 11915-89)的修订。   自本标准实施之日起,原国家环境保护局1986年10月10日批准、发布的国家环境保护标准《水质 词汇 第一部分和第二部分》(GB 6816-86)和原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 词汇第三部分~第七部分》(GB 11915-89)废止。       大气污染治理工程技术导则(HJ 2000-2010)     为了贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,规范大气污染治理工程的建设和运行管理,防治环境污染,保护环境和人体健康,制订本标准。   本标准规定了大气污染治理工程在设计、施工、验收和运行维护中的通用技术要求。   本标准为环境工程技术规范体系中的通用技术规范。   对于已有相应的工艺技术规范或重点污染源技术规范的工程,应同时执行本标准和相应的工艺技术规范或重点污染源技术规范;对于没有工艺技术规范或重点污染源技术规范的工程,应执行本标准。   本标准可作为大气污染治理工程环境影响评价、设计、施工、验收及运行与管理的技术依据。 火电厂烟气脱硫工程技术规范 氨法(HJ 2001-2010)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,规范火电厂氨法烟气脱硫工程建设,改善环境质量,制定本标准。   本标准规定了火电厂氨法烟气脱硫工程的设计、施工、验收、运行和维护等技术要求。   本标准适用于100MW及以上火电机组氨法烟气脱硫工程,可作为环境影响评价、工程咨询、设计、施工、环境保护验收及建成后运行与管理的技术依据。   100MW以下机组的火电机组、工业炉窑或工业锅炉的氨法烟气脱硫工程可参照执行。   本标准为首次发布。 电镀废水治理工程技术规范(HJ 2002-2010)      为贯彻执行《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《电镀污染物排放标准》,规范电镀废水治理工程建设与运行管理,防治环境污染,保护环境和人体健康,制订本标准。   本标准规定了电镀废水治理工程设计、施工、验收和运行的技术要求。   本标准适用于电镀废水治理工程的技术方案选择、工程设计、施工、验收、运行等的全过程管理和已建电镀废水治理工程的运行管理,可作为环境影响评价、环境保护设施设计与施工、建设项目竣工环境保护验收及建成后运行与管理的技术依据。 制革及毛皮加工废水治理工程技术规范(HJ 2003-2010)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范制革及毛皮加工废水治理工程的建设与运行管理,防治环境污染,保护环境和人体健康,制订本标准。   本标准规定了制革及毛皮加工废水治理工程的总体要求、工艺设计、检测控制、施工验收、运行维护等的技术要求。   本标准适用于以生皮为原料,采用铬鞣工艺的制革及毛皮加工废水治理工程,可作为环境影响评价、可行性研究、设计、施工、安装、调试、验收、运行和监督管理的技术依据,采用其他原料和鞣制工艺的制革及毛皮加工企业和集中加工区的废水治理工程可参照执行。 屠宰与肉类加工废水治理工程技术规范(HJ 2004-2010)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范屠宰与肉类加工废水治理工程的建设与运行管理,防治环境污染,保护环境与人体健康,制定本标准。   本规范规定了屠宰与肉类加工废水治理工程设计、施工、验收和运行管理的技术要求。   本规范适用于配套新建、改建、扩建屠宰场与肉类加工厂的废水治理工程,可作为此类项目环境影响评价、可行性研究、工程设计、施工管理、竣工验收、环境保护验收及运行管理等工作的技术依据。   本标准为首次发布。 人工湿地污水处理工程技术规范(HJ 2005-2010)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范我国人工湿地污水处理工程的建设、运行、维护和管理,制订本标准。   本标准规定了人工湿地污水处理工程的总体要求、工艺设计、施工与验收、运行与维护等技术要求。   本标准适用于城镇生活污水、城镇污水处理厂出水及与生活污水性质相近的其它污水处理工程,可作为人工湿地污水处理工程设计、施工、建设项目竣工环境保护验收及建成后运行与维护的技术依据。   本标准为首次发布。 污水混凝与絮凝处理工程技术规范(HJ 2006-2010)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范污水混凝与絮凝处理工程建设,改善环境质量,制定本标准。   本标准规定了污水处理工程中所采用的混凝与絮凝工艺的总体要求、工艺设计、设备选型、检测和控制、运行管理的技术要求。   本标准适用于城镇污水或工业废水处理工程采用混凝与絮凝工艺的设计、施工、验收、运行管理,可作为可行性研究、环境影响评价、工艺设计、施工验收、运行管理的技术依据。   本标准为首次发布。   污水气浮处理工程技术规范(HJ 2007-2010)      为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范污水气浮处理工程建设,改善环境质量,制定本标准。   本标准规定了污水处理工程中所采用气浮工艺的总体要求、工艺设计、设备选型、检测和控制、运行管理的技术要求。   本标准适用于城镇污水或工业废水处理工程采用气浮工艺的设计、施工、验收、运行管理,可作为可行性研究、环境影响评价、工艺设计、施工验收、运行管理的技术依据。   本标准为首次发布。   污水过滤处理工程技术规范(HJ 2008-2010)       为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范污水过滤处理工程建设,改善环境质量,制定本标准。   本标准规定了污水处理工程中所采用的过滤工艺的总体要求、工艺设计、设备选型、检测与控制、施工验收、运行管理的技术要求。   本标准适用于城镇污水或工业废水处理工程过滤单元工艺的设计、施工验收、运行管理,可作为可行性研究、环境影响评价、工艺设计、工程验收、运行管理的技术依据。   本标准为首次发布。           硝酸工业污染物排放标准(GB 26131-2010)           本标准规定了硝酸工业企业或生产设施水和大气污染物的排放限值、监测和监控要求,以及标准的实施与监督等相关规定。为促进区域经济与环境协调发展,推动经济结构的调整和经济增长方式的转变,引导工业生产工艺和污染治理技术的发展方向,本标准规定了水和大气污染物特别排放限值。   本标准中的污染物排放浓度均为质量浓度。   硝酸工业企业排放恶臭污染物、环境噪声适用相应的国家污染物排放标准,产生固体废物的鉴别、处理和处置适用国家固体废物污染控制标准。   本标准适用于现有硝酸工业企业水和大气污染物排放管理。   本标准适用于对硝酸工业企业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水、大气污染物排放管理。   本标准适用于以氨和空气(或纯氧)为原料采用氨氧化法生产硝酸和硝酸盐的企业。本标准不适用于以硝酸为原料生产硝酸盐和其他产品的生产企业。   本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国大气污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。   本标准规定的水污染物排放控制要求适用于企业直接或间接向其法定边界外排放水污染物的行为。   本标准为首次发布。   自本标准实施之日起,硝酸工业企业水和大气污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)和《大气污染物综合排放标准》(GB 16297-1996)中的相关规定。       硫酸工业污染物排放标准(GB 26132-2010)               本标准规定了硫酸工业企业或生产设施水和大气污染物的排放限值、监测和监控要求,以及标准的实施与监督等相关规定。为促进区域经济与环境协调发展,推动经济结构的调整和经济增长方式的转变,引导工业生产工艺和污染治理技术的发展方向,本标准规定了水和大气污染物特别排放限值。   本标准中的污染物排放浓度均为质量浓度。   硫酸工业企业排放恶臭污染物、环境噪声适用相应的国家污染物排放标准,产生固体废物的鉴别、处理和处置适用国家固体废物污染控制标准。   本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国大气污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。   本标准规定的水污染物排放控制要求适用于企业直接或间接向其法定边界外排放水污染物的行为。   本标准适用于现有硫酸工业企业水和大气污染物排放管理。   本标准适用于对硫酸工业企业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水、大气污染物排放管理。   本标准不适用于冶炼尾气制酸和硫化氢制酸工业企业的水和大气污染物排放管理。   本标准为首次发布。   自本标准实施之日起,硫酸工业企业水和大气污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB 8978-1996)和《大气污染物综合排放标准》(GB 16297-1996)中的相关规定。 非道路移动机械用小型点燃式发动机排气污染物排放限值与测量方法(中国第一、二阶段)(GB 26133—2010)   根据《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,防治非道路移动机械用小型点燃式发动机排气对环境的污染,制定本标准。   本标准规定了非道路移动机械用小型点燃式发动机第一阶段和第二阶段的型式核准和生产一致性检查的排气污染物排放限值和测量方法。   本标准适用于(但不限于)下列非道路移动机械用净功率不大于19kW发动机的型式核准和生产一致性检查。   ——草坪机;   ——油锯;   ——发电机;   ——水泵;   ——割灌机。   净功率大于19kW但工作容积不大于1L的发动机可参照本标准执行。   本标准不适用于下列用途的发动机。   ——用于驱动船舶行驶的发动机;   ——用于地下采矿或地下采矿设备的发动机;   ——应急救援设备用发动机;   ——娱乐用车辆,例如:雪橇,越野摩托车和全地形车辆;   ——为出口而制造的发动机。   本标准为首次发布。 自以上标准实施之日起,下列标准废止: 水质 词汇 第一部分和第二部分(GB 6816-86) 水质 词汇 第三部分~第七部分(GB 11915-89)
  • 09年2月1日起施行的国家环境保护标准
    国家环境保护标准 清洁生产标准 煤炭采选业(HJ 446-2008) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国清洁生产促进法》,保护环境,为煤炭采选业开展清洁生产提供技术支持和导向,制定本标准。 本标准规定了在达到国家和地方环境标准的基础上,根据当前的行业技术、装备水平和管理水平,煤炭采选业清洁生产的一般要求。 本标准分为三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。随着技术的不断进步和发展,本标准也将不断修订,一般每三到五年修订一次。 本标准规定了煤炭采选业清洁生产的一般要求。本标准将清洁生产标准指标分为七类,即生产工艺与装备要求、资源能源利用指标、产品指标、污染物产生指标(末端处理前)、废物回收利用指标、矿山生态保护、环境管理要求。 本标准适用于煤炭采选业的清洁生产审核、清洁生产潜力与机会的判断,以及清洁生产绩效评定和清洁 生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。 清洁生产标准 铅蓄电池工业(HJ 447-2008) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国清洁生产促进法》,保护环境,为铅蓄电池工业开展清洁生产提供技术支持和导向,制定本标准。 本标准规定了在达到国家和地方环境标准的基础上,根据当前的行业技术、装备水平和管理水平,铅蓄电池工业企业清洁生产的一般要求。 本标准分为三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。由于技术在不断进步和发展,本标准也将不断修订,一般三到五年修订一次。 本标准规定了铅蓄电池工业清洁生产的一般要求。本标准将清洁生产标准分成五类,即生产工艺与装备要求、资源能源利用指标、产品指标、污染物产生指标(末端处理前)和环境管理要求。 本标准适用于铅蓄电池生产企业的清洁生产审核、清洁生产潜力与机会的判断,以及清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价、排污许可证管理等环境管理制度。 本标准为首次发布。 清洁生产标准 制革工业(牛轻革)(HJ 448-2008) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国清洁生产促进法》,保护环境,为制革工业(牛轻革)开展清洁生产提供技术支持和导向,制定本标准。 本标准规定了在达到国家和地方环境标准的基础上,根据当前的行业技术、装备水平和管理水平,制革工业(牛轻革)企业清洁生产的一般要求。 本标准分为三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。由于技术在不断进步和发展,本标准也将不断修订,一般三到五年修订一次。 本标准规定了制革工业(牛轻革)清洁生产的一般要求。本标准将清洁生产标准指标分成六类,即生产工艺与装备要求、资源能源利用指标、产品指标、污染物产生指标(末端处理前)、废物回收利用指标和环境管理要求。 本标准适用于制革工业(牛轻革)生产企业的清洁生产审核、清洁生产潜力与机会的判断,以及清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价、排污许可证管理等环境管理制度。 本标准为首次发布。 清洁生产标准 合成革工业(HJ 449-2008) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国清洁生产促进法》,保护环境,为合成革企业开展清洁生产提供技术支持和导向,制定本标准。 本标准规定了在达到国家和地方环境标准的基础上,根据当前的行业技术、装备水平和管理水平,合成革工业企业清洁生产的一般要求。 本标准分为三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。由于技术在不断进步和发展,本标准也将不断修订,一般三到五年修订一次。 本标准规定了合成革工业清洁生产的一般要求。本标准将清洁生产标准指标分成五类,即生产工艺与装备要求、资源能源利用指标、污染物产生指标(末端处理前)、废物回收利用指标和环境管理要求。 本标准适用于合成革(以聚氨酯为主要原料,不包括超纤基材)行业企业的清洁生产审核、清洁生产潜力与机会的判断,以及清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。 清洁生产标准 印制电路板制造业(HJ 450-2008) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国清洁生产促进法》,保护环境,印制电路板制造业开展清洁生产提供技术支持和导向,制定本标准。 本标准规定了在达到国家和地方环境标准的基础上,根据当前的行业技术、装备水平和管理水平,印制电路板制造业企业清洁生产的一般要求。 本标准分三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。随着技术的不断进步和发展,本标准也将不断修订,一般三至五年修订一次。 本标准规定了印制电路板制造业清洁生产的一般要求。本标准将清洁生产指标分为五类,即生产工艺与装备要求、资源能源利用指标、污染物产生指标(末端处理 前)、废物回收利用指标和环境管理要求等。本标准适用于印制电路板制造企业的清洁生产审核、清洁生产潜力与机会的判断,以及清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。 本标准为首次发布。 自本标准实施之日起,《清洁生产标准 电镀行业》(HJ/T 314-2006)中涉及有关“印制电路板类”指标要求将被代替。 《清洁生产标准 电镀行业》(HJ/T 314—2006)修改方案  为贯彻《中华人民共和国环境保护法》和《中华人民共和国清洁生产促进法》,保护环境,防治污染,提高企业清洁生产水平,我部决定对国家环境保护标准《清洁生产标准 电镀行业》(HJ/T314-2006)进行修改。现公布修改方案,自2009年2月1日起实施。   注:以上标准已在环境保护部网站发布。
  • 环保部多项环境保护标准公开征求意见
    p   日前,环保部先后发布多条征求意见函,对《排污单位自行监测技术指南 制革及毛皮加工工业(征求意见稿)》等多项环境保护标准公开征求意见。 /p p   详细内容如下: /p p style=" TEXT-ALIGN: center" strong 关于征求《排污单位自行监测技术指南 制革及毛皮加工工业(征求意见稿)》等三项国家环境保护标准意见的函 /strong /p p   附件: /p p   1. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115329811076310.pdf" target=" _blank" 排污单位自行监测技术指南 制革及毛皮加工工业(征求意见稿) /a /p p   2. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115329811157296.pdf" target=" _blank" 《排污单位自行监测技术指南 制革及毛皮加工工业(征求意见稿)》编制说明 /a /p p   3. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115329811290016.pdf" target=" _blank" 排污单位自行监测技术指南 电镀工业(征求意见稿) /a /p p   4. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115329811349322.pdf" target=" _blank" 《排污单位自行监测技术指南 电镀工业(征求意见稿)》编制说明 /a /p p   5. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115329811422628.pdf" target=" _blank" 排污单位自行监测技术指南 化肥工业-氮肥(征求意见稿) /a /p p   6. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115329811474315.pdf" target=" _blank" 《排污单位自行监测技术指南 化肥工业-氮肥(征求意见稿)》编制说明 /a /p p style=" TEXT-ALIGN: center" strong 关于征求《屠宰与肉类加工工业水污染物排放标准(征求意见稿)》意见的函 /strong /p p   附件: /p p   1. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115320356400205.pdf" target=" _blank" 屠宰与肉类加工工业水污染物排放标准(征求意见稿) /a /p p   2. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171115320356555089.pdf" target=" _blank" 《屠宰与肉类加工工业水污染物排放标准(征求意见稿)》编制说明 /a /p p style=" TEXT-ALIGN: center" strong 关于征求《排污单位自行监测技术指南 石油化学工业(征求意见稿)》意见的函 /strong /p p   附件: /p p   1. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171106342501460333.pdf" target=" _blank" 排污单位自行监测技术指南 石油化学工业(征求意见稿) /a /p p   2. a title=" " href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201711/W020171106342501552615.pdf" target=" _blank" 《排污单位自行监测技术指南 石油化学工业(征求意见稿)》编制说明 /a /p p & nbsp /p
  • 首部饰品有害元素限量国家强制标准实施
    2012年6月29日正式颁布的GB 28480-2012《饰品有害元素限量的规定》,于2013年5月1日起正式实施。饰品作为会与人体长期接触的物品,其含有的有害重金属会对人体产生一定危害,该首部强制性标准的实施,为首饰类产品在国内市场的生产、销售,以及政府监管提供了明确的依据。   据悉,该标准适用于除珠宝玉石以外的其他各种材质的饰品(包括儿童饰品),规定了各类饰品中镍释放、铅、镉、砷、六价铬及汞、八项可溶性重金属等有害物质限量的要求。标准正式实施后,对于非贵金属首饰及摆件中的砷、汞、六价铬、铅总含量的要求在流通领域中设置了一年的过渡期。   据了解,和欧美饰品标准相比,新国标对饰品的要求更全面,除涉及镍、铅、镉等主要有害重金属外,还对砷、六价铬及汞设置了限量要求,并要求在标签或其他标识物中明示儿童首饰。   新国标的实施对饰品生产经营企业提出了更高的要求,不符合要求的产品将不能在市面上流通。为此,检验检疫部门提醒相关饰品企业做好应对措施:一是积极关注饰品新国标,准确掌握新标准内容,将标准条款转化到产品控制制度里面 二是注重饰品生产设计工序,合理调整生产过程中的各类工艺参数,杜绝电镀、电铸等工序中的污染,正确制定好产品标签 三是完善原辅料和成品自控体系,建立高危物料及相应有害物质控制项目,严格筛选合格供方,并做好入厂前和出厂检验,必要时可随机送样进行第三方测试,确保各指标都符合标准要求。
  • 环境保护部发布11项国家污染物排放标准的公告
    环境保护部公告 中华人民共和国环境保护部公告 2008年 第26号 关于发布《制浆造纸工业水污染物排放标准》等11项国家污染物排放标准的公告   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,防治污染,保护和改善生态环境,保障人体健康,现批准《制浆造纸工业水污染物排放标准》等11项标准为国家污染物排放标准,并由我部与国家质量监督检验检疫总局联合发布。   标准名称、编号如下: 一、制浆造纸工业水污染物排放标准(GB 3544—2008) 二、电镀污染物排放标准(GB 21900—2008) 三、羽绒工业水污染物排放标准(GB 21901—2008) 四、合成革与人造革工业污染物排放标准 (GB 21902—2008) 五、发酵类制药工业水污染物排放标准 (GB 21903—2008) 六、化学合成类制药工业水污染物排放标准 (GB 21904—2008) 七、提取类制药工业水污染物排放标准(GB 21905—2008) 八、中药类制药工业水污染物排放标准 (GB 21906—2008) 九、生物工程类制药工业水污染物排放标准 (GB 21907—2008) 十、混装制剂类制药工业水污染物排放标准(GB 21908—2008) 十一、制糖工业水污染物排放标准(GB 21909—2008)   按有关法律规定,以上标准具有强制执行的效力。   以上标准自2008年8月1日起实施。   以上标准由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自标准实施之日起,《造纸工业水污染物排放标准》(GB 3544-2001)废止。   特此公告。   (此公告业经质检总局孙晓康会签)   二○○八年六月二十五日
  • 14项新废弃化学品行业标准将实施 光谱法为主
    日前,工业和信息化部批准了《甲基丁烯醇聚醚》等811项行业标准,其中提出最新制定14项废弃化学品中重金属检测标准,检测方法以ICP光谱法、原子吸收、原子荧光等光谱检测方法为主。 标准编号 标准名称 标准主要内容 代替标准 实施日期 化工行业 HG/T 4548-2013 废弃化学品中砷的测定 二乙基二硫代氨基甲酸银分光光度法 本标准规定了二乙基二硫代氨基甲酸银分光光度法测定废弃化学品中砷含量的原理、试剂和材料、仪器、设备、试样处理、分析步骤、结果计算。 本标准适用于废弃化学品中砷含量的测定,适合于全部试液或所取试验溶液中含砷(As)的量为1&mu g~20&mu g的产品。 2014-03-01 HG/T 4549-2013 废弃化学品中铊的测定方法 本标准规定了采用电感耦合等离子体质谱法(ICP-MS)测定废弃化学品中铊含量的原理、试剂、仪器、样品处理、分析步骤和结果计算。 本标准适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中铊含量的测定;也可用于土壤或污泥中铊含量的测定。所测样品中铊的质量分数0.1mg/kg~100mg/kg。 2014-03-01 HG/T 4550.1-2013 废弃化学品中镉的测定 第1部分:石墨炉原子吸收分光光度法 本部分规定了采用石墨炉原子吸收分光光度法测定废弃化学品中镉含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于电镀废液、废水(液)、化学废渣、油漆渣等废弃化学品中镉含量的测定;也可用于土壤或污泥中镉含量的测定。所测试液中镉含量为0.02&mu g/L~2&mu g/L。 2014-03-01 HG/T 4550.2-2013 废弃化学品中镉的测定 第2部分:火焰原子吸收分光光度法 本部分规定了采用火焰原子吸收分光光度法测定废弃化学品中镉含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中镉含量的测定;也可用于土壤或污泥中镉含量的测定。所测试液中镉含量为0.05mg/L~2.00mg/L。 2014-03-01 HG/T 4550.3-2013 废弃化学品中镉的测定 第3部分:镉试剂分光光度法 本部分规定了镉试剂分光光度法测定废弃化学品中镉含量的方法提要、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中镉含量的测定;也可用于土壤或污泥中镉含量的测定。所测试液中镉含量为0.01mg/L~0.12mg/L。 2014-03-01 HG/T 4550.4-2013 废弃化学品中镉的测定 第4部分:原子荧光法 本部分规定了原子荧光法测定废弃化学品中镉含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤、结果计算。 本部分适用于化学废渣、废水(液)、废表面活性剂、油漆渣等废弃化学品中镉含量的测定,也可用于土壤或污泥中镉含量的测定。所测试液中镉含量为0.05&mu g/L~8.00&mu g/L。 2014-03-01 HG/T 4550.5-2013 废弃化学品中镉的测定 第5部分:电感耦合等离子体发射光谱法 本部分规定了电感耦合等离子体发射光谱法测定废弃化学品中镉的原理、试剂和材料、仪器、样品处理、分析步骤和结果计算。 本部分适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中镉含量的测定,也可用于土壤或污泥中镉含量的测定。所测试液中镉含量为0.002mg/L~1.00mg/L。 2014-03-01 HG/T 4551.1-2013 废弃化学品中镍的测定 第1部分:丁二酮肟分光光度法 本部分规定了丁二酮肟分光光度法测定废弃化学品中镍含量的方法提要、试剂和材料、仪器、设备、样品处理、分析步骤及结果计算。 本部分适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中镍含量的测定;也可用于土壤或污泥中镍含量的测定。本部分适用于试验溶液中镍含量为0.1mg/L~4.0mg/L。 2014-03-01 HG/T 4551.2-2013 废弃化学品中镍的测定 第2部分:原子吸收分光光度法 本部分规定了采用原子吸收分光光度法测定废弃化学品中镍含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于电镀废液、废水(液)、化学废渣、油漆渣等废弃化学品中镍含量的测定;也可用于土壤或污泥中镍含量的测定。所测试液中镍含量为0.3mg/L~5.0mg/L。 2014-03-01HG/T 4551.3-2013 废弃化学品中镍的测定 第3部分:石墨炉原子吸收分光光度法 本部分规定了采用石墨炉原子吸收分光光度法测定废弃化学品中镍含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于电镀废液、废水(液)、化学废渣、油漆渣等废弃化学品中镍含量的测定;也可用于土壤或污泥中镍含量的测定。所测试液中镍含量为0.5&mu g/L~50&mu g/L。 2014-03-01 HG/T 4551.4-2013 废弃化学品中镍的测定 第4部分:电感耦合等离子体发射光谱法 本部分规定了电感耦合等离子体发射光谱法测定废弃化学品中镍的原理、试剂和材料、仪器、样品处理、分析步骤、结果计算。 本部分适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中镉含量的测定,也可用于土壤或污泥中镉含量的测定。所测试液中镍含量为0.02mg/L~5.00mg/L。 2014-03-01 HG/T 4552.1-2013 退锡废水中锡含量的测定方法 第1部分:碘酸钾滴定法 本部分规定了碘酸钾滴定法测定退锡废水中锡含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于印制电路板行业退锡废水中锡含量的测定,测定范围为2%~15%。 2014-03-01 HG/T 4552.2-2013 退锡废水中锡含量的测定方法 第2部分:原子吸收分光光度法 本部分规定了原子吸收分光光度法测定退锡废水中锡含量的原理、试剂和材料、仪器、设备、样品处理、分析步骤和结果计算。 本部分适用于印制电路板行业退锡废水中锡含量的测定,测定范围为锡含量0.5%~10%。 2014-03-01 HG/T 4552.3-2013 退锡废水中锡含量的测定方法 第3部分:电感耦合等离子体发射光谱法 本部分规定了电感耦合等离子体发射光谱法测定退锡废水中锡含量的原理、试剂和材料、仪器、设备、分析步骤、结果计算。 本部分适用于印制电路板行业退锡废水中锡含量的测定,测定范围为锡含量0.5%~10%。 2014-03-01
  • 10月1日有208个与我们相关的国家标准将实施
    10月1日有208个与我们相关的国家标准将实施我们每期整理的即将实施标准都受到用户的热烈欢迎。10月份将要实施的国家标准比较多,超过400多个标准将要实施,而与我们息息相关的科学仪器及检测的标准有208个。10月1日将要实施的标准涉及化妆品、食品农业、环境、冶金、机械、石油化工塑料、矿业、纺织、医疗、电力、建材等多个行业领域。其中石油化工、机械、冶金、环境四大领域实施的国家标准较多。10月份即将实施的标准如下,需要的可以收藏。化妆品标准GB/T 39946-2021 唇用化妆品中禁用物质对位红的测定高效液相色谱法 GB/T 39927-2021 化妆品中禁用物质藜芦碱的测定 高效液相色谱法 食品农业标准GB/T 39947-2021 食品包装选择及设计 GB/T 19420-2021 制盐工业术语 GB/T 20695-2021 高效氯氟氰菊酯原药 GB/T 20696-2021 高效氯氟氰菊酯乳油 环境标准GB/T 24031-2021 环境管理 环境绩效评价 指南 GB/T 28125.2-2020 气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定 GB/T 39298-2020 再生水水质 苯系物的测定 气相色谱法 GB/T 39299-2020 液晶面板制造稀释废液回收再利用方法 GB/T 39300-2020 含铬电镀污泥处理处置方法 GB/T 39301-2020 电镀污泥减量化处置方法 GB/T 39302-2020 再生水水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 39303-2020 废水处理系统微生物样品前处理通用技术规范 GB/T 39304-2020 再生水生物毒性检测的样品前处理通用技术规范 GB/T 39305-2020 再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法 GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法 GB/T 39308-2020 难降解有机废水深度处理技术规范 GB/T 39598-2021 基于极限甲醛释放量的人造板室内承载限量指南 GB/T 39600-2021 人造板及其制品甲醛释放量分级 GB/T 39763-2021 家具中挥发性有机化合物现场快速采集设备技术要求 GB/T 39764-2021 软体家具中挥发性有机化合物 现场快速检测方法 GB/T 39765-2021 文具中苯、甲苯、乙苯及二甲苯的测定方法 气相色谱法 GB/T 39804-2021 墙体材料中可浸出有害物质的测定方法 GB/T 39808-2021 生活饮用水外置式膜过滤系统设计规范 GB/T 39835-2021 大生活用海水水质 GB/T 39897-2021 车内非金属部件挥发性有机物和醛酮类物质检测方法 GB/T 39931-2021 木家具中挥发性有机化合物 现场快速检测方法 GB/T 39934-2021 家具中挥发性有机化合物的筛查检测方法 气相色谱-质谱法 GB/T 39939-2021 家具部件中挥发性有机化合物 现场快速检测方法 GB/T 39966-2021 废弃资源综合利用业环境绩效评价导则 GB/T 5832.4-2020 气体分析 微量水分的测定 第4部分:石英晶体振荡法 冶金标准GB/T 14352.19-2021 钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量的测定 电感耦合等离子体原子发射光谱法 GB/T 14352.20-2021 钨矿石、钼矿石化学分析方法 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 电感耦合等离子体质谱法 GB/T 14352.21-2021 钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法 GB/T 14352.22-2021 钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法 GB/T 14635-2020 稀土金属及其化合物化学分析方法 稀土总量的测定 GB/T 15159-2020 贵金属及其合金复合带材 GB/T 18115.1-2020 稀土金属及其氧化物中稀土杂质化学分析方法 第1部分:镧中铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 18115.2-2020 稀土金属及其氧化物中稀土杂质化学分析方法 第2部分:铈中镧、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 24980-2020 稀土长余辉荧光粉 GB/T 24981.1-2020 稀土长余辉荧光粉试验方法 第1部分:发射主峰和色品坐标的测定 GB/T 24981.2-2020 稀土长余辉荧光粉试验方法 第2部分:余辉亮度的测定 GB/T 39231-2020 无水氯化铈 GB/T 16479-2020 碳酸轻稀土 GB/T 20892-2020 镨钕金属 GB/T 20975.13-2020 铝及铝合金化学分析方法 第13部分:钒含量的测定 GB/T 20975.15-2020 铝及铝合金化学分析方法 第15部分:硼含量的测定 GB/T 20975.19-2020 铝及铝合金化学分析方法 第19部分:锆含量的测定 GB/T 20975.20-2020 铝及铝合金化学分析方法 第20部分:镓含量的测定 丁基罗丹明B分光光度法 GB/T 20975.32-2020 铝及铝合金化学分析方法 第32部分:铋含量的测定 GB/T 20975.33-2020 铝及铝合金化学分析方法 第33部分:钾含量的测定 火焰原子吸收光谱法 GB/T 20975.34-2020 铝及铝合金化学分析方法 第34部分:钠含量的测定 火焰原子吸收光谱法 GB/T 20975.8-2020 铝及铝合金化学分析方法 第8部分:锌含量的测定 GB/T 23514-2020 核级银-铟-镉合金化学分析方法 GB/T 2526-2020 氧化钆 GB/T 2968-2020 金属钐 GB/T 3488.3-2021 硬质合金 显微组织的金相测定 第3部分:Ti(C,N)和WC立方碳化物基硬质合金显微组织的金相测定 GB/T 39158-2020 平面显示用高纯铜旋转管靶 GB/T 39232-2020 氧化锆日用陶瓷刀 GB/T 39233-2020 镧铜合金 GB/T 39285-2020 钯化合物分析方法 氯含量的测定 离子色谱法 GB/T 39292-2020 废钯炭分析用取样和制样方法 GB/T 39495-2020 金属及其他无机覆盖层 铝及铝合金无铬化学转化膜 GB/T 39789-2021 焊缝无损检测 金属复合材料焊缝涡流视频集成检测方法 GB/T 39794.1-2021 金属屋面抗风掀性能检测方法 第1部分:静态压力法 GB/T 39810-2021 高纯银锭 GB/T 39816-2021 钛及钛合金铸造母合金电极 GB/T 39856-2021 热轧钛及钛合金无缝管材 GB/T 39859-2021 镓基液态金属 GB/T 39867-2021 正电子发射断层扫描仪用锗酸铋闪烁晶体 GB/T 39157-2020 靶材技术成熟度等级划分及定义 GB/T 39163-2020 靶材与背板结合强度测试方法 GB/T 5162-2021 金属粉末 振实密度的测定 机械标准GB/T 12241-2021 安全阀 一般要求 GB/T 12242-2021 压力释放装置 性能试验方法 GB/T 14231-2021 齿轮装置效率测定方法 GB/T 1454-2021 夹层结构侧压性能试验方法 GB/T 39807-2021 无铅电镀锡及锡合金工艺规范 GB/T 18329.3-2021 滑动轴承 多层金属滑动轴承 第3部分:无损渗透检验 GB/T 18400.10-2021 加工中心检验条件 第10部分:热变形的评定 GB/T 2585-2021 铁路用热轧钢轨 GB/T 2889.5-2021 滑动轴承 术语、定义、分类和符号 第5部分:符号的应用 GB/T 35465.4-2020 聚合物基复合材料疲劳性能测试方法 第4部分:拉-压和压-压疲劳 GB/T 35465.5-2020 聚合物基复合材料疲劳性能测试方法 第5部分:弯曲疲劳 GB/T 35465.6-2020 聚合物基复合材料疲劳性能测试方法 第6部分:胶粘剂拉伸剪切疲劳 GB/T 36805.2-2020 塑料 高应变速率下的拉伸性能测定 第2部分:直接测试法 GB/T 37363.3-2020 涂料中生物杀伤剂含量的测定 第3部分:三氯生含量的测定 GB/T 37363.4-2020 涂料中生物杀伤剂含量的测定 第4部分:多菌灵含量的测定 GB/T 3780.27-2020 炭黑 第27部分:用圆盘式离心光学沉积测量法测定聚集体尺寸分布 GB/T 39286-2020 吸收式换热器 GB/T 39289-2020 胶粘剂粘接强度的测定 金属与塑料 GB/T39291-2020 鞋钉冲击磨损性能试验方法 GB/T 39296-2020 循环冷却水处理运行效果评价 监测换热器法 GB/T 39485-2020 燃气燃烧器和燃烧器具用安全和控制装置 特殊要求 手动燃气阀 GB/T 39741.1-2021 滑动轴承 公差 第1部分:配合 GB/T 39741.2-2021 滑动轴承 公差 第2部分:轴和止推轴肩的几何公差及表面粗糙度 GB/T 39742-2021 滑动轴承 单层滑动轴承用铝基铸造合金 GB/T 39795-2021 普通用途输送带 导电性和可燃性安全要求 GB/T 39796-2021 动车组玻璃隔声性能试验方法 GB/T 39797-2021 玻璃熔体表面张力试验方法 座滴法 GB/T 39798-2021 动车组玻璃光学性能试验方法 GB/T 39799-2021 钛及钛合金棒材和丝材尺寸、外形、重量及允许偏差 GB/T 12237-2021 石油、石化及相关工业用的钢制球阀 GB/T 7308.1-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第1部分:公差、结构要素和检验方法 GB/T 7308.2-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第2部分:轴瓦壁厚和法兰厚度测量 GB/T 7308.3-2021 滑动轴承 有法兰或无法兰薄壁轴瓦 第3部分:周长测量 石油、化工塑料标准GB/T 10006-2021 塑料 薄膜和薄片 摩擦系数的测定 GB/T 12585-2020 硫化橡胶或热塑性橡胶 橡胶片材和橡胶涂覆织物 挥发性液体透过速率的测定(质量法) GB/T 13174-2021 衣料用洗涤剂去污力及循环洗涤性能的测定 GB/T 12688.10-2020 工业用苯乙烯试验方法 第10部分:含氧化合物的测定 气相色谱法 GB/T 14905-2020 橡胶和塑料软管 各层间粘合强度的测定 GB/T 15330-2020 压敏胶粘带水渗透率试验方法 GB/T 15331-2020 压敏胶粘带水蒸气透过率试验方法 GB/T 1646-2020 2-萘酚 GB/T 1728-2020 漆膜、腻子膜干燥时间测定法 GB/T 1731-2020 漆膜、腻子膜柔韧性测定法 GB/T 1732-2020 漆膜耐冲击测定法 GB/T 1741-2020 漆膜耐霉菌性测定法 GB/T 22053-2020 戊烷发泡剂 GB/T 23937-2020 工业硫氢化钠 GB/T 23978-2020 水溶性染料产品中氯化物的测定 GB/T 24164-2020 染料产品中氯化苯的测定 GB/T 24165-2020 染料产品中多氯联苯的测定 GB/T 25791-2020 C.I.反应红194(反应红M-2BE) GB/T 25795-2020 C.I.反应蓝250(反应蓝KN-RGB) GB/T 25801-2020 C.I.分散橙30(分散橙S-4RL ) GB/T 25807-2020 间脲基苯胺盐酸盐 GB/T 31334.6-2020 浸胶帆布试验方法 第6部分:尺寸、克重等基本项目测量 GB/T 3780.28-2020 炭黑 第28部分:多环芳烃含量的测定 GB/T 39246-2020 高密度聚乙烯无缝外护管预制直埋保温管件 GB/T 39248-2020 输送液化石油气和液化天然气用热塑性塑料多层(非硫化)软管及软管组合件 规范 GB/T 39249-2020 橡胶和塑料软管及非增强软管 织物增强型 低温压扁试验 GB/T 39284-2020 硫酸镁生产滤泥的处理处置方法 GB/T 39290-2020 胶粘剂中芳香胺含量的测定 GB/T 39294-2020 胶粘剂变色(黄变)性能的测定 GB/T 39295-2020 水性胶粘剂触粘性的测定 GB/T 39297-2020 二硝酰胺铵水溶液 GB/T 39307-2020 荧光增白剂 色光和增白强度的测定 塑料着色法 GB/T 39309-2020 橡胶软管和软管组合件 液压用钢丝或织物增强单一压力型 规范 GB/T 39311-2020 热塑性软管和软管组合件 液压用钢丝或合成纱线增强单一压力型 规范 GB/T 39313-2020 橡胶软管及软管组合件 输送石油基或水基流体用致密钢丝编织增强液压型 规范 GB/T 39327-2020 船用发动机湿式排气系统用橡胶和塑料软管 规范 GB/T 39482.3-2020 涂漆和未涂漆金属试样的电化学阻抗谱(EIS) 第3部分:从模拟电解池获得数据的处理和分析 GB/T 39484-2020 纤维增强塑料复合材料 用校准端载荷分裂试验(C-ELS)和有效裂纹长度法测定单向增强材料的Ⅱ型断裂韧性 GB/T 39486-2020 化学试剂 电感耦合等离子体质谱分析方法通则 GB/T 39487-2020 发泡结构胶粘剂管剪强度试验方法 GB/T 39490-2020 纤维增强塑料液体冲击抗侵蚀性试验方法 旋转装置法 GB/T 39491-2020 汽车用碳纤维复合材料覆盖部件通用技术要求 GB/T 39693.3-2021 硫化橡胶或热塑性橡胶 硬度的测定 第3部分:用超低橡胶硬度(VLRH)标尺 测定定试验力硬度 GB/T 39769-2021 焦炭中各种形态硫的测定方法 GB/T 8185-2020 二氯化钯 GB/T 9263-2020 防滑涂料防滑性的测定 矿业标准GB/T 39833-2021 煤的燃烧特性测定方法 一维炉法
  • 环保部发布四项辐射环境监测标准
    为贯彻《中华人民共和国环境保护法》和《中华人民共和国放射性污染防治法》,保护环境,保障人体健康,规范辐射环境监测工作,现批准《水中钋-210的分析方法》等四项标准为国家环境保护标准,并予发布。  标准名称、编号如下:  一、《水中钋-210的分析方法》(HJ 813-2016).pdf   二、《水和土壤样品中钚的放射化学分析方法》(HJ 814-2016).pdf   三、《水和生物样品灰中锶-90的放射化学分析方法》(HJ 815-2016).pdf   四、《水和生物样品灰中铯-137的放射化学分析方法》(HJ 816-2016).pdf。  以上标准自2016年11月1日起实施,由中国环境出版社出版,标准内容可在环境保护部网站(kjs.mep.gov.cn/hjbhbz/)查询。  自以上标准实施之日起,下列国家环境保护标准废止,标准名称、编号如下:  一、《水中钋-210的分析方法 电镀制样法》(GB 12376-90)  二、《水中钚的分析方法》(GB 11225-89)   三、《土壤中钚的测定 萃取色层法》(GB 11219.1-89)   四、《土壤中钚的测定 离子交换法》(GB 11219.2-89)  五、《水中锶-90的放射化学分析方法 二-(2-乙基己基)磷酸萃取色层法》(GB 6766-86)   六、《水中锶-90的放射化学分析方法 发烟硝酸沉淀法》(GB 6764-86)   七、《水中锶-90的放射化学分析方法 离子交换法》 (GB 6765-86)   八、《生物样品灰中锶-90的放射化学分析方法 二-(2-乙基己基)磷酸酯萃取色层法》(GB 11222.1-89)   九、《水中铯-137放射化学分析方法》(GB 6767-86)   十、《生物样品灰中铯-137放射化学分析方法》(GB 11221-89)。  特此公告。  环境保护部  2016年10月12日  抄送:各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,环境保护部环境标准研究所,环境保护部核与辐射安全中心,环境保护部辐射环境监测技术中心。  环境保护部办公厅2016年10月12日印发
  • 团体标准《涉铬地块土壤污染状况调查技术导则(征求意见稿)》发布
    近日,《涉铬地块土壤污染状况调查技术导则(征求意见稿)》团体标准编制小组已完成起草工作,按照《中关村众信土壤修复产业技术创新联盟团体标准管理办法》相关规定,现发布公开征求意见。此标准起草单位由中国环境科学研究院、四川大学、浙江大学、中南大学、广西壮族自治区环境保护科学研究院、北京高能时代环境技术股份有限公司、煜环环境科技有限公司、北京润鸣环境科技有限公司和中国科学院过程工程研究所等组成;主要起草人为颜湘华、田永强 、赵和平、吴昊、杨卫春、苗竹、佟雪娇、张丽、张红玲、王兴润、李杨、方华祥、陈盟、周燕、何谦、杨子杰、倪鑫鑫、于洋、徐红彬、黎贤铭;并由中关村众信土壤修复产业技术创新联盟提出并归口管理。此标准的制定,先后召开了多次工作组会议,就标准原则、适用范围、任务分工、标准内容等技术内容进行了充分研讨,适用于铬盐、电镀、制革等 涉铬 地块的土壤污染状况调查,其他行业地块的土壤铬污染状况调查也可参照执行。具体内容如下:1.涉铬地块土壤污染状况调查技术导则2.涉铬地块土壤污染状况调查技术导则编制说明
  • 水质分析中的常见指标以及标准物质在其中的作用
    在此,我们将依据GB 5749-2022《生活饮用水卫生标准》中的表1,对水质常规指标进行深入浅出的解读。这些数据,就如同体检报告上的各项指标,默默讲述着水质的故事。让我们一起,探索那数据背后的意义,守护我们的饮水安全。一、微生物指标饮用水需要检测微生物指标,如菌落总数、总大肠菌群、大肠埃希氏菌等,如果这些指标不合格,易引发细菌感染、寄生虫病,使人出现腹痛、腹泻等消化道症状。二、感官性状指标1、色度:天然水或处理后的各种水进行颜色定量测定时的指标。标准限值:15度。2、浑浊度:水中悬浮及胶体状态的颗粒。标准限值:1NTU。3、臭和味:被污染的水体往往具有不正常的气味。用鼻子闻到的叫做臭,口尝到的叫做味。标准限值:无异臭、无异味。4、肉眼可见物:水中存在的、可以肉眼观察到的颗粒或其他悬浮物质。标准限值:不得含有。超标危害:感官性状指标主要是其他指标的表征体现,一般没有直接危害。如浑浊度超标水样中悬浮物容易吸附细菌、病毒等。三、一般化学指标1、pH值:氢离子浓度倒数的对数。标准限值:6.50~8.50。超标危害:对管道的腐蚀进而引起间接中毒。2、总硬度:主要是指水中钙、镁离子的含量。硬度分为碳酸盐硬度及非碳酸盐硬度。碳酸盐硬度和非碳酸盐硬度的总和称总硬度。标准限值:450mg/L。超标危害:引起胃肠道功能紊乱,容器结垢,腐蚀设备等。3、溶解性总固体(TDS):溶解在水里的无机盐和有机物的总称,主要成分有Ca2+、Mg2+、Na+、K+、CO32-、HCO3-、SO42-、NO3-等。标准限值:1000mg/L。超标危害:味道差,口感差,水壶结垢。四、无机非金属指标1、硫酸盐:主要来自石膏和其他含硫酸盐沉积物的溶解。标准限值:250mg/L。超标危害:大量摄入导致腹泻、脱水、胃肠道紊乱。2、氯化物:广泛存在于水中,来源于天然矿物沉积、海水入侵、农业灌溉等。标准限值:250mg/L。超标危害:腐蚀管路,引入咸味,对胃液分泌、水代谢有影响,从而诱发各种疾病。3、氟化物:广泛存在于水中,来源于天然矿物沉积。标准限值:1.0mg/L。超标危害:适量的氟对身体有益,可预防龋齿。摄入过多对人体有害,容易导致氟斑牙、氟骨症。4、氰化物:自然水体一般不存在氰化物,水中来源主要是工业污染、石油化工、农药、电镀等。标准限值:0.05mg/L。5、硝酸盐氮、氨氮:硝酸盐、亚硝酸盐和氨是氮循环的组成部分。除来自地层外,还主要来源工业废水、生活污水、肥料等。标准限值:硝酸盐氮10mg/L,氨氮0.5mg/L。超标危害:本体无毒。在体内形成亚硝酸盐,可导致高铁血红蛋白症。在胃肠道形成亚硝胺,使动物致畸、致癌、致突变。五、金属指标1、铝:来源于工业污染及混凝剂(如硫酸铝、聚合氯化铝、明矾等)的使用,产生的铝化合物随污水进入水体。标准限值:0.20mg/L。超标危害:铝是一种低毒金属元素,并非人体需要的微量元素,不会导致急性中毒,人体摄入铝后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病。2、铁:铁是人体的必需元素。铁是地壳层中第二丰富的金属,以多种形式存在于天然水中。水中的铁通常以Fe3+的形式出现,而较易溶解的Fe2+可能在脱氧的情况下出现。标准限值:0.30mg/L。超标危害:当水中含铁量超过0.30mg/L会使衣服、器皿、设备等着色。在含铁量大于 0.50mg/L时,水的色度可能会大于30度。饮用水铁过多可引起食欲不振、呕吐、腹泻、胃肠道紊乱、大便失常等症状。3、锰:是地壳中较为丰富的元素之一,地下水中锰的质量浓度可以达到每升几毫克。常和铁结合在一起。标准限值:0.10 mg/L。超标危害:高浓度锰有毒性,锰主要危害中枢神经系统,可以出现颓废、肌张力增加、震颤和智力减退等中毒症状。但还未达到此水平时根据味道就需对水进行处理了。当锰的质量浓度超过0.10mg/L,会使饮用水发出令人不快的味道,并使器皿和洗涤的衣服着色。如果溶液中Mn2+的化合物被氧化,会形成沉淀,造成结垢。4、铜:是一种存在于地壳和海洋中的金属。在地壳中的含量约0.01%。自然界中的铜多数以化合物(铜矿物)存在。标准限值:1.0mg/L。超标危害:铜是人体重要的必需微量元素,但重金属又有一定毒性。毒性强弱与重金属进入人体的方式和剂量有关。金属铜不易溶解,毒性比铜盐(醋酸铜和硫酸铜)小。铜超标引起急性和慢性中毒,急性中毒有急性胃肠炎、溶血和贫血;慢性中毒有记忆力减退、注意力不集中,易激动、多发性神经炎等。5、锌:在自然界中多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿,电池的重要原料。水中锌含量很小,但水流经镀锌管道可能被污染,使水的浑浊度升高,具有不舒服的金属味。标准限值:1.0mg/L。超标危害:锌是人体不可缺少的微量元素,但锌超标也有危害:1.锌与硒有拮扰性,人体大量摄入锌后降低了硒的解毒作用,容易引起某些有毒元素的慢性中毒或诱发某些疾病;2.大量的锌能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能,使抗病能力减弱;3.过量的锌致使铁参与造血机制发生障碍从而使人体发生顽固性缺铁性贫血;4.长期大剂量锌摄入可诱发人体的铜缺乏。6、砷:在地壳中广泛存在,大多以硫化砷或金属砷酸盐和砷化物形式存在。某些地区水砷偏高(地方病),有的来自治炼废水、矿物溶出。标准限值:0.01mg/L。超标危害:砷是饮水中一种重要的污染物,国际癌症研究机构 (IARC)确认是使人致癌的物质之一。7、汞:在自然界中分布量很少,但普遍存在,一般动物植物中都含有微量的汞。汞的用途广泛,人类活动造成水体汞污染,主要来自系碱、塑料、电池、电子、化工废水还有农药、化肥等使用。标准限值:0.001mg/L。超标危害:金属汞和无机汞损伤肝脏和肾脏,但一般不形成累积中毒。有机汞(如甲基汞)等毒性高,能损伤大脑,在体内停留时间长,即使剂量很少也可累积致毒,如日本的水俣病。8、镉:在自然界中常以化合物状态存在,一般水中含量很低。镉在电镀、颜料、塑料、稳定剂、Ni-Cd电池工业、电视显像管制造等工业领域使用广泛。镉的污染主要来源工业排放。标准限值:0.005mg/L。超标危害:镉是人体非必需元素,正常环境状态下,不会影响人体健康。镉被人体吸收后,在体肉形成镉硫蛋白,选择性地蓄积在肝肾中。从而影响肝、肾器官中酶系统的正常功能,使骨路的生长代谢受阻碍,从而造成骨路疏松、萎缩、变形等。如日本的痛痛病。9、铬(六价):铬属于分布较广的元素之一。自然界中主要以铬铁矿FeCr204形式存在。铬的污染源有含铬矿石的加工,金属表面处理、皮革鞣制、印染等排放的污水。标准限值(六价铬):0.05mg/L。超标危害:铬是人体必需的微量元素,在机体的糖代谢和脂代谢中发辉特殊作用。铬的毒性与其价态有关,金属铬对人体几乎无害,六价铬才有毒。六价铬比三价铬毒性高。六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体内主要蓄积在肝、肾和内分泌腺中。通过呼吸道进入的易积存在肺部。10、铅:铅在地壳中含量为0.16%,很少以游离态存在于自然界,工业中含铅废气、废水、废渣等可以污染水源。自来水的铅还来自含铅的管道系统,如输水管、焊料、管件及其接头,聚氯乙烯水管材、管件可能含铅,因为铅作为稳定剂用于生产该种塑料管。标准限值:0.01mg/L。超标危害:铅中毒对机体的影响是多器官、全身性的,临床表现复杂,且缺乏特异性,比较明确的是:1、引起血红蛋白合成障碍;2、损害神经系统;3、损害肾脏;4、损害生殖器官;5、影响子代。病期较长的患者并有贫血,面容呈灰色,伴心悸、气促、乏力等。牙与指甲因铅质沉者而染黑色,有的牙龈出现黑色。编辑搜图六、有机物(综合)指标1、高锰酸盐指数(以O₂ 计):是指水样在规定的氧化剂和氧化条件下的可氧化物质的总量。标准限值:3mg/L。超标危害:高锰酸盐指数是反应饮用水中有机污染物总体水平的一项指标,与肝癌和胃癌死亡率之间有非常显著的相关关系。2、三氯甲烷:是一种有机合成原料,主要用来生产氟氯昂。可用于有机合成及麻醉剂,脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂,青霉素,精油、生物碱等的萃取剂,在生产过程中的废水污染水体。饮用水中三氯甲烷的形成在很大程度上取决于用作消毒剂的氯和在水源中存在的前体之间相互反应。标准限值:0.06mg/L。超标危害:主要作用于中枢神经系统,具有麻醉作用,对心,肝,肾有损害,主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状。并认为对人具有潜在的致癌危险性。在使用相关仪器设备对水质进行检测的同时,需要确保已有仪器的正确值,这就需要用到相关的标准物质进行校准,那标准物质在其中起到了什么作用呢?水质检测标准物质主要用于保证水质检测结果的准确性。这些标准物质在环境监测中起到重要的作用,可以用于测定水样中污染物质的浓度。此外,这些标准物质还可以被用于制定一些环境标准,如水质标准,以保证水质监测检测结果的合理性和可靠性,进而保证公众的生命健康和生活的安全。具体来说,水质检测标准物质有以下用途:1. 质量控制:在实验室内部的质量控制程序中,标准物质可被用作质控样品,通过比较实际测试结果与标准物质的不确定度,来评估实验的准确度和精密度。2. 比对试验:标准物质可以作为基准,用于比较不同实验室或不同测量方法的结果,以评估其准确性和一致性。3. “盲样”分析:在某些情况下,标准物质会被混入实际样品中,以测试实验室对特定污染物的检测能力。4. 校准仪器:标准物质可用于校准测量仪器,确保其准确性。5. 标定溶液浓度:标准物质可以用来标定用于样品前处理的溶液,确保这些溶液的浓度准确无误。6. 评价分析方法:通过使用标准物质,可以对新开发或改进的分析方法进行验证,确保其有效性。值得注意的是,某些特殊的水质检测标准物质如水中氨氮溶液标准物质和水中铵离子溶液标准物质,不仅可用于上述用途,还可以直接用于对排放的氨氮污染物进行准确测定,为环保领域的新技术新方法研究、新标准验证、质量控制、能力验证样品检测等方面提供技术保障。
  • 《能量色散X荧光光谱仪》标准制定工作会议召开
    5月18日,全国分析仪器标准化委员会秘书长马雅娟、主任委员郑增德来到天瑞仪器,就《能量色散X荧光光谱仪》行业标准的编制实施进行深入研讨。 《能量色散X荧光光谱仪》行业标准是由全国分析仪器标准化技术委员会推动,共分为“通用技术”、“元素分析仪”、“镀层厚度分析仪”三章。目前,该标准已完成草稿工作。 5月18日,在天瑞仪器二楼会议室,分析仪器标准化委员会秘书长马雅娟、主任委员郑增德,与天瑞仪器副总经理余正东、应用研发中心负责人姚栋梁博士、研发部部长吴升海博士、研发部副部长周晓辉、应用研发工程师吴敏、李强、盛敏等人,共同就标准的制定执行进行深入探讨。 分析仪器标准化委员会秘书长马雅娟在会议中表示:“能量色散X射线荧光光谱仪作为一种定性及定量的无损测试技术,可广泛应用于电子、机械制造、医疗卫生、环保和生态研究、冶金、食品工业、珠宝首饰、地质勘探、考古、商检、电镀、钢铁、石化、稀土等行业。但该技术目前在国内外却缺少相关标准。本次行标的编撰实施,对促进民族工业发展、促进与国际先进技术的接轨,具有重要意义。” 天瑞仪器副总经理余正东表示,天瑞仪器作为专业的X荧光光谱仪研发生产厂商,在技术研发、仪器制造、应用开发、产品服务等方面拥有深厚的经验。天瑞仪器希望能够发挥优势,为行业标准的规范完善作出贡献。 天瑞仪器 江苏天瑞仪器股份有限公司是具有自主知识产权的高科技企业,注册资本11840万。旗下拥有北京邦鑫伟业公司和深圳天瑞仪器公司两家全资子公司。总部位于 风景秀丽的江苏省昆山市阳澄湖畔。公司专业从事光谱、色谱、质谱、医疗仪器等分析测试仪器及其软件的研发、生产和销售。 了解天瑞仪器:www.skyray-instrument.com
  • 六价铬检测新标准不用愁,安东帕微波系统C位出道
    铬是一种银白色的坚硬金属。主要以金属铬、三价铬和六价铬三种形式出现。所有铬的化合物都有毒性,其中六价铬毒性较大。电子电器产品中,六价铬常在电化学工业中作为铬酸,一般以处理用的溶剂存在,也常见于电镀金属防锈涂层。在电子行业的工业废水、着色剂中也可能含有高浓度的六价铬,极易导致对环境的严重污染。2017年3月28日,国际电工委员会发布了新的检测标准:IEC 62321-7-2:2017,规定了电子电器聚合物材料中六价铬的检测方法。新标准中“通过比色法测定聚合物和电子材料中的六价铬” 会取代旧版检测标准(IEC 62321:2008)。新标准描述了电子材料中六价铬的定量测定步骤。此方法采用有机溶剂溶解,再经过碱式溶液萃取样品中的六价铬。其萃取过程需要在密闭容器中提供长时间的稳定高温,温度范围需达到150℃~160℃。研究表明,新方法的提取效率明显更高,且可将实验结果造成的影响减少到较低。值得一提的是,在今年10月刚制定的汽车9项行业标准(聚合物材料和电子材料中六价铬含量测定)中,我们同样看到了上文提到的新检测方法。汽车行业的旧标准中,萃取时使用到的加热装置需稳定在90℃~95℃之间,同时至少恒温3小时。而新标准中提到,使用微波仪器平台加热到150℃~160℃之间,只需保持恒温1.5小时。“重点来了:密闭容器中提供长时间的稳定高温反应时间短新标准下的这两个检测要求,安东帕Mulitwave 5000系列微波系统可完全满足。Multiwave 5000简单易用的微波系统安东帕先进的反应罐和传感器技术可获得可靠的消解效果。由于在每个反应罐进行了温度控制,并采用同时消解不同类型样品的几种控制策略,可保证全面控制反应过程。微波系统搭配的SVT 反应罐采用智能控压技术,可在较短的时间内较高温度完全消解!微波系统采用的智能传感器技术助力实现全密闭式容器中的温度控制。红外温度传感器测量每个反应罐的温度,确保消解过程安全可靠。如果温度过高,Multiwave 5000会自动降低微波功率,因此温度不会超过所选方法的预设限制。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制