当前位置: 仪器信息网 > 行业主题 > >

电泳原理

仪器信息网电泳原理专题为您提供2024年最新电泳原理价格报价、厂家品牌的相关信息, 包括电泳原理参数、型号等,不管是国产,还是进口品牌的电泳原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电泳原理相关的耗材配件、试剂标物,还有电泳原理相关的最新资讯、资料,以及电泳原理相关的解决方案。

电泳原理相关的资讯

  • 生命科学 | 毛细管电泳原理及其在临床诊断中的应用
    前言蛋白质是生命活动的直接执行者,参与生命的几乎所有过程,包括遗传、发育、生殖、物质和能量的代谢、应激等,因此通过分析蛋白质结构和性质的异常就可以获得机体的受损或病变情况。但蛋白质分子结构与性质复杂多样,如何有效的分离和分析生物体中的各个蛋白质一直面临着严峻的技术挑战。毛细管电泳(ce)技术的出现,给解决这一挑战提供了新的途径,它能够从电荷、分子量等不同维度对蛋白分子进行高效的分离分析,因此得到了广泛的应用和发展。毛细管电泳技术的原理毛细管电泳法是以毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法(图1)。图1 毛细管电泳技术的原理毛细管两端分别浸入在电泳缓冲液中,并且两端连接着高压电源。当高压电源施加稳定的高压时,毛细管内产生了电渗流,使得毛细管内液体整体向负极移动。同时由于进入到毛细管中样本所含组分的荷质比不同,不同物质在毛细管中的迁移速度则不同。不同片段依次经过检测窗时被光检测模块所检测,从而实现了不同组分的分离以及定性、定量检测的目的。毛细管电泳技术的优势相比于hplc等传统的分析分离手段,毛细管电泳技术拥有如下的主要优点(图2):1.分离效率高,分析速度快:由于毛细管能抑制溶液对流,并具有良好的散热性,允许在很高的电场下(可达400v/cm以上)进行电泳,因此可在很短时间内完成高效分离。2.操作模式多,分析方法开发灵活:只要更换毛细管填充溶液的种类、浓度、酸度或添加剂等,就可以用同一台仪器实现多种分离模式。3.适合于微量样品的分析:毛细管内径极小(20-75um),进样为纳升级或纳克级,非常适合于稀少样品的检测分析。4.应用范围广:毛细管电泳在生命科学领域有广泛应用。在核酸检测方面,可用于一代测序或基因片段分析;而在蛋白质检测方面,可应用药物分析和临床诊断。图2 毛细管电泳的主要优势毛细管电泳在临床诊断中的应用作为一种高效的生物大分子分离分析技术,毛细管电泳在临床诊断领域的主要应用如下:1.多发性骨髓瘤:进行血清蛋白电泳、血清免疫分型的检测,是多发性骨髓瘤筛查和诊断的重要依据。2.地中海贫血:进行血红蛋白电泳检测,是地中海贫血筛查的重要手段。3.糖尿病:进行糖化血红蛋白检测,相比传统hplc等方法,能够排除异常血红蛋白的干扰。 聚拓生物聚拓生物为聚光科技集团成员企业,其自主研发的clincap 1000全自动毛细管电泳仪是专门为临床检验而设计的,具有全自动、高分辨的毛细管电泳仪可满足多种临床蛋白分析项目,为临床提供精准可靠的检测结果。系首款获得医疗器械认定的国产同类产品。
  • 电泳微流控芯片:生物分析的里程碑
    电泳微流控芯片是一种结合了电泳和微流控技术的创新型生物分析工具。该技术整合了微流体学的优势,通过微小尺度的通道、电场和高度灵活的流动控制,实现了对生物分子的高效分离、检测和分析。——技术原理——电泳原理:在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象。电泳微流控芯片技术可以分为两种主要类型:毛细管电泳和芯片上电泳。毛细管电泳利用单根毛细管作为分离通道,而芯片上电泳则将电泳所需的缓冲液、电极等组件集成到一个微流控芯片上,实现设备的微小化和自动化。这种集成化设计使得电泳微流控芯片具有高通量、高效率、低样品消耗和快速分离等优点。电泳微流控芯片的原理主要基于电场驱动下的带电粒子在微尺度流道中的迁移与分离。具体来说,电泳微流控芯片利用微加工技术在芯片上构建微米级的流道,这些流道用于容纳电泳缓冲液。当在芯片两端施加电场时,缓冲液中的带电粒子(如DNA、蛋白质等)会根据其电荷和电场方向发生迁移。不同带电粒子由于其电荷、质量和形状的差异,在电场中的迁移速度会有所不同,从而实现粒子的分离。——应用领域——电泳微流控芯片的应用领域非常广泛,涵盖了多个重要的科学和工业领域。以下是其主要的应用领域:1、生物医学:在生物医学领域,电泳微流控芯片技术主要用于DNA片段、多肽、蛋白质等生物分子的分离和分析。它被认为是后基因时代中最有希望攻克蛋白质研究、基因临床诊断等科学难题的分离分析手段之一。此外,电泳微流控芯片技术也被用于PCR反应,可以大大简化操作步骤,显著提高检测效率。2、新药物合成与筛选:电泳微流控芯片技术在新药研发过程中发挥着重要作用。它可以用于药物分子的分离和筛选,从而加速新药的研发进程。3、食品和商品检验:电泳微流控芯片技术可以用于食品中添加剂、污染物等的检测和分析,确保食品的安全和合规性。同时,它也可以用于商品的质量控制和检验。4、环境监测:在环境监测领域,电泳微流控芯片技术可用于水、土壤、空气等环境样本中有害物质的检测和分析,为环境保护和污染治理提供科学依据。5、刑事科学:电泳微流控芯片在法医学中具有重要的应用,特别是在DNA分离、检测和分析方面,对于个体身份的鉴定和犯罪现场的物证分析具有重要意义。6、其他科学领域:此外,电泳微流控芯片技术还广泛应用于军事科学、航天科学等其他重要科学领域,为这些领域的研究和发展提供了强大的技术支持。——优势——1、高分辨率和快速分离:微流控芯片中的通道尺寸小,因此具有较高的分辨率和更快的分离速度。这使得它能够在短时间内准确地分离和识别出各种生物分子,如DNA、蛋白质等。2、低样品和试剂消耗:由于微流控芯片中的流体通道尺寸微小,所需的样品和试剂量大大减少。这既降低了分析成本,也减少了生物样本的浪费,对于珍贵的生物样本尤其重要。3、高通量分析能力:微流控芯片可以并行处理多个样品,实现高通量分析。这大大提高了分析效率,使得在短时间内能够处理更多的样本,适用于大规模的生物分子分析任务。4、易于集成和自动化:电泳微流控芯片可以与其他技术(如质谱联用)实现联合分析,进一步提高分析的准确性和灵敏度。此外,微流控芯片技术易于实现自动化,减少了人为操作的误差,提高了分析的准确性和可靠性。5、微型化和便携性:电泳微流控芯片采用微型化设计,使得整个分析系统更加紧凑和便携。这使得它可以在现场进行实时分析,无需复杂的实验室设备,为现场检测和即时分析提供了便利。保利微芯公司简介保利微芯科技有限公司隶属中国保利集团公司,由保利置业集团有限公司投资,设计研发微流控生物芯片,公司具备技术先进的微流控生物芯片设计制造能力,已形成创新性的、技术领先的微流控芯片整体解决方案。可以承接国内外芯片设计、应用公司的微流控芯片生产订单,为即时诊断(POCT)、基因测序、环境保护、食品安全和科学研究等应用领域的客户提供有核心竞争力的高性价比芯片产品。
  • 毛细管电泳高级培训研讨会2012年12月
    尊敬的毛细管电泳用户: 贝克曼库尔特商贸(中国)有限公司将于2012年12月13-14日举办毛细管电泳高级培训研讨会,地点为北京市理化分析测试中心永丰分部。 有意参加者请在11月30日之前发邮件确认。hxchen@beckman.com 时间 培 训 内 容 12月13日 09:00-11:30 毛细管电泳技术原理及应用进展 12:30-13:30 毛细管电泳操作注意事项 14:00-16:30 毛细管电泳质谱联用技术原理及应用进展 12月14日 09:00-11:30 如何增加毛细管电泳分析的重现性 13:00-16:30 仪器硬件及软件使用交流 贝克曼库尔特公司 北京市理化分析测试中心 2012.11.15
  • 电泳冷水机的间接冷却方式
    电泳冷水机是对于电泳涂装、电镀生产线、阳极氧化等都是针对于电镀槽里面的电镀溶液来冷却。电泳冷水机冷却方式有两种,直接冷却与间接冷却。下面讲解下电泳冷水机间接冷却的制冷原理:冷却塔底盆里的水通过水泵输送到冷水机的冷凝器,对冷水机的冷凝器进行降温。再流回冷却塔内喷淋而下时通过冷却塔顶上的风扇对水进行了降温,再流回冷却塔底盆,就这样周而复始的运行。冷水机的冷凝器散热同时里面的冷媒液化,再流入水箱内的蒸发器进行蒸发,而蒸发时要吸收热量,从而就对水箱里的水进行了降温,降温后的水通过水泵输送到热交换器(中间隔开,一边水,一边硫酸,),再通过热传递的过程就对硫酸进行了降温,就这样一个循环过程。田枫冷水机的优势在于安装方便,使用寿命相对比直接冷冻的长,酸碱不易腐蚀冷水机。这种冷水机一般换热器为板换的密闭的。 文章原创:上海田枫实业有限公司 www.tfsye.com上海田枫实业有限公司,专业生产各类制冷设备,包括层析冷柜,冻干机,冷水机,超低温冰箱,恒温槽等,一流的专业,一流的服务,上海田枫是您的最佳选择!
  • 药典委:0542 毛细管电泳法标准草案的公示
    2022年底,国家药典委员会发布《中国药典》(2025年版)编制大纲的通知。《通知》显示,到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。近日,国家药典委员会公布了一批方法通则的修订草案,涉0512高效液相色谱法标准草案、毛细管电泳法标准草案、0931溶出度与释放度测定法标准草案、分析仪器确证指导原则标准草案、光学分析法标准草案、扫描电子显微镜法标准草案等。  其中,0542 毛细管电泳法标准草案,是参考 ICH Q4B 附录 11 毛细管电泳法,对《中国药典》 0542 毛细管电泳法进行修订。  此次修订调整了部分内容和实验参数,主要修订内容如下: 1. 原理部分进行详述,增加了毛细管电泳法的理论描述和计算公式; 2. 仪器的一般要求中增订了需要给出具体规定的毛细管电泳法条件,以及试验过程中需要注意的相关事项; 3. 分离模式部分中对毛细管区带电泳、毛细管凝胶电泳、毛细管等电聚焦电泳和胶束电动色谱等四种方法进行详 2023 年 9 月 2 / 2 述,包括原理、条件优化、仪器参数等内容; 4. 增加定量内容,对定量的相关要求和结果计算进行描述; 5. 对个别文字表述进行规范。关于0542 毛细管电泳法标准草案的公示编号:Fg2023-0162号  我委拟修订0542毛细管电泳法。为确保标准的科学性、合理性和适用性,现将拟修订的0542毛细管电泳法公示征求社会各界意见(详见附件)。公示期自发布之日起三个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版上传至【公示反馈】附件中。   公示期满未回复意见即视为对公示标准草案无异议。0542毛细管电泳法修订说明.pdf0542毛细管电泳法公示稿(第一次).pdf
  • 毛细管电泳高级培训研讨会2011年10月
    尊敬的毛细管电泳用户: 贝克曼库尔特商贸(中国)有限公司将于2011年10月27-28日举办毛细管电泳高级培训研讨会,地点为北京大学化与分子工程学院。有意参加者请在10月13日之前发邮件确认。 联系人:陈泓序:158 1057 1231 E-mail: hxchen@beckman.com 时间 培训内容 10月27日 毛细管电泳相关知识讲座 09:00-12:00 毛细管电泳技术原理及应用进展(张新祥教授 北京大学)13:00-14:00 仪器保养及使用注意事项(陈泓序 贝克曼库尔特公司)14:00-17:00 如何增加毛细管电泳分析的重现性(丁晓静博士 北京市疾控中心) 10月28日 09:00-12:00 P/ACE MDQ实际上机操作(陈泓序 贝克曼库尔特公司)13:00-17:00 32 Karat软件操作培训(陈泓序 贝克曼库尔特公司) 贝克曼库尔特商贸(中国)有限公司 北京大学化学与分子工程学院 2011.09.23
  • 毛细管电泳高级培训研讨会2012年03月
    尊敬的毛细管电泳用户: 贝克曼库尔特商贸(中国)有限公司将于2012年03月16-17日举办毛细管电泳高级培训研讨会,地点为北京大学化与分子工程学院。有意参加者请在03月08日之前发邮件确认。 联 系 方 式:Tel: 158 1057 1231 E-mail: hxchen@beckman.com 时间 培 训 内 容 03月16日 毛细管电泳相关知识讲座 09:00-12:00 毛细管电泳技术原理及应用进展(张新祥教授 北京大学) 13:30-17:00 如何增加毛细管电泳分析的重现性(丁晓静博士 北京市疾控中心) 03月17日 09:00-10:00 仪器保养及使用注意事项 10:00-12:00 P/ACE MDQ实际上机操作 13:30-17:00 32 Karat软件操作培训 贝克曼库尔特商贸(中国)有限公司 2012.02.27
  • 毛细管电泳高级培训研讨会2011年8月
    尊敬的毛细管电泳用户:贝克曼库尔特商贸(中国)有限公司将于2011年08月19-21日举办毛细管电泳高级培训研讨会,地点为北京市理化分析测试中心。有意参加者请在08月05日之前发邮件确认。联 系 人:陈泓序:158 1057 1231 E-mail: hxchen@beckman.com时间 培 训 内 容08月19日 09:00-11:30 毛细管电泳技术原理及应用进展(张新祥教授 北京大学) 13:30-16:30 如何增加毛细管电泳分析的重现性(丁晓静博士 北京市疾控中心)08月20日 09:00-11:30 仪器保养及使用注意事项 13:30-16:30 P/ACE MDQ实际上机操作08月21日 32 Karat软件操作培训贝克曼库尔特商贸(中国)有限公司2011.07.15
  • 毛细管电泳高级培训研讨会2011年6月
    尊敬的毛细管电泳用户: 贝克曼库尔特商贸(中国)有限公司将于2011年06月17-19日举办毛细管电泳高级培训研讨会,地点为北京大学化与分子工程学院。有意参加者请在06月03日之前发邮件确认。 联 系 人:陈泓序:158 1057 1231 E-mail: hxchen@beckman.com 时间 培 训 内 容 06月17日 09:00-11:30 毛细管电泳技术原理及应用进展(张新祥教授 北京大学) 13:30-16:30 如何增加毛细管电泳分析的重现性(丁晓静博士 北京市疾控中心) 06月18日 09:00-11:30 仪器保养及使用注意事项 13:30-16:30 P/ACE MDQ实际上机操作 06月19日 32 Karat软件操作培训 贝克曼库尔特商贸(中国)有限公司 北京大学化学与分子工程学院 2011.05.17
  • 贝克曼库尔特毛细管电泳高级培训研讨会通知
    尊敬的毛细管电泳用户: 贝克曼库尔特商贸(中国)有限公司与北京市理化分析测试中心“生命分离分析 毛细管电泳”共建实验室将于2011年04月15-17日举办毛细管电泳高级培训研讨会,地点为北京市理化分析测试中心永丰分部。贝克曼库尔特公司将提供参会人员的午间工作餐,并为首次参加培训的单位参会人员提供住宿费用。有意参加者请在04月01日之前发邮件确认。 联 系 人:陈泓序:158 1057 1231 E-mail: hxchen@beckman.com 时间 培 训 内 容04月15日 09:00-11:30 毛细管电泳技术原理及应用进展(张新祥教授 北京大学) 13:30-16:30 如何增加毛细管电泳分析的重现性(丁晓静博士 北京市疾控中心) 04月16日 09:00-11:30 仪器保养及使用注意事项(陈泓序 & 赵新颖) 13:30-16:30 P/ACE MDQ实际上机操作(陈泓序 & 赵新颖) 04月17日 09:00-16:30 32 Karat软件操作培训 (陈泓序 产品专员 贝克曼公司) 贝克曼库尔特商贸(中国)公司 北京市理化分析测试中心生命分离分析毛细管电泳共建实验室 2011.03.12
  • 贝克曼库尔特公司毛细管电泳2011年培训计划
    尊敬的毛细管电泳用户: 贝克曼库尔特商贸(中国)有限公司将于2011年举办五期毛细管电泳高级培训研讨会。有意参加者请关注我们每期培训前的通知,在培训前两周发邮件确认。 联 系 人: 陈 泓 序 Tel :158 1057 1231 E-mail: hxchen@beckman.com 时间 地点 第一期 04月15-17日 北京市理化分析测试中心 第二期 06月17-19日 北京市理化分析测试中心 第三期 08月19-21日 北京大学化学与分子工程学院 第四期 10月21-23日 北京大学化学与分子工程学院 第五期 12月09-11日 北京市理化分析测试中心 培 训 内 容 第一天 毛细管电泳相关知识讲座 毛细管电泳技术原理及应用进展 ( 张新祥教授 北京大学 ) 如何增加毛细管电泳分析方法的重现性 ( 丁晓静博士 北京疾控中心 ) 第二天 仪器保养及使用注意事项 P/ACE MDQ实际上机操作 第三天 32 Karat软件操作培训
  • 网友:1980-2014毛细管电泳论文盘点
    仪器信息网讯 近日,仪器信息网网友nini2006在仪器信息网论坛发布&ldquo 用数据告诉你一个真实的毛细管电泳(CE)研究现状&rdquo 的帖子,其统计了在过去34年中,Web of science数据库中CE论文的数量,特别考察了 Science、Nature、Analytical Chemistry(AC)杂志中发表的CE论文的情况。详情如下:   在Web of science输入capillary electrophoresis为关键词查找,共查得41,546篇论文。其中每十年的发表的情况如下:   1980-1989: 201(Science: 4 Nature: 2 AC: 32)   1990-1999: 10,131(Science: 14 Nature: 7 AC: 955)   2000-2009: 21,758 (Science: 5 Nature: 3 AC: 1,403)   2010-2014: 9,453(Science: 1 Nature: 0 AC: 410)   2000年以前总体是呈现增长趋势的。接下来2010年后的这近4年半时间里,如果按前十年的发表频率来算,目前的论文发表量是持平的。当然,高档次的论文在90s达到顶峰,随后逐年下降。这不难理解,一个新出来的事物很容易就激起人们探索的欲望,况且很多原理公式都需要完善,这时候就很容易出现很多新奇好玩的应用和发现,也就容易发高档次的文章。但是,当基本原理基本摸清后,研究的方向就主要转向应用,文章的档次也就随之下降了。   值得注意的是,迄今为止,中国还没有一篇发在Science和Nature上的文章。但可喜的是,中国关于CE的文章档次呈现了上升的趋势。比如,中国发在AC上的文章总量虽然只排在第四位,但最近不到四年半的时间已经跃居第二。加拿大挺有意思,发表的总量不多,但高档次杂志前三的位置总有他一份。小日本也挺牛掰,小小岛国,不论量还是质都让人艳羡。至于老美,虽然近几年他们缩减科研经费,但目前来看这并不影响他们&ldquo 世界科研中心&rdquo 的头衔,质量数量一直处于领先地位。不过中国的势头不可小觑,似乎是在跟美国唱反调,我国的科研经费预算每年都在增长,在&ldquo 美国越来越不好混,国内机会越来越多&rdquo 的大背景下,很多高端科研人员纷纷从美国撤退回国,使得中国的论文数量和质量在最近几年得到了很大提升,真真可喜可贺也!相关数据参见图1-5。   图1、不同国家CE相关的文章总量排名(1980.01.01-2014.05.27):   图2、不同国家CE相关的文章发到Nature的数量排名(1980.01.01-2014.05.27):   图3、不同国家CE相关的文章发到Science的数量排名(1980.01.01-2014.05.27):   图4、不同国家CE相关的文章发到AC的数量排名(1980.01.01-2014.05.27):   图5、不同国家CE相关的文章发到AC的数量排名(2014.01.01-2014.05.27):   注,以上数据截至到2014年5月27日。
  • 毛细管电泳新型高灵敏度折射率检测技术面世
    毛细管电泳(CE)常用的检测技术只能检测具有特定特性的分析物。例如,荧光检测器只能检测发出荧光的分析物,紫外线检测器只能检测吸收紫外线的分析物,而安培检测器只能检测在电极上可被氧化或还原的分析物。即使是通常被认为是通用检测技术的质谱仪,也只能检测可以通过电喷雾电离有效地转化为离子的分析物。  回音圆廊的折射原理  可以与毛细管电泳一起使用并且真正通用的一种检测技术是折射率(RI)检测。在这种检测技术中,当光穿过毛细管电泳缓冲区中的分析物时会产生折射,通过对所引起的弯曲或折射程度的变化来检测分析物。问题在于,折射率检测并不是特别敏感,尤其是在小规模的毛细管电泳中。伦敦圣保罗大教堂的圆顶天坛回音壁  但是,有一种方法可以利用所谓的“回音圆廊”效果来增强折射率检测的灵敏度。就像声波可以在圆形空间中反弹一样,例如伦敦圣保罗大教堂的圆顶以及北京天坛的回音壁,由于声音的折射,可以在空间的一侧清晰地听到另一侧的对话。特定波长的光可以围绕圆形结构反弹,最终被俘获。被俘获的特定波长取决于周围介质的折射率。  散射光的监测  通过将激光照射在与毛细管电泳缓冲液接触的圆形结构上,可以通过监测散射光来检测由分析物引起的缓冲液折射率的任何变化。为此,散射光将丢失在圆形结构中被俘获的波长的光,该波长的光将随着折射率的变化而变化。几个研究小组表明,这种方法行之有效,他们已经使用了专门定制的设备(例如用于俘获光线的小玻璃球)来实现了这一目的。  现在,来自美国安阿伯市密歇根大学的John Orlet和Ryan Bailey使用市售设备进行了同样的操作,从而提供了一种更简单,更方便的方法来进行毛细管电泳敏感的折射率检测。该设备是美国一家名为Genalyte的公司生产的硅光子微环谐振器阵列。它由两个由四个圆形硅环的16个簇组成的通道组成,每个环可以俘获入射的激光。  Genalyte将这些阵列用于医学诊断,因为当诸如生物标记的分子结合到环上时,被环俘获的光的波长也会改变。但是Orlet和Bailey意识到,这种阵列有可能成为与毛细管电泳一起使用的理想折射率检测器。为了将阵列变成这样的检测器,两名研究人员将其容纳在连接到两个毛细管的流通池中。被毛细管电泳分离的分析物通过第一个毛细管迁移到流通池中,然后离开毛细管并通过阵列的两个通道进行检测,然后再通过第二个毛细管流出流通池。  糖和咖啡因的成分检测  Orlet和Bailey首先在山梨糖上测试了这种设置,发现该阵列可以检测到浓度低至15毫摩尔的分析物,并且阵列响应的大小随浓度而变化。接下来,他们尝试了两种简单的混合物,一种包含甘露糖、乳糖和果糖,另一种包含小分子乙酰胆碱、咖啡因和荧光素。在这两种情况下,混合物均通过毛细管电泳分离,并通过阵列检测其单个成分。但是,因为每个簇都可以检测到分析物,所以该阵列还可以监控它们沿通道的通过,从而记录其迁移速度,从而提供有关分析物的其他信息。  最终,Orlet和Bailey表明,该阵列可以检测通过毛细管电泳分离的三种蛋白质——肌红蛋白、血红蛋白和β-乳球蛋白,证明它也可以与生物分子一起使用。他们现在正在研究各种方法来进一步提高其新型折射率检测器的灵敏度,包括通过改善毛细管装配到流通池中的方式以及将特定生物分子的俘获剂附着到阵列中的环上。符斌供稿
  • 毛细管电泳-质谱技术在手性化合物分离分析中的研究进展
    手性是自然界和生命体的基本属性之一,诸如生物结构中的核酸、蛋白质及糖类等都具有手性。目前绝大多数药物都是以手性形式存在,这些药物在生命体内的药理活性、代谢作用和速率及毒性等方面均存在显著差异,比如一种对映体有活性,而另一种无显著的药理活性,甚至有毒副作用或可发生拮抗作用。除了旋光性上的差异,手性药物具有相同的物理和化学性质,故对其分离分析一直都是药物分析、分离纯化领域研究的重点和难点。新药的研发和应用亦需要研究人员继续开发新的高效手性分析方法,以实现高选择性和高灵敏度的手性化合物定量和定性分析。高效液相色谱-质谱(HPLC-MS)具有较高的灵敏度和重现性,是目前手性药物分离分析的主要方法。然而,HPLC-MS需要昂贵的手性柱和与MS兼容的色谱柱流动相,而且手性色谱填料的柱效和拆分能力仍有待提高。毛细管电泳(CE)技术凭借其高效、低样品消耗、分析快速、分离模式多样化等诸多优势,已经发展成为手性分离研究领域极具吸引力和应用前景的分析方法之一。紫外可见检测器(UV-Vis)是CE最常用的检测器,但是毛细管的光程长度较短,导致灵敏度较低,因此难以满足生物样品中痕量手性化合物的分析要求。激光诱导荧光检测器(LIF)可以提高检测的灵敏度,但是只适用于本身带有荧光或被荧光标记的物质。而毛细管电泳-质谱联用技术结合了CE的分离效率高、分析速度快、样品消耗低以及MS的高灵敏度和强结构解析能力,近些年来在蛋白质组学和代谢组学等领域发挥了重要作用。CE杰出的手性拆分能力与MS优势的结合,亦使CE-MS成为实现手性化合物高效分离分析的完美组合,尤其是在复杂生物基质中手性化合物分析的灵敏度和分辨率方面,为药物、医学以及食品科学等领域重要手性分子分析提供了新视角。手性CE-MS联用技术,在一次分析中能同时得到样品的迁移时间、相对分子质量和离子碎片等定性信息,解决了实际样品中未知手性化合物(包括无紫外吸收基团或荧光基团的手性化合物)的识别问题,在减少生物样品基质效应的同时,可以对多组手性对映体实现高通量分析。在过去的十几年里,基于不同CE-MS分离模式的高性能手性分析体系层出不穷,并成功应用于医药、生物、食品和环境科学等领域的手性化合物分析中。这篇综述着重评述了电动色谱-质谱(EKC-MS)、胶束电动色谱(MEKC-MS)和毛细管电色谱-质谱(CEC-MS)手性分离模式从2011年到2021年的最新发展和应用。综述介绍了CE-MS各种手性分析模式下的分离原理、手性选择剂以及在医药等领域中重要手性化合物的分析应用,并讨论了不同手性分析模式的局限性。最后总结了CE-MS联用模式在手性化合物分离分析中的应用前景。相比于广泛应用的HPLC-MS, CE-MS凭借其高效率、低消耗、高选择性、分离模式多样化等诸多优势,已发展成为手性分析领域应用前景广阔的分析方法之一,并且已成为HPLC-MS等其他经典手性分离方法的一个强有力补充技术。目前CE-MS手性分析的研究挑战之一是实现快速和超灵敏的手性分析。采用基于短毛细管的快速毛细管电泳(HPCE)结合在线样品富集有望解决这个难题。此外,CE-MS的不同手性分析模式大多数采用的是三管设计的鞘状流动界面,灵敏度较低。新进研发的新型界面技术,如通过微瓶辅助的界面流动、无套多孔尖端的设计以及CE-MS离子源的引入等,在提高手性化合物分析灵敏度方面显示出巨大应用前景。另一方面,开发同时对多种手性药物进行对映体分离、检测和定量的CE-MS手性分析方法,也是目前研究的重点和难点。这些研究将对开发制药工业中的通用方法和高通量分析生物样品中的手性药物及其手性代谢物具有重要意义,对手性药物和代谢物的药物-药物相互作用和毒性研究也具有指导价值。EKC-MS和MEKC-MS应用中的手性选择剂具有多样性,使其在新药开发和药物质量控制、药代动力学以及药效学研究中具有巨大的潜力。进一步开发MS友好、绿色和高选择性的手性选择将拓宽待分离手性化合物的应用范围。目前,CEC-MS手性分析研究中,研究者更多致力于开发用于整体柱或填充柱的新型毛细管手性固定相。使用功能化纳米颗粒增加CEC手性柱表面积以及CE-MS的微型化微芯片设备的研发,目前仍是尚未充分探索的领域,尤其在实际应用方面与相对更加通用的手性分离模式相比仍有较大差距。文章信息:色谱, 2022, 40(6): 509-519DOI: 10.3724/SP.J.1123.2021.11006迟忠美1, 杨丽2*1. 渤海大学化学与材料工程学院, 辽宁 锦州 1210132. 东北师范大学化学学院, 吉林 长春 130024
  • 水平电泳仪金秋大促
    金秋开学礼,cleaver电泳系统福利促销第一弹!!!通用实验科技(中国)有限公司-英国cleaver水平电泳系统金秋十月大促销 促销日期:2018年10月16号-2018年11月1日为答谢新老用户一直以来对cleaver产品的信任和支持,在此金风送爽,丹桂飘香的金秋十月,我司对生命科学类实验室仪器-水平电泳系统现进行如下大力促销,cleaver水平电泳系统主要是用于核酸样本的快速检测,第一弹福利产品详情如下: multiSUB Mini水平电泳槽 multiSUB Midi水平电泳槽 multiSUB Choice水平电泳槽型号:MSMINIDUO 型号:MSMIDIDUO 型号:MSCHOICETRIO秒杀价:2300元/台 秒杀价:2500元/台 秒杀价:2700元/台 更多产品特点和细节可咨询客服:400-821-3360温馨提示:促销期间按照订单付款顺序发货,先到先得,售完即止,此促销活动全年仅此一次!!!莫失良机!!!公司背景通用实验科技(中国)有限公司(Labcare Scientific China Limited)是一家专注于通用实验室配件耗材、设备仪器和工程项目服务的高科技公司。我们依托团队在生命科学和化学分析仪器行业的专业背景以及在材料系统筛选和加工生产及质量管理领域丰富的经验,在欧洲、北美和亚太地区都设立了代表处。致力于专业、严格地筛选了大量国内外直接原厂生产商作为协议供应商,以委托制造式进行并实现全球采购。通过专业的库存和物流管理体系,致力于为目标地域的生命科学和化学分析实验室用户提供质优价廉的各种通用实验室配件耗材、仪器设备和服务。
  • 有望提高2个数量级微流控介电泳分离通量!清华大学王文会Advanced Materials封面成果速递
    原标题:Advanced Materials封面文章:清华大学王文会课题组报道基于毛细作用的用于紧凑和高通量介电泳微流控的大阵列液态金属电极近日,清华大学精密仪器系王文会课题组提出了基于毛细作用的液态金属厚电极大阵列加工方法,并应用于微流控介电泳高通量分离。该方法可按需制备任何数量的液态金属厚电极图案,将现有介电泳分离通量提高1个数量级,并有潜能继续提高2个数量级。该成果近日以“毛细作用赋能的用于紧凑和高通量介电泳微流控的大阵列液态金属电极”(Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics)为题在期刊《先进材料》(Advanced Materials)上发表,并被选为封面(Front Cover)。 研究背景与成果 在生物技术、细胞生物学和生物医学分析中,高效分离生物粒子至关重要。传统使用标记的方法存在设备昂贵、耗时和对下游分析的潜在影响等问题。微流控技术中的介电泳(DEP)技术作为一种无标记方法,提供了可控、低损伤、低成本的分离方案。然而,DEP技术长期受到两方面限制,一是低通量的限制,难以满足实际临床样本的大样本量处理需求;二是多依赖于尺寸差异进行分离,难以分离尺寸相近的生物粒子。针对以上难题,清华大学精仪系仪器科学与技术研究所王文会课题组提出了一种独特的微电极加工方法,采用液态金属作为电极材料,通过在电极通道中设计不同阈值的毛细阀(CBVs)结构,从而实现对液态金属的精准控制,在紧凑的DEP微流控芯片中制造大阵列液态金属厚电极(图1)。实验证明,这种方法可以在拇指大小的空间中集成5000对液态金属厚电极。在100微升每分钟的高流速下,该芯片对流过5000对电极的PS微球产生显著的DEP累积作用(偏转40微米),通量是同类技术的10倍;并具备基于粒子介电性质差异与尺寸差异的高通量分离能力,突破了DEP对于尺寸相近的粒子样本难以分离的局限。 图1:基于毛细作用制备的大阵列液态金属厚电极微流控芯片技术成果展示本工作利用毛细阀(CBVs)提供的强大被动流体控制能力实现液态金属厚电极自组装(图2)。电极通道通过具有高阈值压强的小孔与样品通道连接,小孔作为截止阀防止液态金属进入样品通道。此外,每组电极行和列的交叉点处放置了中等阈值压强的CBVs结构,充当被动切换阀,能在液态金属流动时自动改变路径。根据所设计的结构,当液态金属注入电极通道时会按照预设路径自动填充满电极通道,形成紧凑的大阵列液态金属厚电极。由于每组电极在液态金属填充过程中具有相同的结构和工作条件,因此电极数量可以无限扩展。图2:基于毛细阀的液态金属电极阵列自组装工作流程制备液态金属厚电极只需要普通注射器手动完成,自组装过程方便快捷,成品率仅受芯片流道的质量影响。使用制备有5000对液态金属厚电极的微流控芯片,验证了粒子偏折的高通量能力。如图3所示,电极阵列对高速流过的PS微球施加介电泳推力,5000对液态金属厚电极的累积介电泳偏折(ADD)效应使得在最高100微升每分钟(约0.28 m/s)的高通量场景下仍能实现约40微米的DEP偏转,该通量是当前技术所能实现通量的10倍。图3:高通量介电泳PS微球偏折该芯片进一步用于分离各种混合样品,充分展示了其独特的能力和广泛的可用性。这些样品包括尺寸差异较明显的MCF7癌细胞和小鼠红细胞、尺寸相近的MCF7癌细胞和马白细胞、尺寸基本一致的HeLa癌细胞和A549人肺癌细胞,展示出芯片具有优异的基于介电性质差异和基于尺寸差异的分离能力。特别地,在模拟血液中CTCs分离的实验中,以尺寸相近的人体外周血单核细胞PBMCs和A549的混合样品为例,根据两种细胞的介电特性计算,选择100 kHz作为工作频率,使PBMCs受到负介电泳力,A549细胞受到正介电泳力。在实验过程中,样品流速保持在70微升每分钟,图4展示了芯片出口处在有无DEP作用对比下的细胞流线和概率密度分布,印证了A549细胞与PBMCs连续高速分离效果,展示出巨大的临床应用潜能。图4:高通量介电泳细胞分离值得强调的是,在原理展示的基础上,芯片电极数量和分离通量等指标还可以持续提升。电极结构可以灵活调整以适应特定的DEP应用场景需求,其数量根据需要可以无限扩展;在芯片制作采用更坚固的封装条件下,分离通量还可以提升多达2个量级。本工作提出了一种简便灵活的方法,在紧凑的微流控芯片中制备大阵列液态金属厚电极,通过介电泳在各电极对的累积作用效应,实现高通量生物样本(细胞)分离。基于毛细作用的液态金属填充通道的方法为液态金属自组装成为复杂的图案提供了新思路和新手段,其应用不局限于本研究中重点展示的微流控分离芯片,也可应用于其它需要液态金属电极图案的场合中,如柔性电子、功能材料等蓬勃发展的广大领域。本工作的完成单位为清华大学精密仪器系、精密测试技术与仪器全国重点实验室。精仪系博士研究生柴惠超为第一作者,精仪系王文会副教授与合肥工业大学黄亮副教授为共同通讯作者。中国人民解放军总医院吴其艳研究员、鞠忠建研究员、精仪系博士生朱焌文、丰泳翔、梁非为论文工作做出了重要贡献。本研究得到了国家自然科学基金的资助。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202310212
  • 毛细管电泳专家莅临海能仪器,聚焦毛细管电泳仪国产化发展与推广
    毛细管电泳技术具有高效分离、快速分析、试剂和样品用量少、绿色环保、前处理简单等优势,并使分析化学研究应用从微升水平进入纳升水平。毛细管电泳技术在生物制药、临床医学、手性药物、食品饮料、环境分析、法医鉴定等领域具有广泛应用,是蛋白质、核酸、有机物的有效分析技术,也使单细胞及单分子分析成为可能,并有更多应用领域尚待开发。作为新型微量分析技术,其应用领域十分广泛。 2017年,海能仪器与欧洲DL公司签署战略合作协议,购买了“高效毛细管电泳仪”相关专利实施许可权及非专利技术、软件所有权等全部技术产权。2019年,海能仪器历时2年完成了毛细管电泳仪全部技术的国产化,并实现了国产毛细管电泳仪的批量化生产。为推动毛细管电泳技术的应用普及,加快国产毛细管电泳仪器的发展和应用推广,由北京理化分析测试技术学会主办,于2019年8月21至22日在海能仪器产业园举行了“毛细管电泳应用技术研讨会”。十余位长期从事毛细管电泳技术研究和应用的专家莅临海能,参加此次研讨会,就毛细管电泳技术的应用以及国产化仪器的发展与推广进行研讨交流。 专家一行详细了解了海能仪器全产业链的生产模式,参观了海能文化馆,核心部件事业部、电路板车间、精加工车间、模塑车间、钣金喷涂车间,了解海能仪器为提升科学仪器品质和水平所做出的举措,并对国产毛细管电泳仪的发展寄予厚望。 与会专家围绕毛细管电泳技术应用的热点和国产毛细管电泳仪的未来发展前景进行充分交流,分享技术经验,提出有益建议。希望海能毛细管电泳仪为相关行业的分析人员提供更多的选择和更好的服务。
  • 凝胶电泳实验操作中的小技巧
    1、让凝胶电泳变得更快,更漂亮方法改进:将电泳电压进行定时变化,例如可以在开始时将电泳电压调节至 100V,大约 15min。使条带的确可以因为自身片段大小不同而产生较大差别的泳动速度,从而将片段分离,然而现在的分离或许会间距较小,从而图片很不漂亮,或者不易观察.可以紧接着进行 120V-130V 的电压进行较小差 异电泳,但是由于电泳电压较大,可以避免过大的片段残存在胶孔不易泳动的情况.结果:这样两个电压进行配合电泳,便可以得到非常漂亮的电泳条带,并且可以节省 1/5-2/5 左右 的时间.2、RNA 电泳如何得出漂亮的条带方法改进:1.电泳槽,制胶器,梳子等的清洗:去污剂浸泡过夜——自来水冲洗干净——ddH20 冲洗——3%H2O2 灌满浸泡过夜——灭活的 0.1%DEPC水冲洗干净——超净台内紫外线照射过夜. 2.烧瓶,烧杯,药匙,量筒等制胶器械的清洗:0.1%DEPC 水浸泡过夜后高压消毒灭活,烘箱烘干.或 者 ddH20 清洗干净, 超净台内紫外线照射过夜. 3.电泳缓冲液必须是 RNase free . 4.预电泳 5-10min 减少了非特异 RNA 条带的出现,有利于分离和纯化,同时可根据电泳仪是否冒泡判断电 泳仪装置是否有误. 5.样品是在电泳缓冲液液略低于胶表面而不是在高过胶面时加进齿槽,避免了加样 时 RNA 的扩散,加样后 RNA 从齿槽逸出造成 RNA 的弥散及定位不良等现象. 6.电泳 3-5min 让 RNA 进入凝胶后再加电泳缓冲液液高过表面,确保了加到每个槽中的 RNA 量及定位的准确性,从而有利于 DNA 的鉴定和纯化.3、如何提高 SDS-PAGE 的分辨率方法改进:借鉴 Tricine-SDS-PAGE 中添加甘油或者尿素来提高分辨率的成功经验,在普通的 SDS-PAGE 中加入约 13%的甘油,同样可以提高分辨率,有效防止小分子量蛋白的弥散.只要把原来 配方中的水换成 60%的甘油,就可以了.结果:加入甘油之后,条带较细,分得更开.4、改进一点点,我们能得到更加美观的 SDS-PAGE 胶方法改进:所做的改进很简单却很有效,加完分离胶后,用移液枪吸取酒精(浓度没有特别要求, 干净无污染就好)加到分离胶上至覆盖界面,静置片刻后放到 37℃恒温箱中可加速胶的凝固.待到分 离胶完全凝固之后倒去上层的酒精,就可以看到齐平漂亮的界面啦!改进二:脱色 背景:给染色结束的 SDS-PAGE 胶脱色往往需要比较长的时间,否则会由于脱色不完全而导致条 带不清晰,影响到拍照的效果.方法改进:改进的方法很简单易行——取一张我们常常随身携带的面巾纸,打个结放入盛有脱色液 的大培养皿里放到脱色摇床上,这样一来,原来过夜脱色达到的效果现在只需要短短的 3,4 个小时就 可以轻松实现了. PS:希望大家这个时候用的面巾纸是质量比较好不容易掉屑的...
  • 探索毛细管电泳技术新进展 锁定iCC2024第九届色谱网络会议
    毛细管电泳(CE,capillary electrophoresis),又称高效毛细管电泳(HPCE,high performancecapillary electrophoresis)或毛细管电分离法(CESE,capillary electro-separation method),简称 CE。毛细管电泳包括电泳、色谱及其交叉内容,是一类以毛细管为分离通道,以高压直流电为驱动力,以样品的多样特征 (如:电荷、大小、等电压、极性、亲和行为、相分配特性等)为根据的液相未分离分析技术。其自 70 年代末 80 年代初创立以来已成为近年来发展最快的分离分析技术之一。它综合了高效液相色谱和传统平板凝胶电泳二者的优点,具有快速、高效、高分辨率、重复性好、易于自动化等特点,已广泛应用于生命科学研究的各领域,尤其是对生物大分子核酸的研究,并取得了迅速进展。短短的几年内,由于CE符合了以生物工程为代表的生命科学各领域中对生物大分子(肽、蛋白、DNA等)的高度分离分析的要求,得到了迅速发展,正逐步成为生命科学及其它学科实验室中一种常用的分析手段。有调研指出,全球毛细管电泳市场近年来继续增长。2023年全球毛细管电泳市场的销售额达到了3.3亿美元,预计到2030年将达到4.4亿美元,年复合增长率(CAGR)为4.3%。毛细管电泳技术不断发展和创新,特别是在提高分析效率和灵敏度方面。例如,近期的一些突破包括自动化平行毛细管电泳系统的开发、高重现毛细管电泳方法的应用,以及毛细管电泳与质谱等其他技术的结合。那么近期,毛细管电泳有何突破?2024年8月26-30日,由中国化学会色谱专委会指导,仪器信息网联合北美华人色谱学会、上海分析仪器产业技术创新战略联盟、中国科学院兰州化学物理研究所、中国科学院化学所共同举办的“第九届色谱网络会议(iCC 2024)”将拉开帷幕。会议期间,2024年8月29日下午,仪器信息网特别联合中国科学院化学研究所共同筹备了毛细管电泳技术及应用进展专场,邀请多位毛细管电泳相关权威专家在云端开讲,毛细管电泳相关仪器技术及前沿应用不容错过。立即报名》》》重庆大学 夏之宁教授《毛细管电泳在分离分析上的相对优势与潜势》(2024年8月29日开讲 点击报名)夏之宁,1961年8月生,博士毕业于丹麦哥本哈根大学,重庆大学教授,博士生导师,重庆市首批学科带头人。中国色谱学会常务理事,重庆市色谱学会理事长。获教育部高校青年教师奖、全国侨联归国创业成就奖、教育部跨世纪人才。曾任重庆大学校长助理。兼任深圳万讯自动化控制股份公司分析测量仪器研究院首席科学家。研究方向为色谱与毛细管电泳、药物分析、过程分析仪器研发、分析样品前处理研究。在Angew. Chem. Int. Ed.、 Anal. Chem.、 ACS、JCA、Talanta等学术刊物上发表论文500余篇。获得专利20余项。第一作者出版学术著作3本。主持科技部国际合作、973、NSFC项目共16项。【摘要】本报告将分析并讨论毛细管电泳(CE)面对分离度、灵敏度、重现性、自动化等的现状与发展潜势。通过综述CE手性化合物分离,提出新的展望;讨论新型CEC固定相与毛细管改性,讨论CEC固定相与LC固定相的区别;讨论CE除了分离分析之外,在亲和常数、分配常数等物化参数与活性物质筛选上的进展。评价CE作为柱反应器的优点;在“脏试样”分离分析与“全极性分子”分离分析上的优点;讨论CE在细胞、细菌、纳米粒子等颗粒分离分析与识别上的优势;举例在临床检验与医学领域CE相关方法;CE在中药与天然药物研究的最新针对性特点。CE-MS技术最新发展;以及谈论在LC中引入电动力分离的情况等。中国科学院生态环境研究中心 汪海林研究员DNA/RNA修饰的精准分析与表观遗传研究(2024年8月29日开讲 点击报名)中科院生态环境研究中心研究员,杰青(优秀),基金委创新群体负责人。主要从事高灵敏DNA/RNA修饰分析新方法新技术研究,并开展表观遗传与分子毒理方面研究。发现高等生物的N6-甲基腺嘌呤(Cell, 2015, Cover),是表观遗传领域的原创性突破。发现维生素C具有增强DNA去甲基化活性的辅助因子功能,是关键性突破,推动维生素C医治癌症的热潮。首次提出“近距离作用增强荧光偏振响应”新机理,为DNA在与功能蛋白质作用过程中的构象改变及组装的研究奠定原理性的基础。已发表SCI 论文300 篇,他引10050次,包括Cell、Nature、Science、Cell Res、PNAS、JACS、Cell Discovery、Nucleic Acids Research、Anal Chem 等。先后获得中科院院长特别奖(1997),中国分析测试协会科学技术奖特等奖(2015、2020),教育部优秀成果一等奖(2007),中科院“优秀研究生导师奖”(2012),中科院“优秀研究生指导教师奖”(2013),中科院“杰出成就奖”(主要完成者)(2013)。【摘要】DNA胞嘧啶的(去)甲基化直接与多种重大疾病的发生发展密切相关,因其丰度低,通常检测需要用百万个细胞,难以应用于疾病早期样本的检测。我们先后研发出了:“细胞中DNA信号干扰物游离核苷酸的高效去除技术”、“DNA盐桥修饰磁性微纳颗粒的高效富集及原位酶解技术”、“碳酸氢铵增强质谱离子化效率技术”,并集成为一体化的分析系统,将检测限由百万个细胞降低到20个细胞。利用所建立了的方法,发现维生素C具有调控DNA去甲基化活性的辅助因子功能,是关键性突破,为维生素C及类似物的抗肿瘤、免疫治疗等新功能的研究“开启了大门”。通过建立代谢编码的示踪技术与高精准的质谱分析方法,成功地在高等生物果蝇中首次检测到复制后、可调控基因表达的DNA腺嘌呤甲基化修饰的存在 (Cell 封面论文)。该项研究赋予了DNA腺嘌呤甲基化的“第二次生命”。研制了世界先进的毛细管电泳装置,可与超灵敏的激光诱导荧光、分子转动相关的荧光偏振、单分子荧光实时成像等检测技术联用。提出了“近距离作用增强荧光偏振响应”机理;首次将荧光偏振与电泳迁移相结合在单核苷水平精细地测定核酸适配体与蛋白质相互作用;建立了可诱导基因突变、丰度极低的、肺癌标志物DNA加合物的超灵敏分析方法,较经典的32P放射性检测灵敏度提高了三个数量级,从根本上避免了放射损伤。所建立的DNA(去)甲基化的功能分析方法已成为国际上的标杆。与国际上十八家机构合作,开展了表观遗传学研究,在Science等重要影响的学术期刊上发表了系列论文。 北京理工大学 屈锋教授毛细管电泳技术和仪器的发展及重要应用(2024年8月29日开讲点击报名)研究方向为生物医学分析和毛细管电泳新技术新方法研究、基于毛细管电泳技术的核酸适配体筛选机理研究。北京理化分析测试技术学会副理事长,2019年成立中国第一个核酸适配体学会《北京核酸适配体交叉技术学会》并担任理事长,北京色谱学会副理事长。中国化学会色谱专业委员会委员,中国色谱学会理事,色谱行业女学者联谊会负责人。在毛细管电泳和核酸适配体交叉研究领域有长期积累,具有鲜明特色和行业影响力。任《Electrophoresis》,《Chin Chem Let》,《色谱》期刊编委。毛细管电泳生物分析和核酸适配体高效筛选机理和应用研究具有创新性和应用意义,是国际上进行系统研究的三个小组之一。已发表学术论文百余篇,申请发明专利10项。2017年获中国分析测试协会科学技术奖CAIA奖一等奖。2013年起在《色谱》期刊首创《毛细管电泳技术年度回顾》专栏,已出版8期年度回顾。2016年起在仪器信息网开办《神奇的毛细管电泳系列》系列网络讲座。2020年出版《生物分离工程教程》,《生物分离工程》课程入选2019年北京高校“优质本科教材课件”。【摘要】毛细管电泳是现代微量分析技术,其分辨率高,分析速度快,分析模式多,分析物广泛,样品和试剂消耗少,是生物医药分析中具有优势。国内外商品化的毛细管电泳仪品类不多,近年来国产仪器研发正在起步。毛细管电泳在单抗药物和核酸疫苗研发和质控,蛋白质组学和代谢组学研究,核酸适配体筛选研究中具有重要应用。中国科学院化学研究所 郭振朋副研究员 高重现毛细管电泳方法与应用(2024年8月29日开讲 点击报名)郭振朋,博士(中国科学院化学研究所),中国科学院化学研究所副研究员。主要研究方向是以色谱、毛细管电泳、质谱及其联用为主要工具发展面向生物活性分子的测量方法和平台技术。在Mol. Plant、Plant J.、Talanta等期刊发表SCI论文26篇,获授权专利7件。现任北京色谱学会秘书长、中国分析测试协会青年学术委员会委员,《色谱》期刊青年编委。【摘要】为解决长期困扰着毛细管电泳(CE)发展的出峰位置不重现这一严峻挑战,基于非时间测量的高重现CE(HRCE)新理论,发展了HRCE新方法、研制了新装置,并应用于血液、汗液成分的分析。HRCE保持了传统CE之微量(亚纳升级耗样)、高效、快速、功能齐全、经济环保的特点,又获得了重现、可靠、强定性能力等优势。
  • 毛细管电泳(CE)真的“没落”了吗?
    毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),是一类以毛细管为分离通道、以高压直流电场为驱动力的新型液相分离技术。是80年代初发展起来的一种新型分离分析技术,它是电泳技术与层析技术相结合的产物,现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离;1984年Terabe等发展了毛细管胶束电动色谱(MECC);1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行,建立了毛细管等电聚焦(CIEF);同年,Cohen发表了毛细管凝胶电泳(CGF)的工作;1988&mdash 1989年出现了第一批CE商品仪器。   但是目前很多人认为,在众多的仪器中,CE好像不是那么的热门,甚至一些从事过CE研究的人员也认为该方法前途暗淡。   行内流行说法之一:CE近年越来越难发文章,人们的研究热情正在走下坡路。   行内流行说法之二:由于企业和检测机构用的少,学这个就业困难。不如HPLC、GC等有前途。   日前一名网友在仪器信息网论坛发帖称,鉴于以上的这些消极情绪,导致一些刚入门的新手们,无论他们起初是怀着多大的热情,随着时间的推移他们总会或多或少难以避免的被这些消极情绪所影响,人云亦云,失去钻研的热情。   毛细管电泳(CE)真的&ldquo 没落&rdquo 了吗?   以一个科研工作者的身份该,网友谈到,&ldquo CE方法已经被各种标准(包括中国药典、国标,甚至是欧洲标准)所收录,说明一直有企业或检测机构在应用该方法。而事实也正是如此,我自己所知道的就有好几家检测机构和企业配备有CE仪器。&rdquo   据小编了解,2010年版中国药典对盐酸头孢吡肟中N-甲基吡咯烷的检查,USP对盐酸罗哌卡因的对映体纯度检查,均采用毛细管电泳法测定。   另外,该网友谈到,任何仪器都只不过是一种方法媒介,如果你&ldquo 矢志不渝&rdquo 的认为CE没前途,那么你有没有对你的课题有一个整体的认识呢?又或者,你有没可能通过这个课题对这个领域有一个系统的认识?举个例子,比如你的课题是有关CE在某种中药检测中的应用。那么你在毕业前应该要掌握以下几点:该药物的使用历史、功效、研究现状、特征组份等;涉及该药物的检测方法;该药物的功效和对应功效的活性成分;如何进行质量控制等。该网友说,如果你具备了这些知识,面试的时候就不会只是一脸无辜的说,&ldquo 我做CE出身的&rdquo 。   十八般兵器样样精通那是不可能的。其实退一步说,就算相对于LC、GC来说CE有点偏门,但学校学的是&ldquo 渔&rdquo 的手段,也就是分析问题,解决问题的能力,一法通万法通。所以,困心横虑中的从事CE研究的同学们,是不是不那么煎熬啦?   其实,每一种好的仪器,研究和应用都需要大家的推动,如果我们放弃了,这种仪器的未来也就被放弃了。所以,从事CE研究的人们,或许你们今天的研究就能够推动CE的发展,加油!   对于&ldquo 行内流行说法之一&rdquo ,该网友会在7月份开新帖,以数据说话,大家敬请期待!   原帖:写给从事CE研究的研究生们--我们为何不屈不挠的浸泡在哀伤里?
  • 单分子成像技术揭示毛细管电泳机理
    p   中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室汪海林课题组在高灵敏分析的基础研究方面取得重要进展。他们利用先进的单分子成像技术研究并揭示了独特的等速电泳聚焦和分离的机理,其有关“DNA单分子不连续运动成像揭示场强变化的等速电泳动力学”的研究发表在国际著名化学期刊《美国化学会志》(J. Am. Chem. Soc. 2013, 135, 4644 - 4647)上。 br/ /p p   带电组分在均一和非均一电场中的运动是电泳应用于化学、物理学、生命科学以及新兴的纳米科技领域的基础。目前,人们对带电组分在均一电场中的运动已经有了充分的认识,而对其在非均一电场中运动的了解却有限。事实上,通过巧妙设计非均一电场,可实现其它技术难以分离的超大DNA分子(80 kb) 的分离和多种分析物的高倍浓缩(可达百万倍)。因而,认识非均一电场中带电组分的运动机制对发展高灵敏的生物分子分析技术和方法具有特殊意义。尽管非均一电场的使用已有百年历史,但对于其形成机理的认识由于存在技术瓶颈而踯躅不前。 /p p   为了解决这一学科难题,汪海林课题组通过改造全内反射荧光显微成像仪器,首先实现了毛细管电泳-单分子荧光成像分析。在此基础上,以毛细管等速电泳(cITP)作为非均一电场模型,对流经毛细管检测窗口处单个DNA分子实时成像。由于每一幅像记录了单个DNA分子在50 毫秒内的运动轨迹,因此可以计算出每一时间点DNA单分子的运动速度。而DNA运动速度的大小直接与电场强度相关,从而可获得毛细管中电场强度的动态分布信息。通过研究电场强度的实时变化,揭示了电渗流存在下等速电泳的动力学,并首次提出了三区带模型,突破了传统二区带模型的局限。利用这一研究成果,他们发展一种新颖的DNA单分子聚焦方法,实现对极低浓度下随机分布的、难以检测的单分子成像,可检测出4´ 10-17mol/L DNA分子。 /p p   在这项研究工作中,汪海林课题组创造性地利用单分子成像技术测定电场强度的分布,提供了一种全新的非均一电场研究方法,这对发展基于电泳分离的高灵敏生物分析技术和方法具有重要意义。 /p p   该工作得到了国家杰出青年基金、国家973计划、重点实验室等的支持。 /p p br/ /p
  • “掌上HSCE,把电泳捧在手心里”——浙大团队在微型分析仪器研制方面再创新高
    p   近日,浙江大学方群教授研究组研制出一台可完全手持并独立工作的高速毛细管电泳分析仪,这是迄今为止国际上尺寸最小的基于激光诱导荧光检测的高速毛细管电泳分析仪,该成果以“A Low-Cost Palmtop High-Speed Capillary Electrophoresis Bioanalyzer with Laser Induced Fluorescence Detection”为题发表在学术期刊“SCIENTIFIC REPORTS”上,并得到separationNOW.com网站的亮点报道。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/insimg/e0f43721-a7ac-462c-94aa-a0fb41e09f23.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " strong 掌上高速毛细管电泳生化分析仪外观 /strong /p p   高速毛细管电泳(High-speed capillary electrophoresis, HSCE)技术自1991年被提出以来,因其快速、高效又耗样量少的特点,在分析化学领域得到快速发展。近年,即时检测(Point-of-Care Testing, POCT)、环境监测、现场勘查和空间探测等领域的发展对分析仪器的微型化和自动化水平提出了更高的要求,借助于微流控技术的发展、电子元件的集成,小型化也成为HSCE系统的一个重要发展方向。 /p p    span style=" color: rgb(255, 0, 0) " strong 麻雀虽小五脏全,极简策略显神通 /strong /span /p p   这款掌上HSCE分析仪整体尺寸仅为90 mm× 75 mm× 77 mm(长× 宽× 高),重300 g,成本只有约3500元。体积虽小,但内部却集成了缺口管阵列自发进样模块、毛细管电泳模块、正交型激光诱导荧光检测模块、高电压模块及电子电路控制模块这五大部分。在该仪器研制过程中,采用了“极简微型化”的策略,即基于对仪器分析原理的本质化理解和前期基础研究的成果对仪器进行最大程度的简约化系统设计,保留核心功能,删减暂不必要的次要功能,同时充分借用其他学科领域内低成本的商品化元器件构建仪器系统,达到简化系统结构、缩小仪器体积、大幅降低仪器成本的目的,同时在分析性能上仍可达到与常规分析系统相当的水平。 /p p   该研究组之前发展的具有自主知识产权的缺口管阵列自动进样技术、皮升级平移自发进样技术、斜45° 检测正交型激光诱导荧光检测技术等,为微型化HSCE分析仪的研制提供了坚实的基础。而极简微型化策略和低成本元器件的采用,以及对仪器电子电路的最大程度的集成与优化共同促进了这款微型化仪器的出台。利用在淘宝网上购买的数码相机自动对焦模块中使用的微型平移台,以及200 μL离心管,即可构建一个自动化的缺口管阵列自动进样系统,体积仅为传统平移台系统的百分之一,其移动距离可达到17 mm,定位精度达到10 μm,而其成本仅为20元。 /p p   在激光诱导荧光检测模块研制过程中,虽然遵从极简微型化策略而使用了小体积的405 nm激光二极管光源、光电二极管检测器和聚焦透镜,但通过采用独特的斜45° 正交型光路以及对系统的深入优化和挖掘潜力,仍能保留较高的仪器检测性能,在S/N=3的条件下,对荧光素纳的检出限达到1.02× 10-9 M,足以与部分使用光电倍增管的常规激光诱导荧光检测器相媲美。此外,通过采用自主设计和加工的整体型光路框架可将激光光源、激光聚焦透镜、毛细管支架与对准装置、荧光收集透镜、荧光滤光片、光电检测器等元件集成于一体,使得整个检测模块的体积仅为44 mm× 42 mm× 40 mm。 /p p   在毛细管电泳分离部分,利用缺口管进样系统和平移自发进样方法可实现90 pL的微体积进样,即不需采用昂贵和加工复杂的电泳芯片,只采用普通的短毛细管即可完成高速毛细管电泳分离操作。同时,利用微型化的高电压模块(22 mm× 22 mm× 22 mm),可提供0 至 - 6000 V 的电泳电压。 /p p   熟悉分析仪器研制的人都知道,要实现分析仪器的微型化,仪器的电子控制系统是关键难点之一,电子控制系统需要实现荧光信号的实时采集和处理、图谱的实时显示及数据的保存。更为重要的是,要实现真正的掌上型应用,整个系统需要由小体积的电池供电,而分析仪中的激光二极管、微型平移台和电泳高压模块对电池来说均是耗电的大户。因此,系统除了选用超低功耗嵌入式微控制器实现了控制系统的集成化外,在降低功耗方面还做了很多努力,最终成功实现了仪器的电池供电,单块容量为1150 mA的锂电池可提供10小时以上的连续工作时间。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/insimg/e0cc5945-dcd7-4c82-9acb-302624aceeb3.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " strong 掌上高速毛细管电泳生化分析仪内部结构照片 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 分离模式多样化,仪器应用尤可期 /strong /span /p p   该掌上HSCE分析仪以3.8 cm的毛细管作为分离通道,仅用7秒的时间即可完成3种氨基酸的电泳分离,在如此短的时间内不会形成明显的焦耳热效应,电泳分离可获得约1 μm 塔板高度的高分离效率。这台掌上HSCE不仅适用于氨基酸的毛细管区带电泳分离,也实现了手性氨基酸(D、L-亮氨酸和D、L-天冬氨酸)的胶束电动毛细管色谱快速分离,还实现了5 个DNA片段、3个蛋白质的毛细管凝胶电泳分离。该仪器还被应用于KRAS原癌基因诊断中的PCR产物和酶切产物实际样品的分析。电泳分离图谱直接显示在仪器外壳上的液晶显示屏上,并同步保存在MicroSD数据存储卡上,也可以通过蓝牙模块无线发送到手机或者平板电脑上进行实时监测。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/insimg/d29702a5-d745-4964-87df-547353e8c955.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " strong 掌上高速毛细管电泳分析仪在线分离结果照片 /strong /p p   纵观当下的需求和这款掌上HSCE分析仪的性能特点,该仪器作为一个起点,将有助于开拓HSCE更多新的应用领域:几分钟的DNA片段分离有望取代繁琐耗时的平板凝胶电泳,在广大生化实验室中得到普及 用价廉易得的低成本毛细管取代电泳芯片,自动化的操作和四按键的便捷控制成为走进家庭的敲门砖,进而实现个体化健康管理和疾病预防 电池供电超长待机,这是一款行走的HSCE,借此进行床旁检测、传染病监控等指日可待。 /p p   该论文的第一作者为浙江大学化学系微分析系统研究所潘建章副研究员、方盼博士和方晓霞博士,通讯作者为浙江大学化学系微分析系统研究所方群教授。特别感谢国家自然科学基金(21435004,21227007和21027008等)对该项工作的支持! /p p   SCIENTIFIC REPORTS文章链接: /p p   https://www.nature.com/articles/s41598-018-20058-0 /p p   separationNOW.com报道链接:http://www.separationsnow.com/details/ezine/161ada26e8d/Cheap-analysis-in-the-palm-of-your-hand-A-miniature-CE-device-made-with-off-the-.html /p
  • 远慕技术:电泳后的凝胶染色实验
    实验概要本文介绍了电泳后主要的凝胶染色方法,包括:标准考马斯亮蓝染色法、快速考马斯亮蓝染色法、凝胶铵银染色法、凝胶中性银染色法及凝胶铜染色法。实验步骤1. 标准考马斯亮蓝染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.25%考马斯亮蓝R-250(溶解于50%甲醇和10%乙酸中); 2) 室温下振摇温育4h至过夜; 3) 去除染色液,收集保存可重复使用20-40次; 4) 依次在25%甲醇和7.5%乙酸中室温振摇下脱色。灵敏度为0.1-0.5ug蛋白/每条带。注:使用加热的染色液或脱色液可以缩短染色或脱色时间。将染色液或脱色液在微波炉或水浴中加热,(大约50-60℃),染色时间可缩短至20min,脱色时间约 1-2h。2. 快速考马斯亮蓝染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.25%考马斯亮蓝R-250(溶解于50%三氯yi酸中); 2) 室温下振摇温育20min; 3) 去除染色液,收集保存可重复使用多次; 4) 加入数倍体积的脱色液(25%甲醇、7%乙酸)室温振摇下脱色。必要时可更换脱色液。灵敏度为1.0ug蛋白/每条带。3. 凝胶铵银染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的50%乙醇和10%乙酸,振摇30min至过夜; 2) 去除50%乙醇和10%乙酸,用去离子水清洗凝胶。加入20%乙醇, 室温振摇30min; 3) 去除20%乙醇,再加5倍体积的20%乙醇,室温振摇30min; 4) 去除20%乙醇,将凝胶转入通风柜内,加入5倍体积的用去离子水配制的5%戊二醛,室温振摇30min; 5) 去除戊二醛,用去离子水清洗凝胶。加入5倍体积的20%乙醇,室温振摇20min; 6) 去除20%乙醇,重复6两次; 7) 去除20%乙醇,用去离子水清洗凝胶。再加入5倍体积的用去离子水,室温温育10min; 8) 去除去离子水,加入4倍体积新鲜配制的氨水/银溶液,室温振摇30min。配制100ml:加1.4ml 14.8mol/L氢氧化铵到100ml水中,再加入190ul 10mol/L氢氧化钠;放置涡旋器上缓缓加入1ml新鲜配制的硝酸银溶液(0.8g硝酸银/ml水),直至出现沉淀物,但很快溶解。 9) 去除氨水/银溶液,用去离子水清洗凝胶20min以上,其间更换水数次; 10) 去除水,加入5倍体积新鲜配制的0.005%柠檬酸,0.019%的甲醛。轻柔混匀,数分钟内条带即显现出。当背景开始变化时,去除显影剂,用用去离子水清洗凝胶。在10%乙酸和20%乙醇中温育凝胶,以终止反应。灵敏度为1-10ng蛋白/每条带。注:操作时,应戴手套并使用洁净的玻璃器皿,以免污染,影响反应的灵敏度。4. 凝胶中性银染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的30%乙醇和10%乙酸,振摇30min至过夜; 2) 去除乙醇/乙酸溶液,加入5倍体积的30%乙醇, 室温振摇30min; 3) 去除乙醇,再加5倍体积的30%乙醇,室温振摇30min; 4) 去除乙醇,加入10倍体积的去离子水,室温振摇10min;重复用去离子水清洗两次; 5) 去除去离子水,加入4倍体积新鲜配制的0.1%硝酸银溶液(用室温下贮存于棕色瓶内的20%原液稀释而得),室温振摇30min; 6) 去除硝酸银溶液,用去离子水清洗凝胶20s; 7) 去除水,加入5倍体积的2.5%碳酸钠和 0.02%的甲醛(pH4.0),室温振摇温育,数分钟内条带即显现出。当背景开始变黑时,停止温育; 8) 在1%乙酸内清洗,停止反映。用去离子水清洗,更换数次,每次10min 灵敏度为1-10ng蛋白/每条带。5. 凝胶铜染色法凝胶铜染色法为考马斯亮蓝或银染色法的替代染色方法。将凝胶氯化铜溶液中温育,在Tris和SDS同时存在时可形成明显的白色不透明的沉淀物。蛋白条仍然清晰,留下一个多肽分离模式的附染图象。由于蛋白质未结合在凝胶上,可通过EDTA去除Cu离子而得以洗脱,因而该方法特别适合需快速定位蛋白条带用于免疫反应,或进一步进行蛋白质化学研究。其染色模式如同考马斯亮蓝或银染色法的凝胶,易进行拍照。 1) 电泳后,凝胶用蒸馏水短时清洗数次,每次30s,勿洗过长时间; 2) 将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.3mol/L CuCl2; 3) 室温振摇5min,较厚的凝胶可适当延长时间。当CuCl2进入凝胶时,在不含蛋白的区域会出现白色沉淀; 4) 用蒸馏水清洗数分钟,在黑色背景下观察结果。灵敏度为10-100ng蛋白/每条带(0.5mm厚的凝胶)或1ug蛋白/每条带(1mm厚的凝胶)。注:将凝胶在0.25mol/L EDTA、0.25mol/L Tris溶液中温育可使铜染逆转。
  • 安捷伦公司推出新一代毛细管电泳系统
    安捷伦科技公司推出灵敏度提高10倍的新一代毛细管电泳系统   2009年4月28日,北京—安捷伦科技公司(NYSE:A)今日推出了新一代Agilent 7100毛细管电泳(CE)系统,其灵敏度比其他商品化的毛细管电泳仪提高10倍以上。   “我们认为电泳业务是我们的核心技术之一,并且看到很多应用领域正在对毛细管电泳技术产生浓厚的兴趣,如新型生物药物的质量保证/质量控制、环境分析、食品安全和生命科学等领域。”安捷伦公司电泳业务全球总经理Nitin Sood 说,“无论是单独使用,还是作为CE/MS的分离部分,或是作为液相色谱的互补技术,安捷伦的新型7100毛细管电泳系统都提供了类似HPLC的出色高灵敏度,可以应对众多具有挑战性的分析任务。”   毛细管电泳引人注意的另一个原因是因为该技术使用很少量的溶剂。新的7100毛细管电泳系统与其前一代产品相比,尺寸减小了25%,重量减小了30%,并且耗电量更低。   新型检测器采用了一种扩展光程的专利毛细管光路设计和另一种高灵敏度池设计,从而带来了出色的灵敏度,使Agilent 7100的灵敏度是其它毛细管电泳仪的10-20倍。   Agilent 7100提供了业界最广泛的检测器选择,具有高度的灵活性和灵敏度,并且这种新仪器能够与之前的Agilent毛细管电泳平台反向兼容,使现有的方法可以继续使用。该仪器能开展毛细管电泳分离的各项技术,包括对非常相似的相关化合物进行快速分离的毛细管电色谱技术。其标配的缓冲液补充系统能确保高通量自动运行,并且已经过改进,减少了补给缓冲液的用量。   Agilent 7100 毛细管电泳系统通过设计提高了分离效率、可靠性和易用性。新型耐用的内部加压系统和改进的毛细管冷却系统能耐受更高的电流和/或更大孔径的毛细管,既可以提高分析通量,也使应用范围得到了扩展。另外,该电泳系统应用了新型化学工作站软件,其易于使用的图形用户界面以及改进的方法设置功能,极大地缩短了启用和培训时间。   该电泳系统的模块化结构,便于快速接近电极、预穿孔器、电子元器件和管路等部件,有利于进行日常维护和保养。毛细管卡套具有自动对准功能,可以在几秒钟内得到快速毛细管更换,并能与所有商用毛细管兼容。   即插即用型毛细管电泳/质谱联用仪(CE/MS)   Agilent 7100毛细管电泳仪提供与Agilent质谱仪(MS)的即插即用式连接,将毛细管电泳的分析时间短,分离效能高的特点与质谱技术的分子量和结构信息相结合。适用的质谱仪包括单四极杆、飞行时间(TOF)、离子阱、三重四极杆(QQQ)、ICP和四极杆飞行时间质谱系统(Q-TOF)。安捷伦是唯一一家能提供完全集成化CE/MS解决方案的公司,所有系统组件均来自一个供应商。   安捷伦毛细管电泳产品经理Tobias Preckel表示,“Agilent毛细管电泳系统不仅具有一流的性能,而且我们还大力继承以往的可靠性特点, 其口碑在过去的16年里已为众人所知。”      其他信息,请访问www.agilent.com/chem/ce.   关于安捷伦科技公司   安捷伦科技公司(NYSE:A)是全球领先的测量公司,也是通信、电子、生命科学和化学分析的技术领导者。公司的19,000名员工为遍及世界110多个国家的客户提供服务。安捷伦2008财年的净收入为58亿美元。 有关安捷伦的信息,请访问www.agilent.com。
  • GE推出全新一代预制胶水平蛋白电泳系统
    作为世界上第一个在western blot实验中使用的化学发光试剂,AmershamTM ECL品牌自1990年推出以来,一直不断地进行着技术的改良,为科研工作者提供着高品质的western blot检测产品。继2010年10月18日最新推出ECL prime化学发光检测试剂盒,AmershamTM ECL家族再度创新,于2011年6月,荣耀推出全新一代预制胶水平蛋白电泳系统,为您的电泳实验助力! AmershamTM ECLTMGel system预制胶水平蛋白电泳系统由Amersham ECL预制胶及Amersham ECL电泳槽组成。预制胶结合独特水平设计的电泳槽,方便用于高质量的蛋白电泳分离。 Amersham ECL预制胶稳定性好,可用于分离复杂蛋白样品,实现高质量、可重复的电泳结果: 无需灌胶,省时方便 预制胶保质期长达12个月 实验更安全,避免了灌胶时接触丙烯酰胺 实验结果更稳定性,预制胶为高质量、可重复的电泳保驾护航 Amersham ECL电泳槽独特水平设计,使得电泳操作更加方便: 上样更轻松 仅需200ml电泳缓冲液 特殊设计有效避免缓冲液漏液 配合预制胶,完成8x7.5cm电泳分离 详情请询当地销售代表及经销商
  • 君意东方携新型电泳产品出彩亮相慕尼黑
    p style=" text-indent: 2em " 2018年10月31日至11月2日,第九届慕尼黑上海分析生化展(analytica China 2018)在上海新国际博览中心E1-E4馆举行。大会吸引近1000家中外企业参展,各行业先锋企业携前沿技术创新齐聚一堂,引领行业新高度。 /p p style=" text-indent: 2em " 君意东方携新品电泳仪器产品亮相慕尼黑。秉承“为客户提供高标准、规范化、专业品质的产品和服务”的发展宗旨,君意开发制造了各种实验用途的电泳仪器,现已形成品种丰富、规格齐全的JY系列电泳产品。 /p p style=" text-indent: 2em " 此次会展君意东方全方位展示了其电泳产品安全、高效、便利、快捷的优点。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/fcb6d325-67bf-45b0-95e4-9d7394ddc98d.jpg" title=" 微信图片_20181106165223.jpg" alt=" 微信图片_20181106165223.jpg" / /p p style=" text-align: center " strong 君意东方JY系列电泳仪 /strong br/ /p p style=" text-indent: 2em " 君意东方JY系列电泳仪为触摸按键,具有多功能保护和迭配功能,采用微处理智能控制且具有自动记忆功能。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/b37f58fa-bd26-4f45-800a-c0ca46de16f2.jpg" title=" 微信图片_20181106165255.jpg" alt=" 微信图片_20181106165255.jpg" / /p p style=" text-align: center " strong 君意东方电泳槽产品展示 /strong br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/63f3e62d-7dd4-420d-8d19-4bcd84c973df.jpg" title=" 微信图片_20181106165251.jpg" alt=" 微信图片_20181106165251.jpg" / /p p style=" text-align: center " strong 工作人员向参展会员讲解产品的特点 /strong br/ /p p style=" text-indent: 2em " 产品不但涵盖常规的核酸、蛋白电泳,还具有国内企业独领风骚的脉冲场电泳、变性梯度电泳等系统,以及与电泳配套的仪器设备,如快速成像仪、凝胶成像分析系统等。 /p p style=" text-indent: 2em " 据介绍,君意东方的宗旨是为顾客提供高标准、规范化、专业品质的产品和服务,未来将继续为电泳过程的优化提供优秀的解决方案。 /p
  • 毛细管电泳技术在蛋白药物分析中的应用
    毛细管电泳技术在蛋白药物研发和质量控制中的发展 随着蛋白药物的开发热潮在全球兴起,毛细管电泳技术(Capillary Electrophoresis, CE)作为一种新兴的研发和质控的分析技术也越来越受到各大生物制药公司的青睐和法规机构的重视。全球大部分生物制药公司均已使用毛细管电泳系统用于蛋白药物的研发及质量控制分析。从培养基优化、克隆筛选、配方稳定性研究和纯化过程监测,到蛋白表征、相关杂质检测、蛋白结构鉴定和蛋白质药物产品的质量控制,蛋白药物的各个环节都需要使用到毛细管电泳。例如蛋白的纯度测定,已经从SDS-PAGE转变为十二烷基硫酸钠-毛细管凝胶电泳(CE-SDS)方法;蛋白质的等电点测定,毛细管等电聚焦(CIEF)比传统胶条方法更为准确;糖蛋白药物的糖基异质性表征,毛细管电泳是高分辨率分析方法之一。在各国药典中,毛细管电泳技术用于蛋白药物的检测方法也不断丰富与发展。药典中最早出现其对蛋白药物检测方法是促红细胞生成素(EPO)的糖异构体测定。糖蛋白的异构体差异小,普通的分析方法很难将EPO中的多种异构体分离定量。欧洲药典和美国药典将毛细管电泳方法确定为EPO异构体分析的标准,解决EPO产品中各种糖基化异构体的分离和定量问题。此外,生长激素的相关杂质检测标准也采用了毛细管电泳的方法。对于单克隆抗体药物的分析,在2006年,由惠氏、安进、基因技术、礼来、辉瑞、强生及加拿大卫生署等十几个实验室对“CE-SDS方法对单抗药物纯度分析”进行了联合验证。他们对方法的稳定性、可靠性、准确性等多方面进行了研究和考察。研究结果表明CE-SDS方法比传统的SDS-PAGE更适合单抗药物的表征与质量控制,其结果的稳定可靠性要远远超过SDS-PAGE,建议各生物制药公司使用CE-SDS代替原有的SDS-PAGE作为研发与质量分析的平台。随后,上述生物制药公司及机构又针对“CIEF方法进行单抗药的等电点测定及电荷异质性分析”、“CZE方法快速分析单抗药的电荷异质性”,“毛细管电泳技术进行单抗药中的糖基分析”进行了多实验室联合验证,结果展现了CE技术用于单抗药质量控制的优势及可行性。美国药典于2013年发布了利妥昔和曲拓珠等单克隆抗体药物的纯度检测、等电点/电荷异质性分析和糖基分析采用毛细管电泳方法。在中国,中国食品药品检定研究院于2012年联合国内外生物制药机构对“CE-SDS方法对单抗药物纯度分析”进行了验证,确认了CE-SDS方法在分辨率、定量准确性及自动化程度等方面的优势,并指出CE可以对单抗非糖基化重链进行准确定量。基于以上工作以及毛细管电泳技术在单抗药分析中的强大优势,中国药典2015版的第三部中增加了CE技术,明确了CE是单克隆抗体药物大小变异体、电荷变异体、鉴别与一致性和糖基化修饰分析中的重要方法。随着CE技术在生物制药领域的快速发展,以及新的蛋白质药物的不断上市,将会有更多的CE方法出现在各国药典中。毛细管电泳技术在单克隆抗体药物分析中的应用(1)单克隆抗体药物的纯度及大小异质性分析SDS-PAGE方法对单抗药物进行纯度分析,在分辨率、定量准确性和自动化程度上,已经不能满足生物制药研发和质量控制的要求。CE-SDS方法基于蛋白分子量的差异分离,用于还原和非还原单抗药物的纯度分析,免去了复杂的人工操作、定量更加准确,具有更高的分辨率,在还原模式中可对非糖基化重链进行分离和准确定量。图1. CE-SDS对还原单克隆抗体药物的纯度分析[1]选用不同的毛细管长度,可以实现高分辨率模式和快速模式的纯度分析。高分辨模式的CE-SDS方法提供最高的分辨率,快速模式的CE-SDS方法提供更短的冲洗和分离时间,提高了分析的通量。CE-SDS结合激光诱导荧光检测器(CE-SDS-LIF),通过5-Tarma或FQ染料对蛋白进行标记,可以获得更高的灵敏度,可以检测到含量在0.01%的杂质碎片。此外,LIF检测器的使用,可以最小化基线波动,使积分和定量更加准确。(2)单克隆抗体药物等电点的测定和电荷异质性的分析单抗药物在结构上会发生糖基化、脱酰胺化、异构化、氧化等翻译后修饰,造成蛋白表面电荷的改变,引起单抗的电荷异质性。每个变异体具有不同的等电点。基于等电点分离的毛细管等电聚焦技术(cIEF),可以对单抗药物的变异体进行高分辨率的分离和定量,可分离0.03个pI差异的变异体。方法使用等电点Marker制作校准曲线,对变异体的等电点进行准确的测定。是单抗药物等电点测定和电荷异质性分析的重要方法。图2. CIEF方法对单克隆抗体药物的等电点和电荷异质性分析[5]针对不同pI范围的蛋白样品,可以通过选用适当的两性电解质来实现高分辨率的分析。如对于大部分单抗,其pI值位于7-10之间,可使用pH 3-10范围的两性电解质;对于pI 在5-7范围内的蛋白样品,可使用pH 5-8的窄范围两性电解质;而对于pI 小于5的酸性蛋白,则可以使用反向聚焦和迁移模式,实现更好的分析。 (3)CZE方法对单克隆抗体药物电荷异质性的快速分析毛细管区带电泳(CZE)基于分析物电荷/体积的比进行分离,是毛细管电泳技术中最简单、快速的模式。由于单抗药物的各个变异体分子体积近乎相同,因此在CZE分离模式中,电荷变异体的分离取决于表面电荷的差异,与CIEF模式的变异体分离相一致。因此,CZE成为快速电荷异质性分析的平台方法被生物制药行业所使用。此外,由于CZE方法简单快速的特点,它也被用于单抗药的鉴别分析中。图3. 同一种CZE方法对23种单抗药物的电荷异质性分析[3](4)单克隆抗体药物的糖基异质性分析单克隆抗体等糖蛋白药物中,糖基的种类和排列顺序会导致糖基异质性。单抗药物的糖基化修饰对其安全性和药效有着很大的影响。因此对糖基异质性的质量控制十分重要。毛细管电泳方法对糖基异质性分析的流程包括糖蛋白中糖基的释放、糖基的标记和毛细管电泳分离。磁珠辅助的糖基释放和标记,使得前处理可在1小时内完成,加快了前处理的时间。采用APTS作为荧光标记物,不仅可以通过增加电荷提高分离效率, 还通过LIF检测实现了高灵敏的糖基分析。毛细管电泳技术对糖基分析的优势在于分辨率高,速度快。不但可以区分出一个糖基的差别,相同分子量的糖基异构体也可以得到分离,整个分离过程可在5-20分钟内完成。图4. CE-LIF方法对单抗药糖基分析的电泳图毛细管电泳技术在重组蛋白类药物分析中的应用重组人促红细胞生成素(rhEPO)是高度糖基化的蛋白药物。糖基化的异质性导致了多种变异体的存在。采用CZE方法可对EPO的变异体进行分离和定量,该方法已经成为欧洲药典中EPO变异体分析的标准方法。此外,CIEF方法也可以实现对EPO中各个变异体的高分辨分离,不但可以获得与CZE方法相同的变异体数目和定量信息,还可以提供每个变异体的精确的等电点数值。在对不同来源的EPO产品与参考品的比较中,可使用等电点对变异体进行鉴定。图5. CZE方法对EPO变异体的分析重组人生长激素(rhGH)的纯度及异质性分析中,CZE方法分离度高、定量准确,也已为欧洲药典所采用。图6 CZE方法对rhGH的电荷异质性分析总结在蛋白药蓬勃发展的今天,毛细管电泳技术以其分辨率高、模式多等优势,在蛋白药研发和质控的过程中起到了不可或缺的作用,被越来越多的企业和监管机构所认可,用于蛋白药的纯度、等电点及电荷异质性、糖基等分析中。随着蛋白药物、细胞/基因治疗以及新型疫苗等生物制品的不断发展,毛细管电泳技术将会具有更大的应用空间,在蛋白、核酸及病毒颗粒等分析中,发挥它的优势,提高生物制品的质量控制标准。
  • 潍坊:电泳漆槽液溶剂量气相色谱测定通过鉴定
    近日,潍坊局科技工作又传喜讯,由潍坊市产品质量监督检验所承担完成的国家局立项项目《阳极聚丁二烯电泳漆槽液溶剂含量气相色谱测定方法研究》顺利通过国家局组织的成果鉴定。经严格评审,与会专家一致认为该研究项目用气相色谱法直接测定水基型涂料中有机溶剂的含量,方法简便、快速、准确,填补了国内测定阳极聚丁二烯电泳漆槽液溶剂含量气相色谱检验方法的空白,这标志着该研究项目取得了成功。   电泳涂料是一类新型的低污染、省能源、节资源、起着保护和防腐蚀作用的涂料,具有涂膜平整、耐水性和耐化学性好等特点,容易实现涂装工业的机械化和自动化,这种技术解决了人们要求的降低或完全消除使用涂料时释放的易燃有毒有机溶剂的问题。阳极聚丁二烯电泳漆槽液中的溶剂含量一般在0.5%~2%之间,这种槽液是使用前将电泳漆用一定量的水和溶剂搅拌均匀后配制而成。该溶液是一种胶体,溶剂含量少,难分离,用一般的化学方法难以检测。但溶剂的含量直接影响电泳漆的施工和漆膜的性能,该项目的完成为保证涂料产品质量、促进涂料产业的健康发展和技术进步提供了技术支持。   近几年,潍坊市局高度重视科研工作,不断加大科技投入,科技工作取得了显著成效,潍坊局今年已有3个国家局科研项目通过鉴定,三个项目通过市级科技成果鉴定。三年来潍坊市局共对55个项目进行立项,每年投入50多万元用于科研专项经费,出资近8万元对在科研工作中取得优异成绩的人员进行了奖励。到目前为止,已有30项科技成果通过了省(国家总局)、市(省局)科技成果鉴定。5个项目被省局立项,14个项目被国家局立项。同时,科技成果转化明显提高,科技工作呈现出良性发展势头,对质监事业的发展起到了积极的推动和支撑作用。
  • Life Tech 蛋白质电泳的革命性进步
    你的蛋白质分离结果准确吗? 您的蛋白质样本会在电泳时降解吗? NuPAGE预制胶系统为你带来: 最清晰的条带 中性PH环境最大程度保证样本稳定性 12个月的保存期 每次都可以获得最可靠,最佳的蛋白分离结果(见右图) 点击此处获取详细产品信息 想要见证蛋白质电泳的革命吗?现在就试一试NuPAGE蛋白预制胶吧。 免费试用申请 Application Note NuPAGE预制胶与传统Tris-Glycine胶中样本完整性保持的比较 NuPAGE电泳系统为中性环境,样品处理液为弱碱性,因而在样品处理时对酸性敏感的肽键(如Asp-Pro)不易断裂;还原环境保护蛋白不易被再氧化。所以与传统的Tris-Glycine相比,采用NuPAGE蛋白不易降解,更体现真实状态(如Lane 1);NuPAGE的中性环境中在还原剂的保护下蛋白不被修饰,不容易产生模糊条带(如Lane 4,5) 即日起购买NuPAGE预制胶系统,即可享受NuPAGE启动套装优惠。套装包含NuPAGE预制胶电泳系统及蛋白标准品四件套,详情请咨询Life Technologies 客户经理或当地经销商
  • 130万!毛细管电泳仪采购项目
    项目编号:OITC-G220290791-1项目名称:ZYCGR22011901仪器平台(第二批)科研设备采购项目第二包(第二次)预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:包号货物名称数量是否允许采购进口产品预算金额(万元)最高限价(万元)2毛细管电泳仪1台是130130合同履行期限:详见项目需求。本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制