当前位置: 仪器信息网 > 行业主题 > >

气相原理

仪器信息网气相原理专题为您提供2024年最新气相原理价格报价、厂家品牌的相关信息, 包括气相原理参数、型号等,不管是国产,还是进口品牌的气相原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相原理相关的耗材配件、试剂标物,还有气相原理相关的最新资讯、资料,以及气相原理相关的解决方案。

气相原理相关的资讯

  • 低温培养箱的工作原理
    低温培养箱是一种能制冷,保存物品常态的低温保存箱。主要适用于科研院所、电子、化工等实验室,医院、血站、疾病防控,用于保存血浆、生物材料、疫苗等,也可用于电子器件及特殊材料的低温试验。 低温培养箱的工作原理: 制冷循环采用逆卡若循环,该循环出两个等温过程和两个绝热过程组成,其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了的功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换将热量传给四周介质。后制冷剂经截流阀绝热膨胀做功,这时制冷剂温度降低。最后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。本试验箱之制冷系统采用1套法国产泰康全封闭压缩机所组成的二元复叠氟利昂制冷系统。制冷系统的设计应用能量调节技术,既能保证制冷机组正常运行,又能对制冷系统的能耗及制冷量进行有效的调节,使制冷系统保持在最佳的运行状态。采用平衡调温(BTHC),既在制冷系统在连续工作的情况下,控制系统根据设定之温度点通过PID自动运算输出的结果去控制加热器的输出量,最终达到一种动态平衡。
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 真空干燥箱:工作原理、特点、技术参数及使用方法
    真空干燥箱是一种常用的实验室设备,它通过降低环境气压和升高温度,快速有效地去除样品中的水分和溶剂。由于其具有干燥速度快、干燥效果好、使用方便等优点,真空干燥箱在科研、制药、化工、食品等领域得到了广泛应用。本文将介绍真空干燥箱的工作原理、特点、技术参数及使用方法等方面的知识。真空干燥箱的工作原理是利用真空泵将箱体内的空气抽出,降低气压,同时加热样品以促进水分和溶剂的蒸发。这种干燥方法可以在较低的温度下实现,从而避免了高温对样品的损害。此外,真空干燥还可以有效地防止氧化和污染,提高干燥效果和样品质量。上海和晟 HS-DZF-6021-MT 无油真空干燥箱真空干燥箱的优点包括:干燥速度快、效率高;可降低样品在高温下变质的可能性;可避免空气中的氧气对样品产生氧化作用;可减少能源消耗,因为可以在较低的温度下实现干燥。然而,真空干燥箱也存在一些不足之处,例如:需要定期维护和保养;对样品形状和大小有一定限制;不能干燥所有类型的样品。真空干燥箱的技术参数包括真空度、温度和湿度等。真空度指的是箱体内的气压,一般分为低真空、高真空和超高真空三种。温度是控制样品干燥速度的重要因素,可根据样品的特性和需要进行调节。湿度则表示箱体内的水分含量,对于某些样品需要严格控制湿度以避免水分的引入。使用真空干燥箱时,需按照以下步骤进行操作:将样品放入干燥箱内,并将干燥箱密封;连接真空泵并启动设备;调整真空度和温度等参数以满足样品干燥需求;记录干燥时间和观察干燥效果;干燥完成后,关闭设备并取出样品。在使用过程中,需要注意以下几点:真空干燥箱应放置在平稳的工作台上,避免震动和高温;使用前需检查设备的密封性能和管道连接是否良好;根据样品的特性和要求合理设置真空度和温度等参数;如果出现异常情况,应立即关闭设备并检查故障原因;定期对真空干燥箱进行维护和保养,保证其长期稳定运行。总之,真空干燥箱是一种高效的实验室设备,可快速有效地去除样品中的水分和溶剂。在使用过程中,应按照操作规程正确使用和维护保养设备,以保证其正常运行和使用寿命。同时,还需要注意安全问题,避免意外情况的发生。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 高低温冷热冲击试验箱的原理及特点
    高低温冷热冲击试验箱是金属、塑料、橡胶、电子等材料行业必备的测试设备,用于测试材料结构或复合材料,在瞬间下经极高温及极低温的连续环境下所能忍受的程度,得以在最短时间内检测试样因热胀冷缩所引起的化学变化或物理伤害。分为两厢式和三厢式,区别在于试验方式和内部结构不同,产品符合标准为:GB/T2423.1-2008试验A、GB/T2423.2-2008试验B、GB-T10592-2008、GJB150.3-198、GJB360A-96方法107温度冲击试验的要求。    高低温冷热冲击试验箱制冷工作原理:高低制冷循环均采用逆卡若循环,该循环由两个等温过程和两个绝热过程组成。其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换,将热量传给四周介质。后制冷剂经阀绝热膨胀做功,这时制冷剂温度降低。最后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。    高低温冷热冲击试验箱质量优势    主要核心配件均采用国际大品牌的配件如法国泰康,日本路宫/和泉/三菱,施耐德,美国快达/杜邦冷媒,丹麦(DANFOSS),瑞典(AlfaLaval)等配件,假一罚十,能确保高低温冲击测试箱正常高效的运行。相比其他同行:采用国产配件或者是使用伪劣的冒牌配件充当品牌配件,发货到客户处和所说的完全不一致,质量大打折扣。    高低温冷热冲击试验箱技术优势    1.采用7″TFT真彩LCD触摸屏,比其它屏更大,更直观,操作简单,运行稳定,并且更节能。    2.蒸发器采用水浸查漏方法,查漏彻底,确保设备稳定运行。    3.采用模块化制冷机组,能确保制造质量,且维护替换非常方便。    4.采用高均匀度的正压式风道系统,温度均匀高。    5.采用最新的自动除霜技术,使除霜时间缩短,试设备的使用效率大大增加。    6.具有多项安全保护措施,故障报警显示及故障原因和排除方法功能显示。    三箱式高低温冷热冲击试验箱相比其他同行设备:    1.控制器界面较小颜色单一,不便于观察和操作。    2.采用传统方法,肥皂水查漏,不彻底。    3.冷冻机组和机箱底板安装在一起,制造质量和维护性能不佳。    4.无自动除霜技术,需手动除霜之后方可再进行试验,使用效率不佳。    5.同行大部分高低温冲击测试箱,通常在运行一段时间后开始结霜,并且除霜时间非常长,使用效率低下。    6.同行设备为了节省成本,导致设备的安全保护措施单一,非常容易造成安全隐患。    三:三箱式高低温冷热冲击试验箱节能优势:三箱式冷热冲击试验箱采用自主研发的控制系统,精度高,稳定操作简单,控制器抛弃日本韩国等控制器的固定模式,采用最新的模糊运算技术,自动分析负载能力,合理调节冷媒流量,使设备节能高达20%。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • HALT/HASS试验箱原理概述
    p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 0 引言 /strong /span /p p style=" text-align: justify text-indent: 2em " 随着科技的发展,电子设备的集成度越来越高,升级换代的速度越来越快,随之而来的可靠性问题也越来越突出。传统的可靠性试验已经很难满足发展的要求,因此近些年越来越多机构开始引进高加速寿命试验(HALT:Highly Accelerated Life Testing)/高加速应力筛选(HASS:Highly Accelerated Stress Screening)试验方法,用于克服传统的可靠性试验存在的周期长、成本高和效率低等问题。 /p p style=" text-align: justify text-indent: 2em " a)HALTHALT主要应用于产品的研制阶段,是为了得出产品的设计裕度和极限承载能力(破坏或损伤极限)而设计的一种试验,主要试验步骤有: /p p style=" text-align: justify text-indent: 2em " 1)低温步进应力试验(以5℃或10℃为步长); /p p style=" text-align: justify text-indent: 2em " 2)高温步进应力试验(以5℃或10℃为步长); /p p style=" text-align: justify text-indent: 2em " 3)温度循环试验(温度变化速率为60℃/min,5个循环); /p p style=" text-align: justify text-indent: 2em " 4)振动步进应力试验(以5 Grms为步长); /p p style=" text-align: justify text-indent: 2em " 5)综合应力试验(第3)和第4)步综合试验)。 /p p style=" text-align: justify text-indent: 2em " b)HASS /p p style=" text-align: justify text-indent: 2em " HASS应用于产品量产阶段,目的是在极短的时间内发现批量生产的成品是否存在生产质量上的隐患。HASS试验剖面的选择主要是依据HALT的结果、产品性能测试所需要的时间、 产品试验过程中所施加的应力和产品产量等,其一般试验如下所述。& nbsp /p p style=" text-align: justify text-indent: 2em " 1)温度循环 /p p style=" text-align: justify text-indent: 2em " 试验温度一般取工作极限温度范围的80%,试验温度保持时间一般取决于样品温度到达平衡所需要的时间和测试样品工作状态所需要的时间,温度变化速率为40~60℃/min。 /p p style=" text-align: justify text-indent: 2em " 2)振动应力 /p p style=" text-align: justify text-indent: 2em " 振动量级一般取破坏极限的50%,如果超过工作极限,则取工作极限的80%。以上是开展HALT/HASS的基本要求,能满足HALT/HASS试验要求的试验设备要求如下:温度范围为-100~+200℃,温度变化速率为40~60℃/min,气动式三轴六自由度振动台(可产生多轴连续的超高斯宽带伪随机振动信号)的振动频率为5 Hz~10 kHz,振动方向包括X、Y、Z轴向的线加速度和转动加速度。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 1 设备介绍& nbsp /strong /span /p p style=" text-align: justify text-indent: 2em " 基于上述试验要求,需要有一套试验设备才能满足HALT/HASS试验的开展。现以广五所研制的HALT/HASS试验箱来阐述其实现原理。本试验箱可用于电子、电工和军工产品按国标、国军标和行业标准进行上述单项环境应力或多环境综合应力组合的可靠性与模拟环境试验。 /p p style=" text-align: justify text-indent: 2em " strong 1.1 技术指标和性能 /strong /p p style=" text-align: justify text-indent: 2em " a)标称内容积:1.0 m sup 3 /sup 。 /p p style=" text-align: justify text-indent: 2em " b)温度范围:-100~+200℃。 /p p style=" text-align: justify text-indent: 2em " c)温度波动度:≤2 ℃。 /p p style=" text-align: justify text-indent: 2em " d)温度最大变化速率: /p p style=" text-align: justify text-indent: 2em " 1)≥70℃/min(标准负载下,-80~+150℃,全程平均,试验空间入风区控制点测量); /p p style=" text-align: justify text-indent: 2em " 2)≥60℃/min(标准负载下,-100~+200℃,全程平均,试验空间入风区控制点测量)。 /p p style=" text-align: justify text-indent: 2em " e)标准负载:10kg铝锭。 /p p style=" text-align: justify text-indent: 2em " f)气锤振动台:采用三轴6个自由度的随机振动,频率范围为5~10 kHz。 /p p style=" text-align: justify text-indent: 2em " g)振动能量:100 Grms,90%的振动能量集中在5 Hz~4 kHz低频范围内。 /p p style=" text-align: justify text-indent: 2em " h)振动稳定度:± 1 Grms(达到稳定设定值1 min内)。 /p p style=" text-align: justify text-indent: 2em " i)控制精度:± 1 Grms(稳定1 min后),最小1 Grms起振,步进1 Grms。 /p p style=" text-align: justify text-indent: 2em " j)台面振动均匀度:振动台面振动均匀度在30%以内。 /p p style=" text-align: justify text-indent: 2em " strong 1.2 主要特点 /strong /p p style=" text-align: justify text-indent: 2em " a)适用于温度、振动应力综合试验。 /p p style=" text-align: justify text-indent: 2em " b)控制方式:液氮比例控制阀控制冷量,可实现温度变化速率无级可调,高效节能,控制精度高。 /p p style=" text-align: justify text-indent: 2em " c)结构紧凑,占地面积少。 /p p style=" text-align: justify text-indent: 2em " d)噪声低。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 2 试验箱结构及控制原理 /strong /span /p p style=" text-align: justify text-indent: 2em " 试验箱主要由试验箱体、振动机构、液氮机构和电气控制系统组成。其剖面结构图如图1所示,图中主要功能部件名称为:1. 试验箱体保温层,2. 液氮系统,3. 电机及叶轮,4. 气压平衡口(排气口),5. 加热器,6. 出风口,7. 指示灯,8. 人机界面,9. 控制端子,10. 电控部分,11. 气动部分,12. 气锤振动台,13. 安装座,14. 气锤。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/9afcefb0-fa4e-4345-8b8a-156eb0bfd143.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center " strong 图1 试验箱总体结构 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.1 试验箱体 /strong /p p style=" text-align: justify text-indent: 2em " 试验箱体由外箱、内箱和保温层组成。外箱为双面镀锌钢板,表面喷塑处理,外箱内侧辅以钣金结构件或型材作为骨架加强。各个零件间采用CO sub 2 /sub 气体保护电弧焊、点焊和压铆等工艺进行连接,整体结构牢固美观。内箱材料选用需考虑到满足温度范围、防止生锈、振动和可焊接性等因素,板材方面使用SUS304不锈钢板,具有高的耐蚀性,较好的冷作成型和焊接性,很好的机械性能。在低温、室温和高温下均有较高的塑性和韧性。试验箱体保温层由硬质聚氨脂发泡层和玻璃纤维材料进行绝热保温,硬质聚氨脂板是一种具有保温与防水功能的新型合成材料,其导热系数仅0.022~0.033 W/(m.K)。硬质聚氨脂发泡层通过多异氰酸酯、组合聚醚(多元醇)、阻燃剂、催化剂和发泡剂等其他助剂混合而成,覆盖在外箱内表面。玻璃纤维是一种无机质纤维,具有成型好、体积密度小、热导率低、保温绝热、吸音性能好、耐腐蚀和化学性能稳定等特点。 /p p style=" text-align: justify text-indent: 2em " strong 2.2 电气控制 /strong /p p style=" text-align: justify text-indent: 2em " 本试验箱的电控部分所使用的测量系统、IO模块、HMI和CPU模块都是由广五所研发,使用RS485通讯方式,电控系统的总体框图如图2所示。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/77b077ac-921a-4a77-81e7-40557824311d.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center " strong 图2 试验箱电控总体框图 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.3 温度调节机构及控制 /strong /p p style=" text-align: justify text-indent: 2em " 温度调节结构是温度控制的关键部分,包括加热器、液氮系统和搅拌风机。其中,加热器、液氮雾化喷嘴和搅拌风机按顺序(如图1所示)设置在箱体的气体调节通道内。其工作原理为:采用强制空气对流的方法来进行热量的传递, 以保证试验空间的温度均匀性。 试验箱气体由离心风机叶轮从回风口吸入, 通过导流装置后吹出, 可以使调节通道内的加热器和雾化后的液氮进行充分的热量交换,经过搅拌均匀后的风经导风口吹出进入试验区域, 导风口还可以安装导风管,可以通过导风管使大件样品和散热口不在风流方向的样品内部能以最快的速率实现温度变化。出风口设置有温度测量元件,连接至测量板,测量数据通过通讯电缆传送给CPU单元,算法运算后输出控制量。 /p p style=" text-align: justify text-indent: 2em " 本试验箱要求温度变化速率要超过60℃/min,这是温度控制的关键,升温功能由镍铬丝通电发热实现。镍铬丝具有较高的电阻率,表面抗氧化性好,温度级别高,并且在高温下有较高的强度,有良好的加工性能和可焊性,是现有高效的加热材料,应用时设计为三相平衡。由于机械制冷很难实现这样的降温速率,因此本试验箱采用的是液氮制冷方式。液氮的沸点低,价格相对便宜,常压下液氮的温度为-196℃,1 m3的液氮可以膨胀至696m3、21℃的纯气态氮。虽然液氮汽化后变为氮气,氮气是惰性气体,在大气中重量比75.5%,但是在实验室内,如果试验时氮气不能及时排到室外,可能会造成室内人员缺氧,因此试验箱配有气压平衡装置把氮气排到室外,由于气化过程中压强升高,气体能从试验区顺利排出,避免箱体受压变形,这也是气压平衡装置名称的由来。 /p p style=" text-align: justify text-indent: 2em " 液氮系统是温度调节结构的核心,其结构示意图如图3所示,各个功能部分的名称如下:1.空气压力报警,2.空气调压阀,3.空气电气比例阀,4.液氮比例控制阀,5.液氮管路排气电磁阀,6.液氮压力安全泄压阀,7.液氮压力报警,8.液氮主管路电磁阀,9.保温层,10.液氮雾化喷嘴。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/75049ce4-c225-4da0-8243-899fea2e5ab3.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: center " strong 图3 液氮系统图 /strong /p p style=" text-align: justify text-indent: 2em " 液氮由氮气罐接口接入,通过液氮电磁阀控制通断,液氮电磁阀在运行时打开,设备故障或停止时关闭。排气阀的作用是试验前对液氮管路进行排空,保证试验时管路里面都是液态氮,以确保试验的可靠性、稳定性和可重复性。液氮比例控制阀属于节流元件,是控制执行器的关键器件,开度在0~100范围接近线性的输出,以利于大范围的调整,能保证降温时的大流量要求,也可以满足恒定时小流量的需要,具有明显的节能效果。由于液氮在常压下 span style=" text-indent: 2em " 的蒸发温度为-196℃,与试验设定温度相差很大,因而需要精确控制流量才不会造成温度过冲或大幅回升。为了保证对温度的精确控制,就要考虑响应时间的问题,传统的电动执行装置响应时间过长,明显不能满足这个需要。因此本试验箱采用的是气动驱动以保证快速响应。 为了使液氮比例控制阀的响应速率满足要求,我们使用了一个称为电气比例阀的驱动器来控制供气的压强, 它可以把控制输出的模拟电信号转化为压强输出,电气比例阀的输入信号 类型及范围需要和控制输出一致,输出压强范围要和液氮比例控制阀一致,这样才能保证控制精度。为了防止快速升温、降温过程中过冲量过大,还需要做控制算法上的处理,如果不能及时预判当前温差、温度变化的速率,就会造成过冲量大,震荡次数多,或者过早减少输出保证不了速率。针对长距离快速温度变化,对设定曲线增加一些非线性的降温处理,并在降温转恒温阶段由PID控制切换到PI控制。针对短距离步进,使用模糊控制加PID的控制方式,并对输出的范围加以约束。经过液氮比例控制阀的液化氮送到雾化组件进行雾化,雾化组件的核心部件是液氮喷嘴,其作用就是把液氮雾化,喷到通道后快速汽化,雾化后颗粒的大小、喷射角度和流量的多少都要与降温的需要相一致,这样才能保证控制精度。流量决定了降温速率的达成可能性,喷射角度和雾化后颗粒直径决定了换热的效率,颗粒越小越好,喷射角度越大越好。 /span /p p style=" text-align: justify text-indent: 2em " strong 2.3 振动系统及控制 /strong /p p style=" text-align: justify text-indent: 2em " 振动台系统由振动台、供气系统和控制系统组成。 /p p style=" text-align: justify text-indent: 2em " 振动台有两层结构面板,由结构螺丝连接,上层固定待测物,下层锁紧气锤,其特点是台面质量轻,同时增加台面刚性,刚性加强后可以有更好的振动传导特性,低频振动能量较高。频率范围更宽,扩展到5~1 000 Hz,并且90%的能量都集中在5~4 000 Hz范围内,因为大部分电子产品的失效频率都集中在这一频段内,可以有效地快速激发产品故障。 /p p style=" text-align: justify text-indent: 2em " 振动台上表面采用衬垫式的安装螺孔,并有凸起部分,采用此结构的设计理念,一是可以改善振动的传导特性,把更多的振动激励传导到样品上;第二是凸起结构可以使得样品或夹具和台体表面具有一定的空余间隙,风流可以顺利通过样品或夹具底部从而保证样品的上下表面温度更加均匀。 /p p style=" text-align: justify text-indent: 2em " 振动台面增加陶瓷涂层的结构设计,可以抗腐蚀,耐高低温,更好地保护振动平台和气锤,延长使用寿命;还可以保证设备长时间在高低温环境下运行,延长设备的使用寿命。 /p p style=" text-align: justify text-indent: 2em " 气锤分大中小3种不同的型号,多种气锤的组合更有利于台面激励的均匀性,采用高压油雾器对气锤进行润滑,可以降低气锤的故障率,延长气锤的使用寿命。排气时气体统一由消声器排出,降低振动噪音。 /p p style=" text-align: justify text-indent: 2em " 振动台安装在箱内弹簧隔离座上,可起到减震作用,不影响气锤工作时的激励作用。在密封连接处理上,振动台面与试验箱底板采用软连接,需要时可以拆装。 /p p style=" text-align: justify text-indent: 2em " 对振动台的控制其实就是对气锤的控制,也就是对进入气锤的气体压强的控制,有点类似于液氮的控制方法,既需要振动的快速性又需要稳定性,这里也用到了电气比例阀。由于加速度的测量不像温度测量那样稳定,需要用到振动信号的转换板,将其转化为模拟信号或者通过通讯反馈到CPU单元,进行算法运算,输出模拟信号给电气比例阀,控制进入气锤的气体压强,从而控制气锤产生的激励。只要气源压力和供气管路保证流量,正常的负反馈控制都可以实现。这里有两个难点,都属于硬件的固有特性方面的问题。一个是加速度传感器的信号微弱,测量值不够精确稳定,需要在测量时做滤波处理,转换为数字量后还可能需要再次做滤波处理,这两次滤波效果会直接影响控制精度和控制品质;另一个就是气锤在较小能量级时整个台面不太稳定,会造成加速度传感器测量跳动比较大,也会影响控制品质,这时候需要更慢的输出变化。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em " 本文对HALT/HASS试验箱的结构和工作原理进行了阐述,以上系统经多个客户的使用证明完全满足HALT/HASS的要求。通过该试验箱进行HALT/HASS能切实提高电子设备的可靠性, 大大地降低试验成本。此结构简单紧凑,运行噪声小,能耗适中,可靠性高。此类试验设备在国内的产品化对HALT/HASS试验的推进起到了积极作用,可大大地提高电子行业及其他相关行业产品整体的可靠性。 /p p br/ /p
  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 探索微生物的秘密:生化培养箱的应用与原理解析
    微生物是生命科学中极为重要的研究对象之一,其微小而复杂的世界需要受控的实验环境来进行深入研究。生化培养箱作为实验室中的核心设备之一,在揭示微生物的生态学、代谢途径、遗传机制等方面发挥着关键作用。本文将探讨生化培养箱的应用领域、工作原理以及在科学研究中的关键角色。 应用领域:1、微生物学研究: 生化培养箱提供了一种受控的环境,有助于培养和研究各种微生物,包括细菌、真菌、酵母等,从而深入了解其生命周期、生长特性以及相互作用。2、医学实验: 在医学研究中,生化培养箱用于培养细胞系和微生物,为生物医学实验提供可靠的基础。这对于药物研发、感染病原体研究等方面具有重要价值。3、分子生物学: 在分子生物学实验中,生化培养箱提供了理想的温度、湿度和无菌条件,支持DNA合成、PCR扩增等关键实验。4、食品与饮料工业: 在食品微生物学领域,生化培养箱被用于检测和培养食品中的微生物,确保食品的安全性和质量。 工作原理:1、温度控制: 生化培养箱通过精密的温度控制系统维持恒定的培养温度,提供适宜微生物生长的条件。2、湿度调节: 部分生化培养箱具备湿度调节功能,特别适用于需要高湿度环境的微生物培养。3、气氛控制: 一些生化培养箱配备气氛控制系统,确保微生物所需的特定气氛条件,如CO₂ 浓度等。4、无菌环境: 高效的过滤系统和紫外线灯确保生化培养箱内的工作环境相对无菌,防止外部微生物污染。5、光照控制: 针对光合作用微生物的研究,一些生化培养箱配备光照控制系统,模拟日夜光照周期。 关键角色:生化培养箱作为实验室中的关键设备,为科研人员提供了一个可控制、稳定和无菌的实验环境。其应用领域广泛,涉及微生物学、医学、分子生物学等多个学科,为探索微生物的奥秘提供了不可或缺的支持。 综上所述,生化培养箱在科学研究中发挥着至关重要的作用,为揭示微生物的生物学特性、生态学行为以及与人类相关的重要过程提供了强有力的工具。
  • 第15期线上讲座:泵与比例阀的结构原理与常见故障
    答疑解惑时间:2009年7月8日---7月24日 热烈欢迎pandora98先生光临仪器论坛进行讲座!   在4月份我们刚在液相色谱与液质联用版面联合举办第12期的线上讲座---剖析液相色谱仪和液质联用仪,而今液相色谱版面又迎来了新一期在线讲座。   本期讲座我们邀请了pandora98先生就泵与比例阀的结构和工作原理以及常见故障展开一期专题讲座。本期讲座共分两章,第一章是对泵的单向阀、泵的比例阀、泵的梯度系统等的结构及工作原理进行详细阐述 第二章就对泵的单向阀漏液、泵的比例阀漏液、二元泵的问题等常见故障进行详细的解剖,并介绍自己的维修的经验及心得体会。   本次的线上讲座将开展16天(2009年7月8日---24日)。这次讲座以某一款仪器为例,主要讲解泵、泵的单向阀、比例阀的知识,重点介绍泵与比例阀的常见故障及pandora98老师的维修经验、心得。希望大家珍惜此次交流机会,共同参与探索液相色谱泵的奥妙之处,有利于提高液相色谱的操作能力。   再次感谢pandora98先生提供的丰富的讲座,也感谢pandora98先生与大家一起交流心得和经验。pandora98先生从事色谱分析工作多年,有丰富的实践经验,欢迎大家就液相色谱仪器泵的单向阀、比例阀的的问题前来提问,也欢迎液相色谱方面的高手前来与pandora98先生一起交流切磋。 第15期线上讲座泵与比例阀的结构原理与常见故障 线上导览论坛线上活动导览
  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 科众精密-详解接触角测量仪的原理
    接触角测量仪是一种用于测量液体在固体表面上接触角的仪器。其原理基于Young方程,该方程描述了液体与固体表面之间的相互作用。当液体与固体表面接触时,液体分子会受到吸引力,固体表面分子会受到斥力。这种相互作用的平衡可以用接触角来描述,即液体与固体表面的接触线的夹角。当接触角越小,说明液体与固体表面之间的相互作用越强。接触角测量仪通过将液体滴在固体表面上,然后测量液滴与固体表面之间的接触角来确定液体与固体表面之间的相互作用力。常见的接触角测量方法包括静态接触角测量和动态接触角测量。静态接触角测量是指液滴在固体表面上静止不动时的接触角测量方法,动态接触角测量是指液滴在固体表面上移动时的接触角测量方法。水滴角是指水滴在固体表面形成的接触角,它通常用于描述液体与固体表面之间的相互作用。水滴角的大小取决于液体和固体表面之间的相互作用力,其中包括液体和固体表面之间的粘附力和液体内部分子之间的相互作用力。当液体和固体表面之间的粘附力大于液体内部分子之间的相互作用力时,液体将展开并形成一个较大的接触角,这被称为亲水性。相反,当液体和固体表面之间的粘附力小于液体内部分子之间的相互作用力时,液体将形成一个较小的接触角,这被称为疏水性。因此,水滴角的大小取决于液体和固体表面之间的相互作用力,这种相互作用力又与固体表面的化学性质、形态和表面能等因素密切相关。
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 旋转蒸发器的原理和利与弊
    一,旋转蒸发仪的工作原理通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱;用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点;同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。二,旋转蒸发仪的利与弊旋转蒸发仪存在如下优点:⒈所有IKA艾卡的旋转蒸发仪都内置了一个升降马达,该装置可以在断电的时候自动将烧瓶提升到加热锅以上的位置。⒉由于液体样品和蒸发瓶间的向心力和摩擦力的作用,液体样品在蒸发瓶内表面形成一层液体薄膜,受热面积大;⒊样品的旋转所产生的作用力有效抑制样品的沸腾。综上特征以及其便利的特点,使现代化的旋转蒸发仪可用于快速、温和地对绝大多数样品进行蒸馏,即使是没有操作经验的操作者也能完成。推荐使用太康生物科技产品。旋转蒸发仪应用中最大的弊端是某些样品的沸腾,例如乙醇和水,将导致实验者收集样品的损失。操作时,通常可以在蒸馏过程的混匀阶段时通过小心的调节真空泵的工作强度或者加热锅的温度防止沸腾。或者也可以通过向样品中加入防沸颗粒。对于特别难以蒸馏的样品,包括易产生泡沫的样品,也可以对旋转蒸发仪配置特殊的冷凝管。三,旋转蒸发仪的使用方法⒈高低调节:手动升降,转动机柱上面手轮,顺转为上升,逆转为下降.电动升降,手触上升键主机上升,手触下降键主机下降.⒉冷凝器上有两个外接头是接冷却水用的,一头接进水,另一头接出水,一般接自来水,冷凝水温度越低效果越好.上端口装抽真空接头,接真空泵皮管抽真空用的.⒊开机前先将调速旋钮左旋到最小,按下电源开关指示灯亮,然后慢慢往右旋至所需要的转速,一般大蒸发瓶用中,低速,粘度大的溶液用较低转速.烧瓶是标准接口24号,随机附500ml,1000ml两种烧瓶,溶液量一般不超过50%为适宜.⒋使用时,应先减压,再开动电机转动蒸馏烧瓶,结束时,因先停电动机,再通大气,以防蒸馏烧瓶在转动中脱落。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 1200℃单双温区开启式真空气氛管式电炉:工作原理与优势
    在科研和工业生产中,电炉是不可或缺的重要设备。其中,1200℃单双温区开启式真空气氛管式电炉因其高精度、高效率的工作特点,被广泛应用于各种高温实验和材料制备。那么,这种电炉是如何工作的,它又具备哪些优势呢?接下来,让我们一起深入了解。  1200℃单双温区开启式真空气氛管式电炉的工作原理涉及到多个方面。在加热原理上,电炉主要依靠电力产生热量,通过高温电阻丝将电能转化为热能。这种方式的优点是能量转化效率高,加热速度快。在温度控制方面,电炉采用了先进的PID温度控制系统,可以实现对温度的精确控制。同时,由于采用先进的智能芯片控制,温度波动小,精度高。气氛控制是这种电炉的另一大特点。通过向炉内通入特定的气体,可以创造出不同的气氛环境,如还原性、氧化性或中性气氛,以满足不同实验和材料制备的需求。  1200℃单双温区开启式真空气氛管式电炉的优势有哪些呢?首先,其加热速度快,可以在短时间内达到高温,且温度均匀性非常好。这大大缩短了实验时间,提高了工作效率。其次,由于采用了先进的智能控制系统,电炉的操作非常简便。用户只需设定温度和时间等参数,电炉即可自动完成实验过程。此外,这种电炉还具有高可靠性和长寿命的特点。由于其内部采用优质材料和精密制造工艺,电炉的使用寿命长,可靠性高。  1200℃单双温区开启式真空气氛管式电炉还具有多种安全保护功能。例如过温保护、过流保护等,确保实验过程的安全可靠。  1200℃单双温区开启式真空气氛管式电炉以其高效、精确、安全的特点,成为科研和工业生产中的重要工具。无论是材料合成、化学反应还是高温烧结等应用场景,这种电炉都能提供出色的性能表现。随着技术的不断进步和应用需求的增加,我们有理由相信,未来的1200℃单双温区开启式真空气氛管式电炉将会更加智能化、高效化、安全化,为科研和工业生产带来更多的便利和可能性。
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 科众精密-解析气-液-固界面接触角的测量原理
    一、液-固界面接触角的测量的实验目的1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。2. 接触角测定材料表面接触角和表面张力的方法。二、接触角测量的过程 : 用接触角测量仪注射器针头将一滴待测液体滴在基质上。液滴会贴附在基质表面上并投射出一个阴影。投影屏幕千分计会使用光学放大作用将影像投射到屏幕上以进行测量。三、接触角测量原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 光学接触角测量仪可以记录液滴图像并且自动分析液滴的形状。液滴形状是液体表面张力、重力和不同液体样品的密度差和湿度差及环境介质的函数。在固体表面上,液滴形状和接触角也依赖于固体的特性(例如表面自由能和形貌)。使用液滴轮廓拟合方法对获得的图像进行分析,测定接触角和表面张力。使用几种已知表面张力的液体进行接触角测试可以计算得到材料的表面自由能。 作为光学方法,光学接触角测量仪的测量精度取决于图片质量和分析软件。Attension光学接触角测量仪使用一个高质量的单色冷LED光源以使样品蒸发量降到zui低。高分辨率数码镜头、高质量的光学器件和精确的液体拟合方法确保了图片质量。图1 各种类型的润湿当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。图2 接触角假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即γSG - γSL = γLGcosθ 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面张力;θ是在固、气、液三相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是:粘附润湿,铺展润湿, 粘附润湿、铺展润湿过程的粘附功、铺展系数。 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,称为不润湿,当θ<90°时,称为润湿,θ越小润湿性能越好;当θ角等于零时,液体在固体表面上铺展,固体被完全润湿。
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • 《污水处理在线监测仪器原理与应用(第二版)》最新出版
    近年来,我国的城市污水处理设施建设发展迅速,大中型污水处理厂已有3000余座,中小城镇的污水处理厂建设方兴未艾。这些污水处理厂的运行将获得巨大的环境效益,同时也将产生巨大的能耗和物耗。从实现国家节能减排和可持续发展的目标出发,发展污水处理的节能降耗技术具有重大的意义。污水处理厂达标运行和节能降耗技术的发展,必然会推动控制技术和在线监测仪器的广泛应用。 《污水处理在线监测仪器原理与应用(第二版)》介绍了污水处理中常用的在线监测仪器及其基本原理,内容包括测量仪表的基本知识、污水处理的常用监测指标、污水处理在线监测仪器、数据采集与通信、仪器仪表的日常维护与管理和在线监测仪器的应用及实例。在此基础上,根据国内外最新发展,增加了溶解氧的荧光检测技术、COD的光谱检测技术、基于人工嗅觉原理的氨氮检测技术、生物毒性检测和管网的液位检测等新技术,先进实用,是国内少有的详细介绍污水处理在线分析监测仪器的专业著作。 《污水处理在线监测仪器原理与应用(第二版)》作者清华大学环境学院施汉昌教授长期以来从事污水处理系统的优化运行和仪器化、污水生物处理反应动力学和生物传感器的研究,积累了大量研究成果和丰富的经验。本书正是施教授长期以来从事废水生物处理和传感器技术研究的研究成果和经验的总结,具有实用性、可操作性和指导性。 《污水处理在线监测仪器原理与应用(第二版)》于2013年11月出版,书号:9787122182852。点击查看购买链接
  • 沃特世9月19日"高校系列2——SPE技术篇 :SPE技术原理与应用"网络讲座即将启动
    日期: 2017年9月19日时间: 14:00 – 16:00地点: 网络讲座语言: 简体中文 固相萃取(SPE)技术是基于液相色谱原理建立的一项液固色谱技术,1978年沃特世公司将这项技术变为了商品化的产品,在接近40年的时间里SPE的填料技术发生了很大的进步,同时这项技术也被应用到了很多的领域。本次讲座我们将带领大家了解一下SPE技术的原理,发展及在典型领域的应用实例,以便更多的老师和同学能够使用到这个技术。 讲座概要: 固相萃取技术的发展及基础原理 固相萃取技术的应用(食品,环境,药代动力学研究,代谢组学研究) 主讲人:贺晓蔚(沃特世化学消耗品部应用工程师) 登录沃特世官网并搜索“高校系列2——SPE技术篇 :SPE技术原理与应用”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加,如果您需要在讲座中加入讨论或语音提问,请您提前准备好麦克风。收到您的注册信息后我们会筛选并在讲座前一天通过电子邮件给您发送讲座登录链接。如有任何问题请拨打电话:021-61562642或发送邮件至minxing_guo@waters.com,谢谢。
  • 微生物气溶胶浓缩器工作原理怎样使用
    青岛路博的马德我不敢说我们的产品一定如何但我敢说,我们的服务一定真诚只要您有需要,我们有能力,一定让您满足 我们的产品不仅仅您看到的这条,还有许多对于环保的器材,有关环保的仪器仪表您有需要,尽管联系公司名称:青岛路博环保科技有限公司地址:青岛市城阳区金岭工业园锦宏西路与微生物气溶胶浓缩器是基于虚拟冲击浓缩法原理 ,为解决低浓度微生物气溶胶采集问题而研制的一种具有微生物气溶胶前置浓缩功能、且与标准微生物采样器配套的新型仪器,旨在提供一种高效率生物浓缩器,为微生物污染的检测和研究提供支持。 本产品符合标准《GB/T 18204.5-2013 公共场所卫生检验方法 第5部分:集中空调通风系统》和卫生行业标准《WS 394-2012 公共场所集中空调通风系统卫生规范》要求,采集集中空调送风,检测其中的嗜肺军团菌。采集流量大,使需要的粒子短时间浓缩到采样器中,避免长时间采样带来的生物活性损失,提高采样器的现场实用性。 主要技术指标:l 总气路流(50~130)L/min可调,允许误差±5%;l 接生物采样器(采样瓶)后浓缩气路流量(5~15)L/min可调,允许误差±5%;l 总气路流量及浓缩气路流量重复性误差±2%l 输入气路负载能力(接分离器):≥2KPal 浓缩气路负载能力:≥50KPal 对于3um以上生物粒子的捕集效率大于80%,理论浓缩比1:10。l 定时功能:1秒-99小时59分59秒l 双路同时采集l 流量手动调节l 备可升降云台,可根据现场情况调节采样头高度3米(或4米选配) 青岛路博建业有限公司是一家集环保科研、设计、生产、维护、销售和系统集成为一体的综合性高科技企业。我们不仅有的销售团队,还有专业的技术团队和售后服务人员,为你的购买使用提供一站式服务。为什么选路博1.路博有自己的工厂,有专业的技术团队,保证产品质量。2.路博有的销售团队和售后服务,一年质保,终身维护,可以视频教授产品使用方法或现场指导。3.厂家直销,没有中间商赚差价,保护客户利益.
  • 浅析电化学型气体传感器的工作原理和检测方法
    p   要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 /p p strong 1.电化学型气体传感器的结构 /strong /p p   电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 /p p   电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。 /p p strong 2.电传感器工作原理 /strong /p p   电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。 /p p strong 表1 各种电化学式气体传感器的比较 /strong /p table cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 种类 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 现象 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 传感器材料 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 特点 /span /strong /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 恒电位电解式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 气体扩散电极,电解质水溶液 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 通过改变气体电极,电解质水溶液,电极电位等可测量CO、H sub 2 /sub S、HO sub 2 /sub 、SO sub 2 /sub 、HCl等 /span /p /td /tr tr td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子电极式 /span /strong /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电极电位变化 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子选择电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量NH sub 3 /sub 、HCN、H sub 2 /sub S、SO sub 2 /sub 、CO sub 2 /sub 等气体 /span /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电量式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量Cl sub 2 /sub 、NH sub 3 /sub 、H sub 2 /sub S等 /span /p /td /tr tr td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质式 /span /strong /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 测定电解质浓度差产生的电势 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 适合低浓度测量,需要基准气体,耗电,可测量CO sub 2 /sub sub 、 /sub NO sub 2 /sub 、H sub 2 /sub S等 /span /p /td /tr /tbody /table p 表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。 /p p 2.1 恒电位电解式气体传感器 /p p   恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示: /p p     I=(nfADC)/ σ /p p   式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。 /p p   在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。 /p p   自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、N sub x /sub O sub Y /sub (氮氧化物)、H sub 2 /sub S检测仪器等产品。这些气体传感器灵敏度是不同的,一般是H sub 2 /sub S& gt NO& gt NO sub b /sub & gt Sq& gt CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。 /p p   以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如H sub 2 /sub S、NO、NO sub b /sub 、Sq、HCl、Cl sub 2 /sub 、PH sub 3 /sub 等,还能检测血液中的氧浓度。 /p p 2.2离子电极式气体传感器 /p p   离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。 /p p   现以检测NH sub 3 /sub 传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NH sub 4 /sub sup + /sup ,同时水也微弱离解,生成氢离子H sup + /sup ,而NH4 sup + /sup 与H sup + /sup 保持平衡。将传感器侵入NH sub 3 /sub 中,NH sub 3 /sub 将通过隔膜向内部渗透,NH sub 3 /sub 增加,而H sup + /sup 减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NH sub 3 /sub 浓度。除NH sub 3 /sub 外,这种传感器海能检测HCN(氰化氢)、H sub 2 /sub S、Sq、C0 sub 2 /sub 等气体。 /p p   离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。 /p p 2.3电量式气体传感器 /p p   电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。 /p p   现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成H sup + /sup ,在两铂电极间加上适当电压,电流开始流动,后因H sup + /sup 反应产生了H sub 2 /sub ,电极间发生极化,发生反应,其结果,电极部分的H sub 2 /sub 被极化解除,从而产生电流。该电流与H sub 2 /sub 浓度成正比,所以检测该电流就能检测Cl sub 2 /sub 浓度。除Cl sub 2 /sub 外,这种方式的传感器还可以检测NH sub 2 /sub 、H sub 2 /sub S等气体。 /p p strong 3.传感器的检测 /strong /p p   电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NO sub 2 /sub 、O sub 2 /sub 、SO sub 2 /sub 等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。 /p p   综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制