当前位置: 仪器信息网 > 行业主题 > >

成像检测

仪器信息网成像检测专题为您提供2024年最新成像检测价格报价、厂家品牌的相关信息, 包括成像检测参数、型号等,不管是国产,还是进口品牌的成像检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合成像检测相关的耗材配件、试剂标物,还有成像检测相关的最新资讯、资料,以及成像检测相关的解决方案。

成像检测相关的论坛

  • 红外热成像仪检测中存在的问题及解决方案

    随着红外技术的不断发展,红外成像仪在日常检测中时常使用到。同时使用红外热成像仪检测中存在的问题及对策 随着”三集五大”体系建设和变电设备“状态检修”的大力推进,传统的传统的变电设备检修和运行模式发生了根本性改变, 能够实时、有效、动态地评价设备健康状况成为确保设备安全、稳定 运行的前提, 红外成像仪是目前变电运行人员检测运行设备健康状况 的有力保证,可以有效的避免因设备发热而造成的非计划停电,为提 高供电可靠率做出了贡献策 针对当前变电设备红外成像检测技术的应用中存在问题及改进方法进行了思考以及对红外测温未来发展的展望。 由于这种 技术无需对所测设备停电,即可准确发现安全隐患,所以更要充分利 用好、发挥好红外成像检测这一高科技手段,夯实变电设备“状态检 修”基础,确保运行的可控、在控、预控。 一 目前在使用中所存在的问题: 目前在使用中所存在的问题: 重设备,轻人员,培训工作不到位。 ( 1)重设备,轻人员,培训工作不到位 目前,红外成像设备已基本覆盖到重要的生产班组,极大提高了 生产一线的技术装备水平,然而,好的检测设备必须得到正确和规范 的应用,才可能发挥其最好的性能,不能只重视检测设备的配置,而 忽略了对人员进行必要的培训, 目前对红外成像仪方面培训的主要方式还是以产品说明书为主,没有专业的培训教材和权威的培训师资, 虽然厂家的技术人员会不定期到各基层单位组织测温培训, 但由于运 行人员倒班的原因,造成了一线人员缺乏热像仪的操作技能培训,同 时,昂贵的机器也需要专业的使用和维护技巧,没有经过专业培训, 在使用红外线成像器材时就不可避免要出现:保养不当、充电电池报 废、昂贵的红外线镜头被划损等等现象,既造成了经济损失,也影响 了测温工作的正常开展。 对策:(1)建立完善的红外成像检测制度,对红外检测工作的准备、 对策 风险预控、规范、安全注意事项等进行详细的规定。同时根据各站所 管辖的一、二次设备详细列表并建立测温表单,以表单的形式使测温 制度和规范落到实处;(2)加强红外热成像仪使用技术的培训,考 虑到运行人员工作的特殊性, 可以首先由相关厂家的技术人员对各个 部门的技术专责进行培训并考核, 然后由各个部门的专责负责对各个 集控站,变电站站长进行培训。 此文转自:深圳市杰创立仪器有限公司

  • 具体介绍红外热成像技术在建筑节能检测中的应用

    1.红外热成像基本原理 任何温度高于绝对零度的物体都会释放出红外线,其能量与该物体温度的四次方成正比。红外线不为人眼所见,但是红外热像仪利用红外探测器和光学成像物镜可接受被测目标的红外辐射能量,并把能量分布反映到红外探测器的光敏组件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。当热流在物体内部扩散和传递的路径中,将会由于材料或传导的热物理性质不同,或受阻堆积,或通畅无阻传递,最终会在物体表面形成相应的“热区”和“冷区”,这种由里及表出现的温差,通过红外热成像仪进行检测并成像,进而可以评估其质量或状态。2.红外热成像技术在建筑结构工程领域的应用自二十世纪70年代以来,欧美一些发达国家先后开始了红外热像仪在建筑结构工程领域诊断维护的探索,使得红外热像技术在该领域的应用日臻完善,给建筑结构工程质量检测和评估技术前进和发展带来了较大的帮助,并制定了相应的技术规程。国内的红外建筑检测在二十世纪九十年代开始起步,一开始主要集中在外墙饰面砖的粘结质量以及渗漏检测方面。由于这些应用领域没有其它适合的检测手段,而红外热成像技术具有大面积、非接触远距离检测,不影响被测物体,使用安全,检测快速,结果直观可视等优势,使得该技术在建筑领域得到了迅猛的发展。通过大量的科研和工程实践,总结出了具体的测试方法和注意事项,颁布了各种测试规程,例如《CECS204:2006红外热像法检测建筑外墙饰面层粘结缺陷技术规程》,对该测试技术的发展和应用起到了很大的推动作用。目前红外热成像技术已经在以下几个方面得到了成熟的应用(如图1所示):墙面缺陷的检测,粘贴饰面的检测,渗漏和受潮的检测,热桥等热工缺陷检测,室内管道和电气设施的检测等。如图:建筑物缺陷的红外成像仪检测图像http://www.jetronl.com/uploads/allimg/120829/1_120829114451_1.jpg3.红外热成像技术在建筑节能检测中的应用 能量的消耗主要分成三部分:工业,运输和住宅。据统计,有30-50%的能量消耗集中在住宅。因此提倡节能建筑,提高能效,是一项紧迫的任务。对于新建筑和工程,比较容易处理,即建立并执行严格的节能标准和法规。然而对于现有建筑,能效相对较低,而每年只有1-2%的旧楼能得到翻新,因此,改善现有建筑降低其能耗势在必行。由于环境保护和节能的迫切需要,国内外特别是加拿大、美国、日本等国家都非常重视红外热成像技术在建筑节能方面的应用研究,取得了丰富的经验和成果。建筑中隔热层和气密性缺陷会造成室内空气不良、空气泄漏和受潮等,导致居住不舒适以及能源浪费。而解决这些问题最主要的困难是难以找到合适的方法和设备来诊断出问题所在。常规的视觉检测和评估通常效率不高,只能检测出一些明显的缺陷、表面缺陷,或隐藏的大面积缺陷。然而通常大部分缺陷并不明显,而且往往只有在造成严重的破坏之后才能知道,到时唯一的补救办法只能是花费高昂的重建费用。红外热像仪作为一种预维护诊断技术,是一种极为经济而且对建筑物本身没有损坏的诊断办法。热工性缺陷如隔热材料缺失、热桥、漏气和受潮等都会造成墙面的温度变化,通过红外热图像测得的表面温度可以表征出次表面的异常。以下将通过一些图片资料来阐述红外热成像技术在热传导损失、热对流损失、受潮、渗漏、外墙饰面质量检测中的应用,供有关质量检测和标准制订等部门在进行相关检测和标准编撰时参考。3.1.热传导损失检测在建筑围护结构中设计有隔热层,主要目的是以最合理的方式达到所期望的室内环境。经验表明,缺少隔热材料、隔热材料安装不正确、气密层和气密性不良都会降低轮廓的整体隔热性能,从而大幅提升能耗。对于新楼或旧楼,满足新的节能标准非常重要,隔热和气密层以及结构中其它任何缺陷都必须诊断并得到修补。建筑和隔热标准在过去几十年中不断改进。许多国家根据新的“环境能源效率指导方针”拥有或正在制订相应的节能标准。http://www.jetronl.com/uploads/allimg/120829/1_120829114558_1.jpg(2)红外热图显示出此新建楼房的节能效果很好,在检测中找不出热缺陷典型的隔热缺陷有: 隔热材料没有填充整个设计的空间(缝隙、孔洞、隔热层薄、隔热材料沉降、安装后材料收缩、在错误的位置进行刚性绝缘等) 隔热材料安装不当 HVAC 通过隔热层进行安装 有渗透性的隔热材料不足以阻挡气流的运动 隔热材料受潮http://www.jetronl.com/uploads/allimg/120829/1_120829114807_1.jpg(3)图红外检测清楚的显示楼房能量损失程度图3中楼龄为8年,红外图像显示在墙体和房顶都有明显的热损失,基础部位也没有隔热处理。对楼顶进行检测发现天花板没有安装隔热材料。另外,墙体没有足够的隔热层也会造成明显的热损失。室内外温差越大或材料的K值越低,就需要越大的制冷或制热功率。图4中显示在窗户和天花板之间的隔热层存在孔穴。http://www.jetronl.com/uploads/allimg/120829/1_120829114851_1.jpg图4红外成像可以找出天花板和窗口之间隔热材料的缺损。图4中此楼的其它地方也可以找到类似的情况。这可能导致更为严重的问题,如在墙体空穴中形成受潮。合同承包商忽略了在墙体空穴中放置隔热材料,通过红外热像仪检测很容易发现。在墙体空穴中安装隔热材料要求很严,必须填充在空穴中并紧实贴在墙壁上。如果没有这样安装很有可能成为空气对流的一个通道,隔热效果将会大打折扣。建筑围护结构中的一些部位,在室内外温差的作用下,形成热流相对密集、内表面温度较低的区域。这些部位成为传热较多的桥梁,故称为热桥(thermalbridges),有时又可称为冷桥(coldbridges)。热桥附加能耗占整体建筑能耗的比例不断上升,根据调查和计算,在非节能型建筑中,各种热桥的附加能耗占建筑能耗的3%~5%,而在新型节能建筑中,一般占节能建筑的20%左右。砌在砖墙或加气混凝土墙内的金属,混凝土或钢筋混凝土的梁、柱、板和肋,预制保温中的肋条,夹心保温墙中为拉结内外两片墙体设置的金属联结件,外保温墙体中为固定保温板加设的金属锚固件,内保温层中设置的龙骨,挑出的阳台板与主体结构的连接部位,保温门窗中的门窗框特别是金属门窗框等等。整个楼房存在大量的热桥,若图6所示,找出了热桥存在的位置,可以通过设置断热条来解决。http://www.jetronl.com/uploads/allimg/120829/1_120829114944_1.jpg图5红外热成像技术在建筑节能检测中的应用-不当的隔热材料安装的影响图5中红外图像显示了不当的隔热材料安装的影响隔热材料没有紧贴在墙体上。这降低了隔热效率从而造成热损失。http://www.jetronl.com/uploads/allimg/120829/1_120829115028_1.jpg图6红外热成像技术在建筑节能检测中的应用-建筑围护结构中热桥红外图像3.2.对流热损失检测密封连接不良就会造成泄漏,气密内衬层安装不当或损坏往往会出现规律性缺陷。空气很容易通过刚性隔热体之间的部分。这些缺陷会引起不均匀的度分布,会引起房间里空气产生运动(气流),从而引起局部温度降低而增加能耗和尘土的沉降。这种泄漏路径比较复杂,不利用红外成像仪就很难发现。虽然气密性测试可以找出房间总体的漏气量,可以为气密性准确定量,但不能很好的找出气漏位置,除了窗边,门缝之外,很多时候气漏的位置在墙壁某处,一般不易被肉眼察觉。要找出气漏位置,传

  • 【求助】关于化学发光成像分析 vs 化学发光检测仪

    刚学习化学发光,请专家指点化学发光检测仪采用液相(态)检测方法比化学发光固相(态)检测(成像系统)灵敏多少个数量级? 3~5个?对于化学发光检测,是不是PMT单光子检测做的工作,化学发光成像系统一定不可以做? 例如?

  • 【原创大赛】基于高光谱成像技术的包子在线检测研究

    【原创大赛】基于高光谱成像技术的包子在线检测研究

    [align=center][b]基于高光谱成像技术的包子在线检测研究[/b][/align]随着生活品质的提高以及消费者对食品安全意识的不断增强,消费者对包子食品安全问题越来越关注。在实际包子加工过程中,由于生产规模、生产速度、包子馅的加工机械等的影响,包子在生产过程其表面可能会存在污物或包子露馅、包子发霉等问题,因而存在严重的食品安全隐患。成像技术和光谱技术是传统的光学技术的两个重要方向,成像技术能够获得物体的影像,得到其空间信息;光谱技术能够得到物体的光学信息,进而研究其物质属性。20 世纪 70 年代以前,成像技术和光谱技术是相互独立的学科,随着遥感技术的发展,成像光谱技术迅速发展起来,它是一种快速、无损的检测技术,具有光谱分辨率高、多波段和图谱合一的特点,能在大尺度范围内识别地表并深入研究其地表物质的成分及结构。目前,成像高光谱技术已成熟应用于农业、食品、药品、化工产品、刑侦、文物保护等领域,但用于包子的品质检测目前尚未有研究者对其进行开展研究。[b]1. 可见、近红外设备介绍[/b]高光谱图像数据采集采用四川双利合谱科技有限公司的 GaiaSorter高光谱分选仪系统(fx10e)。该系统主要由高光谱成像仪、面阵列相机、卤素灯光源、暗箱、计算机组成,如图1。[align=center][img=,386,355]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281452562204_1516_488_3.jpg!w386x355.jpg[/img] [/align][align=center]图1 GaiaSorter高光谱分选仪[/align]高光谱图像采集软件采用四川双利合谱科技有限公司提供的高光谱成像系统采集软件Specview完成。图像处理采用 ENVI5.3 软件进行处理。在进行图像处理之前,先要对采集的光谱图像进行图像校正,图像校正公式如下:[img=,291,63]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281453117460_190_488_3.jpg!w291x63.jpg[/img] (1)式中,R[sub]ref[/sub] 是校正过的图像,DN[sub]raw[/sub] 是原始图像,DN[sub]white[/sub]为白板校正图像,DN[sub]dark[/sub] 是黑板校正图像,R[sub]white[/sub]为白板的反射率。[b]2. 实验目标[/b]本次实验对包子的混杂金属、混杂玻璃片、混杂塑料片、包子完整情况(是否有馅露出来)、有无包装纸、有何种颜色的包装纸进行了初步的检测,目的是为了分辨出包子中混杂的金属、玻璃片、塑料片,以及是否露馅、是否包含包装纸和用何种包装纸对其进行包装。[b]3. 分析方法3.1 波段选择方法[/b]目前应用比较广泛的最佳波段选取方法有各波段信息量的比较、波段间相关性比较、最佳指数法(O IF)、各波段数据的信息熵和联合熵、协方差矩阵特征值法、波段指数法等。在各种方法中,由美国查维茨提出的最佳指数法( OIF)综合考虑单波段图像的信息量及各波段间的相关性,更接近于波段选择的原则,且计算简单,易于实现,得到广泛的应用。OIF指数的计算公式如下:[img=,261,59]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281453308659_4069_488_3.jpg!w261x59.jpg[/img] (2)其中:S[sub]i[/sub] 为第i个波段的标准差,R[sub]ij[/sub]为i、j 两波段的相关系数。对n波段图像,先统计计算单波段图像的标准差,计算各波段间的相关系数矩阵,再分别求出所有可能的波段组合对应的OIF指数,根据该指数大小来判断各种波段组合的优劣。指数越大,则相应组合影像所包含的信息量就越大。对OIF指数从大到小进行排序,最大O IF指数对应的波段组合即为最佳波段组合。[b]3.2 分类方法[/b]利用see5.0机器学习法进行分类。see5.0机器学习规则软件是美国USGS在完成国家土地覆盖制图(NLCD)项目中开发的一个自动提取分类规则的数据挖掘工具。[b]4. 分析结果[/b][align=center][img=,553,402]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281453511269_6838_488_3.jpg!w553x402.jpg[/img][/align][align=center]图2 塑料托盘上有无包子进行判别分析[/align][align=center][img=,562,414]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281454085302_6251_488_3.jpg!w562x414.jpg[/img][/align][align=center]图3 包子混杂塑料片原图及分类结果[/align][align=center][img=,541,389]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281454249343_7458_488_3.jpg!w541x389.jpg[/img][/align][align=center]图4 包子混杂金属原图及分类结果[/align][align=center][img=,526,387]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281454574305_7671_488_3.jpg!w526x387.jpg[/img][/align][align=center]图5 包子混杂玻璃片原图及分类结果[/align][align=center][img=,547,393]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281455104118_736_488_3.jpg!w547x393.jpg[/img][/align][align=center]图6 包子多种包装纸原图及判别结果[/align][align=center][img=,570,409]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281455437023_7191_488_3.jpg!w570x409.jpg[/img][/align][align=center]图7 包子露馅判别分析[/align][align=center][img=,587,427]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281456093534_9772_488_3.jpg!w587x427.jpg[/img][/align][align=center]图8 包子过程有无包装纸判别分析[/align][align=center][img=,582,425]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281456238943_7757_488_3.jpg!w582x425.jpg[/img][/align][align=center]图9 多种情形下包子品质分析[/align][align=left][b]5. 结论与讨论[/b] 从图2到图9我们可以看出,利用高光谱成像设备可实现包子在线生产过程中可能出现的各种问题,从而避免了有质量问题的包子流向市场。高光谱成像仪在实际生产过程中可快速实时无损地监测每个包子的品质,减少了人工的排查程序,有效地提高了包子的出厂效率。[/align]

  • 测量释放α射线粒子尺寸的超高位置分辨率 “α射线成像检测器”。

    日本原子能研究开发机构福岛研究开发部门福岛研究开发基地废堆环境国际共同研究中心远程技术部的森下祐树研究员8月3日宣布,与东北大学未来科学技术共同研究中心的黑泽俊介副教授和山路晃广助教以及三菱电机公司合作,共同开发出了可在现场实时测量释放α射线粒子尺寸的超高位置分辨率 “α射线成像检测器”。该检测器的原型是医疗领域推进开发的α射线成像检测器。通过将其应用于钚样本,证实能以16微米的位置分辨率逐一检测出α射线。该仪器将为提高福岛第一核电站和核燃料设施等的安全性做出贡献

  • 锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前锁相红外热成像无损检测中存在被检物温度偏离标准正弦波形式的检测模型,以及被检物温度无法准确控制和快速达到稳定的问题,本文提出了改进解决方案。解决方案的核心是将现有的激励光源开环控制模式改进为闭环控制,具体采用了具有远程设定点功能的PID温度控制器,将现有光源的正弦波功率调制改进为直接的被检物表面温度正弦波调制,由此更符合理论模型,且可使被检物平均温度快速达到稳定而大幅缩短检测时间。[/b][/color][/size][align=center][size=18px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 如图1所示,锁相红外热成像无损检测技术使用周期性调制热源,对待测物体进行周期加热。若待测物体内部有缺陷,该缺陷对其上方表面温度分布会产生周期性的影响,因此有缺陷和无缺陷地方会产生幅值差和相位差的热特征,这些特征通过红外热像仪成像捕获。采集到的热图序列中存在着各种干扰信号,通过锁相技术可以将微弱的有用信号从众多干扰信号中分离出来,可大幅提高检测的灵敏度。但这种红外锁相或其他光激励热成像法存在以下严重问题:[/size] [align=center][size=18px][color=#339999][b] [img=红外锁相热成像检测原理及其系统,500,611]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442140543_4031_3221506_3.jpg!w622x761.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 红外锁相热成像检测原理及其系统[/b][/color][/size][/align][size=16px] (1)因为现有技术只能对激励热源的加载功率进行正弦波调制,但并不能真正保证被测物体内部的温度变化也是真正的正弦波形式,这使得热像仪获得的热波波形与检测理论模型存在较大偏差,这是目前造成此方法误差的最大原因。[/size][size=16px] (2)目前锁相法调制光源加热被测物体时的温度时间变化曲线如图2所示,要经过较长时间温度才能达到稳定状态,对于较大或较厚物体用时将会更长,其中最大的问题是温度升高多少无法准确控制,只能靠经验或多次试验来确定调制光源的加热功率以实现所希望的温度变化。[/size][align=center][size=18px][color=#339999][b][img=红外锁相法加热过程中的时间-温度变化曲线图,500,379]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442434774_7846_3221506_3.jpg!w472x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 红外锁相法加热过程中的时间-温度变化曲线图[/b][/color][/size][/align][size=16px] 由此可见,目前的红外锁相法还较粗狂,整个控制还是一个开环控制过程,这使得在实际无损检测中边界条件无法准确匹配测试模型,温度变化波形和大小也无法做到准确控制。为了解决这些问题,本文提出了如下一种闭环控制解决方案。[/size][b][size=18px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 为使被检物体内部的温度变化符合测试模型中正弦波形式的要求,本文提出的解决方案是采用闭环控制加热模式,即在被检物体的表面或内部安装温度传感器,与PID控制器和激励光源组成闭环控制回路,通过正弦波形式的设定点输入,最终将被检物体表面或内部温度准确控制并与正弦波温度设定曲线吻合。整个闭环控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波温度加热光源控制系统结构示意图,650,387]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443195882_6318_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正弦波温度加热光源控制系统结构示意图[/b][/color][/size][/align][size=16px] 从图3可以看出,由增加的温度传感器、卤素灯加热光源和控制器组成的闭环控制回路,可以对被检物表面温度进行任意设定点下的精确控制。但为了使表面温度能够严格按照所希望幅值和周期的正弦波形式进行变化,解决方案中采用一种多功能的高级PID控制器VPC2021。此控制器具有外部设定点功能,即通过外接周期信号发生器,可以使VPC2021控制器的温控设定值严格按照信号发生器的输出进行改变,即温控设定值可以设计为一个随时间变化的周期性正弦波。由此可以实现以下两个功能:[/size][size=16px] (1)可任意设定加热正弦波的频率和幅值,以满足不同无损检测对象的需要。[/size][size=16px] (2)可任意设定加热正弦波的平均值大小,由此可实现任意温度下的正弦波热波控制,并能很快达到稳定状态而开始进行无损检测,有效缩短检测时间。[/size][size=16px] VPC2021系列超高精度PID调节器是具有远程设定点功能的控制器,具有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点也能接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何探测信号只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。在红外锁相法无损检测中使用远程设定值功能时的具体接线如图4所示。[/size][align=center][size=16px][color=#339999][b][img=远程设定点功能使用接线图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443467549_5148_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 远程设定点功能使用接线图[/b][/color][/size][/align][size=16px] 在使用远程设定值功能前,需要对控制器辅助输入通道参数进行设置,以满足以下要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式:[/size][size=16px] (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图4中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的具有远程设定点功能的PID控制器,结合外置周期信号发生器,可很好实现锁相红外热成像无损检测中的正弦波温度闭环控制,使得被检物体内部的稳态正弦温度波更符合无损检测模型,并使得被检物温度快速达到所希望的测试温度而缩小检测时间,最终可使得锁相红外成为更精密化的无损检测技术。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align][size=16px][/size]

  • 德国WITec公司网络报告:生物细胞组织和医药学的3D共聚焦拉曼成像检测

    德国WITec公司网络报告:生物细胞组织和医药学的3D共聚焦拉曼成像检测报告内容:着重介绍高分辨3D共聚焦拉曼成像在生物细胞组织和医药学的重要应用,例如生物细胞组织的表征,癌化细胞的鉴定,细胞对药物吞噬过程及药物反应过程的监测。。。报告时间:2014 年3月 26日晚上11:00(北京时间)具体内容请查看以下网址:http://www.witec.de/events/onlineseminars请登录以下网页注册:http://www.microscopy-analysis.com/witecwebinars期待与大家见面!

  • “反恐神器”——三维成像毫米波安检门

    “反恐神器”——三维成像毫米波安检门

    近日,由中国航天科工三院35所研发的国内首台具备完全自主知识产权的毫米波人体三维成像安检门,在北京首都国际机场T2航站楼顺利完成安装,标志着国内首次由民航主管部门组织的毫米波安检正式试用。  传统的安检手段,如X射线人体成像,会使人体受到高能粒子辐射,具有累积效应,存在健康安全隐患,使用场合受限;而金属探测门、手持扫描仪等只能探测到金属材质物品,对复合材料、陶瓷、塑料、液体等材质的违禁品不能实现有效检测。安保工作遇到新的挑战。  毫米波安检是一种兼顾安检有效性与人体安全性的新型安检途径。凭借小于手机信号的辐射频率,在1—2秒内实现对衣物下、皮肤上所有材质的藏匿物“透视”,令危险分子携带的任何危险品无处遁形。http://ng1.17img.cn/bbsfiles/images/2015/09/201509021409_564236_2989334_3.jpg  故事从2010年说起,安检门项目团队充分挖掘35所拥有的雷达毫米波成像技术基础,突破了毫米波三维人体成像关键技术,并将其应用于民品安检设备研 发,实现了对人体无辐射伤害的三维成像。该设备具有强大的物体分析能力和图像处理能力,能揭开被其它物体隐藏的可疑物面纱,可以让操作员快速轻易地辨认出 可疑物品,可适用于多种安全检查站。该系统利用无害的非电离,能在几秒钟内产生清晰的图像。与传统检测设备相比,该设备不仅可以对传统设备无法检测出的液 体、陶瓷、毒品、塑料等非金属物品进行高清晰度成像,同时,物品检测精度极大提高,可以达到毫米级,检测成功率达到85%以上。  在此基础上,研制团队放眼市场,通过多轮的展览和试用,与市场和客户进行零距离的交流沟通,对样机进行不断改进升级,现已实现全部器件国产化、模块化,提高了成像质量,大幅降低了成本。  项目团队通过对关键技术进行进一步的优化改进,实现了完备的隐私保护功能,设备只显示人形影像上的可疑物品,不显示任何涉及被检人员的隐私信息;实现 了目前同类型安检设备中最高的安检通过率,且被检人员与随身物品安检同步进行,实现了目前同类型安检设备中最高的人体安全性能,设备应用的超小功率电磁波 辐射,不会对人产生危害,其辐射功率不及手机电磁波辐射的1%。为做好市场准入,团队邀请国内权威机构进行辐射量检测,结果显示,其辐射量比普通液晶显示 辐射量还低许多。  2012年5月,安检门产品参加北京国际警用装备展;2012年6月,参加新疆安防设备展;2012年9月,参加为期两个月的新疆乌鲁木齐机场试 用;2013年7月,参加第十届北京国际社会公共安全及司法监狱防范技术设备展览会……历次的参展吸引了国内安防管理系统、民航系统、警备系统、司法系统 等多个系统领域的关注。  目前,该团队先后突破多项关键技术,累计申请和获得相关专利近30项,产品已通过国家安全生产检测技术中心的人体辐射安全性检测。安检门项目团队负责人表示,今后将进一步发挥航天技术优势,将其打造成“反恐神器”“火眼金睛”,守护公众出行安全。(来自网络,侵删)

  • 【分享】(德国)X射线实时成像检测系统检测金属铸件橡胶轮胎内部分层裂纹

    http://simg.instrument.com.cn/bbs/images/brow/em0816.gif X射线检测系统点激此处链接X射线实时成像系统:对于批量大、要求检测效率高的零件,是一种非常实用有效的检测手段,它具有动态观察、形态真实、检测效率高的特点,并可采用计算机图像处理装置对射线图像进行处理,使检测灵敏度进一步提高。 主要应用领域,金属铸件,塑料橡胶等。本系列产品对于不同形状和大小,钢、铝、陶瓷、复合材料或橡胶等不同材料的工件均可提供高质量的实时监测内部裂纹、分层等。 用于非金属、轻金属、铸造件、各种合金、压力容器等进行X射线无损检测。主要检测焊接缺陷(裂纹、气孔、夹渣、未溶合、未焊透等)以及腐蚀和装配缺陷。XRAY微焦点工作原理和发展:在伦琴先生发现X-Ray后的不久,他就认识到X-Ray可以用于材料检测。但直到上世纪70年代,X-Ray才开始被用于工业领域。由于当时电子产品的微小化以及对元部件可靠性要求的提高,人们极其关注在微米范围内的材料缺陷分析。如今微米焦点X-Ray检测已经稳定地被应用于无损害材料检测,并且通过不断的技术革新将在更广泛的工业领域中被使用.  基本原理 在微米焦点X-Ray检测的过程中,扇形的X-Ray穿过待检样品,然后在图像接收器(现在大多使用X-Ray图像增强器)上形成一个放大的X光图。该图像的质量主要由以下三点决定:放大率、分辨率及对比度。图像分辨率(清晰度)主要由X射线源的大小决定,微米焦点X-Ray放射管的射线源只有几个微米。图像的几何放大率由X光路的几何性质决定(图1),在实际应用中可达到1000至2500倍。 具体物体的微小部分在图片上的表现力主要是由该部分的本身属性在X光图上产生的对比度决定。对比度主要由物体内部的不同厚度,及不同材料(如印制线路板上的铜印制导线),对光线的不同程度吸收而引起的。举例来说,样品A和B拥有相同的厚度,如果A的原子序数较B大,则它对射线的吸收性能较B强。C与B的组成物质相同,若C比B薄,则其对射线的吸收性能比较弱。对比度除与X-ray本征特性有关外,在技术上的局限是由X射线探测器的性质决定的。对图像增强器而言,只有吸收差别达到至2%,才能在X光图中清晰地呈现出来。   X射线管当高速带电粒子突然被减速时,X-Ray就产生了。在简单的X射线管中,电子从热阴极中出来,通过一个电场,向阳极加速。在撞到阳极时停止,同时释放出X射线。碰撞区域的大小就是X射线源的大小,它以毫米为单位,在这种情况下我们只能得到很不清晰的画面。通过微焦点X射线管的使用,就能改变这种状况。电子通过阳极上的一个小孔进入磁电子透镜,该透镜中的磁场力使电子束聚焦在阴极靶上一个直径只有几微米的焦点上。通过这种方式X射线源变得很小,在高放大率的情况下能得到分辨率在微米范围内的清晰图像。新研制的纳米射线管通过多个透镜的使用分辨率将达到500nm。  X射线探测器 传统的X-Ray探测器是一个射线照相胶卷,它拥有良好的空间分辨率(在10μm内)和对比度(0.5%)和可以保存的检测结果等特点。它的缺点是曝光和冲洗都需要好几分钟的时间。针对这种情况,人们在图像增强器上装了拍摄被检测样品动感画面的影像链接,可是仍然只能得到比较粗糙的分辨率。在物体细节显微检测中,可以通过微焦点X光技术消除这个缺点。在足够大的几何放大率的情况下,图像清晰度只同X射线源的大小有关,因此最小的细节也能被清晰地拍摄下来。新研制的数码X射线探测器在理想状态下将两种图像接受方式合为一体:既能提供动态图像,又能拥有完美的对比度。   应用领域 如今微米X光技术主要应用于电子工业中的过程控制和缺陷分析。在元件组装中首先是隐藏焊点的检测,如:BGA封装中的气孔,浸润缺陷,焊桥,及其它的性质,如:焊料的多少,焊点的位移等。在半导体工业中,X光系统作为稳定的工具被应用于集成电路封装中内部连接的无损害检测。因此,在高分辨率的基础上可以检测到直径只有25微米的焊接连线上的最小坏点(图2),及芯片粘接上的气孔在温度降低时晶体的粘合反应等。在多层印制电路板的的制造中,各个板面的排列将被连续地监控。在这里X光系统能精确地测量特别是处于内层位置的结构及焊环宽度,是制造过程优化的基础。此外,如在层间电路金属连通过程中,通过该技术还可以在X光图上清晰地辨认短路及断路,确定它们的位置并作出分析.

  • 国防科大研成电磁波穿透成像探测仪

    科技日报讯 (葛林楠 李治)近日,国防科技大学研制成功新型电磁波穿透成像探测仪。该探测仪能穿透非金属介质,探测内部微小隐蔽物体并对物体成像,分辨率达到2mm,可广泛应用于建筑、生物医学、反恐、安检等领域。 该探测仪体积小,与一个普通的电饭煲相当,单人即可手持操作。与同类设备如X光机和CT机相比,其体积、重量都大大缩小。由于该设备采用电磁波完成探测工作,没有高能射线辐射危险,完全没有放射性,操作人员无需像操作X光机那样进行专门防护。该探测仪电磁波辐射功率极低,不到手机辐射十分之一,对人体非常安全。 该款探测仪采用电磁波完成对物体内部的探测成像。其内部集成了超宽带电磁波收发组件,可以对非金属物体内部进行快速的电磁波扫描。通过借助强大的数字信号处理能力,将扫描对象内部的结构和异物的形状清晰地显示出来。使用该探测仪,就犹如为操作者安装上一双“透视眼”。该探测仪具有广泛的用途,可用于检查建筑物墙体内钢筋、线缆的分布,可检测生物组织的早期癌变,可用于检测建筑物内预埋的爆炸物,可对藏在身上的武器和危险品进行检测。 据研发人员陆珉副教授介绍:“早期癌变组织的密度变化不大,使用CT检查效果不明显,但是电磁特性变化较大,使用电磁波探测就能取得很好的效果。” 该款设备是目前国内唯一利用主动电磁波实现高精度二维穿透成像的设备,其成像分辨率居于世界先进水平。该设备将为我国多个行业提供重要的技术支撑,可在某些领域代替X光机、CT机等放射性探测仪器。来源:中国科技网-科技日报 作者:葛林楠 李治 2014年06月09日

  • 【原创大赛】高光谱成像技术在烟草检测中的应用评估

    http://www.zolix.com.cn/filespath/images/20131210061252.jpg试验对象:烟梗标准样 4 个、烟叶标准样一袋、原料一袋实验及分析过程: 实验共测试两组数据:数据分析如下 样品 1:http://www.zolix.com.cn/filespath/images/20131210061355.png 测试样本照片将数据用 Evince 打开,通过 PCA 变换,再由散点图将背景扣除后再次进行 PCA 变换。 变换后图像与散点图及权重曲线图如下:http://www.zolix.com.cn/filespath/images/20131210061513.jpg 主成分 1 图像 Pc1:Pc2 散点图http://www.zolix.com.cn/filespath/images/20131210061702.png通过散点图选择后对应图像 通过散点图,可以明显将烟叶与烟梗进行曲别。选取蓝色的烟梗和红色烟叶区域分别分 类标记,然后对整个区域进行 PLSA 变换,实现分类识别。结果如下:PLSA 分类识别统计结果 烟梗 18103 (35.5%) 烟叶 32926 (64.5%) 未识别 4 (7.838E-3%) 合计 51033(100%)识别后图像如下:http://www.zolix.com.cn/filespath/images/20131210061814.png 烟梗典型曲线通过光谱曲线,可以发现在 672nm 处烟梗有明显吸收峰,这也右以 PCA 权重曲线中得到 验证,如下图:http://www.zolix.com.cn/filespath/images/20131210061916.png为进一步验证上达识别结果,进行了一组验证实验,分析过程不再详述,结果如下:http://www.zolix.com.cn/filespath/images/20131210061950.jpg 测试样本照片http://www.zolix.com.cn/filespath/images/20131210062033.jpg PCA 变换图PLSA 分类识别统计结果烟叶 125398 (85.7%)烟梗 20951 (14.3%)未识别 0 (0%)合计 146349 (100%)结论实验初步验证了高光谱成像技术在烟草检测中具有实用性

  • 正确选择适合的实验室成像仪

    作为实验室里最为常用的仪器之一,成像设备直接为您的论文提供影像。而这些影像质量的好坏,有时候甚至决定着您的论文能否发表。当然,拥有一台好的、运行稳定的设备也是老板和技术主管的心愿。那么,如何从纷繁的市场上选择到一款好的成像设备呢?很多号称“王牌”的设备是否真的能够打满分呢?下面的文章就向您介绍选择成像系统的“四项基本原则”。有了这些原则,您在选择成像仪时自然成竹在胸,无往不胜。原则一:“只选对的,不选贵的”市场上各品牌、各型号的成像仪林林种种,但是从成像原理上可以分成两大类,分别是拍照成像和扫描成像。拍照成像简单说就是样品和相机的相对位置不动,可以进行单次成像或多次成像;而扫描成像则是相机对样品进行局部成像,然后通过样品或相机的移动对整个样品进行成像。拍照成像目前主要采用CCD相机成像,由于可以设置不同的曝光时间,常被用来进行微弱的化学发光及生物发光的成像。而扫描成像则由于精度高、重复性好被广泛用于大型样品以及多通道成像中。可以说,对于大型样品或多通道应用,能选择扫描成像的,尽量不要选择拍照成像。原理搞清楚了,选择起来就简单了。不同的原理导致了不同应用的最佳选择,所以千万不要相信什么“全能王”之类的鬼话,没有任何一款机器可以通吃所有应用领域。下面就实验室最常见的一些应用简单的说明选择的依据:核酸电泳凝胶:一般此类凝胶都采用EB染色、紫外激发,而且凝胶较小。推荐采用一般的凝胶成像设备即可完成。蛋白电泳凝胶:一般此类凝胶采用考染或银染,白光透射成像。对于小型凝胶您可以选择一般的凝胶成像设备,但是对于大型凝胶,特别是双向电泳凝胶,由于CCD拍照成像会有几何扭曲,而且透镜效应也会导致不同区域的信号强度差异,另外CCD拍照也无法保证不同凝胶的成像参数保持一致,因此扫描成像是最好选择。转印膜:这个稍微有些复杂。一般转印膜有比色法显色、同位素、化学发光和荧光等不同检测手段。比色法显色就是产生有颜色的条带或斑点,一般采用普通的凝胶成像设备即可;同位素可以采用压胶片曝光的方法,但是费时、费力而且容易过饱和,比较通用的方法是由FujiFilm在1981年发明的磷屏成像技术,获得信号潜影的磷屏通过激光扫描就可以获取同位素的信号。而化学发光是目前最常用的蛋白印迹的检测手段,无疑,冷CCD拍照成像对这种微弱的光信号是最合适的。荧光是所有这些检测手段中最令人赞叹的和最有前景的。这不仅仅是因为荧光染料具有最宽的动态范围,而且还在于它能够为我们提供多通路的检测途径(同样适用于凝胶,通用电气公司的2D DIGE技术就是采用三种荧光染料标记蛋白而形成多通路检测的)。当然,您可以使用单一荧光检测,这时您对凝胶成像设备的要求就包括了新的激光光源和相应的滤光片。如果您是一个完美主义者,或者您需要对邻近或重叠的目标分子进行成像,那么多通道荧光检测是您的不二之选。这时扫描成像绝对是最佳选择,这样选择不仅仅是因为扫描成像能够带来更高的灵敏度和分辨率,更重要的是,不同通道之间没有几何扭曲,拟合性好。微孔板及其他特殊需求:对于拍照成像而言,由于几何扭曲的问题,对微孔板成像就变得比较复杂了,一般必须一个专用的校正装置才可完成。当然,如果采用扫描成像一般不需要任何额外附件。很多实验室现在都对小动物成像非常感兴趣,然而对小动物进行真的不是一件简单的事,一方面小动物需要进行麻醉和固定;另一方面还需要对信号位置进行三维定位。因此,能同时提供功能、代谢和解剖图像的PET/CT是进行这类成像的最有力的工具。限于篇幅,这部分将不做更多介绍。原则二:实践是检验真理的唯一标准这可不是在上政治课,每个厂家都对自己的产品是“王婆卖瓜,自卖自夸”,经常给您上两个小时课中间还不用休息,什么“专利技术”、“人性化设计”、“生命科学产业大奖”。只有您想不到的,没有他做不到的。可是,这些东西对用户到底有什么意义?就没有几个人说得清了。好用才是硬道理。任凭你说得天花乱坠,拿来我试试,不就什么都清楚了。现在多数厂商都提供Demo机服务,还有技术人员现场答疑解惑,那就请各位上场,真刀真枪的拼一下,谁的性能好,价格优,那我就要谁的。当然,我们的实际测试结果仅仅是针对我们自己的样品和现场demo的机器而已。我们不能据此对相关品牌和相关型号做太多评判。由于具体应用的限制、操作技巧的差异以及可能的仪器状态的区别,我们有可能没有给出公允的评价。但无论如何,这些讯息对我们采购者和使用者来说都是非常重要的。

  • 无损探伤检测技术

    X射线探伤是焊接质量控制的重要手段。随着计算机的飞速发展,X射线数字成像检测技术以应运而生并得到了广泛应用。它具有快速、直观和成本低廉等优点,可在一定范围内替代常规的射线胶片照相探伤方法。数字射线检测技术的原理是:X射线穿透被检材料后,通过射线接收转换装置,将不可见的X射线检测信息转换为数字信号,然后形成数字图像,再经计算机处理后,在显示器上显示出材料内部的缺陷大小和位置等信息。X射线数字成像技术在检测效率、经济效益、远程传送和方便使用等方面都比射线胶片照相法更胜一筹。数字射线检测的应用:我们公司引进的数字射线扫描探测系统包括射线源CP160B、成像板Xmaru1210P、图像采集卡及采集软件。其中成像能够降低所需辐射能量及曝光时间,面板无需橡胶片一样进行处理,几秒钟一幅图像由计算机进行数据采集、图像存储、实时成像,在两次照射期间,不必更换胶片、检测成本低,检测速度快。

  • 红外热成像技术在各个领域的应用

    红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。以下分别介绍热像仪在各行各业的实际应用情况。  热成像技术实际上是作为一种高级测温技术应用于工业中的,这种设备我们称为热像仪。热像仪可用于钢铁工业中从冶炼到轧钢的各个环节例如大型高炉料面的测定、热风炉的破损诊断和检修、高炉残铁口位置的确定、钢锭温度的测定等;热像仪可以应用到石化工业。石油化工生产中潜伏着一些易燃、易爆危险,要求对生产过程进行严格的在线监测,及时消除隐患。使用热像仪能检测产品传送和管道、耐火及绝热材料、各种反应炉的腐蚀、破裂、减薄、堵塞以及泄漏等有关信息,可快速而准确地得到设备和材料表面二维温度分布。  热像仪在医学上可以用于血管疾病的诊断、皮肤损伤病症的诊断及各种炎症的诊断。  热成像技术可以应用在工农业领域中的。热成像技术可对建筑物的建造质量和设计进行检测和评价,其中包括对建筑物的裂痕、墙壁的分层或断层部位、墙壁和地下管道的渗漏进行检查,以及对建筑物耗及采暖、保温系统进行检查和评价等。热成像技术还可以监测森林火灾。在大片森林中,往往存在不明显的隐火,这是引起毁灭性火灾的根源。  热成像技术可以应用到公安、消防工作中的应用。他可以在夜间以及恶劣气候条件下对目标进行监控。热像仪广泛的应用在各行各业,现在的热像仪有很多品牌包括flir热像仪、福禄克热像仪、德图热像仪等,这也使得人们的选择也多了。希望热像仪的发展与革新能给人们带来更多便利。

  • AR加持红外热成像,彻底解放双手

    近日,AR头显公司Leapsy发布热成像AR头显,将AR与红外热像技术集成,以此来解决传统热像仪设备占用双手不方便操作的问题。据悉,Leaspy热成像AR头显采用自由曲面方案,视场角(FOV)为60°,内置单目红外镜头,通过软件算法实现对热源温度的检测,将具有不同温度区分的热像结果显示于AR头显上。在使用环境是30℃的情况下,热灵敏度可以精确到0.05℃。考虑用途的特殊性,Leaspy的这款热成像AR头显在外形设计上与安全帽相结合,以保护使用者在工业场景下的安全。从呈现效果来看,热成像AR头显可以三维效果近眼距离查看温度检测结果,了解温度等指标,并将数据收集,远程传送。另外,人体工学设计和材质选择适用于长期作业的使用场景。[url=http://www.861718.com/]了解更多请看仪商网[/url]Leapsy的一名负责人表示:“AR热成像头显的研发以及与电力场景的结合,是我们与传统行业的一次创新尝试。在此基础上,随着市场的逐渐成熟,未来Leapsy计划拓展防火预警及安防等领域。” 此外,其还表示该热成像AR头显或将于2018年第四季度上市。其实,红外热像技术主要用于工业检测、设备维护、防火、夜视以及安防等领域。Leapsy则希望为这一细分领域注入新的技术动力,通过热成像AR头显为使用者提供了更多元化的操控方式,切实解放了双手。最后,Leapsy也表示,未来将不断完善热成像技术,提高产品的性能。

  • 关于磁共振成像

    核磁除了能应用于我们的化学检测中以外,核磁在医学中也有重要的应用,但人体没有磁性,那为什么能做磁共振成像?

  • 红外热成像仪使用中环境影响因素介绍

    红外热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热成像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。红外热成像仪被广泛应用于工程技术,楼宇检查,军队实战等领域。  随着红外热成像仪的广泛应用,越来越多的使用者关注如何用好热像仪,红外热成像仪在使用中环境影响因素都有哪些?以备受全球工程师们亲睐的国际一流品牌Fluke红外热成像仪(福禄克)为例,小编总结了6大因素,分享出来供大家参考啦~  1红外热成像仪的仪器工作温度有什么需要注意?可以在0℃以下检测或充电吗?  一般热像仪可在-10~50℃范围内工作;但当环境温度在0℃以下,建议开机半小时后达到充分预热再进行检测,连续室外检测时间不超过20 分钟。避免在过冷或过热的地方充电,以免减弱电池的蓄电能力。  2红外热成像仪对工作时的环境湿度有什么限制?  湿度为10%~90%,无凝结。  3Fluke 红外热成像仪是否具有防爆认证?可以用来检测危险区域吗?  目前Fluke 红外热成像仪不具有防爆认证。但热像仪具有远距离检测的优势,在检测距离可以满足被测目标的大小尺寸前提下,您可以选择在危险区域以外准确调焦后进行测试。  4现场环境下雨,是否会影响准确测量?  下雨本身对测量精度影响不大,但被测物体表面附着的水滴可能造成热量的异常流失,使测量温度不能准确反映物体的正常表面温度。同时,下雨环境对仪器本身也可能造成损坏,故不建议在雨天进行直接测量。  5现场环境存在大风,是否会影响准确测量?  大风对准确检测影响很大,按电力行业红外热成像诊断标准,被测目标的风速不应高于5 米/ 秒。若现场风速高于此标准,会导致被测物体散热过快,使测量温度偏低。  6红外热成像仪使用中会产生辐射干扰其他设备运行吗?会受到检测现场的其他设备的电磁辐射影响吗?  Fluke 红外热成像仪是全被动接收设备,自身没有主动辐射信号,对于您的现场设备或产品没有任何干扰。外部电磁辐射影响:目前只发现电解铝的大电流整流柜会对热像仪造成干扰(一般此类现场电流会超过10 万安培以上)。

  • 红外成像仪对人体机能的检测

    红外线诊断属影像学诊断之一。当前影像学诊断大致分为两大类:结构影像学和功能影像学。诸如x线、CT、B超、核共振等以观察人体结构改变为主,当人体出现病变或结构变化时,就能作为诊断依据。功能影像学则以功能变化为主,如红外线、核素扫描、液晶热图等。当人体出现功能性变化时,这种变化可能尚未发生任何结构改变,而此时就能提供了诊断的依据。红外热图两者兼而有之,即有功能上的改变也有结构上的改变。 人体产热与散热是保持生理平衡的,因机体内存在着体温的自动调节机制,这种平衡失调就会导致体温的变动。 医用热像诊断仪就是接受人体表面在不同部位上辐射出不同强度的红外线,并转换成温度,用来进行疾病诊断和人体功能状态的研究。血流进入温度较高或温度较低的组织,会与组织进行热交换。热交换率用下式表示B=VGC6P6(T1-T2)V:是血液流过温度为T2的组织体积(没有密度的为1)G:是血液灌注量,即每秒通过每克组织的血量(m1)C6和P6分别是血液的比热和密度T1是血液进入组织前的温度,T2是流经组织后的温度由上可见,局部血流量大则温度较高。动脉血来自心脏或大的动脉,温度较高,因此动脉表浅部位热像图呈现高温像;当肢体供血不足,就会呈现低温图像;当血液回流障碍时呈现血液淤滞;当病变涉及血液的流通,会呈现血管走向、迂曲、变形等变化。组织代谢同样产生大量的热,局部组织代谢旺盛产热就增加,则温度高于周围组织,反之则较低。在恶性肿瘤或局部炎症时代谢旺盛(同时还有血液动力的变化),利用热像图可以发现病变的部位、大小及程度。如对于乳腺疾病的诊断,乳腺癌和乳腺炎的病变,代谢旺盛,血流循环丰富,故红外热图温度较高(两者的鉴别详见第十二章);而乳腺腺瘤和乳腺增生症则温度升高不显著。简言之,医用红外热像仪的原理是:红外热像诊断仪接收人体表面不同部位辐射的不同强度的红外线,通过红外摄像头的光电效应转化为电磁信号,经过计算机整理,回归为热图显示在计算机屏幕上,用以测量人体不同部位的温度。同时将电磁信号贮存在计算机的磁盘或软盘上,贮存的信息又可传输到打印机上,运用彩色喷涂技术,以伪彩色图形式打印出来。根据温度变化情况、形态,用以辅助诊断疾病和了解人体功能状态。热成像装置的三种扫描方式(1) 光机扫描 (2)电子束扫描 (3) 固体阵列扫描

  • 【转帖】关于核磁共振成像的问题

    关于核磁共振成像的原因,关于核磁共振成像的相关知识。核磁共振成像(Nuclear Magnetic Resonance Imaging‎ ,简称NMRI‎ ),又称自旋成像(spin imaging‎ ),也称磁共振成像(Magnetic Resonance Imaging‎ ,简称MRI‎ ),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance‎ ,简称NMR‎ )原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

  • 【求助】关于共焦显微拉曼成像的问题

    本人用JY公司的Horiba Aramis做显微拉曼成像分析,期间遇到了一些问题,在此向各位专家和高手请教:我的样品是用粘结剂将颗粒粘结并压缩制得的,因此表面不平整,在做共焦显微拉曼光谱成像时,先聚集到某一颗粒上,然后进行Mapping,请问这种情况下是否检测不到焦平面外样品的信号?但在我的检测中焦平面外的样品也出现了信号,只是强度和频移有变化,请问这种焦平面外样品的拉曼信号频移是否可信?此外,做Mapping时需要的时间比较长,样品经长时间激光照射后其峰位会出现偏移,但现在采用的激光功率已经是能得到拉曼信号的最小功率了(300mW),这个问题如何解决?谢谢各位!

  • 神经元活动高速荧光成像系统简介

    [b][url=http://www.f-lab.cn/vivo-imaging/micam02.html]神经元活动高速荧光成像系统[/url][/b][url=http://www.f-lab.cn/vivo-imaging/micam02.html]micam02[/url]是专业为[b]神经元活动成像[/b]和[b]神经细胞活动成像[/b]而设计的[b]神经元高速成像系统[/b],具有超高信噪比,能够从[b]膜电压敏感染料[/b]中检测到极为微弱的[b]神经元信号[/b],具有对[b]电压敏感染料信号[/b]高灵敏的[b]高速荧光相机[/b]。神经元活动高速荧光成像系统micam02采用最高信噪比S / N的CCD / CMOS高速相机,它对神经元活动的成像非常有效,广泛用于[b]神经元成像,钙离子成像,膜电压成像,延时成像[/b]和常规高速成像。[img=神经元活动高速荧光成像系统]http://www.f-lab.cn/Upload/micam02-imaging.jpg[/img][b]神经元活动高速荧光成像系统micam02简介[/b]神经元活动高速荧光成像系统micam02采用brainvision公司高灵敏度高速成像系统,具有独特的空间分辨率,灵敏度,暗噪声和读出噪声性能。神经元活动高速荧光成像系统micam02具有采样速度1.7 kHz(micam02 CMOS)75%的量子效率(micam02 HR),68db动态范围(micam02 CMOS)。这种高性能参数有力保证了钙离子成像和膜电压成像应用。[img=神经元活动高速荧光成像系统]http://www.f-lab.cn/Upload/micam02_neuronal.jpg[/img][b]神经元活动高速荧光成像系统micam02特色[/b]可选CMOS摄像头和CCD摄像机。最大帧速率为1.7千赫。适合神经元活动成像,可检测微弱神经元信号 拍摄速度和空间分辨率动态可调,空间分辨率是40x28 - 376x252像素具有弱光成像模式新的“h-bin模式”功能,减少暗噪声,对于暗或荧光的情况非常有效。可用于双波长同步双摄像机成像系统神经元活动高速荧光成像系统micam02处理器有两个摄像头的端口,并可以作为一个可选的第二相机使用双摄像头系统,使同步记录。双摄像机系统可用于电压敏感染料或钙离子指示剂的比值成像,以及多探头成像。用户友好的软件数据分析软件”bv_ana,“里面有许多有用的功能,还包括获取能力以实验更简单,更流畅,更快。记录数据的快速分析能力使用户可以在不同条件下对单个生物样品进行多次实验。[b]神经元活动高速荧光成像系统micam02应用[/b]通过使用电压敏感染料如二-4-ANEPPS测量膜电位的变化高速钙染料成像FRET成像基于血红蛋白和Flavoprotein的内在成像双相机系统的荧光比率成像高速光强度微小变化的检测无创性脑片组织块传播成像神经元活动高速荧光成像系统[b]:[/b][url]http://www.f-lab.cn/vivo-imaging/micam02.html[/url]

  • 求教!钢结构检测公司申请问题

    请问各位:我打算开一个公司做钢结构无损检测(第三方),想申请CMA,CMA 的申请条件大概弄清楚了,但是今天刚刚发现,申请钢结构无损检测这个经营范围似乎还和省住房和城乡建设厅有瓜葛(附件是朋友给我的材料,这个检测资质貌似还要受省住房和城乡建设厅审核制约),这个省住房和城乡建设厅的要求(注册资本,固定资产,持证人员数量和证书等级等等都比申请CMA的入门要求提高很多)。那么问题来了:申请钢结构第三方无损检测作为公司主营业务,是不是一定要取得省住房和城乡建设厅的批准后才能开始CMA的申请认证? 没有省住房和城乡建设厅的批准可以直接申请CMA吗? 省住房和城乡建设厅绕不过去吗?

  • 活体光学成像技术专栏| 荧光成像与生物发光成像技术的比较

    [i][font='Times New Roman'][font=宋体]引言[/font][/font][/i][font='Times New Roman'][font=宋体]在上一期的专栏里[/font][/font][font=宋体],我们对荧光成像和生物发光的基本原理进行了对比。同时也留下了几个问题:[/font][font='Times New Roman'][font=宋体]针对我的课题[/font][/font][font=宋体],生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像。别急,今天将为大家解答关键问题:[/font][b][font=宋体][color=#ff0000]荧光成像和生物发光成像的优缺点是什么?[/color][/font][/b][align=center][font='Times New Roman']一、 [/font][b][font=宋体]荧光成像技术的优点[/font][/b][/align][font='Times New Roman'][font=宋体]相比生物发光成像[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像技术的优势主要表现在[/font][/font][font=宋体]:[/font][font='Times New Roman']1. [/font][b][font='Times New Roman'][font=宋体]荧光蛋白及荧光染料的标记能力更强[/font][/font][font=宋体]。[/font][/b][font=宋体]荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药物等进行标记。[/font][font=宋体][color=#ff0000]应用范围极广[/color][/font][font=宋体],可以对样本进行[/font][font=宋体][color=#ff0000]多色标记[/color][/font][font=宋体],一个样本同时获得多种细胞或药物的分布[/font][font=宋体]。[/font][font='Times New Roman']2. [/font][b][font='Times New Roman'][font=宋体]信号强度[/font][/font][font=宋体]高[/font][/b][font=宋体]由于荧光成像的[/font][font=宋体][color=#ff0000]光子强度较生物发光更强[/color][/font][font=宋体][font=宋体],持续时间长,对[/font]C[/font][font='Times New Roman']CD[/font][font=宋体]的灵敏度要求相对较低,不需要必须配备低温冷[/font][font='Times New Roman']CCD[font=宋体]即可获得清晰的成像结果,节省实验成本和购置成本。[/font][/font][font='Times New Roman']3. [/font][b][font='Times New Roman'][font=宋体]实验成本低[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]成像过程简单[/font][/font][/b][font='Times New Roman'][font=宋体]相比生物发光成像,成像前无需注射荧光素酶底物。有合适的激发光源照射就可以发出特定波长的发射光[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]只要荧光基团稳定,就可实现[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]随时激发随时发光随时检测[/font][/color][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman']4. [/font][b][font=宋体]从活体到离体均可成像[/font][/b][font=宋体][font=宋体]相比生物发光只能在活细胞内才会产生发光。荧光蛋白或荧光染料只需要保持荧光基团稳定即可稳定发光。可以在活体或离体组织器官进行观察,在实验前期荧光材料制备阶段,可以直接在[/font]E[/font][font='Times New Roman']P[font=宋体]管中进行成像观察[/font][/font][font=宋体]。[/font][font='Times New Roman']5. [/font][b][font=宋体]应用范围广[/font][/b][font=宋体]相比生物发光成像,荧光成像技术应用范围极广。在肿瘤生长与转移、药物的分布与代谢、纳米颗粒的靶向性与代谢、植物基因的表达、生物相容性材料开发、新型标记技术的开发等多个研究中均可用到荧光成像技术。([/font][font=宋体][color=#ff0000][font=宋体]点击了解[/font]FOBI[font=宋体]整体荧光成像在上述领域的应用[/font][/color][/font][font=宋体])[/font][align=center][font='Times New Roman']二、 [b][font=宋体]生物发光技术的优点[/font][/b][/font][/align][font='Times New Roman'][font=宋体]相比荧光成像[/font][/font][font=宋体],生物发光成像的主要优势表现在:[/font][b][font=宋体]1[font=宋体]、特异性强,无自发荧光[/font][/font][/b][font=宋体]以荧光素酶作为体内报告源的生物发光方法,特异性极强。由于动物本身没有任何自发光,使得生物发光具有极低的背景和极高的信噪比。[/font][b][font=宋体]2[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]高灵敏度[/font][/font][/b][font='Times New Roman'][font=宋体]由于生物体内很多物质在激发光的照射[/font][/font][font=宋体]下[/font][font='Times New Roman'][font=宋体]也会发出荧光[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]这些非特异性荧光背景会影响检测灵敏度[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像的灵敏度最高可在动物体内检测到约[/font]10[/font][sup][font='Times New Roman']4[/font][/sup][font='Times New Roman'][font=宋体]细胞,而生物发光具有在动物体内监测[/font]10[/font][sup][font='Times New Roman']2[/font][/sup][font='Times New Roman'][font=宋体]数量级细胞的灵敏度。[/font][/font][b][font=宋体]3[font=宋体]、检测深度更高[/font][/font][/b][font='Times New Roman'][font=宋体]对于需要在深部[/font][/font][font=宋体]组织[/font][font='Times New Roman'][font=宋体]下进行的研究(检测的深度在[/font]3~4cm[font=宋体])[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]应用生物发光是最佳的选择[/font][/font][font=宋体]。[/font][b][font=宋体]4[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]精确定量[/font][/font][/b][font=宋体]由于荧光素酶基因是插入细胞染色体中稳定表达的,单位细胞的发光数量、发光条件相对稳定。即使标记细胞在动物体内有复杂的定位,亦可从动物体表的信号水平测量出发光细胞的相对数量。[/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像和生物发光技术[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]是互为补充[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]分别满足不同的研究领域[/font][/color][/font][font=宋体][color=#ff0000]。对于不同的研究,可根据两者的特定及实验要求,选择合适的方法。[/color][/font][table][tr][td][font='Times New Roman'] [/font][/td][td][align=center][font='Times New Roman']优点[/font][/align][/td][td][align=center][font=宋体]缺点[/font][/align][/td][/tr][tr][td][align=center][font=宋体]荧光成像技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]荧光染料、蛋白标记能力强,可用于多重标记[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]信号强度大,成像速度快[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]实验成本低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=宋体][color=#333333]体内、体外,器官、活体均可成像。[/color][/font][font=Verdana][color=#333333] [/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]应用范围极广[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]非特异性荧光限制了灵敏度,体内检测最低约[font=Verdana]104[/font][font=宋体]细胞[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]检测深度受限制[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]较难精确体内定量[font=Verdana] [/font][/color][/font][font=宋体][color=#333333]。[/color][/font][/td][/tr][tr][td][align=center][font=宋体]生物发光技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]特异性强,无自发荧光[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]背景低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]高灵敏度,在体内可检测到几百个细胞[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]可精确定量[/color][/font][font=宋体][color=#333333]。[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]信号较弱,检测时间较长,需要灵敏的[font=Verdana]CCD[/font][font=宋体]镜头,仪器价格贵[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]要求高[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]需要注入荧光素,实验成本高[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=宋体][color=#333333]只能用于细胞标记,应用范围窄。[/color][/font][/td][/tr][/table][i][font=宋体]结束语[/font][/i][font=宋体]随着活体成像技术的发展特别是荧光标记技术的发展,越来越多的生物学研究需要用到活体光学成像的方法。无论大家是选择生物发光或者荧光成像技术,苦恼总是随之而来,例如:[/font][font=宋体][color=#ff0000]生物素在体内可以维持多长时间?荧光蛋白和染料种类繁多,我该怎样选择呀?[/color][/font][font=宋体][font=宋体]别急,下期我们继续为大家介绍关于活体成像技术应用与选择的问题与难点。[/font][/font][font=宋体][font=宋体][url=http://dwz.date/cwes]点击了解更多活体成像技术的应用与仪器信息![/url][/font][/font][align=center][font='Times New Roman'][font=宋体]参考文献[/font][/font][/align][font='Segoe UI'][color=#222222]1. [/color][/font][font='Segoe UI'][color=#222222]Su, Y., Walker, J.R., Park, Y. [/color][/font][i][font='Segoe UI'][color=#222222]et al.[/color][/font][/i][font='Segoe UI'][color=#222222] Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. [/color][/font][i][font='Segoe UI'][color=#222222]Nat Methods[/color][/font][/i][font='Segoe UI'][color=#222222] [/color][/font][b][font='Segoe UI'][color=#222222]17, [/color][/font][/b][font='Segoe UI'][color=#222222]852–860 (2020). [/color][/font][font='Segoe UI'][color=#222222]2. [/color][/font][url=#!][font='Segoe UI'][color=#222222]M.Keyaerts[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]V.Caveliers[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]T.Lahoutte[/color][/font][/url][font='Segoe UI'][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780444536334][font='Segoe UI'][color=#222222]Comprehensive Biomedical Physics[/color][/font][/url][font=等线][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780128012383][font='Segoe UI'][color=#222222]Volume 4[/color][/font][/url][font='Segoe UI'][color=#222222], 2014, Pages 245-256.[/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制