当前位置: 仪器信息网 > 行业主题 > >

有机检测

仪器信息网有机检测专题为您提供2024年最新有机检测价格报价、厂家品牌的相关信息, 包括有机检测参数、型号等,不管是国产,还是进口品牌的有机检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合有机检测相关的耗材配件、试剂标物,还有有机检测相关的最新资讯、资料,以及有机检测相关的解决方案。

有机检测相关的资讯

  • 盘点:大气中挥发性有机物检测技术
    大气中的VOCs不仅是生成光化学烟雾污染物的主要前体物,同时也是大气细粒子中有毒有害有机组分的重要来源,对形成灰霾有重要贡献,且一些VOCs本身具有毒性和致癌性。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,我国大气污染控制中又一新的关注点。   VOCs定义   VOCs是一类有机化合物的组合,不同组织对其有不同的定义,主要分为两类,一类是学术意义上的定义,一类是环保意义上的定义。   化学意义上的定义主要有五种:1)挥发性有机物污染防治技术政策定义VOCs为熔点低于室温、沸点范围在50℃~260℃之间的有机化合物 2)世界卫生组织将VOCs定义为沸点范围在50-260℃之间,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物,按挥发性有机物化学结构可进一步分为8类:烷类、芳烃类、烯类、卤烃类、酯类、醇类、酮类和其他化合物 3)ISO 4618/1-1998中VOCs指原则上,在常温常压下,任何能自发挥发的有机液体和/或固体 4)德国DIN55649-2000将VOCs定义为在常温常压下,任何能自发挥发的有机液体和/或固体,在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物 5)我国北京地方标准DB11/447-2007中将VOCs定义在20℃条件下蒸汽压大于或等于0.01kPa,或者特定适用条件下具有相应挥发性的全部有机化合物的统称。   环保意义上的定义主要有两种:1)美国EPA对VOCs的定义为除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物 2)美国ASTM D3960-98中VOCs指任何能参加大气光化学反应的有机化合物。   我国大气污染防治相关政策和标准中,还没有大气中VOCs的明确定义,而VOCs的定义关系到检测方法制定、治理措施等问题。   VOCs标准   我国VOCs检测标准有《HJ 732-2014固定污染源废气 挥发性有机物的采样 气袋法》、《HJ 733-2014泄漏和敞开液面排放的挥发性有机物检测技术导则》、《HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》、《HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》以及《GB 21902-2008 合成革与人造革工业污染物排放标准》附录C,均采用色谱法进行分析。   VOCs排放标准国家还没有相关规定,但是上海、天津、广东等地区针对不同行业制定了一些地区标准,如《DB12/524-2014 工业企业挥发性有机物排放控制标准(天津)》、《DB44/814-2010家具制造行业挥发性有机化合物排放标准(广东)》、《DB44/815-2010印刷行业挥发性有机化合物排放标准(广东)》、《DB44/816-2010表面涂装(汽车制造业)挥发性有机化合物排放标准(广东)》、《DB44/817-2010制鞋行业挥发性有机化合物排放标准(广东)》、《DB31/374-2006半导体行业污染物排放标准(上海)》。   美国EPA在上世纪八九十年代制定了一系列大气有毒有机物检测标准,其中涉及VOCs检测的共有6项,均是气相色谱法,但可配备不同的采样方法和检测方法。   VOCs检测   我国大气中的VOCs主要来源于石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等行业。因此大气中VOCs的检测主要应用于三个方面:一大气中VOCs检测 二污染源集中排放VOCs检测 三生产过程VOCs泄露检测。与三种应用场合相适应,VOCs的检测仪器也分为实验室仪器、在线式仪器和便携式仪器三类。   实验室VOCs检测   VOCs实验室分析发展较早,也比较成熟。分析方法为使用采样袋、苏码罐、吸附剂或吸收液将VOCs采集回实验室,再经过热解析、溶剂解析等前处理过程后,利用GC或HPLC分析。   实验室VOCs检测主要难点在于选择合适的采样方法保证可以采集到所有挥发性有机污染物,制定规范的运输方案防止运输过程中VOCs的损失,选择合适的前处理过程保证所有的挥发性有机物进入分析仪器。   实验室分析方法的主要优势是结果准确,主要缺点是时效性差,采样和运输过程中易导致样品损失,影响测定的准确性和可靠性。   在线VOCs检测仪   VOCs在线分析仪主要有在线气相色谱仪、在线质谱仪、在线气质联用仪、在线PID和FID检测器、在线红外光谱仪、在线激光检测仪和在线差分光学吸收光谱仪等。   由于VOCs没有标准的检测方法,而且在线系统用于现场检测,而不同现场的挥发性有机物种类差异较大且相对稳定,故检测需求不同。因此需要根据自身的需求和各种检测仪器的特点选择合适的检测方法。   在线气相色谱仪可检测出已知挥发性有机物的浓度 在线质谱仪可同时实现挥发性有机物的定性和定量检测,但无法区分同分异构体 在线PID和FID检测器可得出VOCs的总量,且仪器体积较小 各种在线光谱仪检测范围宽,可适应各种工业场合应用。   在线VOCs检测仪主要的国内厂家有聚光科技、广州禾信、宝英科技、中科光电、富瞻环保、武汉天虹等,国外厂家有英国Markes、日本亚那科、奥地利IONICON、韩国KNR、德国AMA、法国Chromatotec、美国CerexMS等。   便携式VOCs仪器   便携式VOCs分析仪主要有便携式FID/PID检测器、便携红外分析仪、便携激光光谱仪、便携式气质联用仪等。   最新公布的环保部标准中便携式仪器提到了FID检测器、PID检测器和红外吸收检测器三种。   便携式VOCs检测仪主要的国内厂商有东西分析、崂应、富瞻环保等,国外厂商有美国Inficon、英国SIGNAL、美国雷格沃夫、美国华瑞、日本亚那科、英国科尔康等。     挥发性有机物是一种混合物,由于其定义未明确,因此监测需求也不明确。目前的主要检测方法是气相色谱法、质谱法和光谱法,环保部公布的行业标准中采用的是气质联用法。其中环境空气挥发性有机物(HJ644)标准中测定的是35种目标有机化合物,主要是烷烃、烯烃和苯系物,固定污染源废气挥发性有机物(HJ734)标准中测定的是24种目标有机化合物,主要是酮类、酯类、烯烃类和苯系物。
  • 血清有机磷快速液-质谱检测方法被验证
    有机磷农药中毒的死亡率很高,其重要原因之一是诊断不及时。日本学者Inoue等人研究验证了一种简单快速的新方法——液相色谱法-大气压电离子化-质谱测定法(LC-APCI-MS法),结果证实此方法可以有效测定进入人体血清中的10种有机磷酸盐浓度(J Phar Biomedl Anal 2007, 44: 258)。   “液液提取”或“固体萃取”方法是目前临床最常用的有机磷酸盐提取方法,但是对某些特殊成分的化合物如乙酰甲胺磷则无效。   Inoue等人采用即液相色谱-质谱联用测定法(LC-MS)研究出一种简单快速的方法用来测定急性中毒患者血清中的10种有机磷农药浓度[乙酰甲胺磷、杀扑磷、敌敌畏、倍硫磷、苯硫磷、敌匹硫磷、甲基乙酯磷(稻丰散)、马拉硫磷、杀螟硫磷、杀螟腈]。这10种有机磷农药在日本使用广泛。   具体操作程序如下:使用乙腈脱蛋白后,将每种需检测的生物标本注入一个XTerra MS C18不锈钢试剂盒中,采用10 mmol/L的甲酸铵-甲醇组成的溶剂进行梯度洗脱。   结果显示,回收提取率令人满意,绝对回收率为血清标本的82.2%~107.2%,相对回收率为60.0%~108.1%。血清的测定范围(LODs)为0.125~1.000 μg/ml,检测上限为0.25~1.25 μg/ml。从这种检测上限浓度逐渐增加到8 μg/ml时,可以观察到很好的直线相关性。在所有实验标本中,均值在期望浓度的20%范围内,而且相关系数(r2)0.9838。   大部分有机磷农药的分析结果显示样本内部和批间分析的精确度、准确度都是令人满意的。从对温度的稳定性角度,对所有有机磷酸盐分析可以发现,敌敌畏和马拉硫磷在室温下就可以最快溶解。杀扑磷和敌匹硫磷在整个为期4周的测定期内对所有温度都相对稳定。   该研究证实,将沉淀蛋白法作为样本的提纯程序,这种LC-MS方法快速可行,可以测定人体血清中的有机磷农药,并且在测定血清标本中有机磷农药时具备较高的选择性、敏感性、精确度、准确度、直线性、回归性和稳定性。因此这种简单准确的检测方法,可以成功地应用于临床急性有机磷农药中毒事件中。    用于血清有机磷检测的液相色谱-质谱联用设备
  • 三维荧光光谱检测水中的有机物
    三维荧光光谱检测水中的有机物前言目前水污染问题已经收到世界各国的关注,其中溶解有机物普遍存在于水体中,主要包括腐殖质,复杂的多糖,含氮有机物(如蛋白质)以及乙酸等简单有机物。因此对水体进行净化至关重要,而净化过程中对溶解有机物的追踪必不可少。荧光光谱技术灵敏度高,不破坏样品结构,选择性好,被广泛用于水体中溶解有机物的检测。日立荧光分光光度计F-7100具有超高灵敏度和最快的扫描速度,配备有荧光指纹测定系统,能够有效的监测水体净化过程。荧光指纹自动测定系统 图1 荧光指纹自动测定系统系统组成:①自动取样器 ②F-7100荧光分光光度计 使用荧光指纹自动测定系统,同时还可以选配高灵敏度流通池,EEM Assist程序,分析软件(solo)等,具有以下优点:ü 系统连接自动取样器,可轻松自动测量多个待测样品的荧光指纹。 测试时间:5 min/样品(200-600nm, 5nm间隔) 进样量:20 mL/样品(使用高灵敏度流通池时) 最多样品数量:56个ü F-7100的灵敏度是现有机型的1.5倍,同时标配使用寿命是现有机型5倍的氙灯。ü 通过自动滤光器附件可进行去除不需要的多次光的荧光指纹测定。ü 通过使用吸收流通池池架(定制品)也可自动进行吸收光谱测定。ü 将输出文件读取到分析软件Solo,进行PARAFAC分析。水质测定实验从自来水厂采集一个待测水源,经过薄膜经过孔径为 0.45μm 的 薄膜滤器过滤后 ,再进行实验。详细信息请查看:https://www.instrument.com.cn/netshow/sh102446/s912841.htm总结水中的溶解有机物大多数具有荧光性,通过荧光分光光度计可以对它们进行追踪从而判断水质的好坏。日立集团以“高科技解决方案创造价值”这一基本理念,开发的F-7100荧光分光光度计以其超高的灵敏度将极大优化水质监测过程。
  • 土壤有机物检测,可以如此简单
    导 语2016 年 5 月 31 日,国务院印发实施《土壤污染防治行动计划》(又称“土十条”),正式启动全国土壤详查工作。会议明确要求于 2020 年 10 月底前全面完成重点行业企业用地土壤污染状况初步采样调查工作,还将对土壤污染实施常态化的监测。针对土壤中的有机污染物检测,岛津公司与国家环境分析测试中心联合推出了土壤有机物解决方案,助力检测单位轻松打赢土壤污染详查攻坚战。我们的优势 国家环境分析测试中心长期从事土壤样品的分析检测,在土壤样品前处理和分析方面积累了丰富的经验。岛津公司的Smart 数据库具有独特的优势。岛津公司与国家环境分析测试中心强强联合、共同合作,推出以Smart 数据库为核心的土壤有机物检测解决方案。 解决方案的光盘内包括土壤分析方法的Smart 数据库、土壤方法包操作视频、样品分析前处理操作指导手册、仪器操作指南以及数据库应用文集。 岛津土壤有机物检测解决方案可以完美应对以下标准针对上述每一个标准,我们都建立了相应的文件夹。文件夹里包括对应标准的AART采集方法、Smart数据库以及操作指南。对于用户来说,操作起来是十分便捷的。下图是标准HJ 743-2015文件夹内容展示。 Smart数据库亮点: Smart数据库操作简便快捷,三步(选择目标化合物、加载正构烷烃文件、点击创建方法文件)即可完成方法建立,极大提升实验室的工作效率;即便你是实验室小白,在我们视频的引导下,你也可以轻松地创建分析方法; Smart数据库使用AART(保留时间自动调整功能)功能,即使没有标准品,也可以对待测样品中的化合物进行快速筛查; Smart数据库依据岛津公司和国家分析测试中心共建实验室多年有机物检测经验建立,优化了复杂基质检测参数,得到的峰型更好,精心筛选的定性定量离子可以避免杂质干扰,使得定量结果更准确。
  • 【恒美】土壤总有机碳检测仪:掌握有机碳,打造丰产田
    点击此处可了解更多产品详情:土壤总有机碳检测仪 土壤总有机碳检测仪对农业具有重要意义。该仪器可以通过测量土壤中的有机碳含量,评估土壤的肥力水平。这对于农民来说是一个重要的指标,因为它可以帮助他们了解土壤的状况,以便进行适当的施肥和耕地管理。 此外,土壤总有机碳检测仪还可以监测土壤的健康状况。如果土壤中的有机碳含量过低,可能会导致土壤质量下降,影响作物的生长。因此,通过定期检测土壤中的有机碳含量,农民可以采取必要的措施来保护土壤健康,并确保作物的生长。土壤总有机碳检测仪对农业具有重要的作用。它可以帮助农民了解土壤的状况,保护土壤健康,提高作物的产量和质量。 土壤总有机碳检测仪是一种用于检测土壤中有机碳含量的仪器。它通常是一个手持设备,可以通过分析土壤样品中的有机物质,来测量土壤中的总有机碳含量。 该仪器在农业中具有广泛的应用价值。通过测量土壤中的有机碳含量,农民可以了解土壤的肥力水平,并采取必要的措施来提高土壤质量。此外,仪器还可以帮助监测土壤的健康状况,并提前发现可能存在的土壤问题,土壤总有机碳检测仪是一个重要的工具,可以帮助农民更好地了解土壤的状况,保护土壤健康,提高农作物的产量和质量。
  • 赛默飞谈土壤有机物检测:关注时效性和检测方法稳定性
    随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在土壤污染物检测中,有机污染物种类众多、类型复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。  为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了“土壤有机物检测最新技术进展”专题,并邀请赛默飞公司市场部经理胡忠阳就土壤有机物检测技术相关的问题发表了自己的观点。  仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善?  胡忠阳:作为服务科学的世界领导者,我们始终在关注着环境检测市场动态,并不断更新我们的解决方案以满足不断变化的需求。   早在2016年5月,国务院发布“土壤污染防治行动计划”,正式拉开了土壤污染大决战序幕,充分掌握土壤污染状况被置为第一要务,我们就注意到监测市场需求将会大幅增长。很快在同年年底,当时的环保部公布全国土壤详查实验室筛选技术规定,明确了土壤详查计划的检测项目,以及对实验室应配备的仪器设备基本要求。关于《土壤环境质量标准》修订进程明显加快,我国《土壤环境质量标准》自1995年发布实施以来,在土壤环境保护工作中发挥了积极作用,但正如生态环境部土壤环境管理司有关负责人所说:“随着形势变化,该标准不适应农用地土壤污染风险管控的需要,也不适用于建设用地,已不能满足当前土壤环境管理的需要。”现行土壤质量标准实施自2018年8月1日,区别于原GB 15618-1995《土壤质量标准》发生了很大变化。  新标准立足于我国现阶段经济社会发展状况,充分考虑我国土壤环境的基本特征及土壤污染的特点,农用地标准检测指标增加了苯并芘检测项,建设用地检测指标增加到85项,充分考虑了我国土壤环境管理实际需求。颁布的两个土壤管理新标准,对农用地实施分类管理、保障农业生产环境安全;实施建设用地准入管理、防范人居环境风险,提供了重要的技术标准支撑,对我们土壤污染防治工作战略的具体细化具有重要意义。  正如一开始我们所提到的,环境威胁不断演变,污染治理也不可能一蹴而就。许多污染物已知是有害的,比如这次新标准中监控清单受到政府相关部门法律和法规的严格管控。对于环境中许多其他污染物并不在这个清单里,其对健康的影响尚未了解清楚, 或者在环境中的含量和暴露频率不明确,或者用于定量和表征的有效分析方法尚不可用,需要我们加快对它们的研究。这也预示着我国环境质量监测的合规标准和法律法规将持续更新、日趋严格。  仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势?  胡忠阳:从有机污染物检测的标准我们可以看到,涉及GC、GCMS、 HPLC、HRGC-HRMS等方法,涵盖VOCs, SVOCs, 有机农药、石油烃、多氯联苯、多溴联苯和二噁英等众多类型污染物。我们能提供全系列的色谱-质谱产品组合,全面满足标准要求。有一点需要强调,仅仅提供分析仪器本身是远远不够的,检测工作包括从样本前处理到数据的交付整个过程,我们很早就耕耘在这个领域,利用我们广泛的产品优势,率先于市场就提出了“土壤有机污染检测高效分析流”整体解决方案,兼顾效率和准确性,这是我们最为突出的优势,一站式解决方案和服务得到市场的广泛欢迎与认可。  除了整体的方案优势以外,涉及到流程中各个环节,也有其独特的优势, 下面做一个简要的介绍。  首先,样品前处理是整个分析流程中最繁琐、最花时间的步骤。根据LC-GC杂志对1000多个实验室进行的调查,在色谱分析过程中,实际仪器分析仅仅占6%的时间,而样品前处理所花费的时间则高达60%以上。很明显,样品前处理已经成为阻碍我们提高分析效率的瓶颈。因此,要提高分析效率,就必须解决样品前处理过程中标准化、自动化、高通量等问题。对此,我们充分整合优势提出萃取-净化-浓缩一体化高效方案,将 ASE系统含In-Cell净化和Rocket火箭蒸发器的结合,完全省去了手工样品转移步骤。这种结合对实验室产率的影响十分显著,可确保获得高准确度、高重复性的样品制备效果。比如,土壤和固体废物中的多氯联苯 (PCB)项目,我们使用加速溶剂萃取以及在线净化来萃取受污染土壤中的多氯联苯时,加标回收率和重现性都很好。使用在线净化选择性地消除干扰避免了耗时和昂贵的萃取后手动净化程序。使用加速溶剂萃取处理样品仅需 20 分钟并且只需 40mL 溶剂。Rocket 蒸发器不需要繁琐的氮吹浓缩,通过使用 Flip-Flop 系统,可以直接将样品浓缩到 GC 小瓶中,节省时间并降低实验室成本。EXTREVA™ ASE™ 加速溶剂萃取仪  在仪器分析这一块,赛默飞可以提供从气相色谱、单四极杆气质、三重四极杆气质以及高分辨气质综合解决方案。应对常规检测,提供可以满足环境法规中常见VOCs,SVOC等污染的解决方案,也可以提供环境中未知化合物筛查的解决方案,提高突发事件的定性能力,十分全面。在分析效率方面,提供超快速分析方法,6分钟分析土壤中的总石油烃,8分钟分析64种SVOC;另一方面不断开发针对多种VOCs,SVOC的一针分析多种化合物的方案,如一针进样40min分析环境中160余种SVOC,提高实验室分析效率。为了最大化方便操作者,我们将环境监测项目转化为eWorkflow方法包随机提供给客户,客户在实验室只需下载方法包即可一键快速建立合规方法,大幅缩短实验室方法开发的时间和重复投入。 ISQ 7610™单四极杆 GC-MS  另一个值得一提的是双三元液相色谱在土壤中多环芳烃检测中的应用,HJ 784-2015《土壤和沉积物多环芳烃的测定 液相色谱法》国标方法采用索式提取,后续还要转移依次进行过滤、浓缩、净化等繁琐的操作,不仅耗时而且还会消耗大量溶剂并存在样品损失和污染风险。我们创新性推出ASE-Online SPE-HPLC法测定土壤中的PAHs,简化了前处理步骤,减少了有机试剂与人的接触,重现性更好,是一个环境友好、自动化的全新方法,代表了仪器分析方法的未来发展方向并受到市场的认可。其原理是利用DGLC双梯度液相双泵设计,可以同时单独控制三种不同的流动相来进行复杂的样品分析。双三元梯度系统具有独特的阀切换系统,柱温箱部分放置的两个切换阀可以通过变色龙软件的控制在设定的时间进行阀切换,从而实现流动相流路和色谱柱连接的不同组合切换。该方法就是在DGLC上轻松实现在线样品净化SPE-LC用于全自动样品制备和分析的。赛默飞 Vanquish™ UHPLC超高效液相色谱系统  二噁英项目近年来越来越受到关注,也为土壤质量标准所收录,相应的HJ 77-4作为方法标准成为监管的有力技术支撑,方法中使用的高分辨磁式质谱仪DFS代表了二噁英分析的黄金标准,DFS GC-HRMS 在世界范围内完全遵循任何官方 Dioxin、PCB 或 PBDE 方法(如 EPA 1613、1668、1614)。通过大体积离子传输, 将 Dioxin 的灵敏度和稳健性发挥到极致。赛默飞关于二噁英检测方案不仅于此,同时也提供配套的自动、高效的完整样品前处理解决方案,包括快速溶剂萃取(ASE)、全自动净化设备、和快速溶剂浓缩设备Rocket Evaporator。在土壤二噁英分析领域,赛默飞所提供的不单是仪器,而是全流程的解决方案。赛默飞DFS高分辨率磁式气质联用仪  仪器信息网:当前土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪?  胡忠阳:新的建设用地采用土壤污染风险管控标准,基本项目45项,其它项目即选测项目表中有40项,大部分是有机污染物项目。检测项目数量猛增,土壤调查或普查等涉及的样品量也是很大的,土壤样品尤其有机项目检测对时效性的要求也更为严苛,加上其复杂的基体干扰,这些对检测工作者来说是不小的挑战。我们和一线检测人员也常有沟通,以下几点值得我们特别重视:一个是实验室分析整个工作流程中的效率问题,不仅仅是标准所推荐的仪器方法,这其中包括从样品前处理到数据结果的处理整体的提升,其中任何一个短板都会对整体方案形成瓶颈;一个是检测方法的稳定性、灵敏度和抗基质干扰,对仪器设备和操作人员的水平也提出了更高的要求,面对如此庞大的样品量,如何降低这些因素的风险是我们要特别关注的;如上面提到的众多有机污染物类型,需要不同的前处理和检测方法,复杂程度不一,建设一个完备的土壤检测实验室需要从整体的视角来把控,值得管理人员和方案提供者共同思考。  仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案?  胡忠阳:正如我上面提到的对于最新土壤标准,我们可以提供所有目标污染物检测方案,在这里不仅仅是一个孤立的仪器方法,还包括了从样品到结果交付的整个过程的解决方案,而且以一个方法包的形式提供给使用者,这些也可以在我们的《土壤污染物分析解决方案》中作进一步了解。总之,客户无论是扩项需求还是要新建一个土壤检测实验室,都可以从赛默飞得到最佳和最全面的解决方案。  在世界各地,环境威胁不断演变,合规标准和各项法规也随之改变。从样品输入到数据输出,赛默飞能提供最全面的色谱、质谱和光谱仪器。各种仪器、软件、应用、色谱柱和耗材完美组合,我们的环境分析技术组合不仅设计用于满足当前法规要求,也同样适用于未来的需求,能够提供可靠而精准的结果。所有这一切,均旨在让世界更洁净、公众更健康。
  • 土壤中有机氯检测的方法验证
    土壤中有机氯检测的方法验证有机氯类农药是含氯元素的有机化合物,曾广泛用于防治植物病、虫害等,主要分为以苯为原料和以环戊二烯为原料的两大类。其化学性质稳定、难分解、易残留,持续破坏着生态环境,且其生物毒性和致癌性,严重影响人类健康,现已逐渐禁止或减少使用。本应用根据环境标准 HJ 783-2016、HJ 921-2017 等,将样品利用步琦一站式土壤分析方案的萃取仪、定量浓缩仪处理后,进行 GC 分析以检测有机氯化合物里 8 组分的回收率,整个流程在 1 小时内完成,同时一次平行萃取 6 个样品,考察更具代表性和严谨性,大大提高了工作效率,也优化了传统费时的样品处理和繁琐的操作流程。1设备快速溶剂萃取 SpeedExtractor E-916定量浓缩仪 Syncore R-12+回流模块GC Agilent 7890A+7693 Autosampler▲ 快速溶剂萃取仪 E-9162药品及耗材有机氯标准品(100 g/mL)质控土(西格玛)硅藻土:粒径 30-40 目石英砂:粒径 25-50 目丙酮:农残级正己烷:农残级3实验方法1、步琦样品管尾管定容准确度考察为了考察样品管定容的准确性,将样品溶液分别用 1mL 尾管和 1mL 容量瓶定容,并进行含量测定。2、快速溶剂萃取仪回收率考察先进行萃取池样品装填:石英砂-硅藻土-样品-石英砂,基质平面与池子顶端预留 1cm 左右的空隙。然后将萃取池立即放入已预热好的仪器中,开始萃取。萃取方法如下:表1:快速溶剂萃取仪 E-916 萃取参数萃取温度100 ℃压力100 bar萃取池40 mL接收瓶150 mL溶剂丙酮/正己烷:50%/50%循环2预热默认保持10/10 min排液2 /2min溶剂冲刷2 min气体冲刷2 min3、定量浓缩仪 Syncore R-12 回收率考察在 60mL 的丙酮-正己烷(1:1)溶液中加入有机氯的标准溶液10μL,用定量浓缩仪 R-12 进行浓缩,并用正己烷置换溶液两次,每次约 2mL。在第 2 次置换后将溶液浓缩至 1mL 左右后,用正己烷定容到 1mL,待上机分析检测。▲ 定量浓缩仪 Syncore R-124、质控土样的实验考察考察两个质控土样的情况,分别将土样装填进萃取池后,用 E-916 进行萃取,带尾管的 150mL 样品管接收好萃取液后,直接转移至 R-12 中进行浓缩,并经两次溶剂置换,浓缩至约 1mL,定容待测。4实验结果1、尾管定容实验结果样品管定容 1mL 和容量定容的结果比较如表 2。表2:尾管定容测试结果_容量瓶定容含量样品管定容含量α-666190.60190.46β-666186.56186.83γ-666192.36192.33δ-666184.80185.67p,p'-DDE205.90206.14p,p'-DDD216.10216.39o,p -DDT213.37213.83p,p'-DDT203.53203.31由上表可知,由步琦样品管定容分析的数据与容量瓶定容基本无差别,说明直接用样品管定容的方法可行,且避免了转移定容时造成的样品损失。2、快速溶剂萃取仪实验结果考察平行萃取的平行性和回收率。结果见下表:表3:土壤中有机氯的测定结果回收率12345α-66696.6%99.0%98.8%99.4%98.6%β-666102.9%105.3%105.2%106.2%105.9%γ-66697.9%100.0%100.0%100.6%99.8%δ-66695.1%96.5%94.6%95.9%90.5%p,p'-DDE100.9%104.0%103.7%105.3%104.6%p,p'-DDD105.5%108.8%108.7%110.0%109.0%o,p -DDT94.1%92.7%93.9%92.8% 93.7%p,p'-DDT95.6%93.6%95.8%94.4%94.3%由表 3 可知,5 个平行样的每个组分回收率均在允许的 RSD 范围内。且回收率均在 90% 以上,说明快速溶剂萃取的精密度符合要求、萃取方法合理。3、定量浓缩仪定量浓缩实验结果平行处理 6 个样品,考察定量浓缩的结果稳定性和准确性,结果如表 4。表4:土壤中有机氯的测定结果回收率123456α-66689.6%94.3%88.4%93.4%98.5%94.5%β-66692.9%97.9%97.0%102.8%97.5%101.4%γ-66688.9%93.5%91.0%96.9%96.2%97.3%δ-66692.1%96.7%96.8%103.0%95.9%100.2%p,p'-DDE93.6%98.0%97.3%102.9%97.1%101.0%p,p'-DDD90.5%94.6%95.0%100.4%94.6%97.2%o,p -DDT98.8%104.8%104.7%110.9% 104.0%108.6%p,p'-DDT101.0%107.7%106.9%114.4%106.2%112.0%有上表可知,低沸点组分的 666 回收率可以达到 90% 及以上,且 6 个数据平行性也在合理范围内,说明步琦定量浓缩仪配上回流模块能提高样品回收率和数据稳定性。4、质控土实验结果选取 2 个批次质控土进行全流程考察验证,得到结果下表:表5:质控土的测定结果_ZK1 测量值范围ZK2 测量值范围α-666170.3398-228196.18120-387β-666186.499-231208.04120-386γ-666182.0699-232200.88120-387δ-666182.1699-231204.44120-387p,p'-DDE116.5364-149163.9596-310p,p'-DDD113.8764-149155.3696-309o,p -DDT108.1963-147150.396-310p,p'-DDT88.0964-149133.0696-309有表 5 可知,两个质控土的含量均在质控范围内,说明整个萃取-浓缩方法可行。可顺利进行后续样品的检测分析。5结论本方法使用快速溶剂萃取仪 E-916,利用高温高压的萃取原理,获得的实验结果符合要求,同时一次平行萃取 6 个,约 30min 完成一批,大大提高了萃取效率,简化了样品前处理的等待时间,增加样品通量。同时萃取液接收瓶可以无缝转移至定量浓缩仪上进行溶剂浓缩定容,减少样品转移造成的损失,确保了有机物的高回收率和结果稳定性。6参考文献HJ 783-2016 土壤和沉积物有机物的提取加压流体萃取法。HJ 921-2017 土壤和沉积物有机氯农药的测定气相色谱法。SpeedExtractor E-916 Operation Manual.Syncore Platform Operation Manual.
  • 水质检测-水体中有机物质分析方法
    水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。 水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。 一、化学需氧量(COD) 化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。 对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。 (一)重铬酸钾法(CODcI) 在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下: 测定过程见图2&mdash 35。 水样20mL(原样或经稀释)于锥形瓶中 &darr &larr H8S0&lsquo 0.48(消除口&mdash 干扰) 混匀 &larr 0.25m01/L(1/6K2Cr20?)100mL &darr &larr 沸石数粒 混匀,接上回流装置 &darr &larr 自冷凝管上口加入A82S04&mdash H2S0&lsquo 溶液30mL(催化剂) 混匀 &darr 回流加热2h &darr 冷却 &darr &larr 自冷凝管上口加入80mL水于反应液中 取下锥形瓶 &darr &larr 加试铁灵指示剂3摘 用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。 图2&mdash 35 CoDcr测定过程 重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。 测定结果按下式计算: 式中:V。&mdash &mdash 滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5&mdash Vl&mdash &mdash 滴定水样消耗硫酸亚铁铵标准溶液体积(mL); V&mdash &mdash 水样体积(mL); &lsquo c&mdash &mdash 硫酸亚铁铵标准溶液浓度(m01儿)t3 8&mdash &mdash 氧(1/20)的摩尔质量(8/m01)。 用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5&mdash 50m8/L的COD值,但准确度较差。 (二)恒电流库仑滴定法 恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为: 式中:W&mdash &mdash 电极反应物的质量(8); I&mdash &mdash 电解电流(A); t&mdash &mdash 电解时间(s); 96500&mdash &mdash 法拉第常数(C); M&mdash &mdash 电极反应物的摩尔质量(8); n&mdash &mdash 每克分子反应物的电子转移数。 库仑式COD测定仪的工作原理示于图2&mdash 36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管 内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。 使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe&rdquo 在工作阴极上还原为Fe&rdquo (滴定剂)去滴定(还原)CrzOv2&mdash 。库仑滴定空白溶液中CrzOv&rdquo 得到的结果为加入重铬酸钾的总氧化量(以O 2 计);库仑滴定样品溶液中CrzO v&rdquo 得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为&lsquo o,后者需&lsquo ,则据法拉第电解定律可得: 式中:1r&mdash &mdash 被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数; I=&mdash 电解电流; M&mdash &mdash 氧的分子量(32); n&mdash &mdash 氧的得失电子数(4); 96500&mdash &mdash 法拉第常数。 设水样coD值为c5(mg儿);水样体积为v(mL),则1y· c2,代入上式,经整理后得: 本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI&lsquo o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。 二、高锰酸盐指数, 以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。 按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。 酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2&mdash 37所示。 取水样100mL(原样或经稀释)于锥形瓶中 &darr &larr (1十3)H:SO&lsquo 5mL &lsquo 混匀 &darr &larr o.olmoI儿高锰玻钾标液(十KMn04)10.omL 沸水浴30min &darr &larr o.olo omot儿草酸钠标液(专Nasc20&lsquo )lo.oomL 退色 &lsquo &darr &larr o.01m01儿高锗酸钾标液回滴 终点微红色 : 图2&mdash 37 高锗酸盐指数测定过程 测定结果按下式计算: 1.水样不经稀释 高锰酸盐指数 式中:Vl&mdash &mdash 滴定水样消耗高锰酸钾标液量(mL); K&mdash &mdash 校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数); M&mdash &mdash 草酸钠标液(1/.2Na2C20d)浓度(nt01从); 8&mdash &mdash 氧(1/20)的摩尔质量(8/m01); 100&mdash &mdash 取水样体积(mL)。 2.水样经稀释 高锰酸盐指数 式中2V。&mdash &mdash 空白试验中高锰酸钾标液消耗量(mL) Vz&mdash &mdash 分取水样体积(mL); f&mdash &mdash 稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l 其他项同水样不经稀释计算式。 化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。 三、生化需氧量(BOD) 生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。 有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5&mdash 7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。 BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。 (一)五天培养法(20℃) 也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。 对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 1.稀释水 对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。 稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2&mdash 8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。 高锰酸盐指数 (mg/L) 系 数 < 5 5 &mdash 10 10 &mdash 20 > 20 0 . 2 、 0 . 3 0 . 4 、 0 . 6 0 . 5 、 0 . 7 、 1 . 0 如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1&mdash 10mL,或表层土壤浸出液20&mdash 30mL,或河水、湖水10&mdash 100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180&mdash 230m8儿之间,否则,应检查原因,予以纠正。 2.水样稀释倍数 水样稀释倍数应根据实践经验进行估算。表2&mdash 13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2&mdash 13 由高锰酸盐指数估算稀释倍数乘以的系数 3.测定结果计算 对不经稀释直接培养的水样: 式中Icl&mdash &mdash 水样在培养前溶解氧的浓度(m8儿); &lsquo :&mdash &mdash 水样经5天培养后,剩余溶解氧浓度(m8儿)。 对稀释后培养的水样: 式中:Bl&mdash &mdash 稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿); Bz&mdash &mdash 稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿); f1&mdash &mdash 稀释水(或接种稀释水)在培养液中所占比例; f2&mdash &mdash 水样在培养液中所占比例。 水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1&mdash 2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。 本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。 (二)其他方法 1.检压库仑式BOD测定仪 检压库仑式肋D测定仪的原理示于图2&mdash 38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。 根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。 2.测压法 在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖&mdash 谷氨酸溶液的BOD值和相应的压差作关系 曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。 3.微生物电极法 微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2&mdash 39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。 微生物膜电极BOD测定仪的工作原理示于图2&mdash 40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag&mdash A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A&mdash D转换电路,改A&mdash V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的&rsquo BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。 四、总有机碳(TOC) 总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。 目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳 (TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:&lsquo 依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2&mdash 41。该方法最低检出浓度为o.5mg/I。 五、总需氧量(TOD) 总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。 用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。 TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02&hellip 所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1&mdash 0,6;CoD/TOD=0.5&mdash 0.9,具体比值取决于废水的性质。 TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。 六、挥发酚类 根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。 酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。 酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。 酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4&mdash 氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。 (一)4&mdash 氨基安替比林分光光度法 酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4&mdash 氨基安替比林(4&mdash AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下: 显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4&mdash 氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4&mdash 氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4&mdash 氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4&mdash 氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。 用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。 (二)溴化滴定法 在含过量
  • 符合USP 661的总有机碳TOC检测
    简介和挑战制药行业严重依赖于塑料包装材料,以将产品推向市场。药品的包装材料包括瓶子、一次性使用的袋子(例如静脉输液、血液或其组分的输液袋)、预充式注射器等,包装材料中可能含有多种成分(各种聚合物和添加剂)。必须证明这些包装材料(及其结构材料)不会与药品发生反应,从而影响药品的适用性。2016 年,USP 章经过修订,适用范围更加全面,能够用于验证各种包装材料和包含多种材料的包装系统。USP的总有机碳(TOC)法规USP要求对纯化水(Purified Water,PW)和注射用水(Water for Injection,WFI)进行TOC检测,USP 章对此有完整的说明。纯化水和注射用水的TOC限值设定为0.5 ppm。2016年5月1日,USP 总章有了重大修订,此章标题重定为“ 塑料包装系统及其结构材料(PLASTIC PACKAGING SYSTEMS AND THEIR MATERIALS OF CONSTRUCTION)”。另外,总章的2个分节为:塑料结构材料(Plastic Materials of Construction)制药用塑料包装系统(Plastic Packaging Systems for Pharmaceutical Use)法规除了描述材料和系统之外,还提出了更广泛的检测方法和技术,其中包括TOC检测。如上所述,这是为了使用户了解包装系统和包装本身所使用的材料。因此,修订的法规对行业运营产生了深远影响,目前适用于:成品药制造商塑料袋、瓶、输液器具等的制造商包装药品的监管批准者负有达到本法规要求的主要职责。USP 分节有两个分节:01塑料结构材料。本节旨在确保各种材料符合适用性。本节专用于各种塑料材料。02药品用塑料包装系统。本节旨在确保含有一种或多种材料的整个包装系统符合适用性。661的预期评估材料筛选评估可能的可萃取物和潜在的可浸出物的成分。控制条件下的萃取研究进行最坏情况的受控的萃取(模拟)研究,确定萃取物变成可能的可浸出物的程度。产品评估对于将要推向市场的包装/输送系统中的药品,对已确认的可浸出物进行实际测量。661的TOC限值USP适用于TOC 规格* 各种塑料材料≤ 5 ppm塑料包装系统≤ 8 ppm*TOC规格是差值,要求空白校正满足USP 法规的其他TOC要求进行的TOC分析:应有0.2 ppm检测限应有0.2-20 ppm线性动态范围Sievers® M9 TOC分析仪与满足USP 的要求Sievers M9总有机碳(TOC)分析仪提供良好的可靠性和快速分析性能,此优越性已经过时间的检验。分析仪能够将TOC结果的报告时间缩短50%,从而提高了生产效率。Sievers TOC分析仪能够帮助在严格监管的环境下运营的企业达标,仪器的性能超过了法规和分析要求。分析仪的线性范围广,对超纯水样品的低浓度具有高灵敏度,对清洁验证样品的高浓度检测能力也很强。M9分析仪的线性范围为0.03 ppb-50 ppm,有效地达到了USP 对检测限和动态线性范围的要求。所有的Sievers TOC分析仪都符合纯化水和注射用水的USP 要求。为了支持分析仪和USP 合规性,我们提供NIST可追溯标准品和ISO 17034与ISO/IEC 17025的认证标准品:准确度/精确度标准品组,8 ppm(STD 770131)准确度/精确度标准品组,5 ppm(STD 99011)USP线性标准品组(STD 99012)如有要求,我们还提供线性协议和电子表格以供参考。上述标准品,结合Sievers的故障调查分析报告(Failure Analysis Report,FAR),提供了可追溯性和快速“不合规(Out of Specification,OOS)”调查。M9分析仪有实验室型和便携式两种,便于使用。分析仪符合USP 、USP 、USP、USP 、21 CFR Part 11等法规要求,包括国际同类标准要求。◆ ◆ ◆联系我们,了解更多!
  • 容广有机物在线检测系统 通过环境监测仪器质量监督检验中心认证检测
    RG-PAMS 环境空气挥发性有机物在线监测系统通过环境保护部环境监测仪器质量监督检验中心认证检测产品概述: RG-PAMS (57种)环境空气挥发性有机物在线监测系统采用仪器内抽样泵负压采样,环境样品经过大气采样总管和预处理单元,进入到气相色谱仪中,通过气相色谱(FID法)技术, 对环境中57种臭氧前体物含量分别进行在线监测。系统组成:RG-PAMS 环境空气挥发性有机物在线监测系统由大气采样总管、预处理系统、带浓缩功能气相色谱仪、在线空气发生器、在线氢气发生器、零级空气净化器、工控机等组成。产品特点:♦全自动采样结构设计,可实现连续监测功能。♦ 多种通讯控制接口(4~20mA、RS485、RS232、LAN)。♦ 安装简单,具有良好的抗干扰能力。♦ 专业系统软件,功能强大。♦ 可直观动态显示各种监测数据及趋势图,可生成各种报表。♦ 采用电子流量控制(EPC)、质量流量控制器(MFC)进行流量控制,确保流量稳定性。技术指标:57种挥发性有机物组分表:典型图谱:典型图谱:产品预览:
  • 中国水周——岛津推出《地下水有机物检测数据库》
    2022年3月22日是第三十届“世界水日”, 2022年“世界水日”主题为珍惜地下水,珍视隐藏的资源。水利部办公厅印发通知,我国2022年“世界水日”“中国水周”活动主题为“推进地下水超采综合治理复苏河湖生态环境”。 地下水资源是我国重要的水资源,为了加强地下水管理,防治地下水超采和污染,保障地下水质量和可持续利用。2018年5月1日《地下水质量标准》(GB/T 14848-2017)正式执行,2021年12月1日《地下水管理条例》正式实施。 《地下水质量标准》(GB/T 14848-2017)地下水指标由之前的93版的39项增加到93项,增加了57项指标,其中有机指标增加了47项。从质量标准可以看出,重视控制地下水的有机污染物,并且地下水中有机污染物的浓度水平低,配置设备应该注意有足够的灵敏度。 为了更好应对《地下水质量标准》(GB/T 14848-2017),岛津与河北省水环境监测实验中心合作开发针对有机物检测数据库方法包,有机物数据库方法包涵盖有机物检测的分类、采样贮存的方法与注意事项,优化的检测方法以及仪器操作说明等,为地下水有机物检测提供完善的解决方案,助力地下水有机物的监测。 光盘封面 有机物检测应用介绍 01多环芳烃、多氯联苯、硝基苯02有机氯农药03草甘膦和氨甲基磷酸04克百威,2,4-D,莠去津,涕灭威丰富全面的产品线涵盖分析检测项目本文内容非商业广告,仅供专业人士参考。
  • 有机质谱检测技术培训班成功举办
    根据检测工作的要求,由农业部蔬菜品质监督检验测试中心(北京)和农业部农业部环境质量监督检验测试中心(天津)联合主办,于2008年7月27日至31日在长春举办&ldquo 有机质谱检测技术培训班&rdquo 。 我公司很荣幸参加了此次会议,与会期间向参会人员介绍了公司的主打产品,美国J2公司的样品前处理平台,以及公司最近研发成功的浓缩系统,被很多专家给予好评和深切关注。
  • 重金属和有机污染物检测一周缩至半天
    南方日报讯 重金属和有机污染物检测由一周缩到半天,将大大提高突发性水污染应对速度。记者昨日从佛山水业集团获悉,长达两年的北江水污染防治课题研究通过专家组评审,该研发结果拟在国内其他水厂推广。   2009年6月佛山水业集团与中山大学合作,开展长达两年的课题研究,针对北江流域实际情况,从各类水源污染物着手,探讨各类的化学污染物的现代快速监测分析方法,为应对突发性水污染,建立快速预警和应急反应体系提供技术支持。该项目负责人佛山水业集团水质监测中心主任黄剑明介绍,本课题研究立足于北江流域水资源及相关污染的一些特征,建立以GC-MS、ICP-MS和LC-MS为主的有机物、无机金属快速全面准确的监测分析方法集成 建立5套快速广谱检测水中金属、挥发性有机物、半挥发性有机物及有机氯有机磷农药的检测方法。   “利用这项目技术,可以对超过200种重金属和有机污染物进行快速检测,检测种类覆盖国家相关饮用水和地表水标准中规定的重金属和有机污染物,检测时间由常规检测方法的一周缩短到半天。”黄剑明表示,这意味着一旦发生水质污染事故,可实现快速鉴别引起事故发生的污染物质类别是否在目标物内、估算污染物的浓度、快速监控污染物的种类和浓度变化,为突发污染事故的处理与处置提供了有力的技术支持。
  • 重大仪器项目“水中有机物监测仪” 30分钟检24种有机物
    p   11月10日电,如果河流突发环境事故,使用一种新型便携式检测仪器,可以在30分钟内,检测出水体中“隐藏”的各种有机物,为快速安全处置提供依据。据武汉市环保科技部门获悉,这种填补国内空白、国际领先的仪器正在武汉研制,目前研发工作已全面启动,预计于2020年实现量产。 /p p   近年来,河流等水体的环境事故频发,如松花江的硝基苯、长治的苯胺、新安江的苯酚等污染事故,已严重威胁水体安全。据专家介绍,这类有机物在环境中较挥发性有机物(如苯、甲醛)更难降解,存在时间更长,吸附在颗粒物上容易被人体吸入,被称为半挥发性有机物(SVOCs)。它们种类众多,超过50种,主要来源于水源周边的一些有机排放物,如塑料、杀虫剂、燃烧产物、材料助剂(增塑剂、阻燃剂)等。SVOCs在水中含量极低,国家的检出标准多在0.01毫克/升左右,相当于在一个游泳池中滴入一滴墨水。 而这种“隐形污染物”的生理毒理却十分显著,如果长期接触,将严重危害人体健康。 /p p   要捕捉到水中的“隐形污染物”非常困难。目前,我国只能采用实验室检测方法,从提取水样到实验室化验,往往需要3、4天才能检测出结果。国际上目前也没有快速、全面的检测仪器。 /p p   为此,国家环保部门将“水中半挥发性有机物自动监测仪器”列为重大科学仪器开发项目。经过专家组的论证、评选,武汉境辉环保科技有限公司联合中国环境监测总站、中国科学院大连化学物理研究所等单位“夺标”,共同自主研发。据悉,该企业曾先后自主研发50余项水质自动监测仪器。 /p p   目前,整个研发工作已全面启动。按照计划,研制组将采用多项国际前沿技术构建一套全新的检测设备。预计于2020年实现量产。该产品将首次实现水中SVOCs现场在线、快速检测,可在30分钟内一次检测出24种“隐形污染物”, 犹如一枚“照妖镜”让水中隐形污染物显形、被抓。业内人士称,此产品可弥补传统处理方法费时、费力、溶剂用量大等不足,能更好地分离、检测水中有机物,大大提升应对水体突发环境事故和日常监测水质的能力。 /p
  • 睿科:提升土壤有机物检测效率 需从样品前处理着手
    p   随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在众多的土壤污染物中,有机化合物由于品种多、化学结构和性质各不相同、待测组分复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。 /p p   为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了“土壤有机物检测最新技术进展”专题,并邀请睿科集团应用工程师叶维鹏就土壤有机物检测技术相关的问题发表了自己的观点。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/19b9a10e-0b03-4ca6-ad4d-68fff2857acf.jpg" title=" 睿科1.jpg" alt=" 睿科1.jpg" / /p p /p p style=" text-align: center " strong 叶维鹏 睿科仪器应用工程师 /strong /p p   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善? /strong /span /p p    strong 叶维鹏: /strong 土壤中的污染物检测不像人们的想象那样简单,存在很多复杂的有机污染物,甚至有许多无法解释的东西,给相关的检测部门带来了相当大的难度。总体而言,有机物和重金属是土壤污染的最主要来源,为保证土壤有机物检测有标准可依,国家相关部门定期地对现有的土壤有机污染物进行编制,目前现行的土壤有机物污染物检测标准几乎能满足绝大多数的检测要求,但某些标准还未细致划分到每种物质,以致于有些有机污染物无法参照相应的标准,比如没有明确的苯胺类气质标准,目前已经发布的有《土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》征求稿。 /p p   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:在目前的土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪? /strong /span /p p    strong 叶维鹏: /strong 目前我们比较关注的是苯胺类化合物、有机氯农药以及半挥发性有机物的检测,难点主要还是在于前处理(萃取、浓缩、净化)。比如低沸点目标化合物的回收率相对较低,必须控制好氮吹或旋转蒸发过程中的浓缩温度;酚类目标化合物则主要看仪器灵敏度,因为仪器的灵敏度决定最低检出限;邻苯二甲酸酯类目标化合物需尽可能避免用到塑化剂前处理设备,做空白基底扣除,否则做出来回收率相对较高,有可能偏离标准;极性相对大沸点相对较高目标化合物可选择二氯甲烷和丙酮(1:1)取代正己烷和丙酮进行萃取,效果明显。 /p p    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势? /strong /span /p p    strong 叶维鹏: /strong 我们可提供多种土壤有机物检测前处理组合、提取设备,例如HPFE高通量加压流体萃取仪+浓缩设备、MPE高通量真空平行浓缩仪+净化设备、Fotector plus高通量全自动固相萃取仪等。其中HPFE高通量加压流体萃取仪一次可运行6个样品(30分钟),按照正常工作时间8个小时来计算,日处理最多可达96个样品。而且HPFE的收集瓶可兼容MPE,可直接将萃取后的收集液转移至MPE ,一次可处理16个大体积120mL的收集液或36个小体积40mL的收集液,浓缩时间30分钟左右,大大提高浓缩效率,再将预浓缩后的样品转移至Fotector plus 进行净化,一次可同时运行6个样品,可批量处理60个样品,解放人工手动净化,整个实验只需将架子转移,无需其他手动操作,避免目标化合物的损失。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/7ab83486-b71e-4b06-a804-8feffea67c4f.jpg" title=" 睿科2.jpg" alt=" 睿科2.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p /p p style=" text-align: center " strong 图一、睿科HPFE高通量加压流体萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 376px " src=" https://img1.17img.cn/17img/images/201909/uepic/fa430f98-ead0-458e-91fe-8f40ca18dd7e.jpg" title=" 睿科3.jpg" alt=" 睿科3.jpg" width=" 500" height=" 376" border=" 0" vspace=" 0" / /strong /p p /p p style=" text-align: center " strong 图二、睿科Fotector plus高通量全自动固相萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/1f9ba127-13d1-454e-8942-bf28240697e9.jpg" title=" 睿科4.jpg" alt=" 睿科4.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /strong /p p /p p style=" text-align: center " strong 图三、睿科MPE高通量真空平行浓缩仪 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案? /strong /span /p p    strong 叶维鹏: /strong 我们可提供土壤和沉积物以及固体废物等相关应用解决方案,符合标准如下: /p p   1& nbsp & nbsp 固体废物 半挥发性有机物的测定 气相色谱-质谱法(HJ 951-2018) /p p   2& nbsp & nbsp 固体废物 多环芳烃的测定 高效液相色谱法(HJ 892-2017) /p p   3& nbsp & nbsp 固体废物 多环芳烃的测定 气相色谱-质谱法(HJ 950-2018) /p p   4& nbsp & nbsp 固体废物 多氯联苯的测定 气相色谱-质谱法(HJ 891-2017) /p p   5& nbsp & nbsp 固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017) /p p   6 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017) /p p   7 土壤和沉积物 多氯联苯的测定 气相色谱法(HJ 922-2017) /p p   8 土壤和沉积物 多氯联苯混合物的测定 气相色谱法(HJ 890-2017) /p p   9 土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017) /p p   10 土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017) /p p   11 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法(HJ1021-2019 /p p   12 GB5085.3-2007《危险废物鉴别标准 浸出毒性鉴别》 /p p   正如以上所言,土壤有机物检测工作的难点在于样品前处理,耗时、耗力、且容易产生操作误差,有资料表明有60%的分析误差产生于样品前处理,而不是最后的分析过程。如何快速、高效且准确地完成样品前处理,是土壤有机物检测工作中亟待解决的问题。睿科集团作为自动化样品前处理解决方案领先供应商,通过多种高通量、自动化样品前处理设备组合,为土壤有机物检测,如多环芳烃、有机氯、半挥发性有机物、多氯联苯、石油烃等,提供从提取、预浓缩、净化再到富集浓缩的全套土壤样品前处理自动化、批量化应用解决方案。 /p p br/ /p
  • 艾威仪器注射用水的总有机碳TOC检测讲座
    ——全新应对2010年版《中国药典》   尊敬的先生/女士,您好!   2010年版《中国药典》,日前已经由中国医药科技出版社出版发行,将于2010年7月1日正式实施。   《中国药典》二部的“注射用水”项目下,新增“总有机碳”检测项目。而美国、欧洲和日本在更早的时候已经提出这个要求。我们将在讲座中,详细讲解并演示制药用水的总有机碳检测方法。并且就美国、欧洲、日本及中国药典对制药用水的总有机碳的相同点及差异。   美国通用电气分析仪器有限公司 自1997年起,就致力于与中国国家药典委员会合作,开展总有机碳测定方法的研究与应用活动。并参与推动了日本药局方收载总有机碳测定方   法的工作。2004年,应中国国家药典委员会邀请,在“首届中美药典论坛”上,进行了有关“总有机碳测定方法在制药行业的应用”的专题报告。   2007年6月, GE在中国药品生物制品检定所,与中国药品生物制品检定所首次携手举办的本专题讲座,反响很好。   2007年12月,GE在北京东长安饭店,与中国药品生物制品检定所再次携手成功的第二次举办了本专题讲座。   2008年5月,GE 在北京市药品检验所,与北京市药品检验所携手成功的第三次举办的本专题讲座。   2009年6月,GE 与广州药学会、艾威仪器公司携手成功的第四次举办的本专题讲座。   同时,考虑到新版的cGMP要求,在国内制药行业,清洁验证已经越来越被高度重视!   使用HPLC进行清洁验证的药厂,有收到过FDA的483警告信的多个先例,理由是HPLC验证了特定物质的残留,但是往往无法为清洁剂等多种物质的残留,提供有效的验证。无论是为了通过FDA、COS等国际认证,还是为了使用有限的制药设备生产更多品种的需要,清洁验证已显露出日益重要的意义。GE 愿意与大家分享已有的技术和经验。   目前在国内,对于应用总有机碳(TOC)分析仪进行清洁验证的兴趣越来越浓 一流的制药、生物科技厂家目前都配有 TOC 分析仪以符合 USP或EP 的水检测要求,保证纯化水和注射水可用于清洁、生产过程。值此2010年新版《中国药典》发布之时,我们组织此次交流,是希望大家能借此机会对有关TOC的法规和应用有一个全面了解,并在日后工作中有所指导和帮助。   应艾威仪器之邀,2010年3月25日,GE 将在海口鑫源温泉大酒店,再次举办本专题讲座。   本次讲座的内容安排:   一、全新应对2010版《中国药典》— 新增注射用水的总有机碳TOC检测项目   二、USP、EP、IP、JP及ChP对制药用水的TOC和电导率检测的规范和要求   三、应用总有机碳TOC方法进行清洁验证   四、总有机碳分析仪的现场演示   美国通用电气(中国)有限公司分析仪器部与华南地区总代理艾威仪器科技有限公司诚挚邀请您参加“注射用水的总有机碳TOC检测及清洁验证专题讲座”技术讲座!   会议时间:2010年3月25日 9:00—16:00   会议地点:海南鑫源温泉大酒店(海口市海秀东路18-8号)   四楼 五号会议室   免收听课费用 中午提供免费工作午餐 交通住宿自理。   参加者请务必传真、邮件或短信确认,先确认先确保座位,额满为止。   报名电话:020-87688215, 传真:020-87688280   电子信箱: info@evertechcn.com 联系人:曹小姐   参加人员确认回执:   姓名 _______________________   职务 _______________________   公司 _________________________________________________________   电话 _______________________    手机 _______________________   邮件 _________________________________________________________
  • 宁夏农科院获得有机产品检测机构资质
    宁夏农科院作为农业部枸杞产品质量监督检验测试中心的依托单位,近日被农业部中绿华夏有机食品认证中心(简称COFCC)授权为有机产品检测机构。   据悉,该中心获得有机产品检测机构授权后,将按照《COFCC有机认证产品风险检验(测)规范》,在区内外开展有机产品认证的产品质量检测工作,为促进我区地方特色农产品品牌升级、指导企业进行有机农产品生产提供技术服务,并为推动我区有机农产品和食品更好更快地走向国际市场提供强有力的科技支撑。
  • CNAS发布《环境领域有机检测实验室认可技术指南》
    p   为进一步指导申请认可的开展有机检测活动的环境领域实验室提供技术建议,也为评审员的评审活动提供技术指导,CNAS秘书处组织制定了CNAS-GL036:2018《环境领域有机检测实验室认可技术指南》。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/87a86d91-f2ea-40b7-ad2f-7d297467c542.jpg" title=" 认证认可.jpg" alt=" 认证认可.jpg" / /p p   此指南适用于使用色谱和/或质谱法,对具有明确分析结构组成的有机物进行检测的活动。与《检测和校准实验室能力认可准则》相比,主要是对范围、资源要求和过程要求进行了细化和特殊规定。在最后又增加了高分辨气相色谱/高分辨质谱法测定二噁英类的特殊要求。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/0ef3586d-d21f-408f-bea4-fd2d6b8337e1.jpg" title=" 目录.jpg" alt=" 目录.jpg" / /p p   下载链接: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/b923103b-33be-4b4a-bc47-651dc7bac499.pdf" title=" 环境领域有机检测实验室认可技术指南.pdf" style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " strong span style=" font-size: 16px " 环境领域有机检测实验室认可技术指南.pdf /span /strong /a /p p br/ /p
  • 视频回放|“土壤有机物检测技术”网络会议
    p    strong 仪器信息网讯 /strong 对于环境检测的从业人员和环境学科的科研人员来说,土壤有机物检测的难度和重要性不言而喻!对于环境保护来说,土壤中有机物是最复杂和持久性的污染物质! /p p   为给同行提供一个在线学习机会,仪器信息网携手土壤检测领域专家于2020年5月13-14日召开了“土壤有机物检测技术”主题网络研讨会。此次会议的报告内容涵盖土壤有机物检测的方方面面,如土壤有机物检测前处理,土壤中挥发性有机物、有机氯农药、有机酸、农残、醛醚类化合物等的检测,土壤有机物毒理研究等。 /p p   会议邀请到了 strong 安徽省生态环境监测中心胡雅琴、南京环境检测中心站胡恩宇、中国科学院南京土壤研究所陈虹、江苏省常州环境监测中心薛银刚、农业农村部环境保护科研监测所贺泽英、江苏省南京环境监测中心/生态环境部监测司孙娟等专家 /strong ,受到了7000余人次的关注。 /p p   应广大网友要求,现将报告回放视频公布, span style=" color: rgb(255, 0, 0) " 点击图片或标题可回看相应视频 /span 。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn//webinar/video_112542.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 250px height: 250px " src=" https://img1.17img.cn/17img/images/202005/uepic/ea0c7b80-5230-4f1e-bfae-b7f86e74b47e.jpg" title=" 胡雅琴.jpg" alt=" 胡雅琴.jpg" width=" 250" height=" 250" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " 报告人:安徽省生态环境监测中心胡雅琴 /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn//webinar/video_112542.html" target=" _blank" 气质联用在土壤中挥发性有机物的检测 /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn//webinar/video_112535.html" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/94b50b3a-5278-40e9-acfe-e9ab0c797101.jpg" title=" 胡恩宇.jpg" alt=" 胡恩宇.jpg" / /a /p p style=" text-align: center " 报告人:南京环境检测中心站胡恩宇 /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn//webinar/video_112535.html" target=" _blank" 土壤中有机氯农药的测定 /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn//webinar/video_112537.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 200px height: 200px " src=" https://img1.17img.cn/17img/images/202005/uepic/bdc7be0c-5471-4e4b-b700-3a1fe029f7d8.jpg" title=" 陈虹.jpg" alt=" 陈虹.jpg" width=" 200" height=" 200" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " 报告人:中国科学院南京土壤研究所陈虹 /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn//webinar/video_112537.html" target=" _blank" 浅谈土壤圈样品中小分子有机酸的分析与测定 /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn//webinar/video_112541.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 250px height: 250px " src=" https://img1.17img.cn/17img/images/202005/uepic/9400af0f-13b8-44d7-8176-1d113675fd23.jpg" title=" 薛银刚.jpg" alt=" 薛银刚.jpg" width=" 250" height=" 250" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " 报告人:江苏省常州环境监测中心薛银刚 /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn//webinar/video_112541.html" target=" _blank" 有机污染物对土壤生物的急性和亚慢性毒性研究:以四溴双酚A(TBBPA)为例 /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn//webinar/video_112543.html" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/fc4a5361-d952-4278-be82-85d768a59733.jpg" title=" 贺泽英.jpg" alt=" 贺泽英.jpg" / /a /p p style=" text-align: center " 报告人:农业农村部环境保护科研监测所贺泽英 /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn//webinar/video_112543.html" target=" _blank" 土壤中农药残留检测技术与应用 /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn//webinar/video_112546.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 250px height: 250px " src=" https://img1.17img.cn/17img/images/202005/uepic/f3ec5b7a-baeb-4491-bb04-f4925557e63a.jpg" title=" 孙娟.jpg" alt=" 孙娟.jpg" width=" 250" height=" 250" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " 报告人:江苏省南京环境监测中心/生态环境部监测司孙娟 /p p style=" text-align: center " 报告题目: a href=" https://www.instrument.com.cn//webinar/video_112546.html" target=" _blank" 土壤、沉积物中多种酮类和醚类化合物的分析方法研究 /a /p p   此次会议还得到了SCIEX、赛默飞、安捷伦、岛津、上海科哲、上海光谱、思聚仪器、北京振翔的大力支持,在此一并致谢! /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10545" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/eaad2919-0a76-437b-add2-e47db09cc909.jpg" title=" 640_300.jpg" alt=" 640_300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10545" target=" _blank" 回放视频集锦 /a /p
  • 使用插入式电极检测有机体系下样品的Zeta电位
    关键词:Zeta电位、插入式电极、有机溶剂分散体系图1. 插入式电极分散在有机溶剂中的颗粒往往在表面也会带有一定量电荷。这些电荷产生的电势会增加颗粒之间的相互作用力,起到增加系统稳定性的作用。由于有机体系的极性普遍较低,颗粒上携带的电荷量极少,在Zeta电位测试过程中需要施加较强电场才能够引发足够明显的电泳运用,而且测试电极及其配套的样品池需要考虑到对于有机溶剂的耐受性。在这篇应用报告中,我们利用插入式电极,利用BeNano 90 Zeta纳米粒度电位仪检测了分散在甲醇和乙醇环境中的硅颗粒的粒径和Zeta电位。原理和设备 动态光散射技术DLS,也称作光子相关光谱PCS或者准弹性光散射QELS,是利用激光照射在样品溶液或者悬浮液上,通过光电检测器检测样品颗粒布朗运动产生的散射光波动随时间的变化。利用相关器的时间相关性统计学计算可以得到相关曲线,进而得到颗粒的布朗运动速度,即扩散系数D。通过斯托克斯-爱因斯坦方程,我们把颗粒的布朗运动速度和其粒径DH联系起来:其中kB为玻尔兹曼常数,T为环境温度,𝜂为溶剂粘度,DH为颗粒的流体力学直径。电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件1#纳米硅粉末样品分散在甲醇分散液中,2#纳米硅样品分散在乙醇分散液中,施加超声波进行分散。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。使用插入式电极进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论粒径测试图2. 动态光散射检测1#纳米硅样品的粒径分布曲线(上)和2#纳米硅样品的粒径分布曲线(下)通过使用动态光散射技术,得到当前分散条件下同样品的粒径和粒径分布。其中1#样品Z-均直径为365.2±0.8 nm,PDI为0.58;2#样品Z-均直径为41.0±0.3 nm,PDI为0.50。可以看出粒径测试结果具有很好的重复性,两个样品的PDI较大,分布都比较宽,这也可以从样品的粒径分布曲线中看出。图3. 使用插入式电极检测1#(上)样品和2#(下)样品的三次测试的相图通过电泳光散射,得到了样品的Zeta电位信息。图3中展示了三次重复性测试的相图,相图斜率代表了散射光由于电泳运动造成的频率的偏移。可以通过图中曲线看出,分散在甲醇中的1#样品斜率清晰,信噪比良好,而分散在乙醇中的2#样品相图相对嘈杂。对于样品的3次重复性结果列于表1中,可以看到纳米硅样品在甲醇和乙醇溶液环境中Zeta电位为负值,说明样品颗粒携带负电,三次测试结果的重复性较好。颗粒在甲醇环境中的Zeta电位幅值明显高于乙醇环境。
  • 新型质谱检测器同时分析6种有机酸
    众所周知,有机酸是影响食品味道和口感的重要成分,经此在研发、质控等部门需要对有机酸进行分析。除食品领域外,制药、化工、环境分析、生物工程等诸多领域均需要对有机酸进行分析。在下面,我们将跟大家介绍6种有机酸的分析实例,使用的是HILIC亲水色谱柱和日立最新推出的质谱检测器Chromaster5610进行分析。 图为.LC-MSD分析6种有机酸的结果图 更多关于此应用例的介绍,请参考链接:http://www.instrument.com.cn/netshow/SH102446/s542614.htm关于日立新型质谱检测器Chromaster5610,请参考链接:http://www.instrument.com.cn/netshow/SH102446/C223442.htm 关于日立高新技术公司:日立高新技术公司于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 大气和有机污染物将成我国"十二五"环境检测重点
    在日前结束的环境监测国际学术交流会上,中国环境监测总站副站长李国刚指出,大气和有机污染物将成为我国“十二五”环境检测的重点。   中国工程院院士魏复盛说,除烟尘、二氧化硫等老污染问题外,我国面临着新环境问题,如持久性有机污染物、臭氧、氮氧化物和环境激素、重金属等污染。目前,污染已从城市扩展到区域和流域,珠三角、长三角、京津冀、成渝区、长株潭等呈现出区域性污染。   李国刚在会上公布了国家环境监测“十二五”科技发展规划。依照规划,我国将开展重点区域和流域的重金属、有毒有害污染物,及危害人体和生态环境健康的污染物污染状况调查 研究污染物迁移转化规律及区域联防措施、机制 开展主要行业排放废气、废水中污染物调查及环境损害评估,开展环境预警和应急监测技术研究等。
  • 美国药典USP <643>对总有机碳TOC检测的修订
    背景美国药典(USP)规定了制药生产和测试要求,以确保药品安全有效。USP 总有机碳(TOC)法规就包含了制药用水的测试要求。TOC是重要的水质参数,帮助我们在关键应用之前先了解制药用水的水质。TOC对工艺控制和患者安全至关重要,因此各国监管机构都对制药用水的TOC检测提出了严格要求。 2021年5月生效的USP 要求对包装水设定取决于容器容积的TOC限值和系统适用浓度。Sievers® M9 TOC分析仪和标准品满足这些修订后的法规要求。无论您使用Sievers M9分析仪还是其它仪器,现在都应认真审查您所使用的TOC检测技术和流程。本文和下面讨论的USP法规修订只适用于包装水。批量水(即现场水系统生产的纯化水或注射用水)不受此USP 法规修订的影响,您可以继续使用500 ppb系统适用性标准品组和限值。接受标准和系统适用性的更改以前,无菌水的标准化限值和系统适用浓度曾经是8 ppm。无论容器大小,此浓度应用于所有的包装水。USP 总有机碳规则对容器中的无菌水测试标准进行了修改(此修改只影响无菌包装水的分析,不影响批量水的分析)。无菌包装水的接受标准和系统适用性浓度取决于容器的容积大小。如果容器的容积较小,相对于水的单位包装面积就会较大,从容器到水的单位浸出物就会增加,从而提高TOC浓度。USP规则考虑到浸出物浓度的增加,提高了容器中的浓度限值。表1列出了不同容器的标称容积和相应的浓度限值。TOC限值从8.0 mg/L C(8 ppm)的设定值更改为取决于容器容积的可变值。在USP 对无菌水测试的要求中,仪器的最大设定范围仍然是0.10 mg/L到容器容积的TOC限值。虽然包装水系统适用性浓度有了改变,但确定系统适用性通过/失败的计算方法不变。USP 的测试程序部分概括了样品测试。测试程序从“通过/失败限值测试”改为分阶段的测试程序,如下所述。请注意,在测试样品之前,必须以适当的频率运行限值2的系统适用性任务。在对设定的容器容积限值测试样品水时:如果样品小于限值1(见表1),则样品测试通过,测试完毕。如果样品大于限值1且小于限值2(见表1),请执行步骤2.9(6.),以检测和量化超过0.20 mg/L碳的有机杂质。如果样品大于限值2(见表1),则样品测试失败,测试完毕。
  • 有机物污染监测面临的不同挑战
    在工业和环境过程监测的水质分析中,存在各种不同的应用和挑战——因为水不仅仅是水。水必须满足的要求因应用领域、成分和检测数据的用途而异。例如,在半导体制造和芯片生产中,需要超纯水并且必须不含污染物。而对于饮用水来说,需要一定量的溶解矿物质,同时不得含有任何细菌或其他致病物质。这些与应用有关的具体要求还对水处理和各工艺监测产生影响。让我们通过不同的有机污染监测示例来仔细研究这些影响。水体中有机成分的污染是一个重要的分析参数。有机化合物可能会破坏工艺过程,或在某些情况下,尽管有机物可以接受,但必须了解其浓度并定期监测,以便正确控制工艺过程。有机物监测工具和实时监测需求实验室分析仍经常使用化学需氧量(COD)和生化需氧量(BOD)来确定有机污染的程度。但是,在线分析对于更精确地实时监测工艺过程以及提高自动化程度来说,变得越来越重要。BOD分析需要5天时间,因此不能用于在线监测。由于COD分析时间需要2-3小时,且使用高毒性试剂,COD分析也不适合。相反,多年来,总有机碳TOC检测一直处于主导地位,用于快速监测有机污染,尤其是在工业领域。TOC也越来越多地应用于环境分析领域。与COD相比,TOC监测的优点是使用无毒试剂且检测时间仅需几分钟。此外,取决于所选择的检测技术,TOC分析可以在更大的浓度范围内进行检测,同时具有更高的精度。所有TOC分析仪的基本原理都是基于有机碳氧化形成二氧化碳。通过检测CO2,可以直接测定TOC含量。在线TOC监测——应对常见挑战有多种不同方法来实现这一检测目标。以下示例展示了与在线TOC监测要求相关的外部因素可能带来的不同挑战。通过采用正确的监测技术,就可以应对这些挑战。工艺挑战要求污水处理厂进水有机负荷高含有颗粒物稳健污水处理厂排水难以消解组分自我监测可靠冷凝水回用分析间隔短检测限低快速响应例1. 污水处理厂进水确定废水处理厂进水中的有机负荷对TOC分析仪提出了多项挑战。一方面,污染程度可能差异很大。这种情况主要发生在工业应用中,当批量工艺过程中的废水被排放或意外发生液体泄漏的时候。同时,这些有机物可能由难以分解的高度复杂的组分组成。此外,进水中可能会出现较高浓度的未溶解颗粒和溶解的无机成分(例如盐)。此应用对在线TOC分析仪的要求主要体现在稳健性方面。合适的监测仪表必须能完全检测出大跨度浓度波动,其波动范围可能在远低于100 ppm至高达数万ppm之间。同样,监测仪表还必须足够稳健,以检测更高浓度的溶解成分和颗粒成分。后者很容易导致内径较小的设备内部管道系统发生堵塞。此外,此类仪表在工艺过程中的安装条件往往很苛刻,这就需要稳健的设计。然而,了解有机负荷是优化后续清洁步骤的重要参数。在线TOC监测可以确保在有机负荷发生偏差时,生物处理阶段不会过载。过载会杀死分解有机物所需的细菌。在此情况下,由于适当的监测工具可以快速识别高有机负荷,因此可以将相应部分的进水有效地转移到缓冲池并维持细菌的健康。在负荷较低时,可以将高度污染的水回流。同样,在厌氧反应器中,要注意确保进水浓度尽可能恒定,以实现最佳的降解结果。反之,如果进水有机负荷过低,可根据TOC检测添加甲醇等有机物,使细菌有足够的食物进行高效降解。例2. 污水处理厂排水污水处理厂出TOC监测主要用于检查排水是否符合规定的排放限值。同时,它可以显示污水处理厂内的降解过程是否正常进行。在这些情况下,可以避免因超过限值而产生的罚款,并实现监管合规。废水在经过处理后,出水TOC浓度值明显低于进水。然而,残留的有机物通常是那些难以降解的物质。必须对这些物质进行精确检测,以便发现何时超过限值。因此,分析仪必须提供高度的可靠性,例如,捕获所有有机碳并具有广泛的自我监测功能。自动验证检测或校准应确保检测值始终正确。此外,可以使用自诊断功能来检查设备的整体状态,并依此开展预防性维护工作。这延长了分析仪的在线时间,并确保对限值进行无缝监测,以满足法规要求。例3. 冷凝水回用中的泄漏监测在工业应用中,蒸汽是最常用的传热介质。蒸汽发生用水必须满足特殊要求,以避免在锅炉和蒸汽阶段出现问题。要求对水进行预处理并添加水处理化学品。主要是抑制沉积物的形成和腐蚀。当水蒸发时会残留溶解的物质,形成水垢,导致锅炉中污泥积聚。但是,也会有蒸汽挥发性无机物和有机物进入气相并会积聚在管道和换热器中。这不仅减小了蒸汽通过的路径宽度,而且沉积物还降低了热传递,从而导致能量损失。此外,由于会造成一定的温度梯度,沉积物产生热应力,从而导致微小开裂和泄漏。腐蚀主要是由pH值过低引起。有机杂质在这里起着主要作用,因为在锅炉和蒸汽高温条件下,许多有机物分解并形成有机酸。这降低了蒸汽中的pH值,并加剧腐蚀,直至形成泄漏。除了预处理过程中去除不彻底外,有机物主要通过小泄漏进入蒸汽循环。由于锅炉水的处理复杂且昂贵,通常大部分冷凝蒸汽被返回。如果有机物通过热交换器中的小孔逸出到冷凝水中,它就会返回蒸汽循环。由于大多数有机物在分解之前并非离子态,因此传统的电导率测量无法检测到它们,也无法做到准确记录。在这里,TOC提供了一个解决方案。在此应用中,TOC分析仪面临的挑战是快速响应。与废水相比,除检测范围更低外,检测周期也很重要,因为检测目标是在被污染的冷凝水返回锅炉给水前就应该检测到是否发生了泄漏,从而避免花费巨大财力来更换锅炉给水。因此,更短的检测周期几乎可以无缝监测冷凝水,从而在污染成为问题前及时采取纠正措施。更轻松地检测有机污染并增强故障排除能力Sievers® TOC-R3是一款在线TOC分析仪,可满足常见工业工艺监测应用面临的上述挑战。1200℃无催化剂高温消解能够在较宽的检测范围内完全氧化复杂和颗粒有机碳。分析仪系统采用大内径管,可防止含颗粒的样品造成堵塞,该设计专门针对工业应用,使分析仪对环境条件不敏感。TOC-R3强大的自我监测功能为预防性维护提供信息,并提供了泄漏检测专门选项,可以非常快速地对泄漏进行检测。远程诊断和控制有助于增强故障排除,以避免停机。通过这些功能,可以应对有机污染监测所面临的最重要挑战——稳健、可靠、快速响应,从而提供实时信息,以更轻松地检测泄漏,管理工艺并满足法规要求。◆ ◆ ◆联系我们,了解更多!
  • 水和废水中的有机物监测
    总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业 挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers® M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!
  • 寻找“使用有机质谱联用仪进行常规检测、科研或研发的技术人员”
    有机质谱谱图解析培训班 课程基本信息 培训机构: 信立方质谱培训中心 适用对象: 使用有机质谱联用仪进行常规检测、科研或研发的技术人员。 课程详细信息 费用:3800 开班地点:北京市 开班时间:2015-05-26 培训天数: 共4天 详细地址 外国专家公寓(华严北里8号院外国专家大厦) 授课专家 王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。著有《有机质谱解析》等专著。 苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。著有《色谱-质谱联用技术及应用》等专著。 课程内容 一、谱图解析基础知识 1、原子中电子的排布 2、奇电子离子与偶电子离子 3、氮规则 4、环加双键值 5、同位素峰 6、单分子反应 二、离子的丰度 1、质荷比与离子丰度包含的结构信息 2、影响碎片离子丰度的基本因素 三、离子碎裂的基本机理 1、断裂 2、环的开裂 3、重排反应 4、置换反应 5、消除反应 四、常见有机化合物的质谱图特征 1、碳氢化合物 2、醇、酮、醛、酸、酯、醚 3、胺类 4、酰胺类 5、腈 五、由质谱图推测分子结构 1、基本方法及思路 2、实例练习 六、NIST谱图库检索实用技术 1、NIST谱图库简介 2、NIST谱图库主要功能 3、NIST谱图库检索实例 注:学员可自带原始数据采集文件,讲师可采用学员的文件作为案例进行分析) 课程特色 讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验; 有机质谱谱图解析的基础知识、基本规律和精选实例相结合,深入浅出,通俗易懂; 独有的有机质谱谱图解析水平测试题,可清楚的对比学习前后的技术水平; 学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题; 会务信息 汇款方式: 银行转帐: 户 名:北京信立方科技发展股份有限公司 开户行:兴业银行积水潭支行 帐 号:321 2601 001 0000 1500 优惠措施: 1、组团报名2-5人,报名费用每人减少100元; 2、5人以上组团报名优惠请联系客服, 电话:010-51654077-8123;15801550477。 联系方式 联系人: 安先生 Email: job@instrument.com.cn 联系电话: 010-51654077-8123 传真:010-82051730
  • 我国鞋制品中有机锡等物质检测将采用国际标准
    仪器信息网讯 日前,《2013年第一批国家标准制修订计划的通知》公布,通知显示国家标准委将制定《鞋类和鞋类部件中存在的限量物质 邻苯二甲酸酯的测定》、《鞋类和鞋类部件中存在的限量物质 有机锡的测定》等国家标准,这两项标准均为我国初次制定,并将分别采用国际标准ISO/TS 16181:2011和ISO/TS 16179:2012,起草单位为中国皮革和制鞋工业研究院。   同时,中国皮革和制鞋工业研究院还将参与起草《皮革 材质鉴别 显微镜法》、《皮革 化学实验:二甲基甲酰胺含量的测定》、《皮革和毛皮化学试验 防霉剂(TCMTB、CMK、OPP、OIT)的测定-液相色谱法》、《皮革和毛皮化学试验:短链氯化石蜡的测定》。这4项标准也为我国初次制定。 《2013年第一批国家标准制修订计划的通知》中鞋及皮革检测相关标准 计划编号 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 主管部门 归口单位 起草单位 20130991-T-607 鞋类和鞋类部件中存在的限量物质 邻苯二甲酸酯的测定 推荐 制定  ISO/TS 16181:2011 2015 中国轻工业联合会 全国制鞋标准化技术委员会 中国皮革和制鞋工业研究院等 20130992-T-607 鞋类和鞋类部件中存在的限量物质 有机锡的测定 推荐 制定   ISO/TS 16179:2012 2015 中国轻工业联合会 全国制鞋标准化技术委员会 中国皮革和制鞋工业研究院等 20130951-T-607 皮革 材质鉴别 显微镜法 推荐 制定   ISO/DIS 17131:2012 2014 中国轻工业联合会 全国皮革工业标准化技术委员会 国家皮革质量监督检验中心(浙江)、广州市质量监督检测研究院、中国皮革和制鞋工业研究院 20130952-T-607 皮革 化学实验:二甲基甲酰胺含量的测定 推荐 制定     2014 中国轻工业联合会 全国皮革工业标准化技术委员会 浙江省质量技术监督检测研究院、中国皮革和制鞋工业研究院 20130953-T-607 皮革和毛皮 化学试验 防霉剂(TCMTB、CMK、OPP、OIT)的测定-液相色谱法 推荐 制定   ISO 13365:2011 2014 中国轻工业联合会 全国皮革工业标准化技术委员会 国家皮革质量监督检验中心(浙江)、福建出入境检验检疫局、中国皮革和制鞋工业研究院、重庆市计量质量检测研究院 20130954-T-607 皮革和毛皮 化学试验:短链氯化石蜡的测定 推荐 制定     2014 中国轻工业联合会 全国皮革工业标准化技术委员会 浙江省质量技术监督检测研究院、中国皮革和制鞋工业研究院、福建出入境检验检疫局
  • 符合美国药典USP<661>的总有机碳TOC检测
    制药行业严重依赖于塑料包装材料,以将产品推向市场。药品的包装材料包括药品塑料瓶、药片塑料水泡包装、一次性使用的袋子(例如静脉输液、血液或其组分的输液袋)、预充式注射器等,包装材料中可能含有多种成分(各种聚合物和添加剂)。 必须证明这些包装材料(及其结构材料)不会与药品发生反应,从而影响药品的适用性。新的USP章经过修订,适用范围更加全面,能够用于验证各种包装材料和包含多种材料的包装系统。◆ ◆ ◆美国药典USP的总有机碳TOC法规USP要求对纯化水(Purified Water,PW)和注射用水(Water For Injection,WFI)进行TOC测试,USP章对此有完整的说明。纯化水和注射用水的TOC限值设定为0.5 ppm。2016年5月1日, USP总章有了重大修订,此章标题重定为“塑料包装系统及其结构材料(Plastic Packaging Systems and Their Materials of Construction)”。总章的2个分节为:- 塑料结构材料(Plastic Materials of Construction)。本节旨在确保各种材料符合适用性。本节专用于各种塑料材料。- 制药用塑料包装系统(Plastic Packaging Systems for Pharmaceutical Use)。本节旨在确保含有一种或多种材料的整个包装系统符合适用性。法规除了描述材料和系统外,还提出了更广泛的测试方法和技术,其中包括TOC测试。这是为了使用户了解包装系统和包装本身所使用的材料。因此,修订的法规对行业运营产生了深远影响,目前适用于:- 成品药制造商- 塑料袋、瓶、输液器具等的制造商包装药品的监管批准者负有达到本法规要求的主要职责。◆ ◆ ◆USP的预期评估材料筛选- 评估可能的可萃取物和潜在的可浸出物的成分控制条件下的萃取研究- 进行最坏情况的受控的萃取(模拟)研究,确定萃取物变成可能的可浸出物的程度产品评估- 对于将要推向市场的包装/输送系统中的药品,对已确认的可浸出物进行实际测量◆ ◆ ◆USP的TOC限值* TOC规格是差值,要求空白校正◆ ◆ ◆满足USP法规的其他TOC要求进行的TOC分析:- 应有0.2 ppm检测限- 应有0.2 - 20 ppm线性动态范围以上视频介绍了USP对总有机碳TOC的测试要求,请打开音频收听解说。◆ ◆ ◆Sievers M9 TOC分析仪满足USP的要求Sievers M9 TOC分析仪提供良好的可靠性和快速分析性能,此优越性已经过时间的检验。分析仪能够将TOC结果的报告时间缩短50%,检测时间仅为2分钟,从而提高生产效率。SieversTOC分析仪能够帮助严格监管环境下运营的企业达标,仪器的性能超过了法规和分析要求。分析仪的线性范围广,对超纯水样品的低浓度具有高灵敏度,对清洁验证样品的高浓度检测能力也很强。M9分析仪的线性范围为0.03 ppb - 50 ppm,有效地达到了USP对检测限和动态线性范围的要求。所有的Sievers toc分析仪都符合纯化水和注射用水的USP要求。为了支持分析仪和USP合规性,我们提供NIST可追溯标样和ISO Guide 34与ISO/IEC 17025的认证标样:- 准确度/精确度标样组,8 ppm (STD 77013)- 准确度/精确度标样组,5 ppm (STD 99011)- USP线性标样组 (STD 99012)我们还能提供线性协议和电子表格以供参考。上述标样,结合Sievers的故障调查分析报告(Failure Analysis Report,FAR),提供了可追溯性和快速“不合规(Out of Specification,OOS)”调查。M9分析仪有实验室型、便携式和在线型,便于使用。分析仪符合USP、USP、USP、USP、21 CFR Part 11等法规要求,包括国际同类标准要求。◆ ◆ ◆查看我们的展台,了解更多
  • 沪检验检测业务年收入164亿 国有机构占比降至44%
    上海市质量技术监督局7日公布的一份调查报告显示,上海国有、民营、外资等多种成份检验检测机构共同发展的局面进一步凸显,为政府监管、贸易活动、技术研发、民生保障等技术服务提供了多种选择。  今年上半年上海质监局会同上海市发展改革委、上海市经济和信息化委等相关部门开展2015年度上海检验检测认证行业资源统计调查工作,对上报的769家检验检测机构和57家认证机构进行数据分析。  报告表明,2014年检验检测机构有734家,2015年为769家,与2014年相比,2015年国有机构数量占比从52.7%减少到46.7%,民营机构数量占比从32.3%增加到42.3%,集体机构数量从8.7%减少到6.1%,外资机构数量占比从6.3%减少到4.9%。  从业务收入看,与2014年相比,2015年国有机构收入占比从47.5%减少到43.8%,民营机构收入占比从15.4%增加到26.7%,集体机构收入占比从2.5%减少到1.6%,外资机构收入占比从34.3%减少到27.9%。  数据表明,上海的民营检测机构异军突起,从机构数量到业务收入都大幅增加,也导致国有机构继2014年度市场份额下降至五成以下后,机构数量首次下滑到50%以下 不过外资机构营收规模依然庞大。  调查显示,2015年度,全市769家检验检测机构检验检测服务营业收入164.20亿元(人民币,下同),较2014年增长15.2%。检验检测机构共有从业人员47078人,实验室面积181.62万平方米,检测设备原值127.24亿元,当年共出具检验检测报告1954万份。  2015年度,全市57家认证机构认证服务营业收入23.61亿元,和2014年基本持平。认证机构共有从业人员10283人,共发放认证证书100089张,认证服务覆盖体系认证、产品认证和服务认证三个方面。  报告分析认为,上海的检验检测服务业呈现稳步发展态势,检验检测服务覆盖各个领域。其中,建筑工程和消防检测、科技服务检测、环境检测机构数量最多,分别有183家、114家和113家 机动车安检、卫生和食品检测、农产品检测等涉及民生领域的检验检测机构稳步发展。检验检测项目从传统的制造业领域向高技术、健康保障等多元服务方面发展。
  • 国有机构垄断检测行业的局面将破
    检测行业由国有机构垄断的局面有望改变,第三方检测市场或将迎来重大机会。   &ldquo 检测体系将走向市场,现在70%的检测机构都是国有的,要对其进行股份制改造、组建集团,引入资本以及第三方检测机构。&rdquo 昨日,有国家质检总局官员对《第一财经日报》记者透露,&ldquo 以后要营造出一个充分竞争的检测机制,但是国家会留一点检测机构,以备最终裁决。&rdquo   上述质检官员还表示,对检测机构的改制,也将改变过去的游戏规则,只要是国家认证过的检测机构,检测报告都会被认可 民营的检测机构,只要符合国家规定,也都可以进行认证。   在千亿规模的检验检测市场中,非国有检测机构所占市场份额仅为10%,上述检测机构改革及市场放开无疑令其迎来机遇。但对于观望中的资本来说,这块蛋糕到底如何分,往后会否出现新型的垄断,还需要细化的改革措施打消忧虑。   千亿市场待整合   其实早在3月11日,上述检测机构改革便已正式开启。当日,中央编办、质检总局联合下发国务院同意的《关于整合检验检测认证机构的实施意见》(下称《意见》)。   《意见》称,在明确检验检测认证机构功能定位,推进部门或行业内部整合的同时,也将推进具备条件的检验检测认证机构与行政部门脱钩、转企改制 此外,跨部门、跨行业、跨层级整合也将推进,并支持、鼓励检验检测机构并购重组,做强做大。   去年发布的《中共中央关于全面深化改革若干重大问题的决定》明确提出,整合业务相同或相近的检验检测、认证机构。此次发布的《意见》正是对中央精神的细化和实施,同时契合国务院的机构改革和职能转变。   《意见》还称,到2015年,要基本完成事业单位性质的机构整合,工作基本到位,市场竞争格局初步形成。   国家质检总局下设检测机构的一名工作人员表示,这次改革意味着检验检测认证机构的事业发展模式,也将转变为产业发展模式。其中包括两类机构:一是公益性政府检验检测机构,二是盈利性社会检验检测机构。   公益性政府检验检测机构将为政府监管和政策法规建设提供支撑,为重大国计民生检验检测提供技术支持,对社会检验检测机构进行监督,解决市场失灵的问题 盈利性社会检验检测机构则将研究先进的测量科学技术,依据技术标准、技术法规等对商品性能进行市场化检验检测,根据数据对商品质量的符合性做出科学、公正的合格评定。   当前,70%-80%的检验检测认证机构拥有政府背景,其资源配置主导权在政府手里。虽然也出现了一些民营企业和外资检测机构,但是检测行业的大蛋糕基本被政府主导的检测机构控制,非国有检测机构所占份额约为10%。   但同时,我国检验检测行业正在超速发展。据国家认监委统计和预计,2013年检验检测市场规模为1678亿元、2014年为2105亿元、2015年为2574亿元。   &ldquo 改革之后,一些被政府强制指定的检测项目可以通过采购的模式,让第三方检测机构进入,不再是被垄断。&rdquo 上海质检协会的一名周姓工作人员对本报记者说。   国家食药监总局相关负责人则表示,最近将启动的检验机构改革就要准备试点,先进行检验机构的整合,第三方检验机构的介入。   改革之后,未来的检测市场对于非国有检测机构来说,有三大利多:首先是企业不再依赖政府部门的检测机构,可以找第三方检测机构,这块市场会变大 第二是政府部门可以购买第三方检测机构的服务,需求也会变大 最后则是个人可以送检。   &ldquo 整合检验检测机构一年前就说过,前几天质检和中编办刚开了一个会,政府部门可以购买检测服务,检测体系将放开&mdash 将有更多的高校检测机构、民营和外资机构,是一个开放的状态 但是监管要跟上,需要细化制度。&rdquo 国家行政学院教授胡颖廉说。   另有国家质检总局下设检测机构的工作人员对本报记者说:&ldquo 原来检测机构一直不开放,在加入WTO之后是部分开放,允许外资以合资的身份进入,在2015年要完全开放,这是为了完成WTO的承诺。目前我们已经提交了股份制改制的方案,但是还没有被批准。&rdquo   市场的担心   &ldquo 目前很多检测机构属于事业单位,吃大锅饭,工作效率不高,而且年年核算,年年亏本,整个质检体系有超过11万检测人员,国家为了解决这一问题,必须要做事业单位改革,而第一个动手的对象便是检测机构。&rdquo 上述检测机构工作人员说。   这名工作人员表示,以后事业单位性质的检测机构不会太多,但可以参股,为混合所有制状态。但是国家还是希望检测机构能够抱团,希望出现检测机构的&ldquo 航母&rdquo ,用来和国际检测机构抗衡,在分支机构中也可以有股份制结构存在。   检验检测机构改革的另一面,则来自外资检测机构的担心。   有外资背景检测机构的负责人表示,根据以往的历史经验,如果行政权力被剥离,剥离后的检测机构被吸入到另外一种由政府部门控制的集团中,这个市场将仍然被垄断,甚至比现在的垄断更甚。   &ldquo 如果这样的情况发生,对这一行业的市场化进程破坏力极大,其结果可能是使行政改革本身成为牺牲品。一个以行政手段扶持的、在一个由垄断性国企控制的垄断市场上,市场的优胜劣汰机制是不能起作用的。这是业界更为关心的一个趋向。&rdquo 上述外资检测机构负责人说。   另据中国欧盟商会相关人士介绍,检测实验室的监管机构通过中国计量认证,对同一公司在全国不同实验室的每一项检测方法与检测产品逐项进行行政审批,因此所有外资竞争者都必须向各省地方质检部门申请获得中国计量认证体系的认证。流程不透明、地方质量技术监督局的实施政策不明确、申请过程耗时过长等,加重了外资质量与安全检测机构的运营负担。   与此同时,业界还担心,相关监管机构通常会借机对新产品开展强制性检测和认证,并拟定一份允许从事相关检测的&ldquo 推荐&rdquo 的检测实验室名单 而选择实验室的过程和入选标准缺乏透明度,独立的提供商往往被排除在推荐实验室清单之外。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制