当前位置: 仪器信息网 > 行业主题 > >

氘灯原理

仪器信息网氘灯原理专题为您提供2024年最新氘灯原理价格报价、厂家品牌的相关信息, 包括氘灯原理参数、型号等,不管是国产,还是进口品牌的氘灯原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氘灯原理相关的耗材配件、试剂标物,还有氘灯原理相关的最新资讯、资料,以及氘灯原理相关的解决方案。

氘灯原理相关的论坛

  • 【知识】氘灯的原理

    【知识】氘灯的原理

    氘灯是一种弧光放电,下图是其工作原理馈电图:[img]http://ng1.17img.cn/bbsfiles/images/2006/10/200610272137_30783_1621975_3.jpg[/img] 灯内充有氘气(~10mmHg)。灯丝电压Vf<2~10V、交流或直流。起辉电压Vs~300V直流稳压稳流电源供应。起辉后工作电压Va=70~100V。工作电流~300mA。氘灯的发光机理是:灯丝阴极发射的热电子在电场加速下向阳极运动与氘气分子实现非弹性碰撞而激发,从而辐射氘分子的连续光谱。氘灯工作是利用其阳极光柱,因此强度很大。为避免阳极电弧光斑,在阳极垂直方向安装一个开有小孔的隔挡片以隔除杂光,使光自小孔发出。氘灯一旦被点燃,延时电路将自动切断灯丝电源Vf(一般灯丝加热约数秒)。工作中氘灯不宜频繁起动,要注意氘灯的预热,以获得稳定的光输出。

  • 氘灯的工作原理

    氘灯是在氢灯的基础上发展起来的,与氢灯相比,它有辐射强度高、稳定性好、寿命长等优点。它有阴极、阳极和屏蔽罩组成。为了避免阴极电弧光斑干扰,在阴极旁设置了一片挡光片,光栅设计成半球形碗状使得光束输出更加集中,提高其辐射强度。光窗设计成矩形有利于增大其辐射角,灯的外壳采用透过紫外光极高的石英材料,管内充有一定压力的高纯氘气。

  • 氘灯与自吸扣背景原理

    1、氘灯扣背景是在与锐线光源同一波长处测定背景吸收(这时原子吸收可以忽略不计),氘灯在此波长处也包括待测物质的共振吸收线,为什么原子吸收可以忽略不计,是因为连续光源此出发出的共振吸收线能量很低,致原子吸收很小吗?2、自吸扣背景是空心阴极灯在高电流脉冲供电时,空心阴极灯内的原子对发射线产生自吸,使发射线变宽,当在极端的情况下出现谱线严重自蚀,谱线的峰值强度完全被吸收,此光光通过原子化器测得背景吸收,这里的难点是如何知道每个灯产生严重自蚀时的最低电流,了解这个,电流不够高自蚀不足,导致扣背景不完全,电流太高又严重影响灯的使用寿命。3、什么情况下选择扣背景,哪种扣背景方式,比如氘灯与自吸扣背景在190-350nm之间时的扣背景能力是否相当,带扣背景装置的原吸,不管检测什么样品是否最好都开启扣背景功能,因为我们无法事先知道背景干扰有多大?

  • 关于氘灯扣背景的原理疑惑

    请教各位,扣背景的时候,样品的[color=#ff0000]基态原子[/color]对[b]氘灯、空心阴极灯发射[/b]的特征波长处的[color=#ff6666]分析线[/color]吸收不是一样的么?如果不一样,是为什么呢?

  • 【原创大赛】【仪器故事】拆灯看设计,点灯探原理

    【原创大赛】【仪器故事】拆灯看设计,点灯探原理

    [b][color=#ff0000] [/color][color=#000066] 拆灯看设计,点灯探原理[/color][color=#ff0000][/color][color=#cc0000]一:现象很怪异,临机做处理(引入主题)[/color][color=#ff0000] [/color][/b]安捷伦1200色谱仪,配置VWD1314B检测器,最近现象很怪异,让人匪夷所思——点击按钮启动仪器,总是进入就绪分析,而且氘灯只预热不启辉,启辉失败不能正常工作,停止分析,预热随即停止。[img=,538,232]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141930355615_1443_2960432_3.png!w538x232.jpg[/img]紧急情况,不能迟疑,面对现实,采取措施——更换新氘灯一只,以解燃眉之急。[img=,550,456]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141935276495_8785_2960432_3.png!w550x456.jpg[/img] 遗憾的是——对换下来的氘灯没有进行能量测试,也没有留下点灯失败的诊断信息,只查看了氘灯使用时间,超出寿命很远矣! 更换下来的氘灯光窗变黑,失去了新氘灯的光泽,已是——[color=#cc0000]黄昏独自愁,更著风和雨,[/color]寿命已到而且光窗也黑了。[img=,553,483]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141936043015_8384_2960432_3.png!w553x483.jpg[/img] [color=#000066][b]当然,环境温度湿度对氘灯的启辉都有影响,特别是氘灯使用的后期需要多次启辉才能正常,再者光路的老化,电源老化也在考虑其中,然而更换新氘灯后得以解决。[/b][/color][color=#000066][b] [/b][/color][color=#000066][b]总之,寿命是氘灯不能正常启辉的必然,而且光窗变黑也正是氘灯寿终正寝的表现——不入虎穴焉得虎子,不拆氘灯难得其设计,要想弄清点灯失败的真正原因就必须搞清氘灯的构造原理。[/b][/color][b][color=#c00000]二:拆灯看构造,偷窥其设计(中心主旨)[/color][/b]拆开氘灯石英罩——暴力坼灯,结构设计,彰显无遗![img=,555,454]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141936530925_9695_2960432_3.png!w555x454.jpg[/img][img=,556,401]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141937089835_7791_2960432_3.png!w556x401.jpg[/img][img=,552,443]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141937259465_4817_2960432_3.png!w552x443.jpg[/img][img=,553,311]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141937389435_8090_2960432_3.png!w553x311.jpg[/img]根据氘灯构造利用画图软件,做出了[color=#cc0000][b]氘灯原理构造图[/b][/color][color=#330033](作图功底较差,看起来有点乱)[/color][img=,561,467]https://ng1.17img.cn/bbsfiles/images/2018/10/201810141938092489_428_2960432_3.png!w561x467.jpg[/img][img=,559,326]https://ng1.17img.cn/bbsfiles/images/2018/10/201810161038278960_6569_2960432_3.png!w559x326.jpg[/img][color=#000066][b]氘灯构造部件说明:[/b][/color] 基本原件——阴极,阳极,屏蔽罩组成。 灯阳极与屏蔽罩连接的电阻——使屏蔽罩带有正电荷,并与阴极较近,起到了加速极的作用。当阴极发射出电子后经加速极加速,从而更有利于激发和电离氘分子,达到降低灯管点燃电压的目的。 灯丝电阻——有两部分组成:阳极灯丝和阴极灯丝。阳极灯丝通过电流产生热量加热阴极,使阴极产生电子发射,碰撞激发氘分子电离,获得更大的能量,在加速极的作用下,被激发的氘分子很快到达阳极。 屏蔽罩——屏蔽罩的目的是防止发射的离子溅射到其他地方,施加上正电压就是吸收负离子。屏蔽罩的电压要低于阳极,所以串接了一个降压电阻 挡光板——避免阴极辉光光斑干扰,设置在阴极旁边。 光栅——设计成半球反碗状,使光输出集中,提高其辐射强度。 光窗——设计成矩形,增加其辐射角。 灯外罩——透紫率极高的石英材料。[b] [/b][color=#000066][b]氘灯光窗变黑挡光板变黑——[/b][/color][color=#000066][b]氘灯不能起辉。其根本原因是:灯丝(阴极)上的材料和阳极,屏蔽罩的材料被溅射出来,造成灯管内的“氘气”纯度下降了,所以不能起辉了。[/b][/color][b][color=#c00000]三:点灯观视频,诊断找原理(拓展深思)[/color][color=#cc0000][/color][color=#000066]点灯视频——预热不启辉的视频和预热启辉的视频(附有视频)[/color][color=#000066][img=,561,338]https://ng1.17img.cn/bbsfiles/images/2018/10/201810151958533953_8734_2960432_3.png!w561x338.jpg[/img][/color][/b] ” 氘灯启辉之前——依靠独立的电源(灯丝电阻)加热阴极,在这过程中氘分子剧烈碰撞,使氘气分子激发电离,氘气的正离子往阴极中和,负离子往阳极中和,氘气的正负离子发生猛烈地碰撞,于是就产生了“辉光”。 氘灯正常启辉——当在阳阴极间和阴极回路加上适当的电压后,阴极发射电子,在电场的加速下向阳极运动。在这过程中与氘分子发生非弹性碰撞,使氘分子处于激发电离态,被激发的氘分子从激发态返回原来状态时,将能量以辐射形式发出形成氘光谱,产生辉光放电。 氘灯启辉后——则是依靠正电子轰击阴极及灯管,电流流过阴极表面加热阴极(启动后切断阴极加热的情况下),使阴极维持电子发射。对于氘灯启动后还维持一定灯能电压(电流),阴极产生的热量维持电流通过阴极使灯管稳定工作。 灯丝电源必须提供阴极最佳的工作温度,并在施加触发压之前能给阴极预热一些时间。 灯管着火后还要保持一定的维持电压,此电压必须是稳定的直流供电,否则会给灯带来噪声,维持电压必须小于预热是的电压。[b][color=#cc0000][/color][color=#000066]下图为安捷伦新氘灯启辉过程中,[/color][color=#cc0000]电压/电流——时间曲线[/color][color=#000066]变化的静态图,很好滴诠释了启辉时灯电压/电流——时间变化的过程。[/color][/b][img=,690,417]https://ng1.17img.cn/bbsfiles/images/2018/10/201810160620038697_2591_2960432_3.png!w690x417.jpg[/img][b][color=#990000][/color][color=#000066]由新的氘灯启辉[/color][color=#cc0000]电压/电流—时间曲线[/color][color=#000066]可以看出:[/color][color=#000066] 起辉后灯电流变小的原因是:氘灯本身就是一个充气的电子二极管。在没有起辉时等效内阻很大,接近无穷大。但是到了起辉后,由于电子流的缘故,使电子管的等效内阻变小了,所以灯电流由于带上了负载,故本身电流就变小了。 1:灯丝的预热电压必须要达到2.5V以上,预热电流6.5A以上。 2:氘灯启辉后,维持阴极正常激发的电压必须到1.7V,维持电流必须到3.8A。 3:阳极启辉电压要到163V,才能产生343mA的启辉电流,而产生辉光放电。 4:当氘灯启辉以后,维持电压88V,维持电流324mA,才能使氘灯正常工作。[/color][color=#000066] 以上是[/color][color=#cc0000]安捷伦氘灯BB5173[/color][color=#000066]正常启辉电压/电流——时间的参数值,不同的氘灯会有不同的参数,只做参考,不具类同![/color][color=#990000][/color][color=#990000]后语[/color] [color=#000066] 一个报废的氘灯,采取了暴力滴拆卸,虽然手段有点残忍,但收益却是很深,了解了氘灯的构造,懂得了一些氘灯的原理,感到欣慰!也得到了以后遇到此类现象所采取的判断措施——观察氘灯外貌是否异常,查看氘灯寿命是否已到,进行必要的能量测试,利用诊断软件对氘灯进行诊断。当然在氘灯不能正常启辉以前还有可能伴随着基线噪音增大的现象。[/color] [color=#000066]最后希望各位板油对此提出不同的看法和建议,便于共同借鉴共同进步![/color][/b]

  • 【求助】问题继续,再次求助氘灯背景校正原理问题

    氘灯的背景吸收值怎么可能和元素灯的背景吸收值怎么可能一样?通带内如果元素灯能量和氘灯能量相等,而在原子线上元素等的能量高,氘灯能量低,那么背景线上元素灯能量低,氘灯能量高。那么两种灯的背景吸收怎么会一样?或者是什么方法使它们近似的一致?

  • 氘灯有保质期吗?

    咨询过氘灯销售供应商及售后工程师,认为氘灯的不使用时间不要超过半年,不然灯丝容易氧化导致性能下降,氘灯的供应商在氘灯未销售时,放置在老化箱中长期保存,这里有两个问题,一个是氘灯中没有氧气如何氧化,一个是氘灯老化的原理是什么?

  • 氘灯点不燃

    有那位知道氘灯工作原理的? 我测氘灯电源电压时(电源就3根线),怎么发现都是直流电压(一个7v,一个140v)。不是听说是两根交流,一根直流么。 请指教!

  • 氘灯扣背景原理

    分子吸收是宽带(带光谱)吸收,而原子吸收是窄带(线光谱)吸收,因此当被测元素的发射线进入石墨炉原子化器时,石墨管中的基态分子和被测元素的基态原子都将对它进行吸收。这样,通过石墨炉原子化器以后输出的是原子吸收和分子吸收(即背景吸收)的总和。当氘灯信号进入石墨炉原子化器后,宽带的背景吸收要比窄带的原子吸收大许多倍,原子吸收可忽略不计,所以可认为输出的只有背景吸收,最后两种输出结果差减,就得到了扣除背景吸收以后的分析结果。

  • 【求助】氘灯计时器

    大家好,紫外检测上的氘灯有个汞计时器,他的原理是什么啊?如果到头了,氘灯还能用吗?可以用剪刀剪掉吗?谢谢!最好能说的详细些 啊~~~

  • 氘灯扣背景,氘灯和元素灯都是连续光源,检测器如何分别识别它们呢?

    最近在学习原吸的原理,很多资料的表述都是:先测“元素吸收和背景吸收”,氘灯通过原子化器后,得到“背景吸收”,两者差值就是校正后元素吸收值。小弟一直不理解的是,氘灯和元素灯信号是一起通过原子化器的,还是说交替通过?如果一起通过,检测器是如何把这两个信号分别识别出来的?如果是交替通过,是用什么手段实现的?不胜感激!

  • 汞灯、氙灯和氘灯的区别和用途

    气体放电光源 利用气体放电原理制成的光源。 光源结构:用玻璃或石英等材料做成管形的、球形的灯泡。泡壳内安装有电极,并充入发光用的气体,如氢、氦、氘、氙、氪,或金属蒸气,如汞、镉、铟、铊、镝等。 气体放电原理:气体在电场作用下激励出电子和离子,成为导电体。离子向阴极、电子向阳极运动,从电场中得到能量,它们与气体原子或分子碰撞时会激励出新的电子和离子,也会使气体原子受激,内层电子跃迁到高能级。受激电子返回低能级时,辐射出光子。 汞灯 汞灯的分类:低压汞灯、高压汞灯、超高压汞灯汞灯的发光特性:汞的气压越高,汞灯的发光效率也越高,发射的光也由线状光谱向带状光谱过度。低压汞灯 汞蒸气气压为0.8Pa,主要辐射253.7 nm的紫外光。常用于光谱仪的波长基准、紫外杀菌和荧光分析等。高压汞灯 汞蒸气气压为(1-10)*10的5次方Pa。可见区呈带状光谱,红外区呈弱的连续光谱。常用于紫外辐照度标准、荧光分析、紫外探伤和大面积照明等。球形超高压汞灯 汞蒸气气压为(10-20)MPa。光谱线较宽,形成连续背景,可见区偏蓝,红外辐射增强。常作为点光源用于光学仪器、荧光分析和光刻技术等 氙灯发光材料:氙。光谱特性:光谱分布与日光接近,色温6000K,亮度高,寿命可达1000 h。氙灯的分类:Ÿ 长弧氙灯——电极间距为15~130 cm,细管形,工作气压为105 Pa,用于码头、广场、车站等大面积照明。Ÿ 短弧氙灯——电极间距在数毫米量级,工作气压为1~2 MPa,是很好的日光色点光源,常用于电影放映、彩色摄影、照相制版、模拟日光等场合。Ÿ 脉冲氙灯——管内气压在100 Pa以下,由高压电脉冲激发产生光脉冲,在极短的时间内发出很强的光。广泛用于固体激光器的光泵、照相制版、高速摄影和光信号源等。原子光谱灯 发光机制:原子光谱灯又称空心阴极灯,阳极和圆筒形阴极封在玻壳内,玻壳上部有一透明石英窗。工作时窗口透射出放电辉光,其中主要是阴极金属的原子光谱。空心阴极放电的电流密度可比正常辉光高出100倍以上,电流虽大但温度不高,因此发光的谱钱不仅强度大,而且波长宽度很小。 应用领域:原子光谱灯的主要作用是引出标准谱线的光束,确定标准谱线的分光位置,以及确定吸收光谱中的特征波长等。它主要用于元素,特别是微量元素光谱分析的装置中。氘灯 发光机制:氘灯的泡壳内充有高纯度的氘气。氘灯工作时,阴极产生电子发射,高速电子碰撞氘原子,激发氘原子产生连续的紫外光谱(185~400 nm)。应用领域:氘灯的紫外线辐射强度高、稳定性好、寿命长,因此常用作各种紫外分光光度计的连续紫外光源。

  • 塞曼和氘灯扣背景

    请问塞曼和氘灯扣背景的原理是什么?它们有什么区别?望各位大侠赐教,谢谢!

  • 【分享】氙灯老化箱和紫外老化箱的原理比较

    氙灯老化箱和紫外老化箱的原理比较阳光辐照和气候变化是损害涂料、塑料、油墨及其他高分子材料的主要原因,这种损害包括失光、褪色、黄变、开裂、脱皮、脆化、强度降低及分层。即使是室内的光及通过玻璃窗透射的太阳光也都会使一些材料老化,比如引起颜料、染料等褪色或变色。   对许多制造商而言,产品的耐老化和耐光性是极其重要的。加速检测老化和光稳定性的设备被广泛用于研究开发、质量、控制和材料检定,这些检测设备提供快速并且可重复的测试结果。近年来,低价位且使用方便的实验室检测设备已经开发出来,包括UV紫外加速老化设备符合ASTM G 154、SN氙灯试验箱符合ASTM G155。   测试抗老化和光稳定性的最佳方法经常引起争论。几年来,各种各样的方法都被应用过,现在大部分研究者使用自然曝露方法,SN氙弧灯或UV加速老化试验设备。自然曝露测试方法有很多优点,实际、便宜、易于操作,然而大部分制造商不愿意等上几年的时间来观察一种新的改良的产品设计是否真的得到改进。   SN氙弧灯试验箱和UV紫外加速老化箱是应用最广泛的加速老化检测设备,这两种检测设备的测试原理完全不同。SN氙灯试验箱模拟太阳光的所有光谱,包括紫外线(UV)、可见光和红外线(IR),氙灯光谱在295 nm到800 nm范围内基本上与太阳光的光谱相吻合(如图1所示)。SN被用来测试许多产品,这些产品对紫外线的长波段、可见光及红外线较敏感。   UV不能模拟全光谱太阳光。它的原理是,对于曝露在室外的经久耐用的材料,紫外线的短波段300~400 nm是引起老化损害的最主要原因(如图1所示)。从中可以看出,在紫外线的短波区域,即从365 nm到太阳光的最低波段,UV能很好地模拟太阳光,然而,对于长一点的波长它将无能为力。   测试最佳方法依赖于测试需要,每种方法都可能非常有效。应该根据被测产品或材料、最终应用条件、所考虑降解模式和预算来选择合适的检测设备。

  • 氘灯板的一次修理

    前几天一台液相氘灯老是不正常,时不时的灭掉。看看使用时间也4000多小时了。就买了个新的,安装后却还是这样,这才知道氘灯电源板坏了。开机测量,阳极电压80V正常,灯丝电压开机2.3V,之后0.7V,这时灯还是亮的,到后来0V,灯灭了。拆下板子(1号板)。因为这板厂家暂时没有现货,刚好去年也有一块坏的板子(2号板),是阳极电压不正常(31V)。想二块修好一块。file:///C:\Users\YBCHEM~1\AppData\Local\Temp\ksohtml\wps4C46.tmp.jpg板子零件很多,又是双面板,没有图纸,还是比较费时间的。根据上面走线简单划了下原理图,见下。file:///C:\Users\YBCHEM~1\AppData\Local\Temp\ksohtml\wps4C57.tmp.jpg经查2号板是IRF640这个管子坏了,见图1脚与3脚导通。手上没有这个管子,就从1号板上把这个管子拆下换上(这板用IRF630)。file:///C:\Users\YBCHEM~1\AppData\Local\Temp\ksohtml\wps4C67.tmp.jpg这是好的管子。file:///C:\Users\YBCHEM~1\AppData\Local\Temp\ksohtml\wps4C68.tmp.jpg这是坏的管子。安装后,氘灯能正常点亮工作了。这台仪器灯丝电压正常时,我的万用表直流档显示0.7V左右。

  • 关于氘灯发光价电子跃迁的问题

    今天看氘灯示意图,我突然想到一个问题:就是既然紫外吸收的范围由只能观察pai-pai*和 n-pai*的跃迁,那也就是说氘灯能提供的光谱也应位于以上跃迁的光谱中,我又看氘灯发光原理,忘记在论坛什么位置了。氘灯的发光机理是:灯丝阴极发射的热电子在电场加速下向阳极运动与氘气分子实现非弹性碰撞而激发,从而辐射 氘分子的连续光谱。那么是否说明氘灯中的氘能发光也是因为电子激发后出现了pai-pai*和 n-pai*的跃迁呢?但我又不太明白氘的电子轨道,不清楚它们的价电子是如何的呢!纠结

  • 空心阴极灯老化的原理?

    空心阴极灯是原子吸收仪器的光源,它的稳定性将决定测试结果的稳定性和准确性听说新生产出来的空心阴极灯,在出厂前都需要对其进行老化处理不知道哪位仁兄知道,这种空心阴极灯老化的过程,和老化的原理?我在此开个题目,欢迎大家对此题目进行讨论!!!

  • 氘灯的那些事儿,欢迎补充!

    公司最近做氘灯的业务,鄙人不甚了解,搜集各方面资料加上个人乱插两句,整理下面这几段文字,希望大家指正! 氘灯是紫外分光光度计,液相色谱仪及各种紫外检测器中的目前最为理想的紫外光源。下面就氘灯的结构、原理以及使用方法做如下概述 氘灯发出几乎连续的光谱,主要依靠等离子体放电(就是指始终让氘灯处于一个稳定的氘元素(D2或者重氢)电弧状态下产生紫外波长范围(190-400 nm)直到可见光谱范围(400-800 nm)的光。 (低于190nm波长的紫外光难以被使用的原因是其波长段被氘灯外部的石英套所吸收。)因此,氘灯是高精度吸收测量的理想光源,比如紫外线可见光谱分光计和高压液体色谱分析仪(HPLC)。 氘灯的技术性能指标通常包括氘灯能量、噪音、漂移这三个重要的指标,对于咱们这样的分析用户来说,在工作站上最直观的判断都集中在氘灯能量上了,下面结合等能量和氘灯寿命简单总结一下氘灯的一些特性和日常注意事项。 氘灯的正常使用寿命一个氘灯的使用寿命是指其在提供足够光强的状态下的所使用的小时数。氘灯为易耗件,氘灯的寿命通常以下述两种情况下任一种现象出现时所定义。 它的辐射强度跌落到初始值的50%时;氘灯正常使用时的发射光强是一个很缓慢的减弱过程,可以用以下的指数函数来表示:It = Io x e-ct 式中:It 表示在t时刻的光强值;Io 表示初始光强;C表示一个常数; t表示时间。氘灯的光强减少的3个因素: 1.此氘灯的内部金属部件以及涂料的蒸发(同时可能导致灯的能否点亮);2.此氘灯的灯丝涂料的材料与石英套发生反应(主要是阻碍穿透); 3.日晒光照会导致石英套吸收200—250nm波长的光。 灯的噪声大于0.1%时。 灯的辐射强度跌落除与灯的质量有关外,与灯的光窗材料受紫外辐射后透紫率的变化有关。 按照使用情况,一般情况下,氘灯发光孔处发黑,就应该考虑氘灯的使用寿命是否到期了。很明显的,一个用来做痕量分析的氘灯的寿命要比做HPLC一类的检测相对简单实验的氘灯寿命要来的短。经验法则告诉我们,当在指定波长下光强不足初始值的50%时,你就可以换氘灯了。氘灯使用的一些注意事项。1.氘灯的开关频率:频繁的开关及过长时间的开灯等都会对灯的寿命产生影响,一般氘灯点亮后须要30分钟左右的稳定时间。需要注意的是在氘灯刚关闭时要等其冷却之后才能再次开启。因为氘灯如果在未冷却状态时被打开,很可能造成灯丝整体结构的破坏。2.氘灯外罩污染:不要用手直接接触氘灯外罩,手上含有的油脂类物质会阻碍氘灯的光源的发射光,导致读书偏低。如果不小心用手直接接触到了氘灯,在氘灯安装之前可用异丙醇对氘灯做清洁工作。3..避免剧烈物理冲撞:如灯是亮着的话,很可能将灯丝弄坏甚至是弄断。(因为当氘灯点亮时其温度有2700K度,此时灯丝几乎是液态的。)4.可更换氘灯的信号: a[/

  • 【原创大赛】带你走近氘灯的世界

    【原创大赛】带你走近氘灯的世界

    前 言:提起氘灯这个器件我想对于搞分光仪器的人员而言,真是太熟悉不过的了。它作为一个紫外光源,是原子吸收和紫外-可见分光光度计上必不可少的一个光源器件。但是,关于氘灯的细微结构,发光原理,以及常见故障的判断和检查,我想大部分使用仪器的人员就不一定耳熟能详了,故,今写此小作以飨有兴趣的版友。(一)氘灯的科技名词定义如下:中文名称:氘 灯英文名称:Deuterium Lamp定 义:充有高纯氘气,能辐射出160~400nm连续光谱的热阴极弧光放电灯。 应用范围:紫外-可见分光光度计,液相色谱仪的紫外检测器,原子吸收光谱仪,电泳仪,SOx/NOx分析仪,血液检查等多种分析仪器上。(二)氘灯的种类例举:http://ng1.17img.cn/bbsfiles/images/2011/09/201109140956_316370_1602290_3.jpg图-1 国产氘灯http://ng1.17img.cn/bbsfiles/images/2011/09/201109140958_316371_1602290_3.jpg图-2 澳大利亚氘灯http://ng1.17img.cn/bbsfiles/images/2011/09/201109141000_316373_1602290_3.jpg图-3 安捷伦氘灯http://ng1.17img.cn/bbsfiles/images/2011/09/201109141000_316374_1602290_3.jpg图-4 岛津氘灯http://ng1.17img.cn/bbsfiles/images/2011/09/201109141001_316375_1602290_3.jpg图-5 浜松氘灯http://ng1.17img.cn/bbsfiles/images/2011/09/201109141002_316376_1602290_3.jpg图-6 日立氘灯

  • 【讨论】氘空心阴极灯原子吸收

    氘空心阴极灯从原理上来说有一定的优势,但目前使用的仪器型号不多,好象只有一家公司在用,采用这一技术的障碍是技术上的还是成本上的原因?

  • 求一灯三控的原理图

    图示为一灯三控的原理图的按线图:[img=,690,547]https://ng1.17img.cn/bbsfiles/images/2024/03/202403062311257275_3703_1626275_3.png!w690x547.jpg[/img]所谓一盏灯,由三个开关分别控制开关。

  • 【讨论】氘灯和塞曼扣除背景的比较

    想请问氘灯和塞曼法扣除背景的原理是什么?各自在什么情况下使用?在什么情况下不用使用扣除背景?是不是加了基体改进剂后就不用扣除背景了?请大家帮忙解说解说,感激涕零!

  • PID的工作原理和PID灯泡分类

    PID工作原理PID-A1 和 PID-AH 利用光电离检测原理测量空气中可挥发性有机化学物(VOC) ,如下图所示。 试气(1) 通到光离子元件顶部的薄膜过滤器并自由扩散进出由过滤器,室壁和一个UV灯窗形成的下层室。灯泡发出高能量的UV光线(以箭头表示),穿过窗口。当光子被分子吸收,室内产生光电离,产生两个电荷离子,一个正电荷X+,一个负电荷Y-(2a)。 正负电极之间产生电场,吸引离子(2b), 所产生的与VOC浓度成正比的电流,可被测量并用于判定气体浓度。 PID-A包含第三个栅电极(专利),用于确保放大电流中不包含其他电流源如室壁的水冷凝产生的明显分量。[url=http://news.isweek.cn/wp-content/uploads/2019/02/20190220110832.png][img=20190220110832,556,300]http://news.isweek.cn/wp-content/uploads/2019/02/20190220110832-556x300.png[/img][/url]什么[b]VOC气体[/b]可被[b]PID[/b]感应?PID可检测大多数的VOC,除了低分子量的碳氢化合物。 每一种VOC都有一个光特性门限能量(光子能量) ,当有光直射在VOC上时,使其分解成离子。这就是电离电势或者IP。 如果大于IP的光子能量与样[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]互作用, VOC就被电离(也就是被检测到)。检测仪产生的峰值光子能量取决于所使用的PID灯泡:氙= 9.6 eV, 氘= 10.2 eV, 氪= 10.6 eV 或者氩= 11.7 eV。可见,使用氩灯泡可测量最大范围的可挥发性化合物而使用氙灯泡可提升选择性。一般某种类型灯泡在光谱指纹上是相同的,所以对于某种气体的相关反应,例如苯对于某种灯泡,例如氪,灯泡间是相同的。然而,灯泡强度在某种程度上的差异会导致对标气的完全反应不同。化学物的充足的挥发性对于PID和其他检测仪测量来说同样重要。 一种大分子颗粒,例如α 蒎烯(松节油的成分),以约5000ppm的浓度漂浮在20℃的空气中。 这是化合物通常检测到的最大浓度。一些化合物,例如机油和氩化合物,一般在常温下只有几ppm,在空气中检测这些气体更困难。[b]氪灯泡是最常用的, PID-A1和PID-AH都与氪灯泡一起供应。[/b]TVOC检测PID传感器PID-A1的特点:1.量程大,0~6000ppm2.最小检测VOC浓度为50ppb3.灯泡为10.6eV4.灯泡寿命长,达5000小时5.可检测大部分的VOC气体6.线性输出TVOC检测PID传感器PID-AH的特点:[list=1][*]分辨率高,0~50ppm[*]最小检测VOC浓度为1ppb[*]灯泡为10.6eV[*]灯泡寿命长,达5000小时[*]可检测大部分的VOC气体[*]线性输出[/list]

  • 岛津AA6880的点灯方式?

    第7点和第10点是不是有一点点矛盾或者能否解释一下原理有的人用石墨炉会用氘灯校正背景,有的人用火焰法也会用氘灯校正背景。并不冲突。第七点,不需要校正背景。第十点又选择校正/不校正。需要这么麻烦吗[img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403042306062771_3667_5981311_3.png[/img]

  • 氘灯扣除过度时,仪器会告诉我们吗?

    由于我们的火焰原子吸收是用氘灯扣背景的,而且氘灯的原理也就是在连续光源中忽略了原子吸收,测定的吸收大约是背景吸收。但是氘灯扣背景会有一个很显著的风险:如果邻近非吸收线产生了吸收,而这个不是背景产生的吸收,那样我们扣背景就会出现多扣,那样结果数据就会偏少,这样阳性样品就会判断为非阳性,这个非常危险~~~ 现在我想问的问题是:由于我平常实验中,就只有这个氘灯扣背景(不存在着什么换塞曼的说法),如果临近非吸收线产生了吸收,这个吸收不是大到我足以怀疑我的背景信号值,也就判定为普通的背景,那样仪器会告诉我们产生了这个吸收吗??在人机对话中,我们有办法读懂机器语言吗?它能告诉我们吗?还是我们读不懂? 如果不能,我们应该怎么去避免或使用什么东西去提醒我们(我觉得做加标没意义,因为多扣了,加标回收率还是可能很好的)??如果可以,那里提示了?怎么读懂?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制