基于原理

仪器信息网基于原理专题为您提供2024年最新基于原理价格报价、厂家品牌的相关信息, 包括基于原理参数、型号等,不管是国产,还是进口品牌的基于原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基于原理相关的耗材配件、试剂标物,还有基于原理相关的最新资讯、资料,以及基于原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

基于原理相关的仪器

  • 该智能无线解决方案包括各种低功耗高稳定可靠的传感器,无线低功耗数传设备,基站,服务器及功能强大软件平台,该软件可以PC终端或手机终端打开使用。提供全天24小时稳定可靠快速的数据服务。在农业、环境、水文和饮用水污水市场获得持续增长,取得很好市场地位。除了支持ADCON自身的传感器之外,也支持很多第三方的传感器,历经20多年内部已经形成一个庞大的传感器库可以支持系统采集各种现场数据,详情请咨询公司。无线低功耗的数传设备是该系统前端的基本单元,具有采集、存储、传输功能,可以达到最低功耗传送最远的距离,并通过WMO世界气象组织认证。设备小型紧凑,采用铝合金外壳,高性能防水接头,IP67防护等级能在低温恶劣环境下使用,无需现场配置和维护,安装简单方便快速成本低。无线网络支持无线电波及GPRS混合通讯方式,该方式非常适用应用于野外需要覆盖大型区域的项目。 基站是整个智能解决方案的核心,所有无线数传设备的配置在这里进行,收集系统内所有的数据存储并传送到服务器,是现场站点和以太网网络连接的桥梁.? 是工业级的设备,全天24小时工作,不是家庭PC机 ? 运行嵌入式Linux系统,非常稳定,没有干扰变化,完全控制 ? 可以与10 mw、500 mw、GSM、GPRS和UMTS设备通信,支持不同的频率。? 是一个网络服务器。有自己的IP地址,可以坐在任何地方远程操作网络。? 有一个内置的UPS。短时断电没有影响。? 支持技术人员远程访问。技术人员可以在世界上的任何地方进行故障诊断和维护。 软件平台AddVANTAGE Pro 是一个强大而通用软件包, 是通用数据可视化、加工和发布平台。它是完全基于web,运行在快速和可靠的Oracle数据库上,收集成千上万个现场站点的数据到一个超级服务器,为成千上万的客户服务。该软件历经多年使用并不断开发更新,目前已经是6.4版本,功能强大,运行稳定,界面友好,画面精致。用户客户端访问、操作不用安装任何软件,通过普通上网的IE,Foxfire浏览器就能操作软件.AddVANTAGE Pro支持多种数据图形化显示,如曲线,仪表盘及表格,并可导出数据。 可用鼠标拖曳选择时间段,在线简单分析数据段的最大值、最小值、平均值,累计值。更为复杂的分析,请看其他界面。Advantage pro 可以设立用户不同的权限管理各自区域的设备。也可对具体的事件设定邮件或短信的通知或警报。 同时根据客户的需求提供了大量的计算工具来处理数据,如总运行时间,包含9个参数的数学公式计算,条件判断,流量统计及各种作物统计公式等等,可以生成各种简单或复杂的报表。同时提供复杂的专家系统,如疾病模型里的马铃薯疫病菌。而且这些扩展功能在持续不断的开发中。详见各种应用。对外发布LiveData软件是一个非常实用工具,是目前最先进的数据显示发布方法, 能够快速而高效的把你的数据发布到网上去,,不需要登录用户名和密码即能观看。Livedata将展示你所有可用的现场站点放置在谷歌地图上(您可以很容易地修改放置位置)。用你的鼠标光标指向站点,将自动显示所有最新的值,数据的采集时间和源/位置。
    留言咨询
  • 基于NV色心的超分辨量子磁学显微镜磁性材料的显微观测有助于材料的微观结构及其形成机理的研究,随着科研的发展,磁性材料研究的尺度已经趋向于亚微米甚至纳米。因此,超高分辨和超高灵敏度的测试有助于对这些小尺寸的材料进行研究。源自瑞士苏黎世联邦理工大学自旋物理实验室的Qzabre公司,结合多年的NV色心的磁测量技术与扫描成像技术开发出的QSM系统,能够实现高灵敏度和高分辨率的磁学成像,并且可以实现定量的磁学分析,使得它成为下一代扫描探针显微镜— —基于NV色心的超分辨量子磁学显微镜。相比于传统的显微观测设备如克尔显微镜(分辨率~300 nm),磁力显微镜MFM(分辨率~50 nm ),该设备除了拥有优于30 nm的磁学分辨率外,还可以进行样品表面磁场大小的定量测试,而且NV色心作为单自旋探针, 所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。QSM超分辨量子磁学显微镜-典型应用√ 磁性纳米结构分析√ 铁磁/反铁磁磁畴成像√ 磁畴壁分析√ 电流分布成像√ 纳米尺度的温度测量√ 多铁材料扫描√ 磁场任意波形时间分辨QSM超分辨量子磁学显微镜-扫描成像原理简介金刚石NV色心为金刚石中一个氮原子取代碳原子同临近的空位形成的缺陷,它的电子能为自旋三重态,其基态ms=0与ms=±1(简并态)存在2.87GHz的零场分裂,在外磁场B作用下,ms=±1解除简并发生分裂。NV色心的自旋状态可通过激光和微波实现操作和探测,通常采用光学探测磁共振(ODMR)的方法测量外加磁场,此时NV色心处于微波作用下,当微波能量刚好等于ms=±1基态电子与ms=0基态电子的能差时发生共振,此时荧光探测表现为低谷。Ms=+1和Ms=-1基态的能差为△f=2γB,△f可以通过ODMR谱的两个共振峰谱得出,γ为NV色心的电子旋磁比,γ=28 MHz/mT ,这样可以计算出外磁场B大小。通过扫描探针持续对样品表面的磁场进行探测后,可以得出样品表面的磁场分布成像图。基于NV色心的超分辨量子磁学显微镜扫描成像原理示意图QSM超分辨量子磁学显微镜-主要特点√ 超高磁学分辨率及灵敏度√ 可定量测量样品表面磁场大小及空间分布√ 优化的光学系统获得更大的光通过率√ 多种成像模式√ 交钥匙系统√ 易更换的探针设计√ 矢量磁场选件 QSM超分辨量子磁学显微镜-技术参数√ 操作模式: NV 模式,NV quenching模式,AFM模式,MOKE模式;√ NV模式:磁场空间分辨率:30nm~70nm, 磁场灵敏度:1-10 μT/Hz^(1/2),(取决于选用探针);√ AFM模式:使用Qzabre探针分辨率~250nm,使用Akiyama探针分辨率<30nm;√ MOKE模式:使用向克尔显微模式快速获取感兴趣区域,视场150μm;√ 扫描范围:90 μm x 90 μm x 15 μm (闭环控制, 0.15nm分辨率);~6mm粗调(100nm分辨率);√ 可放置样品大小:25mm直径(标准型),大可到50mm×50mm(定制);√ 漂移率:6nm/h , 0.3℃温度稳定性;√ 优化光学系统:NA=0.75,>87% 的光通过率(600~850nm),比传统的共聚焦系统增加了>10% 的光通过率;√ 矢量电磁铁选项提供任意方向的矢量场高至75 mT;√ 定制样品托扩展直流或微波连接、加热功能等。QSM超分辨量子磁学显微镜-部分应用案例■ 反铁磁磁畴观测 反铁磁材料器件拥有电学或光学激发翻转的性能,在新型磁存储上有着潜在的应用前景,本文通过使用基于NV色心的超分辨量子磁学显微镜研究了电流脉冲注入CuMnAs微器件后弛豫过程中和弛豫后反铁磁畴织构产生的磁杂散场,研究表明大的电阻变化与写入电流脉冲引起的畴的纳米碎裂有关。通过对具有交叉几何结构的微器件中电流密度分布的成像,进一步证明了电流引起的畴结构的变化是不均匀的。在不同延迟时间获得的磁杂散场图像显示,碎片化的磁畴模式保持着对它们放松的原始状态的记忆。该研究揭示了导致金属反铁磁体电开关的微观机制,并为今后反铁磁自旋电子学领域的研究指明了方向。参考文献:Current-induced fragmentation of antiferromagnetic domains, M. S. W?rnle, P. Welter, Z. Ka?par, K. Olejník, V. Novák, R. P. Campion, P. Wadley, T. Jungwirth, C. L. Degen, P. Gambardella, arXiv:1912.05287(2019).■ 磁畴壁研究通常SOT(自旋轨道力矩)诱导的磁畴翻转强烈依赖于磁畴臂的结构,2019年Saül Vélez等人使用NV色心磁学显微镜来揭示TmIG和TmIG/Pt层的磁畴臂磁化情况。如图所示,作者对TmIG和TmIG/Pt层进行了磁学显微测试,并对图b中的两个不同位置TmIG/Pt和TmIG区域的磁畴边界d/e进行了磁场扫描,经过同模拟结果对比发现位置d处的磁畴臂处于Left Néel-Bloch中间结构,而到了位置e处的磁畴臂转变成了Left Néel 结构,这些结果表明磁性石榴石中存在界面Dzyaloshinskii-Moriya相互作用,为稳定中心对称磁性缘体中的手性自旋织构提供了可能。 参考文献:Saül Vélez, et al. High-speed domain wall racetracks in a magnetic insulator. Nature Communications (2019) 10:4750. ■ 场成像微波场的成像和探测对于未来微波器件的工程以及在原子和固体物理中的应用具有重要意义。例如,利用原子和超导量子比特进行的腔量子电动力学实验,或者量子磁体和量子点的相干控制,都是基于利用微波电场或磁场操纵量子系统。因此,控制和了解微波近场的空间分布是获得佳器件性能的关键。本文通过使用基于NV色心的超分辨量子磁学显微镜对微波电流产生的磁场空间分布进行了探测。参考文献:P. Appel, New J. Phys.17(2015)112001 ■ 斯格明子研究 “斯格明子(skyrmion)”是一种具有拓扑保护性的准粒子。由于受到拓扑保护,相比于传统的磁存储基本单元(磁畴),磁斯格明子可以被压缩到更小的尺寸,而且具有更高的稳定性;同时,它可以被很低的电流所驱动,因此,被广泛认为是未来实现高速度,高密度,低能耗磁(自旋)存储器件的基本单元。2016年,Y. Dovzhenko等人通过NV色心磁学显微镜对磁性斯格明子表面的磁场进行了测试,重构出表面杂散磁场的分布,对斯格明子的类型具有指导意义。在Bloch 型斯格明子的假定下重构出的磁化分布中,中心处z 方向磁化几乎为零, 也就是磁化方向在面内, 这样的结构无法形成一个完整的斯格明子。而Néel 型假定给出的磁化分布更加符合理论模型中斯格明子的磁化分布. 因此, Néel 型的斯格明子更加符合实验结果. 对一些新颖的磁性斯格明子结构, 如纳米条带的边缘态和双斯格明子,基于NV 色心的磁成像能够为解析其磁化结构提供帮助。参考文献:Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2016 arXiv:1611.00673 [cond-mat]. ■ 磁性涡旋结构研究磁性vortex是一种具有手性的磁性结构, 在自旋动力学和磁存储器件等方面有重要研究价值。该研究实验表明,基于NV色心的超分辨磁学显微镜能够与微磁模拟进行强有力的比较,是纳米磁性和更普遍的纳米科学基础研究的有力工具。事实上,直接测量弱磁场,不受扰动,具有纳米的分辨率,可以解决一些重要的问题,例如垂直各向异性薄膜中磁畴壁的性质,这些磁畴壁控制着薄膜的电流感应运动。参考文献:Rondin, L., Tetienne, J., Rohart, S. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat Commun 4, 2279 (2013).■ 纳米结构中的电流分布测试纳米结构和薄膜中的电荷输运是许多科学技术现象和过程的基础,由于这种结构的纳米尺寸和电流的流动性质,直接显示这种结构中的电荷流具有挑战性。本次研究使用基于NV色心的超分辨磁学显微镜对二维导体网络(包括金属纳米线和碳纳米管)中电流密度进行磁成像。在电流密度噪声为~2×104A/cm2的情况下,对直流电流进行低至几个μA的检测。重建图像的空间分辨率通常为50nm,小为22nm。电流密度成像为研究二维材料和器件中的电子输运和电导变化提供了一条新的途径。参考文献:Chang et al., Nano Lett. 17 (2017) ■ 磁场任意波形时间分辨 基于NV色心的超分辨量子磁学显微镜除了进行过空间的磁学分辨外,还可以直接记录与时间相关的磁场,而不需要信号重建。J. Zopes & C. Degen等人使用自旋回波来差分检测波形的短片段,同时获得高的磁场灵敏度(~4μT/Hz1/2)和高的时间分辨率(~20ns),能进行任意波形的检测。可能的应用包括微型射频发射器的现场校准、集成电路中的信号映射检测、脉冲光电流的检测和薄膜中的磁开关等。 参考文献:J. Zopes & C. Degen, Phys. Rev. Appl. 12, 054028 (2019)
    留言咨询
  • “基于云的实验室预约系统”是用于实验室中心管理,集课程管理、教室管理、教师管理、排课展示、实验室资源预约管理、查询与统计,实验室设备监控)(需要配置基于SIS的安全监控系统)实验室远程控制(需要配置实验资源在线分配系统)等功能于一体的管理平台。我们V2版本的系统简化了一些功能。并把主要用于教师的预约系统修改为面向教师预约班级,以及学生预约开放时间与设备的系统。
    留言咨询

基于原理相关的方案

基于原理相关的论坛

  • 基于动态光散射原理的纳米粒度仪的研制

    基于动态光散射原理的纳米粒度仪的研制

    基于动态光散射原理的纳米粒度仪的研制任中京, 陈栋章 (济南微纳颗粒技术有限公司, 济南)摘要:介绍了基于动态光散射原理的纳米粒度仪的工作原理和设计, 重点讲述了我公司自研制的CR128数字相关器的设计原理与性能特点, 以及利用该器件成功研制出的winner801光子相关纳米粒度仪的特性。关键词.. 纳米粒度仪;动态光散射(DLS);光子相关谱(PCS);数字相关器纳米颗粒的尺度一般在1-100nm之间, 是介于原子、分子和固体体相之间的物质状态。由于纳米颗粒具有尺寸小、比表面积大和量子尺寸效应, 使它具有不同于常规固体的新特性。在纳米态下, 颗粒尺寸更是对其性质有着强烈的影响, 纳米材料的粒度大小是衡量纳米材料最重要的参数之一。而常规的基于静态光散射原理的激光粒度仪的测量下限己接近极限, 但仍旧不能对纳米颗粒的粒度测试得出理想的结果甚至无能为力。光子相关光谱(Photon Correlation Spectroscopy,简称PCS)法已被证明是一种适于测量纳米及亚微米颗粒粒度的有效方法。PCS技术也成为动态光散射(Dynamic Light Scattering, 简称DLS) 技术, 主要是研究散射光在某一固定空间位置的涨落现象。其颗粒粒度测量原理建立在颗粒的布朗运动基础之上。由于颗粒的布朗运动, 一定角度下的散射光强将相对于某一平均值随机涨落。PCS技术就是通过这种涨落变化的快慢间接地得到相关颗粒粒度的信息。1 动态光散射基本原理基于动态光散射原理的颗粒粒度测试基本原理如图1.1所示。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441893_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441894_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441895_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441897_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441898_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441899_388_3.jpg最后再对四路基线求其平均值用于数据分析, 以免突变的光强引起光强自相关函数发生畸变。在如上的算法的基础上, 我们所研制的C R 12 8 数字相关器采用F PG A 技术, 以硬件方式实现。如图2 .1所示, 主要由取样时间发生器、取样时间、光子计数器、12 8 相关运算模块、基线运算模块、相关数据存储器、数据输出及控制电路组成。其工作原理为:选取适当的取样时间, 并在该时间段内将输入的光子数连续计数, 并将计数结果进行128 路自相关运算及基线

基于原理相关的耗材

  • 化工原理实验仿真软件CES (以北化装置为原型)
    流程简述: 化工原理是化工、生物、食品、制药等专业必修课。化工原理实验是大部分学校必做的实验。因此化工原理实验被列为重点实验内容之一。东方仿真使用自主开发平台,利用动态数学模型实时模拟真实实验现象和过程,通过3D仿真实验装置交互式操作,产生和真实实验一致的实验现象和结果。每位学生都能亲自动手做实验,观察实验现象,记录实验数据,验证公式、原理定理。另外,该系统还配备开放的标准实验思考题生成器。该系统分为教师站和学生站。通过网络,教师站上的监控和管理程序方便地对学生站运行的实验仿真软件进行实时的监控和管理。本仿真软件以北京化工大学实验装置为主,兼顾华东理工大学的实验装置。包括了所有典型的化工原理实验装置。培训工艺:1.1 、离心泵特性曲线测定1.2 、流量计的认识和校核1.3 、流体阻力系数测定1.4 、传热(水-蒸汽)实验1.5 、传热(空气-蒸汽)实验1.6 、精馏(乙醇-水)实验1.7 、精馏(乙醇-丙醇)实验1.8 、吸收(氨-水)实验一1.9 、吸收(氨-水)实验二1.10 、丙酮吸收实验1.11 、干燥实验1.12 、板框过滤实验建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)
  • 食品工程原理实验仿真软件FES
    流程简述: “食品工程原理仿真实验”,就是利用动态数学模型实时模拟真实实验现象和过程,通过对仿真3D实验装置进行互动操作,产生和真实实验一致的结果。从而达到每个学生都能够一对一地亲自动手做实验,观察实验现象,验证公式、原理定理的目的。可以通过网络,使教师站上运行的监控程序与管理程序能方便地对下位机的学员站上运行实验仿真软件进行监控与管理,同时配有标准的实验思考题生成器,开放接口。培训工艺:1.1、流体粘度测定实验1.2、柏努利方程实验 1.3、雷诺实验 1.4、流体阻力实验 1.5、离心泵性能实验 1.6、过滤实验 1.7、传热实验 1.8、洞道干燥实验 1.9、流化床干燥实验 1.10、精馏实验 1.11、气体扩散系数测定实验1.12、液体扩散系数测定实验运行环境要求建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)
  • 基于HPLC的 Pico• Tag氨基酸分析
    基于HPLC的Pico Tag氨基酸分析HPLC氨基酸分析的一种广泛使用技术就是沃特世的Pico Tag方法。基于优化的系统配置、预包装的试剂和详尽的资料,Pico Tag方法为通往现代HPLC氨基酸分析提供了即用、可靠的途径。柱前衍生反应根据著名的Edman降解偶联反应的第一步,也就是异硫氰酸苯酯(PITC: phenylisothiocyanate)同时与伯胺类和仲胺类氨基酸反应形成苯基硫脲(PTC: phenylthiocarbamyl)衍生物。PTC-氨基酸加合物稳定,并易于被反相HPLC分离。每种氨基酸只形成一种产物。大多数反应副产物和所有衍生化试剂都具有挥发性,所以可通过真空干燥而从样品中除去。该方法适用于任何样品,包括蛋白水解产物、生理液体、饲料、食品和药物制剂。如需更详细的信息与资料,请联系沃特世化学品部门查询。Pico?Tag氨基酸分析,用于蛋白水解物色谱柱和消耗品 规格/数量 部件号Pico?Tag化学品套装包括:色谱柱、试剂包、洗脱液、稀释剂、应用指导手册,和柱加热器内插管 — WAT007360Pico?Tag色谱柱 3.9 x 150 mm WAT088131试剂包(包括PITC,TEA,和标准品) — WAT088123Pico?Tag洗脱液A 4 x 1升 WAT088108Pico?Tag洗脱液B 4 x 1升 WAT088112Pico?Tag稀释剂 100mL瓶装 WAT088119Pico?Tag氨基酸分析,用于生理氨基酸色谱柱和消耗品 规格/数量 部件号Pico?Tag游离氨基酸检测化学品套装包括:色谱柱、试剂包、洗脱液、稀释剂、应用指导手册、柱加热器内插管,和样品管 — WAT091681Pico?Tag游离氨基酸分析色谱柱 3.9 x 300 mm WAT010950试剂包(包括PITC,TEA,和标准品A/N和B) — WAT010947Pico?Tag洗脱液1 4 x 1升 WAT010960Pico?Tag洗脱液2 4 x 1升 WAT010965Pico?Tag稀释剂 100mL瓶装 WAT088119

基于原理相关的资料

基于原理相关的资讯

  • 瓶口边厚仪是如何测量瓶口边缘厚度的?基于何种技术或原理
    在现代工业生产中,瓶口边厚仪作为一种关键的质量控制设备,广泛应用于医药、化工、食品等多个领域,尤其在玻璃瓶、塑料瓶等包装容器的生产中发挥着至关重要的作用。本文将深入探讨瓶口边厚仪的工作原理、所采用的技术或原理。一、瓶口边厚仪的工作原理概述瓶口边厚仪是一种高精度测试设备,主要用于测量玻璃瓶或塑料瓶瓶口边缘的厚度。其工作原理基于机械接触式测量技术,通过精确的传感器和数据处理系统,实现对瓶口边缘厚度的准确测量。该设备不仅具有高度的测试准确性和重复性,还能在不对被测物体造成损伤的情况下完成测量,确保测试结果的可靠性。二、机械接触式测量技术详解1. 探头组件与传感器的作用瓶口边厚仪的核心部件包括探头组件和传感器。探头组件通常采用碳纤维等轻质高强度材料制成,确保在测量过程中既能稳定接触瓶口边缘,又不会对瓶子造成损伤。传感器则负责将探头接触到的物理信号(如位移、压力等)转换为电信号,供后续数据处理系统分析。2. 信号处理与显示转换后的电信号经过信号放大器放大后,进入数据处理系统。该系统利用先进的数字信号处理技术,对信号进行滤波、去噪、线性化等处理,最终得出瓶口边缘的厚度值。测量结果通过数字显示屏实时显示,便于操作人员读取和记录。三、高精度测量的实现1. 精密的机械结构设计为了实现高精度的测量,瓶口边厚仪的机械结构设计十分精密。探头组件与瓶口边缘的接触点需保持恒定且均匀的压力,以确保测量结果的准确性。同时,设备的整体结构需具备较高的刚性和稳定性,以抵抗外界干扰和振动对测量结果的影响。2. 先进的测量算法除了精密的机械结构外,瓶口边厚仪还采用先进的测量算法对信号进行处理。这些算法能够自动校正测量过程中的系统误差和随机误差,提高测量结果的精度和稳定性。同时,算法还能实现数据的实时处理和统计分析,为质量控制提供有力支持。四、非接触式测量技术的探索虽然机械接触式测量技术在瓶口边厚测量中占据主导地位,但非接触式测量技术也在不断发展和探索中。例如,基于激光或超声波的非接触式测量技术具有不损伤被测物体、测量速度快等优点,但其在瓶口边厚测量中的应用还需进一步研究和验证。五、应用实例与市场需求1. 医药行业的应用在医药行业中,瓶口边厚仪被广泛应用于药品包装容器的质量检测中。通过测量瓶口边缘的厚度,可以评估包装容器的密封性、耐压性等关键性能指标,确保药品在储存和运输过程中的安全性和有效性。2. 化工行业的需求化工行业对包装容器的要求同样严格。瓶口边厚仪在化工瓶罐的生产过程中发挥着重要作用,通过测量瓶口边缘的厚度,可以及时发现并纠正生产过程中的偏差和缺陷,提高产品的整体质量和市场竞争力。3. 市场需求与未来展望随着工业生产的不断发展和消费者对产品质量要求的不断提高,瓶口边厚仪的市场需求将持续增长。未来,随着技术的不断进步和创新,瓶口边厚仪将更加智能化、自动化和便携化,为各行各业提供更加高效、准确的质量控制手段。六、结语瓶口边厚仪作为现代工业生产中的重要质量控制设备,其工作原理和技术特点决定了其在多个领域中的广泛应用和重要地位。通过不断的技术创新和产品优化,瓶口边厚仪将不断提高测量精度和稳定性,为企业的质量控制和市场竞争提供有力支持。同时,我们也期待非接触式测量技术在瓶口边厚测量中的进一步发展和应用,为工业生产的智能化和自动化注入新的活力。
  • 青岛能源所等发明基于拉曼组原理的益生菌单细胞质检技术
    目前市场上有大量的益生菌品牌和产品,但质量参差不齐,给消费者带来极大困扰,也阻碍了产业的健康发展。此问题的根源在于目前业界缺乏快速、准确、全面、低成本的益生菌产品质检手段。青岛能源所单细胞中心联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物科技有限公司等,开发了基于拉曼组原理的益生菌单细胞质检技术SCIVVS,为突破这一紧迫的技术瓶颈提供了全新的解决方案。该工作近日发表于iMeta杂志。 基于拉曼组原理发明益生菌单细胞质检技术SCIVVS   益生菌产品的市场规模已近千亿,但是存在大量的“鱼目混珠”现象。其重要原因是益生菌质检的方法学局限性。由于这些方法大多依赖于分离培养或元基因组测序,因此存在耗时长、成本高、难以快速测定细胞活性和代谢活力及其细胞间异质性、复合益生菌产品深度质检困难、流程繁琐、难以自动化等瓶颈性问题。这些局限性导致益生菌产品难以快速、低成本、全面、深度地进行质检,很大程度上阻碍了益生菌产业的健康发展。   针对这一产业瓶颈,青岛能源所单细胞中心张佳副研究员、任立辉高级工程师、张磊博士、公衍海助理研究员等带领的研究小组,联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物等团队,基于拉曼组原理,开发了一种名为SCIVVS(Single-Cell Identification, Viability and Vitality tests and Source-tracking)的单细胞精度益生菌质检技术体系。针对益生菌产品,SCIVVS首先不是提取总核酸或者进行平板培养,而是提取所有的细胞进行重水饲喂和单细胞拉曼光谱的高通量采集。在每一张拉曼光谱上,利用其指纹区,基于与益生菌单细胞拉曼光谱参照数据库的比对,快速完成每个细胞的种类鉴定环节。通过构建21种法定可食用益生菌的标准菌株拉曼光谱数据库,SCIVVS可实现平均高达93%的分辨准确度。同时,利用其重水利用峰(C-D峰),则可针对每个物种,量化每个细胞的活性、代谢活力等。进而可通过拉曼激活单细胞分选技术,快速获得目标种类或目标代谢活力的单细胞,从而对接下游单细胞全基因组测序或培养。   为了支撑SCIVVS,在国家重大科学仪器研制、国家重点研发计划等项目的支持下,青岛能源所和青岛星赛生物合作研制成功了单细胞拉曼光镊分选仪(RACS-Seq)、高通量流式拉曼分选仪(FlowRACS)等原创仪器产品。运用RACS-Seq,研究人员直接从纯种或复合益生菌产品出发,在5个小时之内,完成了精确到每个物种的活细胞计数、活力定量和活力异质性测量。同时,针对乳酸杆菌、双歧杆菌或链球菌等各种益生菌,均能产出高质量的单细胞基因组(覆盖度可高达99.4%),从而完成精准溯源。   对比目前的益生菌产品质检方法,SCIVVS具有快速、准确、全面、低成本、易于自动化等优势,较传统方法快20倍以上,而成本仅为传统方法的1/10,且能免培养、高精度、自动化、一站式地完成产品中每个物种的活细胞计数、活力定量、活力异质性测量和溯源,有望形成新的技术标准。在此基础上,该合作团队将基于“益生菌单细胞技术联盟(A-STEP)”,联合益生菌产业领军企业,建立一个“标准化”、“一站式”、“公益性”的技术服务体系,为实现从生产端到消费端的益生菌产品质量规范化,提供一个原创的、切实可行的解决方案。   该工作由单细胞中心徐健、中国食品发酵工业研究院姚粟、青岛东海药业崔云龙等主持完成,得到了国家自然科学基金、山东省自然科学基金和国家重点研发计划青年科学家项目等项目的支持。
  • 研究开发出基于FBG传感原理的触觉传感器应用于微创手术组织触诊
    近日,中国科学院深圳先进技术研究院医工所微创中心研究员王磊团队在基于布拉格光栅光纤传感原理在微创手术的应用——活体组织触诊的研究中实现了活体组织的精准力信息反馈和肿块信息的定位检测功能。相关研究成果以Development of a Fiber Bragg Grating-based Force Sensor for Minimally Invasive Surgery ―Case Study of Ex-vivo Tissue Palpation为题,发表在IEEE Transactions on Instrumentation and Measurement上。  随着医疗技术的快速发展,微创手术(MIS)逐渐成为现实。但是,传统手术中发现的一些问题仍与MIS有关。例如,在进行微创外科手术期间,医护人员会暴露在手术室中发现的放射线和整形外科危害中。引入机器人辅助微创手术的技术成为了比传统微创手术更好的替代方案;然而,机器人辅助手术过程中伴随着外科医生的触觉丧失。外科医生通过操作机器人来进行微创手术,手术期间医生无法直接接触人体组织并且分析人体器官,因此无法保证所进行的手术的可靠性。在传统手术过程中,医生通过触觉去感知器官的异常情况,进而判断器官中是否存在肿瘤和肿块。但随着医疗机器人的普及,这种可获得的触觉信息尚未有效集成到机器人辅助的微创手术中,因此要求机器需要具有更高精确度和灵敏度的触觉信息反馈。深圳先进院科研人员在此基础上提出一种用于微创手术组织触诊中的高灵敏度布拉格光栅光纤(FBG)传感方案,与以往的电容式传感方案不同,光纤传感器与手术期间的磁共振(MR)系统和成像系统兼容。   为此,研究设计了用于微创手术的一维远端力传感器。其中,传感器结构中嵌有双光栅元件可用于解耦传感器在使用过程中受到的应变和温度交叉影响,实现更精准的力觉检测。研究中,科研人员基于双光栅元件结构设计出发,推导出相应的柔性结构理论模型。通过fmincon函数对柔性件进行了基于物理模型的优化设计,确定了结构的关键参数。采用有限元法对柔性件的静态和动态特性进行分析,在理论基础上验证了该柔性件的可行性。为了进一步提高传感器性能,并基于前馈神经网络对数据进行标定,该网络模型可精准预测力与波长偏移量的关系。研究还进行了温度补偿实验,验证了双光栅元件能够有效的进行温度解耦方案。实验结果表明,FBG传感器能够在1N范围内感知力值,平均相对误差小于满量程的2%;温度补偿后的误差0.8 mN。科研人员进一步对猪肝器官进行组织触诊实验,验证所提传感器设计在微创手术中的有效性和适用性。   研究实现了组织触诊中器官肿块信息的精准力反馈和定位检测,并提出了新型的温度解耦方案和传感器标定方法,为微创手术中手术机器人的触觉信息检测提供了有效技术路线,有望推动手术机器人在介入式医疗中的手术路径导航和机器控制中的应用。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。   论文链接

基于原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制