当前位置: 仪器信息网 > 行业主题 > >

仪控原理

仪器信息网仪控原理专题为您提供2024年最新仪控原理价格报价、厂家品牌的相关信息, 包括仪控原理参数、型号等,不管是国产,还是进口品牌的仪控原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合仪控原理相关的耗材配件、试剂标物,还有仪控原理相关的最新资讯、资料,以及仪控原理相关的解决方案。

仪控原理相关的论坛

  • 求一灯三控的原理图

    图示为一灯三控的原理图的按线图:[img=,690,547]https://ng1.17img.cn/bbsfiles/images/2024/03/202403062311257275_3703_1626275_3.png!w690x547.jpg[/img]所谓一盏灯,由三个开关分别控制开关。

  • 【原创大赛】触控LED灯维修一例及触控原理浅议

    【原创大赛】触控LED灯维修一例及触控原理浅议

    家里使用多年的一个触控应急灯坏了,如图01所示,晚上起夜给孩子把尿很不方便,于是决定好歹修一修,原本觉得很简单,现在想来中间过程并不轻松,不过经过维修也学习和巩固了一些基本知识,算是维修工作的慰藉吧。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241859_453450_1611921_3.jpg图01 家用触控LED应急灯闲话不表,把我的维修与思考的过程逐一分解给各位读者先。1、维修的第一步当然是不由分说的拆开应急灯底座,如图02所示,一拆开发现有一个电容完全废了,电解液都流出来的(有点遗憾的是没有拍照就扔了,这是更换之后的照片)根据标号从电子元件库中找了一个容值和尺寸差不多耐压高达650V的电容换上, 原感觉问题解决了,可没想到灯泡无法点亮,而且电池并不能充上电,我的表情顿时严肃起来,心想可能摊上大事了,看来必须进行更加深入的维修……http://ng1.17img.cn/bbsfiles/images/2013/07/201307241900_453452_1611921_3.jpg图02 触控灯底座电路板照片2、深入的维修首先当然需要弄清楚其工作原理,根据我的理解,将整个原理图剖解如图03。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241900_453454_1611921_3.png图03 触控灯的原理示意图3、使用一个电流电压源和万用表逐一对充电模块、电池、触控模块及负载进行隔离检测,发现充电模块与电池都不能正常工作,前者空载直流280V而接100欧负载的电压仅0.3V,远远偏离正常值,可以断定充电模块除了刚才提到的电容烧坏之外肯定还有其他地方坏了;后者充电电流小于1毫安。不过所幸的是,触控模块与负载经过3V供电时都可以正常工作,于是确定维修点,如图04所示。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241901_453455_1611921_3.png图04 触控灯的故障分析结果图4、根据失效模块选择相应的配件,由于原来的蓄电池是铅酸电池寿命较短,濒临淘汰,于是毫不犹豫更换成锂电池,选择一个3.7V的模块,注意购买锂电池时一定要同时购买相应的保护电路,以保证锂电池的稳定、均匀的充放电,避免不正确的充放电对电池的损害甚至引起事故,这个细节通过百度都可以找到,不赘述;由于充电模块也坏了,干脆就新买的锂电池配一个标准充电器(5V1A),如图05所示。充电器与电池分别花5元与18元,共23元。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241901_453457_1611921_3.jpg图05 市场上购买的标准锂电充电器5、将配件更换组装,如图06所示,其结构原理图如07所示,维修结果也上一个图,如图08。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241901_453458_1611921_3.jpg图06 维修结束后的底座电路照片http://ng1.17img.cn/bbsfiles/images/2013/07/201307241902_453461_1611921_3.png图07 触控灯维修结果示意图http://ng1.17img.cn/bbsfiles/images/2013/07/201307241902_453462_1611921_3.jpg图08 触控灯维修结果照片6、剩下电子垃圾有板砖一样的蓄电池与充电器外壳各一个分别如图09与10所示。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241902_453463_1611921_3.jpg图09 被更换的铅酸电池http://ng1.17img.cn/bbsfiles/images/2013/07/201307241903_453464_1611921_3.jpg图10 被挖去内脏的充电器故事到这里本应该结束了,可我在维修中发现一个半天想不明白的问题:该灯的触控原理具体是怎样的,乍一看是电容感应控制,但电容一般都是两个平行极板,而这里的触控敏感元件怎么只有一个极?!如图06中的触控铜片。A1、带着这个问题,首先需要搞清楚触控灯的原理电路,其核心是一个SGL8022W芯片,根据查阅该芯片的手册、应用电路(如图11所示)及一些热心朋友分享的应用案例(如改造一个很艺术的装饰灯,顺便验证一下SGL8022W的触摸感应效果、【拆解与改进】久量牌可充电触控三级调光LED灯【新增电路图】),应用手册及用户讨论让我更加深入了结了SGL8022W芯片的强大功能,它不仅仅可以触控开关,还可以通过手指悬停进行无级光强调节,通过改变输入阻抗调节灵敏度还可以实现隔空打物(仅仅手在空中挥舞就可以开关与无级调光),不过遗憾的是,这些资料均没有讨论我关心的问题:只有一个极如何实现电容触控?http://ng1.17img.cn/bbsfiles/images/2013/07/201307241903_453465_1611921_3.jpg图11 SGL8022W触控应用电路图A2、查更多的资料,我了解到,通常的触控原理,或者使用声表面波,或者像iPad/iPhone中使用的平行板电容触控元件阵列,分别如图12、13所示,其中电容触控原理与我关心的问题比较接近,它是在手指靠近触控单元时电容发生改变而进行判断和响应的,如图14,可是如果只有一个电极,如何实现触控呢?还需要更加深入的调查。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241904_453466_1611921_3.jpg图12 超声波触控原理(来源于网上,漫画作者蔡子君)http://ng1.17img.cn/bbsfiles/images/2013/07/201307241904_453467_1611921_3.jpg图13 ipad电容触控原理图,两层ito导电膜之间是介质夹层(原文作者Paul Ockenden链接http://www.pcpro.co.uk/realworld/357325/capacitive-or-resistive-whats-the-best-type-of-touchscreen)http://ng1.17img.cn/bbsfiles/images/2013/07/201307241904_453468_1611921_3.png图14 双极板触控原理图A3、经过一番检索,终于找到 David Johnson先生写的一段话让我刹那间明白了"A key to the success of these circuits was to measure thecapacitance change relative to earth ground using a frequency much higher than standard power lines."(原文链接http://www.imagineeringezine.com/e-zine/capacitance.html),单极触控的关键一是单极板对地的电容变化;二是频率不能太低与交流电频率接近,也不能太高和无线电接近。根据我的理解画一个单极板触控原理图如图15所示。http://ng1.17img.cn/bbsfiles/images/2013/07/201307241905_453469_1611921_3.gif图15 单极板触控原理动画图A4、为了更清楚的表达我对单极触控问题的理解,我把通常的双极板电容的认识拓宽为两个半电容(双极直接存在电容,同时对地也分别存在分布电容),单极触控的实质是半电容变化的调节[/

  • 【原创大赛】气相色谱仪流量控制原理与维护 (一-二) 进样口手工流量控制器和电子流量控制器原理

    【原创大赛】气相色谱仪流量控制原理与维护   (一-二) 进样口手工流量控制器和电子流量控制器原理

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](一)[/font] [font=宋体]进样口手工流量控制器原理[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口手工流量控制的基本原理。[/font][/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流[/font]/[font=宋体]不分流([/font][font=Calibri]Split/Spliless[/font][font=宋体])进样口。进样口流量控制方式有手工流量控制和电子流量控制两种,手工流量控制方式的色谱仪价格较为低廉,抗污染能力强,运行与维护成本较低,目前仍旧在普通化工分析等行业中使用。[/font][/font][font=宋体] [/font][align=center][font=宋体]常见的手工流量控制方式[/font][/align][font=宋体]进样口手工流量控制器大致分流两类,压力控制方式和总流量控制方式。[/font][font=宋体][font=宋体]图[/font]1[font=宋体]所示为压力控制方式,载气由压力控制器调节到适合压力,即为柱前压。[/font][/font][font=宋体]隔垫吹扫流量和分流流量分别由对应的针型阀控制,调节到合适的流量。[/font][font=宋体]柱流量由色谱柱来确定。[/font][font=宋体]压力控制器调节速度较快,适合气体阀进样或者样品气化体积较大的场合。分流流量、隔垫吹扫流量、柱流量各自独立,需要单独测定各流路流量,调节工作量较大。[/font][align=center][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010003569364_7168_1604036_3.png!w690x457.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]压力控制方式原理[/font][/font][/align][align=center][img=,690,453]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010004036078_273_1604036_3.png!w690x453.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]总流量控制方式原理[/font][/font][/align][font=宋体]载气由总流量控制器调节,输入进样口固定的流量,进样口压力缓慢上升,当压力达到设定值后,分流控制器开启,使得进样口压力恒定于设定值。[/font][font=宋体]分流控制器一般是背压阀,当输入压力达到设定值时才能开启。进样口的压力最终由分流控制进行调节。[/font][font=宋体]总流量控制方式,进样口流量调节工作量较小,总流量和进样口压力之间有相互影响,系统的调节惯性较大。样品气化气体较大或者气体进样阀进样时一般可能会观测到相对较长时间的压力流量扰动。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体][font=宋体]分流[/font]/ [font=宋体]不分流进样口常见控制方式的原理和性能比较。[/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font]------------------[font=宋体][font=宋体][/font][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] (二) 进样口电子流量控制器原理[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以分流/不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口电子流量控制的基本原理。[/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流/不分流([font=Calibri]Split/Spliless[/font])进样口。目前较多使用电子流量控制器,不同仪器厂家对于电子流量控制命名不同,如[font=Calibri]AFC[/font]、[font=Calibri]EPC[/font]、[font=Calibri]EFC[/font]等,其大致原理比较接近,都是采用了基于电磁阀通断气流结合流量控制器和压力计来实现进样口的流量(压力)控制。[/font][font=宋体]图1为常见的分流[font=Calibri]/[/font]不分流进样口电子流量控制器的结构框图,当[font=Calibri]GC[/font]系统开启后,总流量控制器向进样口注入设定的流量,压力计测定的进样口压力会逐渐上升,在分流控制器的调解下,进样口压力达到设定值,进样口的流量状态达到就绪。[/font][font=宋体]隔垫吹扫流量值较低,受进样口压力的限制。[/font][font=宋体]色谱柱流量为计算值,电子流量控制器实际上只控制进样口压力。色谱柱是否安装正确,色谱柱是否堵塞,色谱柱是否断开,实际上进样口并不能感知到。[/font][font=宋体] [/font][align=center][font=宋体] [img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010005202895_1475_1604036_3.png!w690x419.jpg[/img][/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]在分流工作方式下,进样口的总流量等于分流流量、隔垫吹扫流量和柱流量之和。[/font][font=宋体]当由于某种原因,进样口压力发生增大现象,此时GC系统会控制分流控制器增加分流出口流量,以降低进样口压力,使得进样口压力恢复设定值;反之亦然。在进样较大体积的液体或者气体样品时,一般会观察到进样口压力(流量)的瞬间变化。[/font][font=宋体] [/font][font=宋体]在不分流进样状态下,进样瞬间分流控制器将分流流量关闭,此时进样口总流量等于柱流量和隔垫吹扫流量之和。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体] [/font][font=宋体]电子流量控制器,实际上只控制进样口的输入总流量和压力。[/font]

  • ARC功率因数自动补偿控制仪的原理及其应用

    ARC功率因数自动补偿控制仪的原理及其应用安科瑞 蔡昀羲摘 要:介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实时监测,适用于目前企业用户进行无功功率补偿。关键词:功率因数;无功补偿;单片机  随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有:  (1) 相序自动识别  (2) 电压、电流、功率因数采样与显示  (3) 过压解除、欠流封锁,从而保护电容器及避免循环投切  (4) 采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切  (5) 所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间一、 工作原理  采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。  由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。  在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia  则有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),  从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90º)  若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90º;  若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º-φ;  若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º+φ  在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360º。在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:  若180ºα270º,则电路为容性负载,COSφ=COS(270º-α)  若α=270º,则电路为感性负载,COSφ=1  若270ºα360º,则电路为感性负载COSφ=COS(α-270º)  为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:  若0ºα90º,则电路为容性负载,COSφ=COS(90º-α)  若α=90º,则电路为感性负载,COSφ=1  若90ºα180º,则电路为感性负载COSφ=COS(α-90º)http://www.acrel.cn/cn/download/common/upload/2011/02/25/16149c0.jpg图1 电压、电流向量二、 硬件的设计  控制器的CPU采用ATMEL的ATMEGA16-8L,此单片机工作电压范围宽(2.7 - 5.5V),最高工作频率为8MHz;芯片内部具有16k字节的Flash程序程序存储器,512 字节的EEPROM,1K字节的片内SRAM;8路10 位ADC;一个可编程的串行USART,具有独立片内振荡器的可编程看门狗定时器;两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 ;一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。显示芯片采用南京沁恒公司生产的键盘、显示专用芯片CH451S,CH451S最大能驱动8为数码管,且不需外加驱动就能直接驱动LED数码管,大大减小了印板尺寸,单片机的采用SPI模式,只需3线(片选CS、时钟CLK、数据输入DIN),因本系统未用CH451S的键盘功能,所以CH451S的DOUT引脚不用。Ubc的电压信号经过电阻限流进入2mA/2mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC0,作为电压显示信号,另一路经过零比较后进入单片机中断口INT0;同样Ia的电流信号经5A/5mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC1,作为电流显示信号,另一路经过零比较后进入单片机定时器门控端ICP引脚。http://www.acrel.cn/cn/download/common/upload/2011/02/25/1626rm.jpg图2 ATMEGA16外部引脚 http://www.acrel.cn/cn/download/common/upload/2011/02/25/16215ld.jpg图3 输入信号处理三、 软件的设计  因整个系统对电压、电流采样的精度要求不高,我们直接用CPU的10位A/D对电压、电流的信号进行A/D转换,转换的结果一方面供显示的需要,另一方面作为过压与欠流的比较信号。我们将INT0设置为上升沿产生异步中断,ICP设置为上升沿触发输入捕捉。当INT0产生中断时,16位计数器开始以内部恒定的频率开始计数,直到下一中断的产生。在计数的同时,当TCP上有上升沿脉冲时,即将16位计数器已计得的数据放入到捕捉寄存器中。当一个采样周期结束时,计数器中得数据(N)即为外部交流信号的一个周期基数, 捕捉寄存器中数据(n)电流Ia滞后电压Ubc的基数,将(n/N)*360º即为角度,根据上面的原理就可判断在同一周波中时电压超前电流还是电流超前电压,同时还可得出超前或滞后的角度,将此数据进行查表即可得到功率因数。  为了避免对电容器组中的某一组进行频繁的投切,平衡每一组电容器的工作时间,延长整个系统的使用寿命。我们对电容器的投切采用先投入的优先切除,先切除的优先投入的原则,我们在单片机的RAM中开辟了一空间,用于记录每组电容器的投入与切除时间,然后进行排序,将已工作时间最长的作为优先切除对象,将切除时间最长的作为优先投入对象。  当三相交流的负载回路电流非常小时,会产生投切振荡的现象。也就是说控制系统投入一组电容器会产生过投,切除一组电容器又会产生投入不足,控制器就会产生重复的投切现象。为避免此想象的发生,我们设置了欠电流锁定,当电流值小于此数值时,系统将停止对电容器的投切动作,维持已投入的电容器工作。  在工作过程中,若采样到的电压数据大于设定的过压保护值时,控制器将逐步切除已投入的电容器,若发现超过设定的保护值的10%时,则一次性切除所有已投入的电容器,保护电容器。  以上的技术现已应用于本公司的ARC功率因数自动补偿控制仪中,经测试运行,系统工作稳定、各项指标达到了国家标准的要求,现已初步投放市场。

  • 半导体晶片温度控制中制冷原理说明

    半导体晶片温度控制是目前针对半导体行业所推出的控温设备,无锡冠亚半导体晶片温度控制采用全密闭循环系统进行制冷加热,制冷加热的温度不同,型号也是不同,同时,在选择的时候,也需要注意制冷原理。  半导体晶片温度控制制冷系统运行中是使用某种工质的状态转变,从较低温度的热源汲取必需的热量Q0,通过一个消费功W的积蓄过程,向较热带度的热源发出热量Qk。在这一过程中,由能量守恒取 Qk=Q0 + W。为了实现半导体晶片温度控制能量迁移,之初强制有使制冷剂能达到比低温环境介质更低的温度的过程,并连续不断地从被冷却物体汲取热量,在制冷技巧的界线内,实现这一过程有下述几种根基步骤:相变制冷:使用液体在低温下的蒸发过程或固体在低温下的消溶或升华过程向被冷却物体汲取热量。平常空调器都是这种制冷步骤。气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热可以制冷。气体涡流制冷:高压气体通过涡流管膨胀后可以分别为热、冷两股气流,使用凉气流的复热过程可以制冷。热电制冷:令直流电通过半导体热电堆,可以在一端发生冷效应,在另一端发生热效应。  半导体晶片温度控制在运行过程中,高温时没有导热介质蒸发出来,而且不需要加压的情况下就可以实现-80~190度、-70~220度、-88~170度、-55~250度、-30~300度连续控温。半导体晶片温度控制的原理和功能对使用人员来说有诸多优势: 因为只有膨胀腔体内的导热介质才和空气中的氧气接触(而且膨胀箱的温度在常温到60度之间),可以达到降低导热介质被氧化和吸收空气中水分的风险。  半导体晶片温度控制中制冷原理上如上所示,用户在操作半导体晶片温度控制的时候,需要注意其制冷的原理,在了解之后更好的运行半导体晶片温度控制。

  • 【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流不分流进样口 手工流量控制器的结构原理 [align=center]概述[/align][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口手工流量控制原理简介,各部件介绍和控制方式的特点。[align=center]简介[/align]分流/不分流进样口是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的重要部件,其气流控制的稳定性、精确度会显著影响[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的结果的重复性、样品的真实性。随着电子技术的发展、手工流量控制器再现性较差,调整不方便等原因,进样口配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]逐渐成为实验室仪器的主流配置。但是手工流量控制因其安装和维护成本低廉、性能可靠等优点,目前仍然在较多的实验室具有一定的存量。尤其是对于色谱行业的初学者,有机会使用手工流量控制类型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],将会有助于较快的学习和领会到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的基本结构和原理。[align=center]手工流量控制模式[/align]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口的手工流量控制模式大致有两种,压力控制模式和流量控制模式。1.1压力控制模式其结构原理如图1所示,色谱仪通过恒压阀的调节,提供进样口的柱前压力(即控制柱流量);通过分流流路和隔垫吹扫流路针型阀的调节,实现分流流量和隔垫吹扫流量的控制。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903058201_1362_1604036_3.jpg[/img][/align][align=center]图1 压力控制模式基本原理图[/align]下面以较为经典的Shimadzu的GC-2014为例予以说明,其调节阀结构如图2所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059080_3480_1604036_3.jpg[/img][/align][align=center]图2 进样口压力控制模式阀结构图[/align]载气首先经由两级稳压阀的一级减压和二级减压,输送进入进样口,提供稳定的柱前压力,根据色谱柱尺寸、载气种类和操作温度,调节合适的压力。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中分流流量和隔垫吹扫流量的具体调节都通过针型阀来实现。隔垫吹扫流路和分流流路均存在捕集阱,一般填充活性炭、硅胶之类的吸附剂,用以吸附流经气体中的高沸点杂质,用以保护针型阀和分流电磁阀,避免过多的杂质凝结在阀中造成堵塞和开关失效。在分流流路中设计有电磁阀,当进样口需要工作在不分流状态之下时,通过电磁阀的通断操作,实现分流流路的切断和恢复。1.2 压力控制模式的优点和缺点采用控制柱前压力的方法来实现色谱柱流量的控制,执行部件使用了恒压阀,恒压阀的调节速度较快。色谱进样时,由于液体样品的受热迅速膨胀或者进样阀造成的流路瞬间切断,会导致进样口压力变化。采用压力控制方案(即使用恒压阀控制),进样口的压力会快速恢复。恒压阀和针型阀各自独立工作,互相不存在干扰和反馈的问题。其缺陷是结构较为复杂,分析方法开发时,调节不太方便。例如更换不同色谱柱之后,进样口压力、分流流量和隔垫吹扫流量均需要进行调节。此外如果进样口存在一定程度泄漏时,系统并不会有明显的异常。在色谱柱安装之后,一定要仔细检查泄漏。2.1流量控制模式其结构原理如图3所示,色谱仪通过总流量控制器(恒流阀)的调节,向进样口提供正确的进样口载气流量,由分流控制器(背压阀)提供正确的柱前压,同时提供正确的分流比。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059959_5598_1604036_3.jpg[/img][/align][align=center]图3 流量控制模式原理[/align]其阀结构如图4所示,[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903060554_1498_1604036_3.jpg[/img][/align][align=center]图4 进样口流量控制模式阀结构图[/align]载气首先经由稳压阀进行减压,输送给恒流阀,向进样口提供稳定的载气流量。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中隔垫吹扫流量的调节通过针型阀来实现。分流流量通过背压阀来调节,背压阀的工作特性是可以使阀输入的压力保持稳定不变。利用这个特点背压阀可以同时调节进样口压力。通过三通电磁阀的状态切换,实现进样口分流和不分流状态的调整,如图5所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903062977_9863_1604036_3.jpg[/img][/align][align=center]图5 分流和不分流状态阀结构图[/align]流量控制模式结构简单,背压阀的调节较为重要,调节速度和进样口压力扰动的恢复速度比压力模式要低。另外还有一类采用混合控制模式的手工流量控制器,将进样口入口侧的恒流阀改换成恒压阀,进样口压力控制速度得到改善。但是进行方法开发时,稳压阀和背压阀会互相影响,流量调节就会比较耗费时间。

  • 【原创大赛】磁控溅射原理及TEM样品的制备

    当前,制备非晶的方法主要有淬火法和气相沉积法。快冷法又分为铸膜法和甩带法,适合于制备大块非晶。气相沉积法分为真空蒸发法、化学气相沉积法、脉冲激光沉积法和磁控溅射法。~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~磁控溅射法制备非晶样品有其独特的有点,下面主要介绍下磁控溅射制备非晶样品的原理。电子在电场E的作用下,在飞向基板的过程中与氩气原子发生碰撞,使其电离出氩离子和一个新的电子,电子飞向基片,氩离子在电场作用下飞向阴极靶,并以高能量轰击靶的表面,使靶材发生溅射。在溅射的过程中,溅射离子,中性的靶原子或分子即可在基片上沉积形成膜。综上所述,磁控溅射的基本原理就是以磁场来改变原子的运动状态,并束缚和延长原子的运动轨迹,从而提高电子对工作气体的电离几率和有效地运用了电子的能量。这也体现了磁控溅射低温、高效的原理。常用的TEM样品以TEM载网为基片。TEM载网是直径为3nm,厚为20μm,网格间距为80μm,最底下一层铜或者钼,上面覆盖一层约为5nm厚的无定形碳作为支撑膜。利用磁控溅射法制备沉积的薄膜就沉积在这种TEM载网的无定形碳的支撑膜上,为了减少非弹性散射对衍射数据的影响,在实验过程中尽可能制备厚度比较小的薄膜厚度,约为15nm-20nm,这样制得的样品就可以直接在透射电子显微镜中进行直接的表征。

  • 【原创大赛】质量控制图的原理、制作和应用

    【原创大赛】质量控制图的原理、制作和应用

    1、质量控制图简介 质量控制图是首先由Shewhart提出,之后得到了广泛的研究与应用,取得了相当不错的经济效益与社会效益,尤其是对战后世界经济的发展做出了巨大的贡献。质量控制图初期主要用于工业生产过程的质量控制,后来,逐渐应用到分析实验用来对分析质量的控制。 2、质量控制图的原理和分类 控制图是统计质量控制的基本工具,是一种把代表当前状态的样品信息与根据过程固有变异建立的控制限进行比较的方法。 控制图分类: 计数控制图:考察样本个体属性 (例:是否合格) 计量控制图:考察样本个体量值的大小(例:样品浓度) 应用于分析测试质量控制的控制图都是计量控制图。3、控制图种类(1)单值控制图 (2)均值控制图 (3)均值-极差控制图由于后两种控制图需要更多的数据,实际操作中比较繁琐,适合计数控制图,对计量控制图不太适合。4、质量控制图的原理 质量控制图对分析质量的控制,应用的是假设检验的原理。质量控制图在制作时,需要积累一定时期内对同一量值的质控样进行分析,积累的数据反映出在一定时期内分析人员,环境以及仪器引起实验结果的变化范围,在未来的分析过程中,分析同一量值的质控样,如果分析过程受控,那么对质控样的分析结果应该落入变化范围内,反之,分析过程不受控,分析质量变劣。5、质量控制图的制作和应用制作http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669575_1898299_3.png举例:http://ng1.17img.cn/bbsfiles/images/2016/08/201608250930_606699_1898299_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608250930_606700_1898299_3.bmphttp://ng1.17img.cn/bbsfiles/images/2016/08/201608250930_606702_1898299_3.png在未来的分析过程中,对质控样分析,结果在质控图中描点,依据下面的原则判断分析过程是否受控: 质量控制图制作完成后,首先对质控图的有效性进行判断。依据一下准则进行判断:• *对于单值控制图和均值控制图,落在上下辅助线内的点占数据点总数的68%左右,不能少于50%。 • *连续7点在中心线的同侧,即使没有超过控制限,判定控制图失效。 • *任何一点超出控制限,控制图失效。 利用质控图进行分析质量控制 利用质控图进行分析质量控制时,应按照要求分析指控样品,然后在质控图上描点,根据规则进行质量控制: *连续7点在中心线的同侧,即使没有超过控制限,表明分析过程有失控的趋势,分析质量变劣,查明原因采取措施消除。 *质控样品分析结果超过控制限(不包括极差图下控制限),表明分析过程失控,应查明原因,采取措施消除。

  • ARC功率因数自动补偿控制仪的原理及其应用

    摘 要:介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实时监测,适用于目前企业用户进行无功功率补偿。Abetted:This article introduces reactive power compensator based on ATMEGA16 controlling with high precision. It measures excess phase of voltage and current by using digital circuit, Based on the reactive compensation theorem, The software and hardware of the controller is deigned.By using the system a timely compensation and real-time monitnring of the power factor in electricity network are possible, It is mainly used to compensate reactive power in present factories and mines.关键词:功率因数;无功补偿;单片机  随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有:  (1) 相序自动识别  (2) 电压、电流、功率因数采样与显示  (3) 过压解除、欠流封锁,从而保护电容器及避免循环投切  (4) 采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切  (5) 所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间一、 工作原理  采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。  由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。  在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia  则有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),  从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90º)  若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90º;  若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º-φ;  若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º+φ  在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360º。在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:  若180ºα270º,则电路为容性负载,COSφ=COS(270º-α)  若α=270º,则电路为感性负载,COSφ=1  若270ºα360º,则电路为感性负载COSφ=COS(α-270º)  为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:  若0ºα90º,则电路为容性负载,COSφ=COS(90º-α)  若α=90º,则电路为感性负载,COSφ=1  若90ºα180º,则电路为感性负载COSφ=COS(α-90º)二、 硬件的设计  控制器的CPU采用ATMEL的ATMEGA16-8L,此单片机工作电压范围宽(2.7 - 5.5V),最高工作频率为8MHz;芯片内部具有16k字节的Flash程序程序存储器,512 字节的EEPROM,1K字节的片内SRAM;8路10 位ADC;一个可编程的串行USART,具有独立片内振荡器的可编程看门狗定时器;两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 ;一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。显示芯片采用南京沁恒公司生产的键盘、显示专用芯片CH451S,CH451S最大能驱动8为数码管,且不需外加驱动就能直接驱动LED数码管,大大减小了印板尺寸,单片机的采用SPI模式,只需3线(片选CS、时钟CLK、数据输入DIN),因本系统未用CH451S的键盘功能,所以CH451S的DOUT引脚不用。Ubc的电压信号经过电阻限流进入2mA/2mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC0,作为电压显示信号,另一路经过零比较后进入单片机中断口INT0;同样Ia的电流信号经5A/5mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC1,作为电流显示信号,另一路经过零比较后进入单片机定时器门控端ICP引脚。三、 软件的设计  因整个系统对电压、电流采样的精度要求不高,我们直接用CPU的10位A/D对电压、电流的信号进行A/D转换,转换的结果一方面供显示的需要,另一方面作为过压与欠流的比较信号。我们将INT0设置为上升沿产生异步中断,ICP设置为上升沿触发输入捕捉。当INT0产生中断时,16位计数器开始以内部恒定的频率开始计数,直到下一中断的产生。在计数的同时,当TCP上有上升沿脉冲时,即将16位计数器已计得的数据放入到捕捉寄存器中。当一个采样周期结束时,计数器中得数据(N)即为外部交流信号的一个周期基数, 捕捉寄存器中数据(n)电流Ia滞后电压Ubc的基数,将(n/N)*360º即为角度,根据上面的原理就可判断在同一周波中时电压超前电流还是电流超前电压,同时还可得出超前或滞后的角度,将此数据进行查表即可得到功率因数。  为了避免对电容器组中的某一组进行频繁的投切,平衡每一组电容器的工作时间,延长整个系统的使用寿命。我们对电容器的投切采用先投入的优先切除,先切除的优先投入的原则,我们在单片机的RAM中开辟了一空间,用于记录每组电容器的投入与切除时间,然后进行排序,将已工作时间最长的作为优先切除对象,将切除时间最长的作为优先投入对象。  当三相交流的负载回路电流非常小时,会产生投切振荡的现象。也就是说控制系统投入一组电容器会产生过投,切除一组电容器又会产生投入不足,控制器就会产生重复的投切现象。为避免此想象的发生,我们设置了欠电流锁定,当电流值小于此数值时,系统将停止对电容器的投切动作,维持已投入的电容器工作。  在工作过程中,若采样到的电压数据大于设定的过压保护值时,控制器将逐步切除已投入的电容器,若发现超过设定的保护值的10%时,则一次性切除所有已投入的电容器,保护电容器。  以上的技术现已应用于本公司的ARC功率因数自动补偿控制仪中,经测试运行,系统工作稳定、各项指标达到了国家标准的要求,现已初步投放市场。

  • 门控去偶和反门控去偶原理

    门控去偶和反门控去偶原理,见附件:[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=4332]相关附件[/url]

  • 【求助】顶空进样的原理

    我是一个新人,请问我家现有的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]是岛津17A,想接上顶空进样装置,我听说只要买几个顶空进样瓶就可以了,这样可行吗?顶空进样的原理是什么?什么牌子的既经济又使用呢?谢谢!

  • 数控折弯机工作原理和使用方法

    数控折弯机工作原理和使用方法

    对薄板进行折弯的数控折弯机模具包括支架、工作台和夹紧板,使用时由导线对线圈通电,通电后对压板产生引力,从而实现对压板和底座之间薄板的夹持。由于采用了电磁力夹持,使得压板可以做成多种工件要求,而且可对有侧壁的工件进行加工,操作上也十分简便。按普通的液压数控折弯机模具加工Q235板料来做简单介绍: 1.首先是接通电源,在控制面板上打开开关,再启动油泵,这样你就听到油泵的转动声音了。(此时机器不动作) 2.行程调节,使用必须要注意调节行程,在折弯前一定要测试。它的上模下行至最底部时必须保证有一个板厚的间隙。否则会对模具机器造成损坏。行程的调节也是有电动快速调整。 3.折弯槽口选择,一般要选择板厚的8倍宽度的槽口。如折弯4mm的板料,需选择32左右的槽口。 4.后挡料调整一般都有电动快速调整和手动微调,方法同剪板机。 5.踩下脚踏开关开始折弯,数控折弯机模具与剪板机不同,可以随时松开,松开脚便停下,在踩继续下行。塑料数控折弯机模具,塑料折边机,塑料板数控折弯机模具,塑料板材折弯塑料板材直接折弯,不需拼接,不需开槽,不需用焊条,它的折角外表美观不漏水,它将手工焊接转变成全自动的机器操作,提高了质量,提高了劳动效率,降低了劳动成本,大缩短了产品的生产周期。全自动塑料折角机属电气一体化全自动机械设备。根据塑料板加热变软熔化焊接的原理研制而成,它适合所有热塑性材料的折角。速度快,折角处理表面美观,强度高。 还有一种是H型数控折弯机模具,其结构较之前两种有很大不同,其为杠杆式结构,一般用于大吨位数控折弯机模具,通过杠杆放大原理,把力放大.同时其采用电\液\数结合的位置控制,使其在同吨位的数控折弯机模具上性价比尤高。但是国内能够生产此种机型的厂家并不多,数控液压板料数控折弯机模具床的主要特点: WC67K型数控折弯机模具,采用钢板焊接结构,振动时效消除应力,机床具有很好的刚性和稳定性,整个机架刚性好,工作平稳、安全可靠、操作方便,通过数控折弯机模具数控系统和液压系统的协调控制,达到理想的折弯效果。http://ng1.17img.cn/bbsfiles/images/2016/12/201612281316_01_3169645_3.jpg机床的主成部分及结构说明: 1.滑块部分:采用液压传动,滑块部分由滑块、油缸及机械挡块微调结构组成。左右油缸固定在机架上,通过液压使活塞(杆)带动滑块上下运动,机械挡块由数控系统控制调节数值。 2.工作台部分:由按钮盒操纵,使电动机带动挡料架前后移动,并由数控系统控制移动的距离,其最小读数为0.01毫米(前后位置均有行程开关限位) 3.同步系统:该机由扭轴、摆臂、关节轴承等组成的机械同步机构,结构简单,性能稳定可靠,同步精度高。机械挡块由电机调节,数控系统控制数值。 4、挡料机构:挡料采用电机传动,通过链操带动两丝杆同步移动,数控系统控制挡料尺寸。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,为优质、高效和低成本的加工生产开辟了广阔的前景。而激光内雕机正是将激光技术和计算机技术结合起来的高新一体化新型激光外设加工设备。激光雕刻机采用高性能的激光和数控技术,通过自主研制的光学系统、控制系统和计算机软件,在水晶、玻璃内实现三维动态精密激光雕刻,解决了雕刻速度慢、系统工作不稳定、丢激光点,对图像和文字处理软件功能不全、使用计算机接口控制卡、激光爆炸点不均匀、自动控制装置不尽完善、设备性价比低等问题。全面提高了系统的效率、精度、可维护性、通用性和安全性。水晶玻璃内雕作品在色彩上变得更为丰富是必然的。利用水晶玻璃工艺品的内雕部分对光线具有较强的反射、折射作用,而空白部分对光线具有较好的通透性能的光学原理,由微控制电路按照三基色调色板原理,分别控制几种色彩的灯,在内雕图像上混色,变化出多种绚丽的色彩,从而使原本白色的内雕图像呈现出五彩缤纷、光彩夺目的效果。三点式数控折弯机模具工作原理 凹模入口处园角与模芯表面组成 A 、 B 、 C 三点,由这三点确定工件折弯角度,其中 C 点受力最大,它与材料回弹量角正确与否有直接关系,只要改变模芯距离的大小,可获得不同的折弯角度,角度控制是在支座上装一表盘,再在模芯上装上拐臂带动指针在表盘上显示出来,其特点是角度控制操作简单直观,无需专用模具便可折弯不同角度的母线,其折弯属强制性折弯,并能提高折弯精度。 一种装置活动刀模夹的折弯剪板机、数控折弯机模具与传统数控折弯机模具的区别是在滑动上梁装置了一个活动刀模夹,在活动刀模夹上同时装有折弯模和剪板刀或者同时装有两种折弯模,在活动刀模夹上装折弯模和剪板刀的称折弯剪板机;在活动刀模夹上装两种都是折弯模的称数控折弯机模具。折弯剪板机使用时控制推动活动刀模夹转动到相应的位置就可变换成折弯功能或剪板功能;数控折弯机模具使用时推动活动刀模夹转动到相应的位置就可变换成薄板折弯模折弯功能或厚板折弯模折弯功能。折弯剪板机的操作使用与单一的数控折弯机模具或单一的剪板机一样方便,制造材料却大幅减少;数控折弯机模具换模快,使用非常方便。

  • 【讨论】硫酸水溶液控湿的原理

    请教一下,谁能解释一下硫酸水溶液控湿的原理是什么,比如说浓硫酸:水=1:2,湿度是47%,请问这个是为什么?谢谢,我刚做薄层,什么都不懂~

  • 顶空进样基本原理

    各位老师,我工作中一直使用顶空进样法来测定样品的有机溶剂残留,外标法做标曲,但是一直对于这个顶空法的基本原理不是很了解,为什么用顶空可以代表真实样品中的组分呢?基于什么定理?使用中有什么限制条件吗?

  • 【原创大赛】气相色谱仪电子流量控制原理与维护 (三-五) 流量传感器和测控注意事项

    【原创大赛】气相色谱仪电子流量控制原理与维护   (三-五)  流量传感器和测控注意事项

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](三)[/font] [font=宋体]压力和流量传感器的位置[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]如何测量进样口压力和流量[/font][font=宋体] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]与常见的工业测量场合不同,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口的压力(流量)传感器并不处于样品流路之中,或者说压力(流量)传感器可能会直接接触样品,如图[/font]1[font=宋体]所示:[/font][/font][align=center][img=,690,242]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023467318_8346_1604036_3.png!w690x242.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]常见工业测量场合[/font][/font][/align][font=宋体][font=宋体]不论进样口采用手工流量控制器或者自动流量控制器,不论进样口使用压力表、转子流量计或者电子传感器,含样品气体都不会直接接触传感器表面。如图[/font]2[font=宋体]所示:[/font][/font][align=center][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023590096_8789_1604036_3.png!w690x213.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]进样口压力(流量)传感器的位置[/font][/font][/align][font=宋体]手工流量控制器经常采用的的压力测量单元是压力表,流量测量单元是流量计。[/font][font=宋体]电子流量控制器的压力测定一般是基于压阻式压力传感器的。核心部件类似应变片,不耐有机污染物和水。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体]柱流量的测量:[/font][font=宋体]柱流量的控制一般通过进样口压力的控制来实现。[/font][font=宋体]柱流量一般数值比较小,较小的流量和不容易测量准确。如果在色谱柱后检测器之前放置流量传感器,那么传感器一般难以承受色谱柱的高温,样品导致的污染,腐蚀等问题。[/font][font=宋体]另外压力或流量传感器一般会存在较大的死体积,会对气流的控制带来不良的影响。[/font][font=宋体]隔垫吹扫流量的测量:[/font][font=宋体]隔垫吹扫流量面临与柱流量较为类似的问题。[/font][font=Calibri] [/font][font=宋体]分流流量的测量:[/font][font=宋体]分流出口往往存在较大量的样品,可能会严重污染传感器。日常使用中,一定要注意分流出口捕集阱的使用和维护,以保护控制器。[/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] (四) 进样口是否漏气的判定[/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2030系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为例,讲述进样口泄漏检查的方法。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的缺陷[/font][/align][font=宋体]目前越来越多的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装了电子流量控制器,可以比较智能的感知到进样口的“比较严重”的泄漏问题,一般会发出报警、强制停机以利于实验人员进行确认和解决。[/font][font=宋体]但是不可以过分依赖电子流量控制器。[/font][font=宋体]可能有两种情况:微漏和实际上不漏。[/font][font=宋体]如果进样口漏气的情况比较微弱,那么电子流量控制器是不能感知到的,此时[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统也不会报警,但是实验数据会发生保留时间和峰面积的重复性不良。[/font][font=宋体]如果分析方法不良,造成电子流量控制器误报警。[/font][font=宋体]我们还是回顾一下电子流量控制的结构原理,如图1[/font][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025211084_352_1604036_3.png!w690x419.jpg[/img][font=Calibri] [/font][font=宋体] [/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]电子流量控制器开启后,流量控制器向进样口供给确定的流量,如果进样口压力升高到设定值以上,那么分流控制打开,使得进样口压力稳定在设定值。[/font][font=宋体]如果进样口存在微漏,那么分流控制器仍然可以控制保持进样口压力,那么[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会认为不漏气。[/font][font=宋体]如果分析方法中给定的进样口总流量过低,进样口的压力长时间不能达到设定值,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会错误的认为进样口存在泄漏,而产生误报警。特别需要注意的,使用小口径色谱柱时,一定要避免使用太小的分流比。[/font][font=宋体] [/font][align=center][font=宋体]进样口漏气的确认[/font][/align][font=宋体]Shimadzu的[font=Calibri][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2010[/font]或[font=Calibri]2030[/font]系列的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可以利用不分流方式或者直接注入方式,来确认进样口是否漏气。[/font][font=宋体]在仪器面板或者工作站,将进样口工作方式修改为“不分流”或者“直接注入”,当系统流量状态达到就绪之后,由于分流关闭的原因,进样口的总流量应该等于柱流量和隔垫吹扫流量之和。[/font][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025289045_632_1604036_3.png!w690x368.jpg[/img][font=Calibri] [/font][align=center][font=宋体]图2 进样口进样模式[/font][/align][font=宋体]如果在仪器面板或者工作站的监视器中观察到总流量大于柱流量和隔垫吹扫之和,那么进样口应该存在泄漏。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]不要过分依赖电子流量控制器。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体](五) [/font][font=宋体]进样口压力流量不稳定的原因[/font][/align][align=center][font=宋体]概述[/font][/align][align=center][font=宋体]进样口电子流量控制器的控制原理,和进样口压力流量不稳定的可能原因。[/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]进样口压力流量的控制原理[/font][/align][font=宋体]进样口电子压力(流量)控制系统是一个比较典型的闭环控制系统,大致的原理如图1所示:[/font][align=center][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030026598217_4950_1604036_3.png!w690x215.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体]图1 进样口流量压力闭环控制原理[/font][/align][font=宋体]以流量为例讲述:[/font][font=宋体]流量控制器在工作的同时,会不断的测量输出流量反馈回比较器,当系统的输出流量由于某种原因产生增加,比较器将感知这一变化,输送给流量调节器“降低流量”的命令,最终使输出流量稳定下来。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的延迟[/font][/align][font=宋体]在这个控制过程中,存在一个时间延迟的问题,比较器可以迅速的感知输出流量的变化,但是命令发送给流量控制器后。流量控制器开始动作(降低输出流量)与实际流量恢复动作之间是存在时间延迟的。在延迟的期间内,系统仍旧检测到流量偏大的现象,就会发出流量再次降低的指令,就会造成调节过度。最终就会观察到流量震荡的现象。[/font][font=宋体]实际仪器设计的时候,流量的感知和控制器动作之间特意设计一段时间的延迟,以满足实际硬件系统的要求,达到流量稳定。[/font][font=宋体] [/font][align=center][font=宋体]流量压力震荡的原因[/font][/align][font=宋体]当仪器的硬件系统出现时间延迟的较大变化(或者说系统阻尼变化),就会破坏控制,产生流量震荡。[/font][font=宋体] [/font][font=宋体]常见的原因有[/font][font=宋体]1 气源压力流量不稳定。[/font][font=宋体]任何控制系统都会对输入量的稳定性有一定要求,如不满足,系统难以稳定。[/font][font=宋体]2 堵塞造成系统阻尼变化。[/font][font=宋体] 分流部分、隔垫吹扫部分的堵塞,都可能导致流量(压力)震荡。[/font][font=宋体]3 漏气会造成系统阻尼变化[/font][font=宋体]4 外设的引入会影响阻尼,例如顶空,热解析,吹扫捕集,进样阀等部件。[/font][font=宋体]5 进样口输入流量太小,会使阻尼变化[/font][font=宋体]6 进样口工作与分流和不分流状态下,阻尼不同,如果进样口压力可以恒定,就不影响进样。[/font][font=宋体] [/font][font=Calibri] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]流量控制器的阻尼变化,是压力流量震荡的主要原因。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 【求助】气相顶空进样原理

    气相色谱顶空进样原理,固态或者液态供试品在恒温控制加热室中加热至供试品中挥发性组分在液态和气态达到平衡后,吸取一定体积的顶空气注入色谱柱中进行分离,液态和气态达到平衡指什么?达到平衡时气态和液态中挥发性成分含量一样吗?

  • 【求助】请教气相色谱和液相色谱中柱温箱组成和控温原理

    对气相和液相不是很懂,想向各位请教一下气相液相控温系统的组成和控温原理?它们的原理和电炉的温控器原理有什么区别?电炉温控器是利用(温度传感器测温)+(电量采集板或模拟量采集板)+(PID控制模块或可控硅触发模块)+(继电器输出或可控硅输出)+(显示单元)气相液相控温要求肯定会更高,它们控温又是什么原理呢?

  • 【求助】顶空进样的原理和应用

    我是一个新人,请问我家现有的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]是岛津17A,想接上顶空进样装置,我听说只要买几个顶空进样瓶就可以了,这样可行吗?顶空进样的原理是什么?什么牌子的既经济又使用呢?谢谢!

  • 【转帖】电视遥控器的原理

    遥控器主要由形成遥控信号的微处理器芯片、晶体振荡器、放大晶体管、红外发光二极管以及键盘矩阵组成。其工作原理如下 微处理器芯片IC1内部的振荡器通过2、3脚与外部的振荡晶体X组成一个高频振荡器,产生高频振荡信号(480kHz)。此信号送入定时信号发生器后产生40KHz的正弦信号和定时脉冲信号。正弦信号送入编码调制器作为载波信号;定时脉冲信号送制扫信号发生器、键控输入编码器和指令编码器作为这些电路的时间标准信号。 IC1内部的扫描信号发生器产生五中不同时间的扫描脉冲信号,由5~9脚输出送至键盘矩阵电路。当按下某一键时,相应于该功能按键的控制信号分别由10~14脚输入到键控编码器,输出相应功能的数码信号。然后由指编码器输出指令码信号,经过调制器调制在载波信号上,形成包含有功能信息的高频脉冲串,由17脚输出经过晶体管BG放大,推动红外线发光二极管D发射出脉冲调制信号。

  • 气相色谱仪流量控制原理与维护 —— 背压阀与电子背压控制

    气相色谱仪流量控制原理与维护 —— 背压阀与电子背压控制

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]背压阀与电子背压控制[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]背压阀一般情况下安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口或者进样阀的输出端,为进样口或者进样阀的定量环提供合适的工作压力。背压阀调节迟滞现象较弱,调节速度快。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]背压阀简介[/font][/align][font=宋体][font=宋体]背压阀可以在一定输出端流量变化范围内保持阀输入端的压力恒定,其经常安装于某些[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流不分流进样口或者进样阀的输出端,以保证进样口或进样阀的定量环工作于合适的压力之下,其常见的安装位置如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口中,背压阀一般安装于进样口的分流出口端,通过旋转阀控制旋钮调节进样口压力。[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用气体进样阀进样时,如果进样阀定量环压力与进样口压力差异较大,进样之后可能会在色谱图上产生明显的进样干扰信号,进样口压力和流量控制也比较容易发生震荡的现象,从而造成基线的扰动。在进样阀定量环的输出端安装背压阀,调节定量环压力与进样口压力相同,可以改善阀进样产生的基线扰动。此外,通过背压阀的工作,可以保证每次进样时定量环压力的一致性,从而改善定量重复性。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在使用高压液体进样阀时,例如分析丁烯丙烯类样品,需要保持系统定量环的压力,不至于产生样品减压造成部分或者全部气化,最终影响定量重复性和准确性。[/font][img=,553,408]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301270100_9686_1604036_3.jpg!w690x508.jpg[/img][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]背压阀的安装位置[/font][/font][/align][font=宋体][font=宋体]背压阀原理基于压力平衡,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,由调节膜、旋钮、弹簧组成。弹簧和旋钮施加的压力[/font][font=Times New Roman]F[/font][font=宋体]与阀腔体内压力[/font][font=Times New Roman]P1[/font][font=宋体]达到平衡,即:[/font][/font][align=center][font=宋体][font=Times New Roman]F = P1*A[/font][/font][/align][font=宋体][font=宋体]式中[/font][font=Times New Roman]A[/font][font=宋体]为调节膜表面积。[/font][/font][align=center][img=,137,224]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301346664_1685_1604036_3.jpg!w388x636.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]背压阀的[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][align=center][font=宋体]背压阀稳定输入压力的工作原理[/font][/align][font=宋体][font=宋体]阀开启时,当输入端压力[/font][font=Times New Roman]P1[/font][font=宋体]与弹簧压力相同时,调节膜位置上升,阀进入开启状态,气体由输出端流出。如果输出端由于某种原因发生阻尼变化,造成腔体压力[/font][font=Times New Roman]P1[/font][font=宋体]上升,此时调节膜位置上升,阀输出流量增大,从而降低腔体压力,使其恢复原状,从而保证输入压力不变;当输出端由于某种原因发生阻尼变化造成腔体压力[/font][font=Times New Roman]P1[/font][font=宋体]下降,此时调节膜位置下降,阀输出流量降低,从而提高腔体压力,使其恢复原状,从而保证输入压力不变。[/font][/font][align=center][font=宋体]背压阀的特点和使用注意事项[/font][/align][font=宋体]背压阀内部反馈回路较短,阀响应速度快,系统迟滞现象较弱,调节比较方便。这一点在进样口的压力控制方面较为理想,由样品气化或者阀切换带来的压力扰动,可以迅速得到恢复。[/font][font=宋体]背压阀不论连接于进样口的分流出口,还是连接于六通阀的定量环输出端口,含有大量样品的气体将通过阀释放,那么阀的维护比较重要,一般情况下需要在阀的入口端之前安装净化器,避免由于样品冷凝造成阀内部污染或者造成阀损坏。[/font][align=center][font=宋体]电子背压控制[/font][/align][font=宋体][font=宋体]电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口,一般采用压力传感器和比例电磁阀组成的负反馈系统实现进样口的压力控制。进样口压力传感器一般安装于隔垫吹扫出口以减轻污染,比例电磁阀一般安装于分流出口,通过调节阀开度的方法,调节分流出口的气体流出流量从而控制进样口压力,如图[/font][font=Times New Roman]3[/font][font=宋体]所示:[/font][/font][align=center][img=,462,280]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301491986_2628_1604036_3.jpg!w690x417.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子式分流不分流进样口结构[/font][/font][/align][font=宋体]分流不分流进样口在工作时,不断比较实际压力与设定压力之前的差值,如果发生较大负偏差(即实际压力低于设定压力),[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控制系统主动降低分流出口的比例电磁阀开度,分流出口的流量降低,从而使进样口压力升高恢复设定值,反之亦然。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单介绍背压阀的基本用途、原理、结构和使用注意事项。[/font]

  • 【求助】求教恒压泵与恒流泵的控制原理

    我在使用液相时发现,泵在工作时有恒压和恒流两种工作模式,一般的性况下均选择恒流模式;为此,请教坛子里的高手,两种工作模式的控制原理和应用范畴是什么?(注:由于偶是新手,积分不多,暂时就不实施积分奖励了,请高手见谅吧!以后偶发财了再补偿老师们吧)

  • 【求助】求教个初级阶段的问题,控样校正的原理

    请教个问题,用控样校准时,调整的谱线强度是下面的哪条线?A.控样的参比线 B.控样的分析线 C.试样的参比线 D.试样的分析线如果不是上面的选项,那么原理是什么呢?没有培训的我,注定要在这里向大家请教了。谢谢[em09511][em09511][em09511][em09511][em09511]

  • 孔板流量计的原理与发展

    孔板流量计的原理与发展

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412091023_526251_2940874_3.jpgTK-KBL孔板流量计的发展:随着最近几年的测量技术不断推陈出新,许多新型测量天然气流量计不断出现,如气体涡轮流、智能超声流量计等等各式新型流量计产品。不过因为孔板流量计测量技术具有历史悠久、应用范围广、维护方便、结构简单、寿命长和价格低廉等等独特的特点,并且孔板流量计的标准型产品可以不经过校准环节直接确定信号(差压压力)与流量之间的关系,并有以此估算出它在测量过程中产生的误差值等与众不同之处,这一点优势是在众多的流量计中是独一无二的。因为这个因素,可以预见,在以后的相当的长的时期中,因为各种原因的约束,尤其是在不能够有效地解决标定点问题之前,孔板流量计仍然是测量天然气流量的首选,孔板流量计在如今的天然气测量仪表市场中仍占有着不容小视的地位。并且因为自动化技术应用到孔板流量计的系统之中,使香孔板流量计这种传统流量测量仪器不断克服自身存在的人为误差等不利的因素,让其计量的准确程度日益提高。TK-KBL孔板流量计的原理:在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其基本公式如下: 见首图c-流出系数 无量纲d-工作条件下节流件的节流孔或喉部直径D-工作条件下上游管道内径qm-质量流量 Kg/sqv-体积流量 m³/sß-直径比d/D 无量纲流体的密度Kg/m³可膨胀性系数 无量纲孔板流量计结构节流装置组成取压装置:环室、取压法兰、夹持环、导压管等测量管孔板流量计的安装要求:对直管段的要求一般是是前10D后5D,因此在选购孔板流量计时一定要根据流量计的现场工矿情况来选择适合现场工矿的流量计。充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加。

  • “比表面与孔径分析原理及应用”免费讲座福利包拿走不谢!

    [align=center][b][color=#ff0000]《比表面与孔径分析原理及应用》系列讲座之第一讲 [b]氮吸附法比表面及孔径分析原理[/b][/color][/b][/align][b][color=#ff0000]主讲人:[/color][/b]钟家湘,北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”。[b][color=#ff0000]开讲时间:[/color][/b]2018年7月5日 10:00[b][color=#ff0000]免费报名链接:[/color][/b][url]http://www.woyaoce.cn/webinar/meeting_3335.html[/url][b][color=#ff0000]课程简介:[/color][/b]本讲主要介绍超细粉体材料比表面及孔径分布的基本概念;吸附科学在比表面及孔径分析中的应用要点;氮吸附比表面测定原理;氮吸附孔径分布测定原理。比表面与孔径分析原理及应用专家系列讲座之课程目录第一讲 氮吸附法比表面及孔径分析原理第二讲 连续流动色谱法比表面仪原理及应用第三讲 超细粉体表面孔径分布的表征与测试原理第四讲 静态容量法比表面及孔径分析仪原理及应用第五讲 超微孔孔径分布的分析原理及方法第六讲 密度函数理论在孔径分析中的应用 这样的学习充电机会你舍得错过吗?[b][color=#ff0000]系列课程链接:[url]https://www.instrument.com.cn/ykt/video/106_0.html[/url][/color][/b][img]http://5b0988e595225.cdn.sohucs.com/images/20170916/a327e21777b4435893b261c0d2dea633.gif[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制