当前位置: 仪器信息网 > 行业主题 > >

端粒酶检测

仪器信息网端粒酶检测专题为您提供2024年最新端粒酶检测价格报价、厂家品牌的相关信息, 包括端粒酶检测参数、型号等,不管是国产,还是进口品牌的端粒酶检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合端粒酶检测相关的耗材配件、试剂标物,还有端粒酶检测相关的最新资讯、资料,以及端粒酶检测相关的解决方案。

端粒酶检测相关的资讯

  • 科学家发现端粒酶新蛋白成分
    美国科学家近日发现了一种功能极似端粒酶的蛋白质,它能四处运送至关重要的蛋白质块来修复在正常复制中被丢失的染色体末端。如果没有这样的日常维护,干细胞将很快停止分裂,胚胎也将无法发育。   这是10年来首次发现端粒酶的新蛋白组分,这也许将成为抗癌疗法的一个有价值靶标。该项研究成果刊登在1月30日出版的《科学》杂志上。   端粒酶可在成体干细胞、免疫细胞和正在发育的胚胎细胞中正常表达。在这些细胞中,端粒酶附着在新复制的染色体末端,从而使细胞的分裂不受约束。如果没有端粒酶,细胞将停止分裂,或在有限数目的分裂后死亡。不幸的是,这种酶在许多癌细胞中也很活跃。研究人员发现,阻止这种称为TCAB1蛋白的不恰当表达,也许能限制端粒酶到达其DNA靶标(端粒),并限制细胞的寿命。   研究人员表示,目前还没有有效的端粒酶抑制剂。多年来,端粒酶一直是研究热点,但科学家们困扰于其大尺寸和极其少量。成人体内的少数细胞可制作出这种巨型蛋白复合物,但制作量非常之少,因此只有端粒酶的部分成分已被确定。研究人员称,要找出端粒酶的所有蛋白成分是一项难以置信的巨大挑战,端粒酶中的未知成分甚至被称为“暗物质”。   美国斯坦福大学医学院的研究人员使用高灵敏的蛋白鉴别技术(质谱),找到了端粒酶中TCAB1的存在。去年年初,研究人员曾利用相同的技术首次确定了另两种蛋白pontin和reptin,这两种蛋白对端粒酶这种巨型复合物的形成非常重要。此次,研究人员则确定了TCAB1蛋白具有以前未知的功能。   与pontin和reptin不同的是,TCAB1是端粒酶的一个真正组成部分。但它对酶的活性来说并不是必需的,它只是给称为卡哈尔体(Cajalbodies)的细胞核中的处理和保持区域补充端粒酶复合物。卡哈尔体将对各种使用RNA小分子来引领其活性的蛋白进行修饰,譬如,端粒酶使用RNA分子作为嵌在染色体末端的DNA链的模板。在适当的时候,TCAB1将端粒酶复合物运送到新复制染色体的等待端。   研究人员表示,TCAB1对端粒酶完成从卡哈尔体到端粒的跳跃是绝对必需的。一旦抑制其在人类癌细胞中的活性,端粒就会变短,这也意味着癌细胞会更快地死亡。研究人员认为,TCAB1蛋白可能是一种负责将各种分子运往其目的地的普通生物运输器。下一步,研究人员将继续对TCAB1进行研究,并寻找端粒酶的其他组成部分。
  • Science纳米孔测序助力端粒长度检测
    近日,约翰霍普金斯大学医学院Carol W. Greider团队在Science发表了题为“Human telomere length is chromosome end–specific and conserved across individuals”的文章,介绍了一种基于纳米孔测序技术的端粒分析方法——Telomere Profiling,可以单核苷酸分辨率测量细胞中每个端粒的长度。Carol W. Greider曾与Elizabeth Blackburn、Jack Szostak以”发现端粒和端粒酶是如何保护染色体的“这一研究成果,获得2009年诺贝尔生理学或医学奖。研究团队利用这一新方法对 147 个个体的染色体端粒长度进行分析,发现端粒中位长度为 4.7kb,但不同染色体端粒长度差异极大,平均值相差超6kb。特别地,这种染色体末端特异性端粒长度差异具有个体保守性,在出生时就已确定,随年龄增长也得以保持。这一发现对于理解端粒生物学、衰老过程以及相关疾病的发生具有重要意义。综上,Telomere Profiling方法易于实施、结果精确并且成本较低,可广泛应用于科学研究和临床诊断,将使探索端粒生物学的全新领域成为可能。文章发表在Science主要研究内容:1.纳米孔端粒分析准确且可重复报告端粒长度为确定人类端粒是否在所有染色体上保持共同的长度分布,或者特定的染色体末端是否保持自己独特的长度分布,研究团队开发了一种富集、分析端粒的方法Telomere Profiling:首先使用生物素化的寡核苷酸(TeloTag)标记端粒末端;随后用链霉亲和素分离标记的端粒,并通过限制性内切酶酶切将其释放;最后通过牛津纳米孔技术(ONT)长读长测序方法对端粒进行测序。据悉,使用该方法检测每个样本的成本约为75美元。此外,研究团队还开发了新生物信息学分析流程来确定染色体末端特异性端粒长度。接下来,研究团队通过对0岁至90岁人群的外周血单核细胞(PBMC)进行了端粒分析,并将其与Southern印迹法、FlowFISH检测的结果进行对比。结果显示,经不同方法所检测的端粒长度高度一致,表明Telomere Profiling方法具有高度准确性及优异可重复性。此外,研究团队还通过检测7个样本的端粒长度来检测实验室间的差异性,确认了该方法的广泛适用性和可靠性。图1. 纳米孔技术进行端粒分析是准确和精确的2.端粒长度随年龄增长而发生变化已知端粒长度随着年龄的增长而缩短,但先前方法无法在核苷酸分辨率上测量端粒长度。为检测端粒长度动态范围,研究团队使用Telomere Profiling对11个个体(0-84岁)的DNA样本进行分析,并根据端粒长度进行排序;通过Southern印迹法对相同的DNA进行测量,并将其作为验证。结果显示,Telomere Profiling预测了端粒长度的等级顺序,捕获了Southern印迹的动态范围,并测量端粒随年龄增长而缩短的情况,这对于理解衰老过程中的生物学变化至关重要。此外,Telomere Profiling还确定了端粒长度的第1、第10和第50百分位数。研究团队还将该方法与FlowFISH进行了比较,使用先前诊断为短端粒综合征的特发性肺纤维化(IPF)患者的5μg存档DNA样本进行分析。结果显示,大多数IPF样本的整体端粒长度与FlowFISH测量结果相似,表明Telomere Profiling能够检测出患病个体,有望助力临床诊断和治疗。图2. 纳米孔端粒分析检测端粒长度随年龄的动态变化3.人类端粒具有染色体末端特异性长度和单倍型特异性长度差异为确定人类是否具有染色体末端特异性端粒长度,研究团队分析了来自二倍体HG002细胞系的端粒,从HG002细胞系中分离DNA,并对端粒进行测序,将平均总长度为16.4 kb的reads映射到HG002参考基因组中,共有77个染色体末端通过质量筛选。结果显示,每条染色体的末端表现出不同的端粒长度分布;端粒中位长度为 4.7kb,有66个端粒的长度分布与均值有显著差异,平均长度差异超过6kb。除染色体末端特异性长度外,一些端粒在母系和父系单倍型之间也存在显著差异。上述结果表明,人类端粒具有染色体末端特异性长度分布。图3. 染色体末端特异性端粒长度4.染色体特异性端粒长度在个体间是保守的研究团队将150个个体的端粒序列与最近发布的泛基因组中的亚端粒序列进行了比对,将300个单倍体基因组的全基因组序列与3个高质量单倍体参考T2T基因组CHM13、HG002母基因组和HG002父基因组的序列进行比对,以确定每个参考基因组中相同亚端粒的可重复性。在所有reads中,87%在泛基因组和CHM13中定位到相同的染色体末端,90%在泛基因组和HG002母系中定位到相同的染色体末端,88%在泛基因组和HG002父系中定位到相同的染色体末端。这些数据表明,经Telomere Profiling检测的reads均可映射到一个特定的泛基因组染色体图谱,具有很高的可信度。研究团队建立了相对平均端粒长度,分析了147个个体PBMC样本每个染色体末端端粒长度,并根据端粒的相对长度对染色体末端进行排序。结果显示,17p、20q和12p往往是群体中最短的端粒,而4q、12q和3p往往是最长的端粒。因此,虽然在单个个体中可以看到端粒长度的单倍型特异性差异,但在整个群体中,某些染色体末端更有可能比总体平均值短,而其他染色体末端更有可能比总体平均值长。研究团队还分析了不同年龄段的样本,在婴儿脐带血样本发现了同样的端粒长度差异,说明随着年龄增长,端粒长度普遍缩短,但长度差异保持不变。这些结果表明,个体端粒长度的差异是在出生时就已存在,且在不同个体间是保守的。图4. 染色体特异性端粒长度在人群中是保守的综上所述,研究团队开发了一种简单通用的端粒富集分析方法Telomere Profiling,并跨越了广泛的年龄范围,基于该方法发现了染色体特异性和单倍型特异性的端粒长度分布,其中一些端粒长度之间存在显著差异,拓展了端粒长度的临床意义。综上,Telomere Profiling将帮助人们更深入地了解端粒生物学,并有望推动相关领域发展,从而有望找到治疗疾病的新方法。研究团队指出:“Telomere Profiling可使精确的端粒长度研究广泛应用于实验室、临床和药物发现工作中。因此,在未来的研究中,应该加强不同人群的检测,以证实某些染色体末端是否始终是最短的还是最长的。”原文链接:K. Karimian et al., Human telomere length is chromosome end–specific and conserved across individuals. Science (2024). https://www.science.org/doi/10.1126/science.ado0431
  • 基于Azure Cielo™ 实时荧光定量PCR系统检测低拷贝端粒基因
    我们都知道在实时定量PCR(qPCR)中,可以通过Cq值和标准曲线得出样本的初始拷贝数。但Cq值与样品中靶标的拷贝数有关,也会受到PCR反应的效率和仪器检测灵敏度的影响。高灵敏度的仪器可以减少检测样品所需的循环数,节省时间并提高效率;同时也可以减少假阴性的存在。Azure Cielo™ 实时荧光定量PCR系统的设计初衷,就是为了高灵敏高性能而生,每个孔配有单独的激发和发射光纤,可有效提高灵敏度并降低背景噪声干扰(图1左)。此外跟同类产品相比,Azure Cielo™ 实时荧光定量PCR系统使用全孔检测技术,每个孔可采集约100,000个数据点,使每个qPCR扩增曲线能够准确、可重复和灵敏地表示荧光强度,从而提高荧光数据的可靠性(图1右)。▲ 图1. 高性能光路系统为了进一步表明Azure Cielo™ 实时荧光定量PCR系统的灵敏度,与同类产品进行了以下比较实验:使用酵母的三个RNA靶标进行检测,分别是高丰度的Actin基因、低丰度的6Y’端粒基因,以及单拷贝的TEL06R端粒基因。材料和方法从10mL酵母培养液中制备出RNA,将3µg RNA逆转录成cDNA作为模板备用。对于Actin,在Azure Cielo™ 实时荧光定量PCR系统上使用的cDNA按1:20稀释;其他的cDNA均按1:10进行稀释。引物如下:▲ 表1. Actin、6Y’端粒基因和TEL06R端粒基因的引物对采用4个4倍系列稀释的cDNA模板和一个无模板对照来计算qPCR扩增效率,反应体系和扩增程序如下:结果和讨论在高丰度Actin和低丰度6Y’端粒基因的检测中,Azure Cielo™ 实时荧光定量PCR系统和同类产品的扩增效率非常相似(表2)。然而,在单拷贝TEL06R端粒基因的检测中,发现同类产品得到的Cq值偏大,位于35-38之间,导致计算出的扩增效率大于200%,不能作为参考数据;AzureCielo™ 实时荧光定量PCR系统则计算得出E=96%(表2)。▲ 表2. 各基因的扩增效率及R2值同时结果表明,尽管Azure Cielo™ 实时荧光定量PCR系统的Actin cDNA上样量仅为同类产品的一半,但Azure Cielo™ 实时荧光定量PCR系统的Cq值小于同类产品的Cq值,两者相差0.65(表3)。针对低丰度的6Y’端粒基因和单拷贝的TEL06R端粒基因,两者的Cq值差异较大,差值分别是2.25和4.02(表3)。这些结果表明,随着基因起始拷贝数的减少,Azure Cielo™ 实时荧光定量PCR系统灵敏度的提高变得尤为重要。▲ 表3. 各基因的数据对比灵敏度也会直接影响数据的准确度和再现性。随着PCR循环数的增加,非特异性产物或引物二聚体扩增的可能性也增加。尤其是使用非特异性荧光染料(如SYBR green)检测PCR产物时,更需要避免过多的循环数。因此,在早期循环中检测扩增的能力大大提高了数据的可靠性。具有单孔检测的Azure Cielo™ 实时荧光定量PCR系统设计用于最小化背景噪声和最大化灵敏度,以实现qPCR反应中最高的特异性和精确度。快快申请试用,让它帮助你优化qPCR实验吧。
  • Nature:干细胞的端粒保护机制与众不同
    众所周知,端粒是染色体末端的特殊“帽子”结构,作用是保持染色体完整性和控制细胞分裂周期。弗朗西斯• 克里克研究所(Francis Crick Institute)的研究人员近日在《Nature》杂志上发表了一项新成果,突出了干细胞与众不同的端粒保护机制。在健康细胞中,端粒的保护作用非常有效,但随着年龄的增长,端粒逐渐缩短,最终失去了某些保护功能。这会导致我们的健康状况随着年龄的增长而下降。不过,端粒缩短也能够避免肿瘤发展。癌细胞必须突破这层障碍,才能实现无限增殖。在体细胞内,端粒结合蛋白TRF2发挥着端粒保护作用。它结合并稳定端粒末端的t环(t-loop)结构,从而阻止染色体末端被识别为DNA损伤。在去除TRF2蛋白后,t环无法形成,染色体末端融合在一起,形成意大利面状的染色体,最终杀死细胞。然而,在这项最新的干细胞研究中,研究人员发现TRF2的端粒保护作用是可有可无的。从小鼠胚胎干细胞中去除TRF2蛋白后,t环继续形成,染色体末端仍然受到保护。这也就是说,即使TRF2不存在,干细胞在很大程度上不会受到影响。随着胚胎干细胞分化成体细胞,这种独特的末端保护机制却消失了。t环和染色体末端保护都依赖于TRF2。这表明体细胞和干细胞采用完全不同的方式来保护染色体末端。文章第一作者、DNA双链断裂修复机制实验室的Philip Ruis表示:“现在,我们知道干细胞中t环的形成并不需要TRF2,我们推断肯定有其他因素在起到相同的作用,或这些细胞采用不同的机制来稳定t环。我们也想深入了解。”研究人员发现,胚胎干细胞中t环的形成不依赖于TRF2,这也说明了为什么在多能性阶段TRF2的保护作用是可有可无的。“从根本上说,我们证明了干细胞以与众不同的方式保护其染色体末端,但仍需要t环,”通讯作者Simon Boulton说。多年来,人们一直在争论t环本身是否在保护染色体末端上起作用。此次研究有助于平息这场争论。研究人员发现,在带有t环但缺乏TRF2的干细胞中,端粒仍受到保护,这表明t环结构本身具有保护作用。研究人员表示,更好地了解端粒如何工作,以及它们如何保护染色体末端,这有助于人们深入了解早衰和癌症等过程。未来,他们将继续这项研究工作,深入解析体细胞和干细胞的端粒保护机制。
  • 再接再厉,成就高端粒度仪器
    时光荏苒,岁月如梭。转眼间忙碌的2018已经过去,充满期待的2019向我们走来。珠海真理光学仪器有限公司于2019年1月25日在珠海总部隆重举办年会,总部与各办事处员工欢聚一堂,分享过去一年的收获和喜悦,共同展望美好的未来。珠海真理光学仪器有限公司董事长张福根博士在会上娓娓道来,向我们展开了一幅中国在激光粒度仪领域追赶世界先进水平的历史画卷:五十年前第一台基于Fraunhofer衍射理论的激光粒度分析仪面世;过了大约20年(1987年),中国第一台激光粒度仪诞生;二十五年前张博士立志于在精密仪器行业赶超世界,创办欧美克公司;期间发现激光粒度测量中的一些奇怪现象,四年前确认光散射原理用于粒度测量的内在缺陷——爱里斑的反常变化(ACAD),并且创新反演算法解决了ACAD对粒度测试的影响;三年前汇聚多位在颗粒学和粉体技术领域具有丰富经验和工作成就的人才组建真理光学。其愿景就是打造国产的高端颗粒仪器,打破世人“高端”就意味着“进口”的执念。几十年前中国动乱刚停,国门初开,科技领域百废待兴,蹒跚起步,一切只能从模仿、追赶开始,世人认为中国制造等同于低端。经过四十年的发奋图强,我们已经赶上来了,创新能力、产业配套能力、生产能力、管理能力为制造世界一流的仪器提供了强有力的支撑。三年多来,真理光学员工坚守“科学态度,工匠精神,成就高端粒度仪器”的理念,坚持基础理论研究,技术不断创新,先后推出LT3600系列和LT2200系列高速智能激光粒度分析仪,Spraylink实时超高速喷雾粒度分析仪,Nanolink S900纳米粒度分析仪及SZ900 Zeta电位分析仪,为客户提供从纳米到微米,从固体颗粒到液体雾滴等多种应用领域的粒度测量技术方案。如今,真理光学在国内颗粒表征市场打造出了一片天地,并向国际市场推广,2018年销售大幅度增长,高端型号仪器及最新推出的纳米粒度及Zeta电位仪均得到客户高度认可。展望2019,真理光学将砥砺前行,坚持创新和品质并重,在持续完善现有产品的基础上,不断丰富产品线,多款新品将在2019年推出。张博士的发言结束后,全体员工举杯同庆,引亢高歌,欢聚一堂。气氛热烈而欢快。时光浩荡,年复一年。我们正处在最好的年代,人民从贫穷变为富裕的年代,技术从追赶变为领先的年代,市场地位从边缘走向中心的年代。真理光学将保持追梦赤子心,为颗粒表征行业与中国粉体工业的发展贡献情怀与力量。
  • 美《时代》评出2010年十大科学发现
    美国《时代》周刊12月9日在其网站上揭晓了本年度十大科学发现评选结果。   1. 最出众的长角恐龙   美国科学家在犹他州发现了15只角,而它们竟然是重达2500公斤的巨型恐龙的头顶装饰物。这种名为科斯莫角龙的恐龙生活在7600万年前,犹他大学研究人员在2007年的一次探险活动中出土了这些化石残骸,但直到今年9月才正式为其命名并进行了描述。化石不仅揭示了这种年代久远的奇异物种,而且表明从前的北美与现在并不一样。   2. 物质比反物质多1%   美国费米国家实验室的Tevatron加速器在碰撞实验中发现,中性B介子衰变后的产物似乎存在一种不对称性。传统的粒子物理学理论认为,宇宙大爆炸应该产生了等量的物质和反物质,但二者相遇的瞬间就会一起湮灭,而事实是目前的世界由物质组成,反物质却不知所踪。直到今年,费米实验室的科学家发现,粒子碰撞过程中产生的μ介子(一种重电子) 数量比反μ介子多1%。虽然这是个很小的数目,但很显然,正是物质和反物质数量上这一微小差额创造了宇宙。   3. 月球水比想象的丰富   布满灰尘和岩石的月球予人的印象便是一片不毛之地。但其实它比我们想象的要更加潮湿。美国国家航空航天局的LCROSS(月球陨坑观测和传感卫星)对月球南极附近区域实施了“双星撞月”任务,并对撞击产生的羽尘进行了分析,结果发现月球水的含量比天文学家预期的多出大约50%,月球的湿润程度几乎是撒哈拉沙漠的两倍。这或许足以让未来定居月球的人就地建造供水设施,相较于从地球运水而言更容易也更经济。   4. 机器人考古墨西哥金字塔   墨西哥特奥蒂瓦坎古城遗址上的金字塔群一直是北美6大考古宝藏之一。现在,尘封往事的神秘面纱将被缓缓揭开:科学家今年将一个配备有照相机的考古机器人送到地下,机器人在探索过程中发现了一条12英尺(约3.66米)宽的隧道,其建于2000年前的拱型屋顶依旧保存完好。考古学家满怀希望地认为,隧道可能通往大祭司的坟墓,这一发现将揭示建造这座中美洲大都市的人从前的生活面貌。   5. 衰老是基因作祟   为什么有些人可以青春永驻,而有些人却在为“红颜辞镜”而叹息感慨?原因之一可能与人类TERC基因附近的一小簇DNA(脱氧核糖核酸)序列有关。一项发表在《遗传学》杂志上的英国研究发现,拥有一个TERC基因副本的人,其端粒的长度与年长他们三四岁但不携带这一基因的人差不多,换句话说,他们比实际年龄老了三到四岁。而《自然》杂志公布的另一项研究表明,哈佛医学院的研究人员通过开启过早衰老的老鼠体内的一个端粒酶基因,扭转了老鼠的衰老进程,老鼠的器官也得以再生,其萎缩的大脑体积增大,并且恢复了生育能力。   6. 行星普查数量激增   天文学家们从未停止过对太阳系外已知行星的普查,并于今年发现了许多新的天体“公民”。最令人兴奋的发现当属Gliese 581g,这是天文学家发现的首颗在所谓的“宜居带”围绕母星旋转的太阳系外行星,该区域气温条件不太冷也不太热,适合生命存活。不过,这颗“宜居”行星可能真的是个童话故事,因为后续研究已经在怀疑其是否存在。但对于科学家来说,有一点毋庸置疑,那就是那里还有更多类似的星球存在,或者人类很快就会找到它们。   7. 隐藏历史的终极时空斗篷   时空斗篷听上去好像挺玄的,但英国伦敦帝国学院的物理学家马丁麦考尔在《光学杂志》上发表了一篇论文,从理论上描述了利用“超物质”打造时空斗篷的可行性。通过对“超物质”进行分子改造,可以扰乱电磁能(光粒子)的流动,光在经过“超物质”时传播速度就会出现加快或者放慢,从而在时间和空间上形成一段空白。按照麦考尔半开玩笑的描述,使用这项技术,窃贼可以进入房间将保险柜里的物品席卷一空,但一刻不停工作的监控摄像头却会“错过”这一过程。不过,该技术也有美中不足之处:考虑到光传播的速度,哪怕只隐形几分钟,这件斗篷的尺寸就得大约1亿米长。   8. 史前化石或能填补人类进化空白   南非马拉帕洞穴出土了两具距今大约200万年前的高级灵长类动物骨架化石,分别属于一位成年女性和一名男童。在从猿到人的进化过程中,由于南方古猿和人猿之间有着巨大的差异,科学界一直怀疑,这两者之间存在某种过渡物种。《科学》杂志今年4月刊登论文指出,化石可能填补了人类进化史上重要的一环,因为之前几乎没有骸骨证据表明在那段时期中人类进化过程到底发生了什么。但对于这个被称为源泉南方古猿的新物种具有何意义,古生物学家持有不同观点,有些人认为它对于理解人类进化并无帮助。   9. 合成第117号元素   俄美科学家利用粒子加速器,成功将锫和钙同位素合成为一种拥有117个质子的新元素ununseptium,它可能就是科学家一直寻找的第117号元素。新元素只存在瞬间(不到一秒)就消失了,必须在其他实验室再次被独立合成出来,才能获得认可,确保它在元素周期表上永久地“站住脚”。对Ununseptium进行的放射性衰变分析可能将证实“稳定岛”的存在,根据这一理论,超重元素可能稳定存在长达几个月或者几年的时间。但就目前来看,元素周期表似乎还没有被完全补足。   10. 猫的饮水技巧   麻省理工学院、普林斯顿大学和弗吉尼亚理工大学的科学家们终于揭开了为何一只猫在喝牛奶的时候却不会弄湿下巴和胡须的秘密。对高速录像的分析结果显示,狗会将舌头卷成长柄勺状来舀水喝,而猫的饮用方式更优美,它会将自己的舌头卷到液面以下,然后轻轻触碰液面。猫舔食液体的速度快达每秒4次,这是一个地心引力、惯性和以每次0.1毫升的速度舔食液体却不会引起液体动荡或溢出的流体动力学相互作用的复杂过程。
  • 美因基因:研发驱动构建核心竞争优势,持续发力消费级基因检测赛道
    基因检测技术是通过血液、体液或其他细胞对DNA进行检测的技术。通过基因检测不仅可以帮助受检者在疾病早期发现端倪,助力疾病早诊早治,还可以从遗传的角度判定受检者对疾病有无易感性,从而预知未来患病的风险,及早做好个人健康管理。  我国人口基数庞大,财政医疗支出规模持续快速增长,各类疾病早发现早治疗有助于显著减轻医保压力。自“十二五”以来,基因检测产业逐渐成为国家重点支持的行业领域,相关政策陆续出台。  最近的《“十四五”生物经济发展规划》中就提出,推动基因检测、生物遗传等先进技术与疾病预防深度融合,开展遗传病、出生缺陷、肿瘤、心血管疾病、代谢疾病等重大疾病预防和早期筛查,为个体化治疗提供精准解决方案和决策支持。  在技术快速迭代、政策大力支持的共同作用下,国内基因检测市场进入高速增长阶段。  美因基因始终深耕于消费级基因检测、肿瘤早筛等预防医学领域,随着研发投入力度的持续加大,该公司产品矩阵持续丰富,业务规模快速扩张。根据弗若斯特沙利文数据,截至2021年,若按累计已检测量计,美因基因是中国最大的消费级基因检测平台;若按2020年的已检测量计,美因基因也是中国规模最大的癌症筛查基因检测平台。  痛点瓦解,消费级基因检测规模效益持续增强  基因检测技术由于涉及伦理、隐私和人类遗传资源保护、生物安全等问题,早期在我国的应用较为谨慎。直到2015年之后,随着行业运行逐渐平稳,相关政策逐步放开,且支持力度持续加大,宣告了国内基因检测行业发展正式进入快车道。  相较于临床级应用,“消费级基因检测”不需要医疗机构参与,是直接面向大众人群的基因检测服务形式,其检测范围极为广泛,包括携带者筛查、基因健康风险评估、药物遗传学检测、癌症易感性评价、个性化特征检测及祖源检测等,无论是服务便捷性还是产品种类的丰富度上均实现了极大程度的提升。  随着高通量基因测序技术的不断成熟,以及检测工艺流程自动化程度的提升,消费级基因检测的成本不断下降。同时,人民健康意识的持续提升,也使得“治未病”的理念被越来越多人所接受,行业渗透率在近几年的快速提升带来了愈发明显的规模化效益,消费级基因检测发展的主要痛点正被逐渐瓦解。  美因基因凭借其市场渠道网络以及在成本、技术、资质方面的优势,在加速基因检测产品向市场推广的过程中起到了重要作用。  在立足严肃医疗,坚持循证医学的基础上,该公司通过产业链一体化布局,构建了低成本、高通量、自动化的生产体系和综合技术平台体系,能够以具有成本效益的方式满足多场景基因检测需求。据了解,美因基因大众普及型产品平均单次的检测价格已不足百元,这与市场中上千元的检测费用形成明显对比。  优势突出,细分赛道领先企业份额持续扩张  美因基因成立于2016年,此时国内政策环境已明显改善,我国基因检测行业正驶入发展的“快车道”。凭借有利的大环境以及技术优势,该公司不断扩张市场份额,并逐渐在国内消费级基因检测和肿瘤筛查基因检测领域取得领先地位。至2021年,美因基因在消费级基因检测和肿瘤筛查基因检测方面的业务量均已位居国内首位。  美因基因最新披露的财务报告显示,2023年上半年,该公司实现营业收入9888万元;实现净利润3511.7万元,同比增长97.3%,净利润率达到35.5%,同比增长17.3个百分点。  根据公告,上半年美因基因盈利能力快速提升主要得益于其践行了更为积极的市场策略,销售渠道和产品矩阵规模的快速增长以及产品结构的不断优化,使得该公司消费级基因检测业务需求快速增长。据了解,截至6月30日,该公司已累计与国内近1800家医疗保健机构形成合作关系,并且客户来源持续多元化,非体检中心机构客户占比进一步提升至47%。  此外,该公司在进一步通过线上医疗保健平台扩大销售和营销网络,为更多消费者提供基因检测服务,践行“推动基因科技,使人类更美更健康”的使命。  立足于以市场为导向的研发战略,美因基因几年来的研发支出持续快速增长,据财报数据显示,2023年上半年,美因基因研发开支同比增长超过60%。在持续较高占比的研发投入下,该公司消费级基因检测及癌症筛查产品持续丰富,目前已累计制定86项自主研发的多维度商业化检测服务。  通过自主研发,该公司还建立了具有高通量、自动化等优势的生产体系和综合技术平台体系,涵盖终点法荧光PCR(聚合酶链式反应)平台、qPCR(实时定量基因扩增荧光检测)平台、NGS(下一代检测技术)平台及全基因组芯片平台。超50000次的样品日处理能力不仅大大缩短了交付周期,也进一步增强了该公司多场景下基因检测方案的成本优势,保证检测准确性基础上使产品和服务更具性价比,巩固了其行业龙头地位。  潜力巨大,积极布局近千亿抗衰老市场  近年来我国老年人口持续增长,占人口总数比重也在快速提升。根据国家统计局数据,2022年国内65岁及以上老年人群数量近2.10亿人,占当年国内人口总数的14.90%,同比增长0.7个百分点。  在“衰老可干预”这一理念日益被认可的今天,老年群体数量的快速增长也催生了越来越多抗衰老的实践需求。  根据Zion Market Research数据,中国抗衰老市场2021年整体达到108.9亿美元,折合722亿人民币,实现12.15%高增长,连续3年稳定增长,且增速明显高于全球市场。申港证券认为,我国抗衰老需求增速高于全球市场,加之老龄化趋势持续加深,未来国内抗衰老市场有望进一步增大。  衰老检测是抗衰老的重要前提,但由于缺少量化检测手段,与庞大的抗衰老市场需求相比,目前国内的衰老量化检测处于发展初期,亟需行业标准的建立。美因基因于2022年推出的端粒长度基因检测产品,通过PCR技术检测染色体末端端粒的长度,评估受测者的衰老程度,已成为新兴的衰老检测手段之一,有望为其持续发展注入新的活力。  依托这一核心技术优势以及准确的测量结果,美因基因成功填补了健康管理领域衰老监控市场空白,并获得了市场的充分验证。通过独特的套餐策略赋予产品差异化竞争力,该公司的衰老检测产品在这一年多以来取得了亮眼的业绩表现,截至2023年6月底,已实现量化衰老检测服务人数逾2万例,建立了涵盖中国人群不同年龄段的海量数据库。随着国内消费者对于端粒长度检测认知度的持续提升,该业务需求进一步扩容的空间十分可观。  “健康中国2030规划纲要”提出,到2030年,我国人均预期寿命要达到79岁,并提出坚持预防为主、防治结合原则,强化慢性病筛查和恶性疾病的早期发现,降低重大慢性病过早死亡率,实现居民健康素养水平显著提高。  作为能够预知疾病的新兴科学手段,消费级基因检测产品为居民进行提前健康管理提供了全新解决方案,对于“健康中国2030”目标的达成将提供积极助力。  美因基因将赋能提前健康管理作为未来的重点布局方向,在“推动基因科技,使人类更美更健康”的愿景激励下,该公司有志于为健康中国建设添砖加瓦,未来有望借此机遇站上新的风口。
  • 百特高端粒度仪亮相多家展会,与国外同行同台竞技
    金秋十月硕果飘香,百特高端粒度仪在多家展览会上重磅出击,惊艳亮相,与国外同行同台竞技,受到业内专家和用户的瞩目与好评。10月15-18日,百特参加了在上海世博展览馆同期举办的IPB2017(第十五届中国国际粉体加工/散料输送展览会)和第十七届全国农药交流会暨农化产品展览会,全面展出了百特在线激光粒度监测与控制系统BT-Online1、激光粒度粒形二合一分析系统Bettersize3000Plus、智能粉体综合特性仪、动态图像粒度粒形分析系统等最新仪器及成果。同时,百特公司总经理董青云还应邀参加了2017能源颗粒材料制备及测试技术研讨会,并做了“激光粒度测试的最新技术及在能源颗粒材料中的应用”的报告,向与会的150多位电池界的代表介绍了双镜头技术、折射率测量技术、激光/图像二合一技术、在线粒度监测与控制技术等最新粒度测试技术,介绍了电池材料粒度测试工作要注意的基本问题,受到了与会代表的欢迎。在这次展览会上,百特总经理董青云、副总经理刘忠兰、销售部经理丛丽华还与多位业内专家、合作伙伴、友好人士、同行朋友进行了友好的交流,向他们介绍百特现状、讨论合作方案、交流应用经验、听取用户意见,并借此机会感谢大家对百特的关心和支持。10月18-20日,百特销售部经理丛丽华又来到烟台,率队参加了“2017中国粉末涂料与涂装展览会”,并参加了百特重要合作伙伴——烟台远力集团成立三十周年庆典,向涂料界新老用户表达了敬意和感谢,同时向新老用户展示了百特最新技术和产品,并与多家用户达成了合作的意向。
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, AltemoseN, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.
  • 投资7亿 国家蛋白质科学中心(上海)建成
    我国生命科学领域第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施日前通过工艺测试,进入开放试运行阶段,预计于今年年底正式面向多用户、多领域开放。25日,记者走进基本建成的国家蛋白质研究中心,见识了国际一流的研究设施和紧锣密鼓开展科研的研究团队:   高通量自动化克隆构建系统,中心自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化),达到全球生物自动化一流水平,从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆,极大地提高了生物实验效率。   自主研发高精度激光双光镊系统,光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现压纳米级位移和压皮牛级力的测量。这些技术有望在蛋白质折叠、RNA聚合酶合等研究领域提供单分子层次的信息。在仪器研发方面,为拓展仪器性能,还将结合单分子荧光技术和高精度激光光镊,有望提升蛋白质科学领域的仪器自主研发能力。   尽管仍处于紧张建设筹备中,科研活动早已紧锣密鼓地开展。截至2013年底,中心科研项目共计31项,年度新增13项,其中包括国家重大科学研究计划项目2项、中科院科研装备研制项目1项以及国家自然科学基金多项。中心成立伊始,许琛琦研究组即在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash &mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。   国家蛋白质科学中心上海(筹)在保障上海设施高效运行的同时,定位于蛋白质科学研究,研究内容涵盖染色质结构与功能的调控、跨膜分子信息传递、非编码RNA以及结构生物学新技术和方法研究等学科领域,着重开展蛋白质多尺度结构分析、蛋白质动态结构研究、蛋白质修饰与相互作用研究、设备自主创新与集成研究和生物信息学与计算生物学等五大领域的研究。在未来的科学研究中,国家蛋白质科学中心/上海(筹)/蛋白质科学研究(上海)设施将围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业发展需求,保障国家中长期科技规划纲要部署的蛋白质重大研究计划的实施,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化,提供全面和完整的技术与条件保障,打造开放、协作、创新的国际一流蛋白质科学研究平台,为我国的蛋白质科学基础研究提供强有力的支撑。   背景介绍   蛋白质科学研究(上海)设施于2010年12月破土动工,总投资约7亿元,总建筑面积3.3万平方米,由中科院上海生科院承建,并依托上海设施同步筹建&ldquo 国家蛋白质科学中心· 上海&rdquo 。迄今,已有逾10位诺贝尔奖得主到访,对蛋白质中心表现出浓厚兴趣。
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 2013年诺贝尔奖揭晓时间表发布
    据诺贝尔奖官网消息,2013年诺贝尔奖揭晓仪式将于10月7日起陆续举行。   今年诺贝尔奖各奖项的具体揭晓时间如下:   生理学或医学奖(The Nobel Prize in Physiology or Medicine)   不早于斯德哥尔摩时间10月 7 日 11 时 30 分(北京时间10月 7 日 17 时 30 分)、评定机构:卡罗林斯卡医学院。   物理学奖(The Nobel Prize in Physics)   不早于斯德哥尔摩时间 10月8 日 11 时 45 分(北京时间 10月8 日 17 时 45 分) 评定机构:瑞典皇家科学院。   化学奖(The Nobel Prize in Chemistry )   不早于斯德哥尔摩时间10月 9 日 11 时 45 分(北京时间10月 9 日 17 时 45 分) 评定机构:瑞典皇家科学院。   和平奖(The Nobel Peace Prize)   斯德哥尔摩时间 10月11 日 11 时(北京时间 10月11 日 17 时) 评定机构:挪威诺贝尔委员会。   经济学奖(The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel)   不早于斯德哥尔摩时间10月 14 日 13 时(北京时间 10月14 日 19 时) 评定机构:瑞典皇家科学院。   文学奖(The Nobel Prize in Literature)   按照传统,诺贝尔文学奖的公布(The Nobel Prize in Literature)日期未被确认。一般而言,文学奖的公布时间是在 10 月份的第一个星期四,有时定在第二个星期四。颁奖公告只公布最后通过的颁奖决定,以及相关赞辞 评定机构:瑞典文学院   在奖金数量方面,由于受到经济危机的影响,2012 年的诺奖奖金由 1000 万瑞典克朗缩水至 800 万瑞典克朗,今年奖金的具体数量则尚未公布。   迫不及待,今年诺贝尔奖将花落谁家?&mdash &mdash 预测诺贝尔奖&ldquo 风向标&rdquo 盘点   风向标1:拉斯克基础医学奖   拉斯克奖(Lasker Award),始自1946年的年度奖,奖励取得了重大医学科学贡献的在世医学研究者。拉斯克奖素有&ldquo 美国的诺贝尔奖&rdquo 之美誉,是美国最具声望的生物医学奖项,也是医学界仅次于诺贝尔奖的一项大奖,旨在表彰医学领域作出突出贡献的科学家、医生和公共服务人员。自1962年起,获此项医学奖的科学家中有半数以上在随后的数年里又获诺贝尔奖。拉斯克奖在医学界又被称作&ldquo 诺贝尔奖风向标&rdquo 。而且,获得基础医学研究奖后再获得诺贝尔奖的比例更高。截至2005年,超过300人次获得拉斯克奖,其中至少已有71人相继获得过诺贝尔奖。   风向标2:汤森路透引文桂冠   每年,汤森路透都会利用其研究解决方案Web of Knowledge中的数据,根据诺贝尔奖的生理或医学、物理、化学与经济分类,使用定量数据来分析和预测最有影响力的研究人员。根据其发表的研究成果的总被引频次,这些高影响力研究人员被授予汤森路透引文桂冠得主(Citation Laureates)称号,预示着他们可能成为今年或不久将来的诺贝尔奖得主。汤森路透是唯一采用定量数据预测年度诺贝尔奖得主的机构,自2002年起,共有26位引文桂冠奖得主赢得诺贝尔奖。   风向标3:沃尔夫医学奖   沃尔夫医学奖(Wolf Prize in Medicine),即以色列沃尔夫基金会(Wolf Foundation)颁授沃尔夫奖之一,奖励那些在医学,特别是基础医学方面有重大发现的科学家。许多得主也是诺贝尔医学奖得主。   风向标4:Google Pagerank   许多人指出,科学期刊用论文引用次数来排行科学家是不科学的,纽约布鲁克海文国家实验室的Sergei Maslov和波士顿大学的Sidney Redner认为Google的PageRank算法对论文的评判方式具有重要参考价值。从本质上说, PageRank由论文引用的数目(或指向一个网页的链接数目)统计所得 。一篇论文被引用的次数越多,其排名就越高。同时,其引用论文的重要性越高,相应其排名越高。   Maslov和Redner采用了该算法对美国物理学会1893年在期刊(如Physical Review Letters 物理评论快报)以来所发表353268篇论文进行排序,结果发现论文排名Top10的作者大多数是诺贝尔奖获得者(让人惊奇的是,位列第一位的作者Cabibbo没有获得诺贝尔奖。这应该是诺贝尔委员会对获得2008年诺贝尔物理学奖的Makoto Kobayashi 和Toshihide Maskawa基于Cabibbo的想法所做的重要工作更感兴趣所致。)所有这一切表明:挖掘该清单后面的排名可能是一个预测未来诺贝尔奖获奖者的好方法。   风向标5:盖尔德纳基金会国际奖   盖尔德纳国际奖是生物医学界最具声望的大奖,被誉为诺贝尔奖的预备奖,用于奖励在改善人类生活品质领域做出重大贡献的科学家。截至2007年,已有69位诺贝尔奖得主在此之前,获得盖尔德纳。盖尔德纳基金会于1957年由加拿大人詹姆斯&bull 阿瑟&bull 盖尔德创建,基金也来自他的个人捐赠。盖尔德纳国际奖是1971年为纪念胰岛素发现50周年而设立的,用于奖励医学领域实质性的重大成就。   风向标6:博彩赔率榜   各大博彩公司在诺奖揭晓前陆续开出盘口,随着开奖日期的临近,还会按照各种&ldquo 空穴来风&rdquo 不断调整赔率。由于诺奖入围名单严格保密,所以各大博彩公司的盘口成了开奖前媒体与业界的&ldquo 风向标&rdquo ,历史上,他们的盘口确有靠谱之时。   风向标7:知名博主   学术圈内一些知名学者预测诺贝尔奖也有个人心得,如北京大学生科院前院长饶毅曾于2002年10月6日(当年诺贝尔奖颁发的前几天)写下了《二十一项值得获诺贝尔生理学医学奖的工作》,列出了21项他认为应当获得诺贝尔奖的工作。7年过去了,除了2005年,每年都有被饶毅预测到的工作获奖。2008年10月5日,饶毅在科学网发表《美妙的生物荧光分子与好奇的生物化学家》,详细介绍了钱永健等人的工作,文章写得深入浅出,堪称科普杰作。3天后,诺贝尔奖委员会果然公布,2008年化学奖颁发给钱永健等人。   附:近十年诺贝尔生理或医学奖获奖研究领域(2002~2012)   近十年来,诺贝尔生理或医学奖获奖领域分别如下:   2012年:诱导多功能干细胞   日本京都大学Shinya Yamanaka(山中伸弥)与英国发育生物学家John Gurdon(约翰· 戈登)因在细胞核重新编程研究领域的杰出贡献,获得2012年诺贝尔生理学或医学奖。一直以来,人体干细胞都被认为是单向地从不成熟细胞发展为专门的成熟细胞,生长过程不可逆转。然而,格登和山中伸弥教授发现,成熟的、专门的细胞可以重新编程,成为未成熟的细胞,并进而发育成人体的所有组织。卡罗林斯卡医学院的新闻公报称,两位科学家的发现彻底改变了人们对细胞和器官生长的理解。教科书因之改写,新的研究领域被建立起来。通过对人体细胞的重新编程,科学家们创造了诊断和治疗疾病的新方法。   2011年:免疫系统激活的关键原理   本年度诺贝尔生理学或医学奖授予Bruce A. Beutler(布鲁斯· 比尤特勒), Jules A. Hoffmann an(朱尔斯-霍夫曼)和Ralph M. Steinman(拉尔夫· 斯坦曼). Bruce A. Beutler和Jules A. Hoffmann因为&ldquo 他们在先天免疫活化方面的发现&rdquo 而获此殊荣 另一半奖金给了Ralph M. Steinman,因为他发现了树突状细胞在过激免疫中的作用。&ldquo 今年的诺贝尔医学奖获得者发现了免疫活化的关键原理,这彻底改变了我们对于免疫系统的理解。&rdquo 诺贝尔官方称。   2010年:体外受精技术   被誉为&ldquo 试管婴儿之父&rdquo 的英国科学家RobertG.Edwards(罗伯特· 爱德华兹),因&ldquo 在试管受精技术方面的发展&rdquo 而被授予该奖项。诺贝尔奖评选委员会秘书长戈兰· 汉松说,爱德华兹创立的体外受精技术解决了一个重要的医学难题,即通过体外受精治疗多种不育症。   2009年:端粒和端粒酶是如何保护染色体   美国三位科学家伊丽莎白· 布莱克本(Elizabeth Blackburn)、卡罗尔-格雷德(Carol Greider)、杰克· 绍斯塔克(Jack Szostak)因发现了端粒和端粒酶保护染色体的机理被授予该奖项。卡罗林斯卡医学院方面称,这三人&ldquo 解决了生物学上的一个重大问题&rdquo ,即在细胞分裂时染色体如何进行完整复制,如何免于退化。其中奥秘全部蕴藏在端粒和端粒酶上。他们的发现提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于未来新治疗方法的发展。   2008年:人乳头状瘤病毒(HPV)和人类免疫缺陷病毒(HIV)的发现   德国科学家哈拉尔德· 楚尔· 豪森(Harald zur Hausen)因发现人乳突淋瘤病毒引发子宫颈癌获此殊荣,两名法国科学家弗朗索瓦丝· 巴尔-西诺西(Francoise Barré -Sinoussi)和吕克· 蒙塔尼(Luc Montagnier)因发现人类免疫缺陷病毒获此殊荣。基于HPV的发现,人类研制出了两种能够预防女性第二常见癌症&mdash &mdash 宫颈癌的有效疫苗。   2007年:基因靶向技术   Mario R. Capecchi(马里奥· 卡佩基), Oliver Smithies(马奥利弗· 史密斯)和Martin J. Evans(马丁· 埃文斯)由于在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。由于他们的发现,产生了一种名别&ldquo 小鼠中的基因打靶&rdquo 的技术。这项技术极其有用,目前已经被广泛应用在几乎所有生物医学领域&mdash &mdash 从基础研究到新疗法的研制。   2006年:核糖核酸(RNA)干扰机制   Andrew Z. Fire(安德鲁· 法尔),Craig C. Mello(克雷格· 梅洛)由于发现了一个有关控制基因信息流程的关键机制而获奖。瑞典卡罗林斯卡医学院宣布,Craig C.Fire安德鲁· 法尔和克雷格· 梅洛在基因技术的使用方面提供了&ldquo 令人激动的可能性&rdquo 。   2005年:幽门螺旋桿菌以及该细菌对消化性溃疡病的致病机理   Barry J. Marshall(巴里· 马歇尔)和J. Robin Warren(罗宾· 沃伦)因为发现了幽门螺杆菌以及它在胃肠道疾病中的作用而获奖。诺贝尔奖委员会在授奖词中说,由于两位科学家的发现,使得原本慢性的、经常无药可救的胃溃疡变成了只需抗生素和一些其他药物短期就可治愈的疾病。   2004年:气味受体和嗅觉系统的组织方式   inda B. bucks(琳达· 巴克)和Richard Alex(理查德· 阿克塞尔)由于在在气味受体和嗅觉系统组织方式研究中作出贡献而获奖。人类的嗅觉长期以来一直是一个非常神秘的领域。inda B. bucks和Richard Alex通过一系列开拓性的研究,澄清了人们的嗅觉系统是如何工作的。   2003年:核磁共振成像的研究   Paul C. Lauterbu(保罗· 劳特伯)和Sir Peter Mansfields(彼德· 曼斯菲尔德)因为发明了应用核磁共振成像技术显示人体复杂结构的技术而获奖。诺贝尔奖委员会说,这些发现导致了在临床诊断和医学研究上获得突破的核磁共振成像仪的出现,他们的成就是医学诊断和研究领域的重大成果。   2002年:器官发育和细胞程序性细胞死亡(细胞凋亡)的遗传调控机理   Sydney Brenner(悉尼· 布雷内), H. Robert Horvitz(罗伯特· 霍维茨)和John E. Sulston(约翰· 苏尔斯顿)因为发现器官发育和细胞程序性细胞死亡(细胞程序化凋亡)的遗传调控机理而获奖。诺贝尔奖委员会说,三名科学家的发现对于研究治疗癌症、艾滋病和中风等疾病有着重大作用。
  • 美国抗衰老新研究有助研发长生不老药
    在一项研究中,科学家解开了永葆青春的秘密,这将有助于研发“长生不老药”。据介绍,如果这一药物研发成功,人们将会更长寿,能够摆脱老年痴呆症、心脑血管疾病等老年病症。   这一研究是由哈佛大学的癌症医生罗纳德德品诺组织,刊发在著名的《自然》杂志上。   罗纳德教授表示,在2025年将有12亿人超过60岁,而从60岁开始,癌症、老年痴呆症和心脑血管疾病将会开始出现。而这次试验让我们看到了衰老能够被阻止。   这一科学突破以染色体终端为中心。染色体的末端是很多微小的生物钟,保护染色体不受破坏。随着年龄的增长,这些染色体的末端慢慢变短,于是,产生了与年龄相关的疾病如癌症、老年痴呆症和心脑血管疾病。最终它们变得很短,细胞开始死亡。一种叫做端粒酶的酶可以重建染色体终端,但是正常来讲,它们在人体内没被激活。   罗纳德教授成功将这种酶激活,他相信这将帮助人们制造出一种药物,可以延缓或阻止老年痴呆症等疾病的发展,还可能会延长生命。
  • “双十一”远慕ELISA试剂盒促销了
    “双十一”远慕ELISA试剂盒促销了,一下是相关详情,欢迎新老客户前来洽谈!活动截止时间:2014年11月4日-2014年11月15日Elisa试剂盒组织结构:1、 血清:操作过程中避免任何细胞刺激。使用不含热原和内毒素的试管。收集血液后,1000×g离心10分钟将血红细胞迅速小心地分离。2、 血浆:EDTA、柠檬酸盐、肝素血浆可用于检测。1000×g离心30分钟去除颗粒。3、 细胞上清液:1000×g离心10分钟去除颗粒和聚合物。4、 组织匀浆:将组织加入适量生理盐水捣碎。1000×g离心10分钟,取上清液。5、 保存:如果样品不立即使用,应将其分成小部分-70℃保存,避免反复冷冻。尽可能的不要使用溶血或高血脂血。如果血清中大量颗粒,检测前先离心或过滤。不要在37℃或更高的温度加热解冻。应在室温下解冻并确保样品均匀地充分解冻。人皮质酮/肾上腺酮(CORT)ELISA试剂盒96T/48T人前列腺素E2(PGE2)ELISA试剂盒96T/48T人神经特异性烯醇化酶(NSE)ELISA试剂盒96T/48T人细胞间粘附分子2(ICAM-2/CD102)ELISA试剂盒96T/48T人细胞间粘附分子3(ICAM-3/CD50)ELISA试剂盒96T/48T人纤溶酶原激活物抑制因子1(PAI-1)ELISA试剂盒96T/48TCAS:569-83-5 XanthohumolCAS:274675-25-1 黄腐酚D XanthohumolDCAS:647853-82-5 三叶甙2’’-乙酸酯 Trilobatin2' ' -acetateCAS:60-81-1 根皮苷 PhlorizinCAS:4192-90-9 三叶甙 Trilobatin人纤溶酶原激活物抑制因子(PAI)ELISA试剂盒 96T/48T人磷脂酶A2(PL-A2)ELISA试剂盒96T/48T人6酮前列腺素(6-K-PG)ELISA试剂盒96T/48T人载脂蛋白A1(apo-A1)ELISA试剂盒96T/48T人载脂蛋白B100(apo-B100)ELISA试剂盒96T/48T人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒96T/48T人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒96T/48T人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒96T/48TCAS:80787-59-3 1-羟基-6-铁屎米酮 1-Hydroxycanthin-6-oneCAS:80557-12-6 灰叶酸 GrifolicacidCAS:329975-47-5 3,4-Secocucurbita-4,24-diene-3,26,29-trioicacid人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒96T/48T人可溶性P选择素(sP-selectin)ELISA试剂盒96T/48T人S100蛋白(S-100)ELISA试剂盒96T/48T人S100B蛋白(S-100B)ELISA试剂盒96T/48T人白介素1(IL-1)ELISA试剂盒96T/48T人白介素17(IL-17)ELISA试剂盒96T/48TCAS:50-89-5 beta-胸苷 ThymidineCAS:84745-95-9 毛萼乙素 EriocalyxinBCAS:28593-92-2 咖啡酸二十二酯 DocosylcaffeateCAS:1159579-44-8 AlstonicacidACAS:115334-05-9 二氢尼洛替星 Dihydroniloticin人白介素1β (IL-1β)ELISA试剂盒96T/48T人白三烯B4(LTB4) ELISA试剂盒96T/48T人白血病抑制因子受体(LIFR)ELISA试剂盒96T/48T人表皮生长因子(EGF)ELISA试剂盒96T/48T人肠脂肪酸结合蛋白(iFABP)ELISA试剂盒96T/48TCAS:60796-64-7 去甲布拉易林 NorbraylinCAS:26585-14-8 1-乙基-4-甲氧基-9H-吡啶并[3,4-B]吲哚 CrenatineCAS:442-51-3 通关藤苷F HarmineCAS:928151-78-4 通关藤苷F TenacissosideF人端粒酶(TE)ELISA试剂盒96T/48T人基质金属蛋白酶5(MMP-5)ELISA试剂盒96T/48T人角化细胞生长因子(KGF)ELISA试剂盒96T/48T人血小板衍生生长因子BB(PDGF-BB)ELISA试剂盒96T/48T人中期因子(MK)ELISA试剂盒96T/48T人CXC趋化因子配体16(CXCL16)ELISA试剂盒96T/48TCAS:480-10-4 紫云英苷 AstragalinCAS:1432075-68-7 7-Geranyloxy-5-methoxycoumarinCAS:89915-39-9 BETA-咔啉-1-丙酸CAS:96850-29-2 MaoecrystalB人CXC趋化因子受体3(CXCR3)ELISA试剂盒96T/48T人基质细胞衍生因子1a(SDF-1a/CXCL12)ELISA试剂盒96T/48T人淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒96T/48T人白介素27(IL-27)ELISA试剂盒96T/48T人白介素23(IL-23)ELISA试剂盒96T/48T人第八因子相关抗原(FⅧAg)ELISA试剂盒96T/48TCAS:304642-94-2 旱生香茶菜素G XerophilusinGCAS:2239-24-9 千层塔烯二醇山芝烯二醇 SerratenediolCAS:3984-73-4 乌药环戊烯二酮甲醚 MethyllinderoneCAS:1228175-65-2 8-Geranyloxy-5,7-dimethoxycoumarinCAS:210108-87-5 2,5,14-三乙酰氧基-3-苯甲酰基氧基-8,15-二羟基-7-异丁酰氧基-9-烟酰氧基-6(17),11E-麻风树属二烯 2,5,14-Triacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxy-9-nicotinoyloxyjatropha-6(17),11E-diene人P53(P53)ELISA试剂盒96T/48T人环磷酸鸟苷(cGMP)ELISA试剂盒96T/48T人巨噬细胞移动抑制因子(MIF)ELISA试剂盒96T/48T人β淀粉样蛋白1-40(Aβ1-40)ELISA试剂盒96T/48T人组织因子途径抑制物(TFPI)ELISA试剂盒96T/48T人心肌转录因子GATA4 ELISA试剂盒96T/48TCAS:981-15-7 臭椿酮 AilanthoneCAS:60796-65-8 5,7,8-三甲氧基香豆素CAS:1782-79-2 乌药环戊烯二酮 LinderoneCAS:82467-50-3 戈米辛M R(+)-GomisinM1人干扰素诱导蛋白10(IP-10/CXCL10)ELISA试剂盒96T/48T人胰高血糖素样肽1(GLP-1)ELISA试剂盒96T/48T人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒96T/48T人脑肠肽(BGP/Gehrelin)ELISA试剂盒96T/48T人可溶性凋亡相关因子(sFAS/Apo-1)ELISA试剂盒96T/48T人抗利尿激素/血管加压素/精氨酸加压素(ADH/VP/AVP)ELISA试剂盒96T/48TCAS:210108-89-7 2,5,7,14-四乙酰氧基-3-苯甲酰基氧基-8,15-二羟基-9-烟酰氧基-6(17),11E-麻
  • 百家实验室:访国家蛋白质科学中心上海(筹)
    仪器信息网讯 2014年4月,我国生命科学领域中第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施(以下简称为:上海设施)通过工艺测试,正式进入开放试运行阶段。近日,仪器信息网工作人员参观拜访了上海设施及同步筹建的国家蛋白质科学中心· 上海(以下简称为:上海中心),一睹这一国家级重大科技基础设施的先进水平和创新风采,上海中心科研项目高级主管汪利俊博士及行政事务主管高馨热情接待了我们。 国家蛋白质科学研究(上海)设施/国家蛋白质科学中心· 上海建筑群   为了形成国际一流的蛋白质科学研究体系,并为我国蛋白质科学研究提供&ldquo 利器&rdquo ,2008年11月,&ldquo 蛋白质科学研究设施国家重大科技基础设施项目&rdquo 列入国家高技术产业发展项目计划,项目分北京设施、上海设施两部分,其中北京设施以蛋白质组学研究为主,而上海设施以结构生物学研究为主。   两年后的2010年12月,上海设施在上海浦东张江高科技园区内动工建设,总投资7亿元,项目总建筑面积3.3万平方米。而今历经3年多建设,上海设施/上海中心正式进入试运行阶段,预计于今年年底正式面向多用户、多领域开放。   据介绍,上海设施配备了蛋白质科学研究所需的各种大型科学仪器设备,以及由上海设施的技术人员自主研发的规模化、系统化技术装备体系。目前,上海设施由基于同步辐射光源的五线六站、规模化蛋白质制备系统、质谱分析系统、核磁分析系统、电镜分析系统、分子影像系统、复合激光显微成像系统、数据库与计算分析系统、动物设施等平台组成,可为在分子水平、细胞水平和个体水平上研究蛋白质、蛋白质复合体、蛋白质机器的结构与功能提供全面和完整的技术与条件保障。   在各大平台中,最令上海设施团队自豪的是几项创新:其中一项是将蛋白质表达实现了从&ldquo 手工作坊&rdquo 到&ldquo 智能工厂&rdquo 的转变。目前,在科研界和制药业对于各种蛋白样品的需求日益强烈,但蛋白表达是一个公认复杂、高成本、耗时和资源占用的过程。上海设施规模化蛋白质制备系统自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化)。 高通量自动化克隆系统   整个流程实现了自动化,从大规模PCR扩增开始,依次自动进行重组质粒的构建、细胞生长、诱导表达、蛋白表达(构建了大肠杆菌、昆虫细胞、哺乳动物细胞三种表达体系),最终完成蛋白纯化及蛋白性质表征。以克隆过程为例,实验效率从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆。   第二项创新则是分子影像系统自主研发的高精度激光双光镊系统。据悉,设备的所有零部件都购自现成。光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现亚纳米级位移和亚皮牛级力的测量。依靠这套系统,激光是&ldquo 镊子&rdquo ,能研究蛋白质如何折叠、变形,以及大分子生物酶的工作原理。高精度激光双光镊系统   第三项创新则是上海设施团队基于平台开发的相关研究方法。有了最先进的仪器,没有相应的研究方法也是枉然。为此,上海设施/上海中心的年轻PI们除了从事科学研究外,方法开发也是他们工作的重点。   以核磁系统分析平台为例,上海设施目前拥有5台核磁共振波谱仪,其中有国内第一台最高磁场强度的核磁共振设备(布鲁克900M NMR),主要用来测试蛋白质的溶液结构。上海中心PI周界文带着研究人员开展了核磁共振新技术的开发和新方法的研究。目前新方法的主体研究已完成,正进入软件测试阶段,对推广核磁共振技术在结构生物学领域的广泛应用有重要意义,特别是对依托高场强核磁共振设施进行大蛋白质的三维结构测定过程将更加可行。 布鲁克900M 核磁(左)、安捷伦800兆核磁(中)、安捷伦600兆核磁(右) 布鲁克600兆核磁(左)、安捷伦700兆核磁(右) 核磁系统分析平台一览   同样,上海设施的质谱分析系统平台也很强大,拥有赛默飞、AB SCIEX、安捷伦、沃特世等主流质谱品牌的仪器13台,是全国目前最大、质谱仪器种类最全的质谱分析平台之一。这个实验室在上海中心PI黄超兰的主持下,已自主研发了一系列国内其他实验室尚不具备的研究手段,吸引了全国各地甚至美国的诺奖获得者的研究组等多家科研单位前来合作,在短短半年间已有超过70多个合作项目在进行。 赛默飞质谱系统 (2台 Q Exactive、1台LTQ Orbitrap XL、1台LTQ Orbitrap Elite、1台 LTQ Orbitrap Elite-ETD) AB SCIEX质谱系统 (左上:QTRAP 6500、左下:Triple TOF 5600+、右:MALDI-TOF/TOF 5800) 安捷伦质谱系统 (1台 6530Q-TOF、1台6550 ifunnel Q-TOF、1台6490 QQQ) 沃特世质谱系统 (左:Xevo TQ-S 右:Synapt G2-Si HDMS) 质谱分析系统平台一览 (左:FEI TitanKrios 300kV 球差矫正透射电镜 右上:FEI TF20 场发射冷冻透射电镜 右下:FEI T12 冷冻透射电镜) 电镜分析系统平台一览 (左上:ZEISS Cell Observer SD 转盘式激光共聚焦 左下:NIKON N-SIM 超高分辨率显微镜 右上:LEICA SP8 激光共聚焦显微镜 右下:OLYMPUS FV1200MPE 双光子显微镜) 复合激光显微成像系统平台一览   此外,上海中心还自主研发了一套科研物资管理系统(e-Supply),所有实验室的研究人员都可通过ID登录系统下单购买实验试剂、耗材,资金从课题组经费账户中扣除,而上海中心则能以&ldquo 团购&rdquo 方式,拿到最优的价格。并且上海设施还为供应商提供了库存仓库,供应商只需付较少的费用就可以把上海设施常用的试剂、耗材存于此,这样也极大方便了研究人员,省去了试剂耗材运送的时间。现该系统已获国家计算机软件著作权,除管理上海中心物资外,还兼管筹建中的上海科技大学的物资,不久有望在中科院其他研究院所推广。 科研物资管理系统(e-Supply) 供应商在上海设施库存的商品 数据库与计算分析系统机房   上海设施不仅仅是一个供科学家使用的科研平台,更是一个具有强大科研能力的科学中心。目前,上海中心有PI 14位,仅在上海设施试运行期间,上海中心各研究组就已获得了包括中科院战略性先导科技专项和国家重大科学研究计划项目在内的多项重大课题,相关研究成果已在《自然》、《癌细胞》等国际著名学术刊物上陆续发表。   许琛琦研究组在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。   周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。   周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。   雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。   未来,上海设施将对中国乃至全球的科学家开放,旨在让上海设施发挥其更大的作用与价值。(撰稿:杨娟)   附录:国家蛋白质科学研究(上海)设施及国家蛋白质科学中心· 上海网址 http://www.sibcb-ncpss.org/   http://www.ncpss.org
  • 华人科学家高锟等3人获得2009年诺贝尔物理学奖
    核心提示:2009年诺贝尔物理学奖由华人科学家高锟、韦拉德-博伊尔和乔治-史密斯三人分享。高锟被誉为光纤之父,曾任香港中文大学校长,1996年当选为中国科学院外籍院士。 香港中文大学前校长高锟1996年在“高锟星”命名典礼上。资料图 高锟等3人获诺贝尔物理学奖   新华网斯德哥尔摩10月6日电 得益于光纤通信和CCD图像传感器的应用,诺贝尔奖揭晓的消息和情景如今能瞬间传遍全球。分别研究出这两项成果的华裔科学家高锟和两名美国科学家威拉德博伊尔、乔治史密斯,于6日荣获2009年诺贝尔物理学奖。   瑞典皇家科学院常任秘书贡诺厄奎斯特6日在揭晓奖项的新闻发布会上说,高锟因在“有关光在纤维中的传输以用于光学通信方面”取得了突破性成就,获得今年物理学奖一半的奖金,共500万瑞典克朗(约合70万美元) 博伊尔和史密斯发明了半导体成像器件——电荷耦合器件(CCD)图像传感器,两人分享今年物理学奖的另一半奖金。   高锟——“光纤之父”   高锟是继去年钱永健获得诺贝尔化学奖之后,又一位获得诺贝尔奖的华裔科学家。高锟1933年在上海出生,1954年赴英国攻读电机工程,先后获得学士和博士学位。1987年,高锟出任香港中文大学第三任校长,1996年卸任。在与内地科技界的交流合作中,高锟主张“一步一步把双方的联系实际化”。他于1996年当选为中国科学院外籍院士。   发布会上,诺贝尔物理学奖评选委员会主席约瑟夫努德格伦用一根光纤电缆形象地解释了高锟的重要成就:早在1966年,高锟就取得了光纤物理学上的突破性成果,他计算出如何使光在光导纤维中进行远距离传输,这项成果最终促使光纤通信系统问世,而正是光纤通信为当今互联网的发展铺平了道路。   “我对于获颁诺贝尔物理学奖深感荣幸,”高锟在得知获奖后说。香港特区行政长官曾荫权表示,诺贝尔物理学奖是科学界的最高荣誉,他和香港市民衷心祝贺高锟教授获此殊荣。高锟教授不但是一位杰出的科学家,也是一位谦谦君子和有承担的教育家。   博伊尔、史密斯——让数码相机风靡全球   博伊尔1924年出生于加拿大阿默斯特,史密斯1930年出生于美国纽约,两人发明CCD图像传感器时均供职于美国贝尔实验室。诺贝尔物理学奖评选委员会评委英厄马尔伦德斯特勒默在发布会上手持一部数码照相机深入浅出地描述了另两位科学家的成就。他说,博伊尔和史密斯1969年共同发明了CCD图像传感器。这个传感器好似数码照相机的电子眼,通过用电子捕获光线来替代以往的胶片成像,摄影技术由此得到彻底革新。此外,这一发明也推动了医学和天文学的发展,在疾病诊断、人体透视及显微外科等领域都有着广泛用途。   博伊尔在接到获奖通知电话后,几乎不敢相信这一喜讯,“这是真的吗?”在他看来,他们的成就意义重大,“正是因为我们的成果,小型照相机才风靡全球”。“当火星探测器在火星上着陆的时候,它也带了一个小相机——没有我们的发明,那是不可能的。”而睡梦中的史密斯错过了第一个通知电话,直到第二个电话才完全醒来,“哦,我的天啊!这真是太令人吃惊了!”   物理学奖是今年诺贝尔奖揭晓的第二个奖项。5日揭晓的诺贝尔生理学或医学奖授予了三名美国科学家,以表彰他们“发现端粒和端粒酶是如何保护染色体的”。诺贝尔化学奖以及文学奖、和平奖和经济学奖将于7日至12日陆续揭晓。
  • 贝因美集团重磅收购美国权威医学检测平台
    p   日前,从贝因美集团传来重磅消息:集团已经携手一致行动人,以不超过3亿美元完成了对一家美国医学营养检测公司的收购,意味着海外战略布局又实现了重要一步。 /p p   据介绍,美国SCL公司总部位于美国,是一家临床实验室,它拥有最先进独一无二的微营养代谢检测平台,可对人体新陈代谢状态功能进行全面检测评估。它拥有的大部分检测已被纳入多个美国医保项目,并且已经实现可观的盈利收入。 /p p   SCL成立于1993年,总部位于美国德克萨斯,是一家美国FDA临床实验室改进修正案(CLIA)认证的专业实验室。公司拥有最先进的营养缺乏、免疫与抗游离子功能指数评估,和心血管疾病的风险测试世界唯一的、专利的、开创性的免疫细胞内微量营养素检测技术,即细胞内功能测验(Functional Intracellular Assay, FIA)。该技术可准确评估对人体代谢过程以及免疫系统相关的33种维生素、矿物质、氨基酸和抗氧化物质的细胞内功能缺乏状态以及免疫功能指数。 /p p   科学研究与实践证实,生物个性化(Biochemical Individuality)以及免疫营养缺乏与发炎性慢性病以及亚健康的发生、发展直接相关。优化免疫细胞内营养状态对于提升整体健康以及预防发炎性慢性病以及控制发炎性慢性疾病至关重要,尤其是慢性病。 /p p   据悉,SCL公司的大部分检测已被纳入Medicare,目前全球有超过400,000名专业医生使用SCL检测技术,千万大众从检测中受益。其用户包括美国50个州超过600家医院与实验室,加拿大130多家医院与实验室,以及英国、瑞士、巴哈马等地的实验室与医疗机构。 /p p   贝因美集团创始人兼首席科学家谢宏表示,该公司以细胞内功能测验,先进的脂蛋白颗粒检测技术,加上MTHFR,APOE,Telomere(端粒)基因检测为临床医生提供个性化的临床解决方案,帮助大众促进健康水平的提升。此举表明布局未来的重要转型举措,将推进世界顶级生命科技在中国的应用发展和实践提升,并将为上市公司带来更广阔前景。 /p p br/ /p
  • 女性更容易获得诺贝尔生理学或医学奖!
    p   诺贝尔奖从1901年到2015年,共有575人荣获科学奖(生理学或医学奖、物理学奖、化学奖)。其中仅有17位女性共获得18次奖(居里夫人两次获奖),女性占科学奖获奖总人数的比例不到3% 而女性物理学奖获得者仅有2人(居里夫人和迈耶),占科学奖获奖总人数的比例约为0.35%。在女性诺贝奖获奖者中,有11人获得生理学或者医学奖,占全部女性获奖者的比例为64%。可见,女性更容易获得生理学或医学奖。 /p p strong   物理学奖:2 /strong /p p   1903年,马丽亚· 居里,波兰,对放射性现象所作出的卓越研究工作 /p p   1963年,马丽亚· 古博特· 迈耶,美国,发现原子核的壳层结构 /p p   strong  化学奖:5 /strong /p p   1911年,马丽亚· 居里,波兰,发现放射性元素镭和钚 /p p   1935年,依琳· 约里奥· 居里,法国,在放射性元素合成方面的贡献 /p p   1964年,多萝西· 霍奇金,英国,发现青霉素和维生素B12的结构 /p p   2009年,阿达· 约纳特,以色列,研究核糖体的结构和功能 /p p   2009年,卡罗尔· 格雷德,美国,发现端粒和端粒酶如何保护染色体 /p p strong   生理学或医学奖:11 /strong /p p   1947年,盖提· 拉尼兹· 考瑞,美国,发现糖元的催化转化机理 /p p   1977年,罗莎琳· 苏斯曼· 亚娄,美国,创立对多肽类激素的放射免疫分析 /p p   1983年,巴巴拉· 麦克林斯托克,美国,发现转座子即基因是可以移动的 /p p   1986年,瑞塔· 莱维· 蒙塔尔西尼,美国,发现生长因子 /p p   1988年,格特鲁德· 艾琳,美国,发现糖尿病治疗的重要药理学机制 /p p   1995年,克里斯丁· 瓦哈德,德国,发现早期胚胎发育的控制机制 /p p   2004年,琳达· 巴克,美国,在嗅觉方面的卓越研究 /p p   2008年,弗朗索瓦丝· 巴尔-西诺西,法国,在人类免疫缺陷病毒(HIV)的发现过程中做出重要贡献 /p p   2009年,伊丽莎白· 海伦· 布莱克本,澳-美,端粒和端粒酶研究领域的先驱 /p p   2014年,梅· 布莱特,挪威,发现构成大脑定位系统的细胞 /p p   2015年,屠呦呦,中国,发现治疗疟疾的青蒿素。 /p p style=" text-align: center " img width=" 600" height=" 390" title=" 01.jpg" style=" width: 600px height: 390px " src=" http://img1.17img.cn/17img/images/201512/noimg/4e8ecde2-dfbc-470b-b024-541821a0f56c.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 诺奖典礼现场 /p p    strong 1911年诺贝尔化学奖授奖辞 /strong /p p   (1911.12.10) /p p   瑞典皇家科学院院长、国家图书馆馆长E· W· 达尔格伦博士 /p p   陛下、殿下、女士们、先生们: /p p   皇家科学院于今年11月1日决定,将1911年诺贝尔化学奖授予巴黎大学理学院的教授玛丽· 斯科罗多夫斯卡· 居里女士,以表彰她在化学发展中所作的贡献: /p p   发现了化学元素镭和钋 /p p   确定了镭的特性并分离出纯金属镭 /p p   最后,研究了这个著名元素的化合物。 /p p style=" text-align: center " img width=" 600" height=" 403" title=" 02.jpg" style=" width: 600px height: 403px " src=" http://img1.17img.cn/17img/images/201512/noimg/69fee540-6865-465c-8934-2a08775a30ba.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   居里夫人1903年与丈夫、贝克勒尔共同获得诺贝尔物理学奖时的证书 /p p   1896年,贝克勒尔发现铀元素的化合物中放出射线。这射线使照相底片感光,使空气导电。这一现象被称为放射性现象,导致这现象的物质被称为放射性物质。 /p p   稍后,人们发现化合物中的另一种元素,即由伯齐里乌斯(Berzelius)发现的钍元素,也具有相同的特性。 /p p style=" text-align: center " img width=" 600" height=" 455" title=" 03.jpg" style=" width: 600px height: 455px " src=" http://img1.17img.cn/17img/images/201512/insimg/e96f0336-1451-40bb-ba45-a79bf08dedaa.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 居里夫妇纪念邮票 /p p   因为发现和研究这种被称为铀射线或者贝克勒尔射线,皇家科学院把1903年的诺贝尔物理奖授给了贝克勒尔和居里夫妇。 /p p   在研究许多含铀和钍的化合物的过程中,居里夫人发现放射性强度与这些元素在化合物中的比例成正比。但是,某些天然矿石,例如沥青铀矿石,却表现出意外情况:它的放射性强度大大超出了其中铀放射性所能达到的预期值,实际上甚至比铀元素自身的放射性还要强。 br/ /p p style=" text-align: center " img width=" 300" height=" 448" title=" 04.jpg" style=" width: 300px height: 448px " src=" http://img1.17img.cn/17img/images/201512/noimg/7f4675bf-53e4-4923-8e0f-70bf6a12908a.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 青年居里夫人 /p p   合理的结论是,这些矿石中一定含有一种那时还未知的元素,且该元素有极强的放射性。的确,经过系统地利用十分复杂的化学程序,玛丽和皮埃尔· 居里从几吨的沥青矿石中,最终成功地提炼出——坦白地说是少量的——两种新的放射性强的元素的盐,他们称这两种元素分别为钋和镭。 /p p style=" text-align: center " img width=" 300" height=" 330" title=" 05.jpg" style=" width: 300px height: 330px " src=" http://img1.17img.cn/17img/images/201512/noimg/f191c18c-236f-4569-b0af-f2283987e5c5.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 葛丽亚· 嘉逊凭电影《居里夫人》赢得一生演艺事业的顶峰 /p p   其中之一的镭元素,化学性质与金属钡相似,能够通过一条特征光谱而识别,一直被认为是可以分离成纯金属态的。它的原子量由居里夫人确定为226.45。直到去年(1910年),在一个合作者的帮助下,居里女士才成功地分离出纯金属镭。尽管有各种相反的假说,她还是一劳永逸地确定了镭作为一个元素的位置。 br/ /p p style=" text-align: center " img title=" 06.jpg" src=" http://img1.17img.cn/17img/images/201512/noimg/48ed2ba2-87e0-44a6-8eb0-e37997a00f5c.jpg" / /p p style=" text-align: center " 电影《居里夫人》剧照 /p p   镭是一种银白色且发光的金属,能剧烈地分解水,当与有机物例如纸接触时,它能使之烧焦。它的熔点是700℃,比钡更易挥发。 /p p   根据化学家的观点,镭和它的衍生物最显著的特点是,在不受外界条件影响下,它们将不断地释放出一种射气(emanation),这是一种放射性气体,在低温下可以凝聚成液体。这种被建议称为氡的气体,似乎在各方面都具有元素的特性,化学性质与所谓的惰性气体非常相似,它的发现者当时就获得了诺贝尔化学奖。事情还没有结束,这种气体还不断地自行分裂,在它的产物中,诺贝尔奖获得者拉姆塞爵士发现了气态的氦元素,后来其他著名的科学家也发现了氦。这种元素曾经在太阳的光谱中被观察到,在地球上也可少量地找到。 /p p   这个事实在化学史上首次表明,一种元素真的可以转变成另一种元素。而且,正是由于这一原因使镭的发现有了更为重大的意义:它引起了化学革命,开创了化学的新篇章。 /p p style=" text-align: center " img title=" 07.jpg" src=" http://img1.17img.cn/17img/images/201512/noimg/c4f1f830-c9ce-4c4f-8c64-c75715438942.jpg" / /p p style=" text-align: center " 电影《居里夫人》海报 /p p   化学元素绝对不变的理论不再有效了,因为科学家已经揭开了一些至今还遮盖着的元素演变的秘密。 /p p   炼金术士最感亲切的嬗变理论,意外地死而复生,不过这次是以一种精确的形式,排除了任何神秘的要素。具有这种嬗变功能的点金石不再是一种神秘而费解的炼金药液,而是现代科学所称的能量。 /p p   可以假定,由镭原子构成的粒子系统中一定包含着巨大的能量。当原子分裂时,这些能量以光和热的形式不断释放出来。这正是镭的特征。 /p p   由于以上成就,我们论及的不再仅仅是个别或者特殊的现象了。放射性更强的镭和钋元素的发现,已经导致许多其他寿命或长或短的放射性元素的发现。通过这些发现,我们的化学知识以及我们对自然界物质的了解得到很大的扩展。 /p p   的确,镭的研究近年来导致科学的一个新分支的诞生,即放射学(radiology)的诞生。在巨大的科学王国里,放射学已经拥有自己的研究机构与杂志。 /p p    p style=" text-align: center " img width=" 300" height=" 385" title=" 08.jpg" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201512/noimg/03c058ca-ce03-4278-ba21-41bef00bf20d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 电影《居里夫人》海报 /p p   由于和其他自然科学,例如物理学、金属学、地质学和生理学有许多结合点,这个自身很重要的学科又具有更多的重要性。我们知道,因为镭的生理作用,镭在医疗方面找到了应用。许多应用者认为,放射性治疗法在治疗癌症和狼疮方面有良好的效果。 /p p   镭的发现,首先对于化学,接着对人类知识的许多其他分支和人类活动,都有巨大的意义。有鉴于此,皇家科学院有理由认为,应当将诺贝尔化学奖授予两位发现者的唯一幸存者——玛丽· 斯科罗多夫斯卡· 居里夫人。 /p p   居里夫人,1903年瑞典皇家科学院荣幸地把诺贝尔物理奖部分地授给了您和您的丈夫,以表彰你们在放射性方面的发现。 /p p   今年,皇家科学院决定授予您化学奖,以表示对您为这个学科付出巨大劳动的赞赏。您发现了镭和钋,您描述了镭的特性和它的分离,您研究了这一著名元素的化合物。在诺贝尔奖颁发的11个年头里,这是第一次将此殊荣赐给以前的获奖者。现在,夫人,请您允许我在这种场合下,用我们科学院对您近年来发现的关注,表明您的发现的重要性。请您接收国王陛下的授奖。 br/ /p p /p p /p /p
  • 全球衰老检测需求旺盛,如何推动产业实现高质量发展?
    不管过去还是现在,长生不老、永葆青春总是人类的梦想,科学家也一直在探讨影响人类寿命的各种因素。  在“衰老可干预”观念日益被认可的今天,实践抗衰的需求正在变得迫切,如此也推动了量化衰老检测产业的高速发展,国内外更是出现了诸多公司专注于衰老检测,甚至为客户“定制”个性化的抗衰建议。  根据Zion Market Research数据显示,全球抗衰老市场规模已从2015年的1395亿美元增长至2021年的2236亿美元,年复合增长率约7.8%。中国抗衰老市场2021年整体达到108.9亿美元,折合722亿人民币,实现12.15%高增长,连续3年稳定增长,中国市场明显高于全球市场。  随着生活水平的提高和消费者对抗衰理念的不断升级,抗衰老的需求日益增加。  然而,与庞大的市场需求形成对应的是,国内对于衰老程度的量化检测手段较为缺乏,国内抗衰老程度检测行业还处于发展的起步阶段,尚未建立起行业标准。  也是基于此,推动量化衰老检测标准的建立成为当下急需推动的方向。  打造量化衰老检测行业风向标  近30年来,中国人口老龄化程度日益加深,居民疾病谱也随之发生了重大转变,从新生儿疾病、急性感染病、传染性疾病转变为心血管系统疾病、肿瘤、糖尿病等慢性病以及神经退行性疾病如阿尔茨海默病等,而衰老几乎是诸多慢性疾病最大的危险因素之一。  在实际生活中,我们通常通过“时序年龄”(当前年份-出生日期年份)来衡量衰老程度,但此种方法并不能准确反映一个人的真实衰老状态,这也侧面解释了为什么有的人会未老先衰,有的人却鹤发童颜。在此情况下,早日发现可靠且敏感的衰老标志物较为关键,有助于衰老程度的评估预警及衰老干预效果的评价。  为了准确评估衰老标志物及检测方法,有研究人员提出了包括肌酐清除率(Creatinine Clearance Rate,CCR)、最大颈动脉内径、脉压(Pulse Pressure,PP)、端粒长度(Telomere)、β-半乳糖苷酶(β-galactose)、DNA甲基化位点等多种衰老标志物。综合目前所报道的文献以及老年医学长期研究的共识,端粒长度被公认为是重要的评判标准,因为它更能准确反映一个人的真实衰老程度。此外,经过健康干预(比如饮食、膳食补充剂、运动、冥想等)后,更需要依靠精准的衰老标志物检测技术来对上述抗衰措施的效果进行评估。  然而,检测衰老作为抗衰的前提,在国内却因市场教育不足、成本难以控制等原因迟迟无法发展。这也要求行业树立引领企业,带动行业企业在选择测衰技术、提升研发能力和维护检测更新等多个方面实现良性发展。  在此方面,美因基因有限公司(以下简称“美因基因”)的影响力不容忽视。美因基因于2022年6月22日成功在港交所挂牌上市,也正是在IPO上市的同一年,美因基因推出了量化衰老的检测——端粒长度基因检测,而经过一年多以来的市场验证,取得了较为亮眼的业绩表现,据了解,截至2023年6月底已实现量化衰老检测服务人数近2万。  美因基因推出的端粒长度基因检测不仅为个体提供了衰老监控的科学手段,还以独特的套餐策略赋予了产品差异化竞争力,引领市场新风潮。作为特色项目,端粒长度基因检测以其先进的科学技术和准确的测量结果,填补了健康管理领域衰老监控的市场空白。  通过对端粒长度的检测,个体可以更清楚地了解自身衰老状况,为个性化的健康管理提供依据,也可根据自身情况结合高压氧舱疗法、冥想等经科学验证的干预手段,达到调整端粒长度的效果。  端粒长度基因检测前景可观  除了作为量化衰老的检测手段,端粒长度也能预示着一些健康问题,比如心脏病、心血管疾病、神经退行性疾病等慢性疾病。  根据旧金山加利福尼亚大学一项研究发现:五年内端粒缩短的心脏病患者比端粒保持稳定的心脏病患者有更高的死亡率。该研究团队花了5年时间追踪了608名稳定心血管病患者的健康状况,他们研究了心脏病死亡与端粒长度变化间的关系。  研究人员分别在研究开始时和五年后测量了患者们的端粒长度,从而评估5年内端粒长度的变化能否预测患者的生存状态。在随访期间(4.2±1.4年),有149例患者死亡,整体而言,患者死亡率与端粒长度呈负相关,端粒越短患者死亡率越高(46%VS12%)。这意味着相比于端粒缩短或不变者,心脏病患者的端粒如果延长预示着更低的死亡率,有关数据显示端粒延长的心脏病患者未来四年死亡的风险降低了56%。  实际上,也正是在这一检测手段的推动之下,做好提前健康管理也成为了美因基因瞄准的重点市场布局方向。  作为一家基因检测平台公司,美因基因拥有全覆盖的基因检测价值链,致力于为不同人群提供量身定制的基因检测解决方案。基于核心技术平台和完善的医学检验实验流程质控体系,美因基因深耕于消费级基因检测和肿瘤早筛等领域,为广大受检者提供了较为准确和可靠的健康风险评估,助力人们在预防疾病方面做出明智的决策。  为满足各类人群的多种需求,美因基因的产品覆盖了大众普及型、中端实惠型和尊贵定制型等多种需求。在大众普及型产品方面,美因基因帮助受检者从遗传角度了解自身特质、健康风险等指标,从而根据检测结果为受检者提供相应的健康管理指导。例如,肿瘤全筛基因检测套餐,覆盖男性15种和女性18种恶性肿瘤,帮助受检者了解自身肿瘤风险,提前做好预防和专项体检的准备。  在中端实惠型产品方面,美因基因专注于肿瘤早筛检测和BRCA1/2基因检测。通过检测血液或粪便中异常甲基化DNA,从而提示受检者当前患癌的可能性,并建议早发现、早诊治。此外,BRCA1/2基因检测可以帮助受检者了解自身患遗传性乳腺癌和卵巢癌的风险,为定期检查和预防提供重要参考。  为了支持其产品的高质量和可靠性,美因基因依托二代测序(NGS)平台、荧光定量PCR平台、基因芯片平台和基因分型平台等核心技术平台。此外,美因基因还与北京医院、天坛医院、宣武医院、中国解放军总医院第七医学中心等多家公立医院开展合作,以进一步推动预防医学的发展,更好地造福于患者。  基因检测助力“健康中国2030”  根据弗若斯特沙利文的资料,中国基因检测市场规模于2020年达到人民币151亿元,2016年至2020年的年复合增长率为20.3%,预计到2030年增至1536亿元,2025年至2030年的年复合增长率为25.8%。  较2020年翻了九倍多,可以说是爆炸式的增长,另外这种趋势也体现在消费级基因检测上,从2020年的人民币4.72亿元增加至2030年的180亿元,其市场发展潜力巨大。  另外,根据弗若斯特沙利文的资料,中国消费级基因检测的渗透率仅为0.8%,远低于美国的8.8%,可挖掘的市场巨大。  这对于美因基因来说,是较为有利的形势。作为专注于消费级基因检测及癌症筛查服务的中国领先的基因检测平台公司,截至2022年12月31日,美因基因与中国超340个城市的近1700家医疗保健机构合作。根据弗若斯特沙利文资料,按进行的检测数量计算,美因基因2020年在中国消费级基因检测市场的市场份额超过60%;按产生的收入计算,市场份额为34.2%,在中国消费级基因检测市场排名第一,在未来的市场发展中具备一定的竞争优势。  美因基因以其先进的基因检测技术和普惠的基因检测服务,为用户提供了便捷、准确、个性化的基因信息解读和健康管理方案。通过检测人体基因组中的风险因素,美因基因帮助用户了解自身的遗传特点和潜在疾病风险,为个体化的疾病预防和健康管理提供了重要支持。  与《“健康中国2030”规划纲要》战略目标相契合,美因基因致力于解锁基因奥秘,提供先进的基因检测技术和普惠的基因检测服务,为人民健康保驾护航。随着中国消费者对基因检测认知的不断提高和市场渗透率的增加,美因基因也有望在健康中国的大形势下,迎来更加广阔的发展前景,为推动健康中国建设做出积极的贡献。
  • BCEIA2017标记免疫分析技术报告会(一) 聚焦临床诊断前沿研究进展
    p strong 仪器信息网讯 /strong 2017年10月9日,第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)学术报告会在北京国家会议中心正式召开。本届学术报告会为期3天,继续坚持“分析科学创造未来”方向,围绕“生命 生活 生态—面向绿色未来”主题,举办包括大会报告、分会报告、热点论坛、同期会议等在内的400多场形式多样的学术报告。近百位重量级专家学者轮番登场,带来分析科学前沿研究最新成果,促进分析测试国际学术交流。 /p p style=" text-indent: 2em " 9日上午,电子显微镜及材料学、质谱学、光谱学、色谱学、磁共振波谱学、电分析化学、生命科学、环境分析、化学计量及标准物质、标记免疫分析技术十个分会同期开幕。标记免疫分析技术分会迎来首场会议,中国分析测试协会标记免疫分析专业委员会主任委员/中国人民解放军总医院生化科主任颜光涛致开幕词。国家纳米科学中心蒋兴宇研究员、广西壮族自治区人民医院黄华艺教授、北京大学赵美萍教授、解放军总医院呼吸科副主任医师杨震、海狸生物医学公司CEO任辉博士等专家学者作了精彩报告。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/6edfdb16-5fa9-4eb4-9bde-5e453c2410e2.jpg" title=" 31.png" / /p p style=" text-align: center " strong 中国分析测试协会标记免疫分析专业委员会主任委员/解放军总医院生化科主任 颜光涛 /strong br/ /p p style=" text-indent: 2em " 国家纳米科学中心研究员蒋兴宇作了题为《Microfluidics for Diagnostics》。他向与会者介绍了他们团队在微流控芯片免疫检测方面所做的工作。微流控芯片用于免疫检测,特别是化学发光、荧光等标记免疫检测,其优势主要是能够把多种生物标志物的检测集中一次性完成,而且能够降低试剂与样本的消耗量。在中国科学院战略先导项目的支持下,蒋兴宇和团队把芯片从实验室小规模制备,做到了大规模的制备,并且研发了相关的仪器,实现了操作的自动化。国家纳米科学中心目前正在和北京纳迅合作申报国家食品药品监督总局产品注册证。此外,他还介绍了微控制芯片在纳米载体的合成、核酸载体筛选等方面的应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/388c3eaa-c364-4ca0-9d5c-bc9c0582f05f.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 国家纳米科学中心研究员 蒋兴宇 /strong /p p style=" text-indent: 2em " 广西壮族自治区人民医院教授黄华艺作了题为《Sub-cellular Distribution of Tetraspanin NET-6 and CD151 and Metastatic Relevance in Breast Cancer》(《四跨膜素NET-6和CD151的亚细胞结构分布与乳腺癌转移的相关性》)。黄华艺介绍了中国和美国乳腺癌的发病率和死亡率,四跨膜素的分子结构特征及其在细胞生物学功能中的作用,NET-6和CD151与肿瘤的关系,NET-6和CD151在乳腺癌细胞和乳腺癌组织中亚细胞结构的表达与激素受体HER2, ER和PR表达状态的关系及其潜在的临床意义。最后,他简要介绍了他们研究组正在开发的CD151免疫组化和ELISA检测试剂盒。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/6e64de8b-23c4-4135-8541-d8f535146eb5.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 广西壮族自治区人民医院教授 黄华艺 /strong /p p style=" text-indent: 2em " 北京大学教授赵美萍作了题为《Ultra-sensitive Detection of Neuroactive Small Molecules by Using Signal-amplified Homogeneous Fluoro-immunoassay》的报告。她向与会者介绍了一种基于抗体阀门策略的小分子均相荧光免疫信号放大检测方法,对雌二醇的检测灵敏度达6 pg/mL。该方法可直接与微透析/液滴微流控在线检测平台结合,用于连续实时监测脑区神经活性物质的含量变化及快速临床检验。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/81c0726a-95d7-4fb4-a5ed-75625c2d3b1d.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 北京大学教授 赵美萍 /strong /p p style=" text-indent: 2em " 解放军总医院呼吸科副主任医师杨震作了题为《Biomarkers for Early Diagnosis of Lung Cancer》的报告。他向与会者全面介绍了目前肺癌早期诊断领域生物标记物的新进展和临床评价,并结合他所在团队在呼出气检测方向所做的研究工作,重点介绍了呼出气检测方向的最新热点呼出气组学(breathomics)的现状和未来发展趋势。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/cb888bfe-5f0d-4ade-8cff-fe3fa1088f41.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong 解放军总医院呼吸科副主任医师 杨震 /strong /p p style=" text-align: left text-indent: 2em " 海狸生物医学公司CEO任辉博士作了题为《Clinical Samples Processing Solutions for In Vitro Diagnostics》的报告。他阐述了以纳米磁珠技术为基础的临床样本处理技术及其相关的自动化设备平台。报告深入探讨了从大体积粪便样本总DNA中检测幽门螺旋杆 菌的自动化设备,及高特异性、抗抑制的分子诊断体系,可以直接用于肠癌检测、病菌和微生物等定量检测。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/5f2f0d52-f4c2-44ee-94d3-0a65e75f657b.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 海狸生物医学公司CEO 任辉 /strong /p p style=" text-indent: 2em " 川北医学院附属医院郭晓兰教授作了题为《Study on Telomeres in Gastrointestinal Tumors》的报告。她主要讲述了端粒长度和端粒酶在衰老和肿瘤中的研究现状,尤其是在小鼠胚胎成纤维细胞中导致肿瘤生成的研究成果,继而转向人类消化系统肿瘤的研究,尤其是在食管癌、肝癌和胃癌等。探讨了端粒保护蛋白TPP1在几种肿瘤中的表达及其可能作用分子机制,为消化道肿瘤的诊断和治疗探索了极具潜力的靶向分子。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/b6699f38-2c7a-4280-a1a4-bb621856cd16.jpg" title=" 321.png" / /p p style=" text-align: center " strong 川北医学院附属医院教授& nbsp 郭晓兰 /strong /p p style=" text-indent: 2em " 北京大学肿瘤医院寿成超教授作了题为《Translational study of Synuclein in Cancer Prognosis and Diagnosis》(突触蛋白- 在肿瘤预后判断及辅助诊断中的应用基础研究)的报告。寿成超教授首先简要介绍了近年来我国的肿瘤发病趋势及诊疗现状和肿瘤标志物的研发策略与临床应用,随后与大家分享了突触蛋白(SNCG)在乳腺癌、肠癌和膀胱癌患者的预后判断及辅助诊断中的应用价值的研究结果。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/df7003fc-770c-4db3-92d0-dadf484e5807.jpg" title=" 331.png" / /p p style=" text-align: center " strong 北京大学肿瘤医院教授& nbsp 寿成超 /strong /p p style=" text-indent: 2em " 解放军总医院主任医师郭豫涛作了题为《The Predictive Value of Chemokines on Atrial Fibrillation–related Thromboembolism and Bleedings in Elderly Patients》的报告。她向与会者介绍炎症趋化因子生物标记物在心房纤颤脑卒中血栓及出血风险评估中的价值及应用前景。她的团队利用多通道流式荧光技术在高危房颤患者中筛查了4个趋化因子家族共27种趋化因子,有望提供特异性更高的临床危险评价工具,指导抗凝管理。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/f96b1676-560d-423a-83c2-a24a019dc3ed.jpg" title=" 341.png" / /p p style=" text-align: center " strong 解放军总医院主任医师 郭豫涛 /strong /p p style=" text-indent: 2em " 解放军总医院肿瘤内一科副主任医师张国庆作了题为《Potential Effective and Feasible Biomarkers for Immunotherapy》的报告。他向与会者全面介绍了目前肺癌免疫检查点抑制剂疗效预测诊断领域生物标记物的新进展和临床评价,充分阐述了PD_L1表达、TMB、肺癌驱动基因等指标作为标记物的临床价值和局限性,为未来进一步临床研究指出了方向。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/7199d1c1-ae63-40ec-bda9-b69eb6465fc3.jpg" title=" 35.jpg" / /p p style=" text-align: center " strong 解放军总医院肿瘤内一科副主任医师 张国庆 /strong /p p style=" text-indent: 2em " 军事医学科学院微生物流行病研究所杨瑞馥教授作了题为《POCT and Translational Medicine》的报告。他向与会者全面介绍了目前临床诊断中生物标志物和检测生物标志物技术的进展,以及POCT发展的趋势。最后重点介绍了该团队最新的研究成果-基于稀土纳米上转发光技术的即时检测系统(UPT-POCT)的原理、技术及应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c9ec5c35-cae3-4c41-97e3-f6495408ead2.jpg" title=" 361.png" / /p p style=" text-align: center " strong span style=" text-indent: 2em " 军事医学科学院微生物流行病研究所教授& nbsp 杨瑞馥 /span /strong /p p style=" text-indent: 2em " 以上是BCEIA 2017标记免疫分析技术分会实况报道。仪器信息网将为您带来更多有关BCEIA 2017第一手新鲜资讯,敬请关注。 /p
  • 细数近12年诺贝尔生理学或医学奖
    p   诺贝尔奖是根据诺贝尔遗嘱所设基金提供的奖项(1969年起由5个奖项增加到6个),每年由4个机构 (瑞典3个,挪威1个)评选。1901年12月10日即诺贝尔逝世5周年时首次颁发。诺贝尔在其遗瞩中规定,该奖应授予在物理学、化学、生理学或医学、文学与和平领域内“在前一年中对人类作出最大贡献的人”。 /p p   诺贝尔生理医学奖的评选由瑞典的医科大学卡罗琳学院(也叫做卡罗琳斯卡医学院)负责。根据诺贝尔基金会的相关章程,评选由卡罗琳医学院诺贝尔大会(Nobel Assembly)负责,大会由50名选举出来的卡罗琳医学院名教授组成。 /p p style=" text-indent: 2em " span style=" text-indent: 2em " 小编为大家盘点了生理学或医学自2007年来诺贝尔奖的获奖情况,供读者阅览、思考。 /span /p p style=" text-indent: 2em text-align: center " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 2018& nbsp 免疫调节治疗癌症 /strong br/ /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/1a18bb9f-f362-4adb-a3a5-9edf28be128d.jpg" title=" 2018nuo.png" alt=" 2018nuo.png" width=" 283" height=" 212" style=" text-align: center width: 283px height: 212px " / /p p style=" text-indent: 2em " 美国的詹姆斯艾利森(James Allison)与日本的本庶佑(Tasuku Honjo) ,以表彰他们“发现负性免疫调节治疗癌症的疗法方面的贡献”。 br/ /p p   艾利森被认为是分离出T细胞抗原(T-cell antigen)复合物蛋白的第一人,他同时发现,如果可以暂时抑制T细胞表面表达的CTLA-4这一免疫系统“分子刹车”的活性,就能提高免疫系统对肿瘤细胞的攻击性,从而缩小肿瘤的体积。他对T细胞发育和激活,以及及免疫系统“刹车”的卓越研究,为癌症治疗开创了全新的免疫治疗思路——释放免疫系统自身的能力来攻击肿瘤。 /p p   本庶教授建立了免疫球蛋白类型转换的基本概念框架,他提出了一个解释抗体基因在模式转换中变化的模型。1992年,本庶首先鉴定PD-1为活化T淋巴细胞上的诱导型基因,这一发现为PD-1阻断建立癌症免疫治疗原理做出了重大贡献,曾在2013年被《Science》评为年度十大科学突破之首。 /p p style=" text-align: center " strong style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2017 发现控制昼夜节律的分子机制 /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/d67d767e-d3b5-496e-8dfc-5607e5389ea1.jpg" title=" 2017诺贝尔奖.jpg" alt=" 2017诺贝尔奖.jpg" style=" text-align: center width: 288px height: 293px " width=" 288" height=" 293" / /p p style=" text-indent: 2em " 2017年诺贝尔生理学或医学奖授予杰弗理· 霍尔(Jeffrey C Hall)、迈克尔· 罗斯巴希(Michael Rosbash)、迈克尔· 杨(Michael W Young)。 br/ /p p   三位科学家的获奖理由是:发现控制昼夜节律的分子机制。 /p p style=" text-indent: 2em " 研究人员对生物钟进行了深入研究,阐明了其内在工作机制,相关的研究发现解释了植物、动物以及人类如何适应自身的昼夜规律,一边能够和地球的旋转同步。研究人员以果蝇作为模式动物,分离到了一种能够控制动物日常正常生物节律的特殊基因,这种基因能够编码一种特殊的蛋白,此种蛋白在夜间积累、白天降解;此外他们还发现了一种额外的蛋白组分,同时还阐明了指导细胞内部自我维持时钟(self-sustaining clockwork)的特殊机制。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2016& nbsp 细胞自噬 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6e3c6a0e-c088-486e-af4a-39c0d4ba0c64.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 2016年的诺贝尔生理学或医学奖授予了日本科学家大隅良典(Yoshinori Ohsumi),获奖理由是“发现了细胞自噬机制。” br/ /p p   尽管人类认知自体吞噬过程已经超过50年了,但自20世纪90年代研究者大隅良典发现自噬作用后,其在生理学和医学研究中的关键角色和作用才被发现。自噬能够消灭外来入侵的细菌和病毒,对胚胎发育和细胞分化也很关键,自噬基因的突变会引发多种疾病发生。 br/ /p p   这项成果目前在产业方面的应用前景主要包括:帕金森疾病、2型糖尿病、癌症及衰老等领域。相关研究正在紧密展开中,以期开发相关标靶自噬药物治疗多种疾病。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2015& nbsp 寄生虫疾病 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/598b0719-3bc6-4743-b54c-3cbac2d13026.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 2015年的诺贝尔生理学或医学奖授予了爱尔兰科学家威廉· 坎贝尔、日本科学家大村智和中国药学家屠呦呦。 /p p   这其中,一半共同授予威廉· 坎贝尔和大村智,以表彰他们发现针对蛔虫感染的新疗法(伊维菌素和阿维菌素的发现) 另一半则授予屠呦呦,以表彰她发现针对疟疾的新疗法(青蒿素的发现)。 br/ /p p   如今,伊维菌素广泛被用于牛、羊、马、猪的胃肠道线虫、肺线虫和寄生节肢动物,犬的肠道线虫,耳螨、疥螨、心丝虫和微丝蚴以及家禽胃肠线虫和体外寄生虫的预防和治疗 阿维菌素则被广泛作为农用或兽用杀菌、杀虫、杀螨剂 青篙素被开发成治疗肿瘤、黑热病、红斑狼疮等疾病的衍生新药,并正在探索其治疗艾滋病、恶性肿瘤、利氏曼、血吸虫、涤虫、弓形虫等疾病以及戒毒的新用途。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2014& nbsp 大脑GPS /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/df0d7258-2e18-480e-af30-a01a2ab8f43a.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 2em " 2014年的诺贝尔生理学或医学奖授予了美国及挪威三位科学家约翰· 欧基夫、迈-布里特· 莫泽和爱德华· 莫索尔获奖。获奖理由是“发现构成大脑定位系统的细胞”。他们发现,大鼠海马区形成的回路在大脑中构成了一个广泛的定位系统——大脑GPS。 /p p   这一研究促进了脑成像系统的进展,以及阿尔茨海默症等神经疾病的治疗提供了新思路,为理解记忆、思考、计划等认知过程,开辟了新的途径。 br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2013& nbsp 细胞囊泡运输调控机制 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/02549e22-d115-4faf-9c5d-20ad6bf124e8.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " 2013年的诺贝尔生理学或医学奖授予了美国科学家詹姆斯-E. 罗斯曼和兰迪- W. 谢克曼、德国科学家托马斯- C. 苏德霍夫,以表彰他们发现细胞内部囊泡运输调控机制。 /p p   该研究揭示了“囊泡”周围细胞货物如何在正确的时间被运送到正确的细胞靶点。如果没有囊泡这个精确而奇妙的组织,细胞会陷入一片混乱,患者的囊泡转运都出现缺陷,从而会导致上述疾病。 br/ /p p   目前,该研究被运用于神经系统疾病、糖尿病、免疫疾病等疾病的病程生理调控。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2012& nbsp 体细胞重编程技术 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f57529db-f511-4336-8bfa-23f7a8416efb.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " 2012年的诺贝尔生理学或医学奖授予了英国科学家约翰· 格登和日本医学教授山中伸弥,以表彰他们在“体细胞重编程技术”领域做出的革命性贡献。其中,山中伸弥利用基因技术,通过对小鼠的成熟细胞重编程,诱导成功具有分化能力的诱导多能干细胞。 /p p   这项技术的价值在于建立长期稳定传代的患者特异细胞系,用以进行个体化药物筛选 以及将从患者体细胞获得的干细胞作为细胞治疗的材料,在疾病模拟、药物筛选和细胞治疗中有着巨大的应用前景,被人们视为细胞疗法的新希望。 br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2011& nbsp 免疫系统激活的关键原理 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d7870f0-8d78-4bc0-831a-0834976a593a.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-indent: 2em " 2011年的诺贝尔生理学或医学奖一半归于布鲁斯· 巴特勒和朱尔斯· 霍夫曼,理由是“先天免疫激活方面的发现” 另一半归于拉尔夫· 斯坦曼,理由是“发现树枝状细胞及其在获得性免疫中的作用”。 /p p   免疫系统是人体和动物健康“防线”,用以抵御细菌和其他微生物。他们发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识,为驱使人体自身细胞和免疫进程来阻止传染病、自体免疫紊乱、过敏、癌症和器官移植排异提供了可能性,例如癌症治疗疫苗的开发。 span style=" text-align: center "    /span /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 2010& nbsp 试管婴儿技术 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0158c112-8ec9-4f2b-8e88-67b73d0a95ef.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-indent: 2em " 2010年的诺贝尔生理学或医学奖授予了被誉为“试管婴儿之父”的英国科学家罗伯特· 爱德华兹,因其“在试管受精技术方面的发展”。 br/ /p p   罗伯特· 爱德华兹让治疗不育症成为可能,全球超过10%的夫妇因此获益匪浅。1978年7月25日,世界上第一例试管婴儿的诞生,就是对爱德华兹的不懈努力的最好表彰。他的贡献代表着现代医学史上的又一座里程碑。 br/ /p p   如今,试管婴儿技术不断创新,从一代试管婴儿、二代试管婴儿迈向三代试管婴儿,造福千万家庭。 strong style=" text-align: center " span style=" color: rgb(0, 112, 192) "   /span /strong /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 2009& nbsp 端粒和端粒酶保护染色体 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/b471b1ce-986d-44fc-b4ea-213850889547.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-indent: 2em " 2009年的诺贝尔生理学或医学奖授予了美国加利福尼亚旧金山大学的伊丽莎白· 布莱克本、美国巴尔的摩约翰· 霍普金医学院的卡罗尔-格雷德、美国哈佛医学院的杰克· 绍斯塔克,以表彰他们发现了端粒和端粒酶保护染色体的机理。 /p p   他们解决了生物学的一个重大问题:在细胞分裂时染色体如何完整地自我复制以及染色体如何受到保护以免于退化。解决办法存在于染色体末端—端粒,以及形成端粒的酶—端粒酶。 br/ /p p   这项细胞基本机制的发现,提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于新兴治疗措施的发展,尤其是在抗衰老和抗癌方面的疗法开发。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2008& nbsp HPV和HIV病毒的发现 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e894ec77-8930-4cd8-9298-fba357252691.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-indent: 2em " 2008年的诺贝尔生理学或医学奖授予了发现给发现宫颈癌的人乳头状瘤病毒(HPV)的德国科学家Harald zur Hausen以及发现艾滋病病毒(HIV)的法国科学家Franç oise Barré -Sinoussi和Luc Montagnier。 /p p   HPV病毒的发现是进行疫苗研究的基础,为人类攻克宫颈癌提供了更为明确的“靶点”,如今科学家们在这一基础上研制出宫颈癌疫苗,这不仅是为全球女性送上的一份“科学礼物”,也对今后人类防治其他癌症具有重要借鉴意义。目前,全球共有3种HPV疫苗上市,分别是二价、四价和九价。 br/ /p p   正是因为HIV病毒的发现,才开发出了用于诊断艾滋病的血液检查新方法和试剂,并开发出抗HIV病毒的药物,进而极大延长了艾滋病患者的生存期。 span style=" text-align: center "   /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong style=" text-align: center " 2007& nbsp 利用胚胎干细胞引入“基因打靶”技术 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/580a1953-7a57-4e88-aaad-c721aa058162.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-indent: 2em " 2007年的诺贝尔生理学或医学奖授予了在“小鼠基因打靶”技术研究的三位科学家,美国犹他大学Eccles人类遗传学研究所科学家Mario R. Capecchi 、美国北卡罗来纳州大学教会山分校医学院教授Oliver Smithies 与英国科学家卡迪夫大学卡迪夫生命科学学院Martin J. Evans因在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。 /p p   这项在老鼠身上进行的“基因打靶”技术,极大地影响了人类对疾病的认识,已被广泛应用在几乎所有生物医学领域。 br/ /p p   科学家几乎能实现所有小鼠基因的敲除,构建许多不同类型的人类疾病小鼠模型,为心血管疾病、糖尿病、癌症、囊肿性纤维化等疾病的对症下药提供了证据。 /p p   以上就是2007年来诺贝尔生理学或医学奖在临床应用中的进展。明年它将会花落谁家呢?让我们拭目以待。 /p
  • 2022年诺贝尔生理或医学奖/化学奖预测,谁将摘走诺奖桂冠?
    一年一度的诺奖季即将开始,这是全球科学界的盛事。尽管鲜有国人获奖,但我们对这个奖项的重视和关注丝毫没有减少。今天我们大胆预测一下今年的诺贝尔生理或医学奖以及化学奖,同时帮助我们科普一下在国际科学这个大舞台上,有哪些科学家做出了重要贡献?我国科研水平与它们差距多大?2020年诺贝尔医学奖授予HCV发现(属临床领域)、2021年诺贝尔医学奖授予感觉受体(属基础领域),今年的诺贝尔医学奖又会花落谁家?基于诺贝尔医学奖领域分配规律(基础:临床为2:1),因此推测今年高概率仍会在基础领域,综合过去30年内基础领域发展情况,这里给出2022年诺贝尔生理或医学奖的三个组合预测。01生物化学组合自2009年诺贝尔医学奖授予端粒酶发现以来,生物化学领域近期还未获得诺贝尔医学奖,应该予以考虑了。目前,组蛋白修饰和基因表达调控的重要性逐渐得到认可,因此在该方向做出重要贡献的三位科学家:1、加州大学洛杉矶分校格伦斯坦(Michael Grunstein)(1988年证明组蛋白与基因表达调控相关)2、洛克菲勒大学艾莉斯(David Allis)(1996年发现组蛋白乙酰转移酶)3、哈佛大学施瑞伯(Stuart Schreiber)(1996年发现组蛋白去乙酰化酶)他们都是诺奖的热门人选。备选:微小RNA发现者:安布罗斯(Victor Ambros)、鲍尔库姆(David Baulcombe)和鲁弗肯(Gary Ruvkun)。02细胞生物学组合细胞生物学是近十年来诺贝尔医学奖重点青睐领域,从iPS到囊泡运输,从细胞自噬到低氧信号,都是诺贝尔医学奖关注的热点,因此今年再次颁发给这个领域的机率也很高。综合细胞生物学各分支发展,内质网未折叠蛋白应答发现是较为重大的科学突破,而做出重大贡献的两位科学家:京都大学森和俊(Kazutoshi Mori)和加州大学旧金山分校瓦尔特(Peter Walter)(1993年同时筛选到未折叠蛋白应答基因),他们今年获奖机率较大。备选:mTOR发现者瑞士巴塞尔大学霍尔(Michael Hall)和磷脂信号通路发现者威尔康奈尔医学院坎特利(Lewis Cantley)。03情怀组合诺贝尔奖不仅仅是科学贡献比拼,有时候还需要考虑到人情世故,因此对于一些较为年迈的科学家可能会有特别照顾。这一组合的三位科学家为法国斯特拉斯堡大学尚邦(Pierre Chambon)、美国索尔克研究所埃文斯(Ronald Evans)和美国洛克菲勒大学罗德(Robert Roeder),以表彰他们在转录因子领域的先驱性贡献。尚邦出生于1931年,今年已91岁高龄,如能获奖,也将打破劳斯(87岁,1966年获奖者)保持的诺贝尔医学奖获奖年龄最大记录,近几年物理奖和化学家先后都有年龄近百科学家获奖并打破纪录(物理奖是96岁,化学奖是97岁),医学奖则多年未有突破,今年有望改观。尚邦属上世纪古典科学家代表,多个领域都做出卓越贡献,如最终错失也可能是诺贝尔奖一点小遗憾。备选:B细胞和T细胞发现者库珀(Max D. Cooper)(89岁高龄)和米勒(Jacques Miller)(91岁高龄)。上面这些预测主要基于2022年诺贝尔医学奖授予基础医学领域,若颁发给临床领域,则赫赛汀发明者、他汀发现者和fMRI发明者等机会很大。这里一并预测下今年的诺贝尔化学奖,去年按规律原本应颁发给生命科学领域,最终却授予有机合成,这也预示着今年生命科学领域获奖机率会进一步增加以符合生命科学越来越被偏爱的趋势,如这个前提成立,今年最有机会的是两个组合PK。04偏基础的分子运动机制研究团队三位科学家美国斯坦福大学斯普迪赫(James Anthony Spudich)、德克萨斯大学希茨(Michael Patrick Sheetz)和加州大学旧金山分校韦尔(Ronald David Vale)。他们在上世纪八十年代的研究深化和拓展对肌肉收缩和分子内物质运输机制的理解和认识,自2015年化学奖颁发给机制研究以来,一直都是授予应用领域,今年有望改变。05偏应用的mRNA疫苗研究团队两位科学家是宾夕法尼亚大学卡里科(Katalin Karikó)和魏斯曼(Drew Weissman)。两位科学家发现的重要性显而易见,去年就被寄予极高厚望,但最终未能获奖,但也有意外收获,那就是今年继续横扫各项科学大奖(通常获得诺贝尔奖后就很难再获其他“小奖”),鉴于mRNA疫苗的热度和新冠肺炎疫情的现状,今年获奖概率仍然较高。不管谁获奖,我想应该都是对全民的一次很好的科普。这次盛事也让我们看到国内科研水平与他们的差距。不难否认的是,诺奖是奖励过去一段时间做出的重大成果,近些年中国的科研水平增长很快,期待不久的将来也会有诺奖级科研成果出来。
  • 国家重大科学研究计划2011年度重要支持方向确定
    各省、自治区、直辖市、计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院各有关部门办公厅(室):   国家重大科学研究计划是《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《规划纲要》)部署的、引领未来发展、对科学和技术发展有很强带动作用的基础研究发展计划。   围绕贯彻落实《规划纲要》任务,科技部2011年将继续部署国家重大科学研究计划项目。现将2011年度项目申报指南(见附件1)予以公布,请你们根据项目申报要求(见附件2)及2011年度申报指南组织项目,并按照编写提纲填报项目申请书(项目申请书编写提纲在国家科技计划项目申报中心网站“国家重大科学研究计划”专栏下载)。   2011年项目实行网上申报(网上申报流程和有关事项将于2011年4月上旬在国家科技计划项目申报中心网站上另行通知),受理日期为4月13日8:00至4月28日17:00,逾期不予受理。   国家科技计划项目申报中心网站:http://program.most.gov.cn   咨询电话:010-58881072 58881073 58881076   受理部门:科技部基础研究管理中心   传 真:010-58881077   电子邮件:dkxc@vip.sina.com   中华人民共和国科学技术部   二O一一年三月三日   附:国家重大科学研究计划2011年度重要支持方向   纳米研究领域科技计划   2011年度重要支持方向   1. 纳米材料的基础科学问题   围绕重要应用,开展基本科学问题、关键技术研究,设计、制备新型纳米材料。特别鼓励原始性创新研究方向,探索纳米新材料、新过程和新原理。   2. 纳米材料的宏量可控制备和应用   研究多功能纳米材料和结构,如轻质高强纳米材料、生物医用纳米材料、光电纳米材料、电磁纳米材料、能源和环境纳米材料等,发展可控、宏量和低成本制备技术,研究应用过程中的关键科学与技术问题。   3. 纳米材料的新型表征方法与技术   发展高时间分辨、高空间分辨、原位动态的表征方法与技术,建立基于新原理的纳米表征技术和测试方法 制定相应的检测标准。   4. 新型纳米器件   探索新型纳米加工方法和集成技术,探索基于新原理、新结构的纳米器件和集成电路 研究应用目标明确的高灵敏度、高选择性纳米传感器,高性能纳米电子和光电子器件。   5. 重大疾病检测技术与生物医用纳米材料   发展重大疾病早期检测的纳米技术和纳米生物器件的原理和创新方法 研究具有重要应用前景的纳米生物医用材料及其在生物体内药效与生物学过程。   6. 新型纳米药物   治疗重大疾病的新型纳米药物,重点研究纳米技术提高候选药物的成药性,提高药效、降低毒性的原理和方法。   7. 能源纳米材料与技术   利用纳米材料与技术提高能源使用效率,发展基于纳米结构与纳米技术的安全节能新材料和新技术,探索纳米技术及材料在能源转换与存储等方面的重要应用。   8. 环境纳米材料与技术   研究纳米材料在农业、工业生物技术、食品工业中的应用,发展成本低、性能稳定、寿命长并无次生污染的实用纳米材料与技术。研究纳米材料的环境效应和安全性。   9. 改造提升传统产业的纳米材料与技术   面向化工、纺织、能源、交通、冶金等传统产业,应用纳米材料和技术提高资源利用率和产品附加值,开发过程高效节能、清洁生产用纳米材料与技术等。   10. 培育和发展战略性新兴产业的纳米材料与器件   围绕新一代信息技术、新能源、生物医用等战略性新兴产业,研究纳米光电材料、器件集成和互联关键技术,开发高效能量转换、储存与节能的纳米材料与应用技术,研究实用化高性能生物医用材料与制品。   11. 纳米材料工业化制造技术及检测装备  开发面向工业应用的纳米材料规模化制备及精密加工技术,研发纳米材料关键表征仪器成套批量化制造技术 研究纳米材料与器件的制备、服役与安全评价技术。   注:指南1~8按国家重大科学研究计划项目申报格式和要求    指南9~11按863计划项目申报格式和要求   量子调控研究国家重大科学研究计划   2011年度重要支持方向   1. 受限空间中光与超冷原子(离子)、分子耦合量子态的制备、测量及调控   研究微型光阱和微光学腔中原子(离子)内外态的完全控制方法,光与原子强耦合下量子态的制备和探测。制备稳定的超冷极性分子,并研究分子量子态的相干操控和动力学演化。研究原子自旋压缩态和原子系综纠缠态的产生,光学晶格中超冷原子、分子体系的关联效应、新奇量子态及其应用。   2. 极端条件下量子输运的研究和调控   研究极端条件下的量子输运性质及微结构对量子输运的调控。研究超短时间尺度下的量子输运,开发相应的精密测量技术。研究具有强自旋-轨道耦合效应的反常量子输运,探索调控输运性质的新手段。研究远离平衡态的量子输运特性。   3. 异质界面诱导的新奇量子现象及调控   研究异质界面导致的新奇量子态和量子现象,建立描述新奇界面量子态的理论模型。发展精确控制的生长技术,制备高品质的异质界面,如氧化物/氧化物、氧化物/金属等。发展精确表征界面量子态和量子序的实验技术,研究极端条件下异质界面上的新奇量子态、量子输运、光电量子过程等,探索量子态的界面调控新方法。   4. 功能关联电子材料及其拓扑量子性质的调控   应用先进谱学研究手段如核磁共振、中子散射等,并结合极端实验条件,研究空间反演对称性破缺的关联电子系统,如重费米子系统和多铁性电子材料等的量子现象及拓扑量子性质。制备由这些材料构成的薄膜和人工微结构,探索基于新效应的量子器件。   5. 光场与微结构的耦合效应及调控   研究不同时空尺度的光场与各种微结构的线性和非线性作用,与电子态的耦合及导致的量子效应。制备具有新颖动量、角动量的可控光场,研究与微结构的耦合及其对量子态的调控,探索在量子信息、超分辨成像等方面的应用。   6. 复合量子功能材料的设计、制备和新奇量子效应(基地)   设计和制备高品质的复合量子功能材料,研究其新奇量子效应。研究不同维度和尺寸下的量子态特性,以及外场(电、磁、光、声)和结构之间的耦合效应及导致的新奇量子现象。研究物性及结构高灵敏、高分辨检测的新原理和新方法。探索基于新概念的量子功能器件。   7. 全固态量子信息处理关键器件的物理原理及技术实现(基地)   研究基于半导体量子点和光学超晶格等的单光子源和纠缠光子源,研制单光子探测器件。制备高品质固态光学微腔及其阵列、微腔量子电动力学系统以及线性光子处理单元,实现对单光子态和量子纠缠态的存储和调控。研究固态光集成系统中量子态的演化,探索在光子芯片上实现量子信息操作的新方案。   8. 新型亚波长人工微结构中的量子调控(基地)   研究新型亚波长人工微结构中光子和元激发,如等离子激元、极化激元、声子等,调控其线性和非线性物理过程。研究带隙调控、突破衍射极限的成像等, 探索基于新型亚波长人工微结构的新器件。   蛋白质研究国家重大科学研究计划   2011年度重要支持方向   1. 天然免疫应答过程中重要蛋白质结构与功能   鉴定新的天然免疫信号转导的蛋白并阐明其结构与功能基础、阐述相关的信号转导机制 深入研究然免疫与外来抗原适应性免疫相互作用的蛋白质分子机制 发现宿主天然免疫应答的新型蛋白质及其作用机制。   2. 病原体与宿主细胞相互作用的分子机制研究   研究病原体与宿主细胞蛋白相互作用在病原体侵染、复制中的功能和结构基础 研究病原体与宿主细胞相互作用在病原体潜伏和多重耐药性中的功能和结构基础 揭示病原体与宿主细胞蛋白相互作用导致的炎症反应和肿瘤发生发展的功能和结构基础 研究病原体蛋白调控宿主免疫反应的蛋白质网络构成 研究宿主抗病原蛋白质网络结构与功能。   3. 植物表观遗传机制与重要调控蛋白的结构与功能研究   研究植物核小体组装和染色质重塑的分子机理,重点研究组装蛋白、组蛋白修饰酶、组蛋白密码阅读蛋白、非编码RNA及其蛋白质复合物的功能和结构基础 研究表观遗传调控植物生长发育的分子网络 植物重要表观遗传调控蛋白的结构与功能,研究包含植物特有结构域的调控蛋白的结构及作用机制 植物表观遗传调控蛋白质组学平台建设,重点研究相关突变体的体细胞和生殖细胞的蛋白质组。   4. 端粒相关蛋白与人类重大疾病   研究端粒相关蛋白(端粒酶等)对人类重大慢性疾病的影响和发挥功能的分子机制 开展重组端粒蛋白复合物研究,揭示控制端粒功能的蛋白复合物结构和功能 研究端粒在成体干细胞衰老中的作用机制 研究不同类型细胞分化过程中端粒和基因表达之间的调控关系。   5. 蛋白质的生成、修饰、降解、质量控制及动态相互作用网络研究   研究具有重要功能的蛋白质(如跨膜蛋白质及复合体)的生成、折叠、组装、转运、降解及质量控制等过程及其在生理和胁迫条件下的分子机制 研究蛋白质翻译后修饰主要类型,包括结构特征、与信号转导途径的对应关系、与人类重大疾病的关系 研究蛋白质错误折叠及质量控制逃逸的分子机理及病理效应 在蛋白质组水平研究翻译后修饰及其动态变化,修饰对相互作用蛋白质网络功能的影响。   6. G蛋白偶联受体及配体的结构与功能研究   发现在人类生命活动中起重要作用的GPCR和相关亚家族,分析分子结构,阐明其结构和功能关系 鉴定新的G蛋白偶联受体的生物学功能 建立高通量筛选受体相关配体的方法,进一步阐明配体与受体结合的分子机理及生理功能。   7. 肿瘤发生发展与关键调控蛋白作用网络   以恶性肿瘤为模型,研究原癌蛋白-抗肿瘤蛋白及关键性负调控蛋白的网络互动对细胞周期的调控机制 揭示蛋白作用网络对肿瘤微环境和肿瘤转移的调控机制 研究表观遗传因素、信号转导通路与转录因子对细胞周期-恶性肿瘤转移过程的调控机制及其结构与功能基础 发现炎症诱导肿瘤相关重要活动调控的关键蛋白质群组成、动态变化及调控网络 研究炎症,代谢调控与肿瘤发生、发展的关系 研究选择性激活机体抗肿瘤效应机制和防治免疫逃逸的策略与方法。   8. 蛋白质定量新方法及相关技术研究   研制高效低残留的新型蛋白质样品预处理和分离材料 构建高分辨、高灵敏度的蛋白质与多肽的定量、分离与鉴定技术体系 发展基于生物质谱的同位素标记和非同位素标记的蛋白质组相对与绝对定量方法 发展重要生物体的目标蛋白质组以及全蛋白质组及其化学修饰的高准确度的动态定量分析方法 建立重要模式生物或其组织器官蛋白质组成的高精度全覆盖技术、蛋白质定量内标的制备技术和目标导向绝对定量蛋白质组研究的理论和技术体系法。   发育与生殖研究国家重大科学研究计划   2011年度重要支持方向   1. 重要器官发育与再生的遗传调控   利用模式脊椎动物,建立可视化研究活体组织器官发育与再生技术及相关转基因动物和突变体资源库,研究1-2种重要组织器官,如心脏、肝脏等发育与再生的关键调控因子,揭示组织器官发育与再生的根本机制。   2. 内皮组织和上皮组织发育及相关疾病的分子机理   研究内皮或上皮细胞在组织器官发生、形成中的行为及其与相关疾病的关系。重点研究上皮或血管等内皮组织中细胞命运决定和形态构建的分子调控网络、组织或器官内的细胞与周边细胞间的相互作用、组织器官损伤修复和相关疾病的发生机制。   3. 发育缺陷发生的分子机制   利用临床资源和动物模型,从器官、组织、细胞和分子等多个层次揭示我国常见严重先天性出生缺陷的发生机理,发展早期诊断和预防的新技术、新方法。   4. 植物胚与胚乳发育调控机制   重点研究植物配子发育、受精、合子激活和胚胎模式建立的机制,阐明植物生殖细胞的发育与分化以及胚乳物质积累的分子和表观调控机制,为高产优质作物的培育提供理论基础。   5. 生殖细胞健康的分子基础   针对临床常见和重要的生殖细胞异常,重点研究生殖细胞减数分裂起始、停滞与恢复、染色体分离、DNA损伤、修复和重组以及基因组稳定性的调节机理,为生殖健康奠定基础。   6. 排卵障碍性和胚源性等生殖疾病的机制研究   研究辅助生殖技术诱发胚胎源性疾病的机制 开展辅助生殖安全性评估,优化辅助生殖技术,并建立有效预警的生物标志物 建立常见排卵障碍性疾病的资源库,研究多囊卵巢综合症等常见排卵障碍性疾病的发生和调控机制,发展新型的疾病干预措施。   7. 生殖周期及生物钟调节的机制   利用模式动物或仿生环境研究生殖周期的调节机制 探讨生殖免疫和生殖周期的关系 研究生殖器官、生殖细胞及胚胎发育中生物钟调节的规律,阐明生殖周期和生物钟在发育中的作用机制。   干细胞研究国家重大科学研究计划   2011年度重要支持方向   1. 利用非基因组整合技术建立遗传疾病的诱导多能干细胞系   利用非基因组整合技术建立地中海贫血或脊髓侧索硬化症的人类诱导多能干细胞(iPS细胞)系,对致病基因进行改造和纠正后分化为可用于细胞移植的细胞类型,为利用iPS细胞治疗人类遗传性疾病奠定基础。   2. 多能干细胞定向分化为特定的组织细胞类型   基于体内组织发育的规律,重点研究如何定向诱导多能干细胞分化成为特定的组织细胞类型,例如神经外胚层细胞或胰腺β细胞等内胚层细胞 同时从个体发育和进化的角度深入研究多能干细胞分化及相应的调控网络。   3. 细胞类型转换及其机制研究   建立细胞类型转换(包括不同终末分化细胞之间的转换、终末分化细胞向前体细胞或干细胞的转换、不同组织前体细胞或干细胞之间的转换)的体外模型和稳定培养体系,研究细胞类型转换的分子调控机制, 探索转换细胞在细胞移植和疾病治疗中的应用。   4. 细胞周期调控与干细胞干性维持   重点研究干细胞的对称分裂及不对称分裂的调控机制,细胞周期对干细胞干性维持的作用,包括信号转导及调控因子网络、遗传稳定性维护等。揭示干细胞周期及分裂在干细胞干性维持、组织发育、再生修复及病理变化等过程中的功能。   5. 体内干细胞自我更新与分化   阐述体内干细胞与其微环境间相互作用的机制 建立检测体内组织干细胞自我更新和分化等活动的技术体系,揭示体内组织干细胞在生理和病理过程中的作用及机制 研究如何利用细胞因子和药物等诱导体内组织干细胞自我更新或分化。   6. 建立内胚层干细胞的生物识别标记   通过分析内胚层干细胞的基因和蛋白表达谱式,鉴定该种内胚层干细胞的生物识别标记,追踪其自身以及子代细胞在体内的分布与迁移 根据建立的生物识别标记等分离鉴定内胚层干细胞。   7. 肿瘤干细胞与肿瘤发生、药物抗性及靶向特异性分子调控   分离和鉴定诸如血液或消化道系统的肿瘤干细胞,系统研究肿瘤干细胞基因表达谱和表观遗传学及其在肿瘤发生和药物反应中的作用,研究建立针对肿瘤干细胞起源与靶向特异性干预的分子基础与技术指标,制定以肿瘤干细胞为靶标的分子干预策略并开展其规范化研究。   8. 干细胞治疗的基础和转化机制   研究建立一种视觉或听觉系统干细胞分离分化与功能再生体系,通过动物模型完成其功能验证与安全性评价,建立基于干细胞与功能再生的分子基础,研究制定该类系统发育与病变的干细胞干预技术标准,并将其规范化。   全球变化研究国家重大科学研究计划   2011年度重要支持方向   1. 东亚季风气候年际-年代际变率与全球气候变化关系研究   研究东亚地区年际-年代际气候变化的特点及动力学机制,及其与全球主要年际-年代际变化信号之间的关系,探讨人类活动和自然变率对东亚地区年际-年代际变率的影响,辨识年际-代际气候变率可预报性的因素,提高利用耦合气候系统模式预报年际-年代际气候变率的能力。   2. 全球及典型区域海平面变化机理与趋势及其应对策略研究   研究全球气候变化背景下海平面上升的原因、内在机理和变化趋势,揭示海平面变化与气候变化的相互作用规律 提出我国典型河口三角洲地区、重要滨海生态系统和重要岛礁领土相对海平面变化驱动的城市防护、环境安全和其他生态系统服务功能以及领土安全的适应性对策。   3. 海洋对气候与环境变化的影响及其调控作用   研究海洋变异对全球变暖的响应和对全球气候的影响,揭示海洋动力、热力过程和海-气耦合作用及海洋对气候的调控作用,以提高我国预测气候变化的能力 研究海洋在气候变化中的海洋储碳过程与机制,揭示海洋生态系统的物质循环及其对自然和气候变化响应过程与规律,定量认识海洋生态系统演变及其在气候变化中的作用。   4. 湖泊与湿地等生态系统对全球变化的响应与生态恢复   通过对表征湖泊与湿地等生态的物理、化学和生物指标,揭示研究气候变化-人类活动-湖泊和湿地等生态系统相互作用的过程与机理,定量评估人与自然对生态系统的影响与贡献,建立不同区域生态系统演化的模型,定量评估人与自然对生态系统的影响与贡献,为区域生态恢复与环境保护提出途径与对策。   5. 全球典型干旱半干旱地区气候变化及其影响   研究全球典型干旱半干旱地区年代-百年-千年尺度气候变化的特点、动力学机制,及其与全球变化的联系,揭示这些典型区气候变化特征的差异及其时空关联、社会生态系统的脆弱性及其对气候变化响应机制的异同,评估其面临的全球变化风险。   6. 全球变化与环境风险、气候灾害关系的研究   研究环境风险和气候灾害的形成与发展规律,探讨中国环境与气候灾害风险防范的适应性对策 研究全球气候变化与灾害性天气和气候的关系,特别是对近年来我国极端干旱事件的频率和强度不断增加的影响,以及干旱致灾机理,评估典型区域农业和社会经济等对气候灾害的适应能力。   7. 气候变化对社会经济、人类健康的影响与适应机制研究   研究全球气候变化对我国社会经济系统的影响途径和适应机制,探索全球变化经济学理论与方法 研究气候变化与极端天气事件对人类健康的影响,以及不同区域气候敏感疾病的响应和适应机制,评估我国受气候变化影响的脆弱人群特征及其区域差异。   8. 天文与地球运动因子对气候变化影响研究   研究太阳活动、宇宙事件等天文因素及地球运动因子对气候变化的驱动机制及其对海洋、陆面和大气过程的作用,解析气候系统内部过程对外动力触发气候变率的响应机制和调节作用,区分自然和人为因素对近百年来全球温度变化的贡献,评估上述天文和地球运动因子对未来气候变化的可能作用。   附件:1. 国家重大科学研究计划2011年度重要支持方向     2. 国家重大科学研究计划2011年度项目申报要求
  • 上半年Incucyte国内成果大盘点
    陈老湿最近又迷上一款革命性的细胞成像设备-- Incucyte 长时间实时活细胞成像系统,国内这款仪器用得怎么样呢?让陈老湿细细道来!去除预印版和综述,2022年上半年使用Incucyte 发表的文章有大几十篇(文献列表见文末),仅第一作者就覆盖了至少40个单位。以下是发表至少2篇以上文章的单位列表:澳门大学中医研究院(4篇)复旦大学上海癌症中心(3篇)中科院动物研究所(3篇)滨州医学院(2篇)郑州大学基础医学院(2篇)中山大学附属第六医院(2篇)可见,很多单位可以利用Incucyte 实时、高效地获得细胞信息和可信的研究成果,陈老湿去一些单位拜访的时候,发现这台仪器都是抢着使用的,原因结尾会总结,首先一点就是Incucyte 应用非常广泛,从这些文章上看,最多的应用是细胞增殖 & 细胞活性实验,然后是划痕迁移实验,当然还有3D拍摄、神经细胞分析、吞噬等亮点应用。陈老湿就选几篇和大家唠一下:Incucyte 多点开花应用山东齐鲁医院癌症治疗新靶点【1】ETS 转录因子 GABPA 长期以来一直被认为是一种致癌因子,最近有人提出由于其对端粒酶活化的关键作用,可以作为癌症治疗的靶点。但 GABPA对细胞肾细胞癌(ccRCC)形成的机理尚不清楚, 利用 siRNA 和表达载体对 GABPA 等因子的表达进行调控发现,GABPA 耗竭虽然抑制端粒酶表达,但显著增强了增殖、侵袭和ccRCC 细胞的干性,而 GABPA 过表达表现出相反的作用,强烈抑制体内转移和致癌。TGFBR2 被鉴定为 GABPA 靶基因,GABPA 通过它控制 TGFβ信号控制ccRCC 表型。Incucyte 被用于各种细胞表征实验。细胞划痕迁移实验:证明GABPA过表达会抑制ccRCC细胞系(A498,786-O)的迁移二维细胞增殖实验(左)和三维肿瘤球实验(D,E)表明,沉默GABPA表达加强ccRCC细胞系(A498,786-O)的增殖(D图),GABPA载体增加表达则减弱增殖(E图)。划痕实验,2D和3D拍摄,Incucyte都在行!Incucyte的高通量中科院动物研究所干细胞防衰老剂的小分子筛选【2】使用 Incucyte S3活细胞成像系统,通过监测上千种 FDA 批准的药物对Werner综合征间充质干细胞 (WS hMSCs) 的增殖活性影响,建立了一种高通量药物筛选方法。1,622 种 FDA 批准的药物在一定浓度下持续作用于WS hMSCs 6天。通过初步筛选,确定了前 20 名候选药物。这些候选药物包括卡博替尼、比卡鲁胺、没食子酸 (GA)等。GA 是一种天然酚类化合物,广泛存在于茶、水果和酒中。通过功能性实验,发现GA作为干细胞防衰老剂的活性比二甲双胍和槲皮素还要好。用Incucyte 计算药物处理6天后的细胞汇合度的与对照的比值,值越大说明药物增强细胞增殖的能力越强。Incucyte一次性可以放6个孔板,其通量可以满足上千个化合物的筛选!Incucyte吞噬作用南京中医药大学天然产物AD药物【3】临床证据表明,绝经后女性患阿尔茨海默病 (AD) 的可能性几乎是同龄男性的两倍,雌激素与AD的发生密切相关。雌激素受体ERβ 主要分布在海马体和心血管系统中,ERβ 选择性激动剂是一种有价值的抗神经退行性疾病的药物。在这项研究中,确定了一种天然产物广藿香醇 (PTA) 作为选择性 ERβ激动剂改善雌性 APP/PS1 小鼠的认知缺陷,并探索其潜在机制。小鼠体内实验发现PTA通过促进小胶质细胞的吞噬作用,减少海马中的淀粉样斑块沉积;在体外也观察到 PTA 的治疗效果:PTA (5, 10, 20 μM) 剂量依赖性增加原代小胶质细胞和 BV2 细胞中 o-FAM-Aβ42 的吞噬作用,本研究探讨了选择性 ERβ 激动剂在改善 AD 并突出 PTA 作为抗疾病药物先导化合物的潜力。PTA可以增强BV2细胞对FAM标记的Aβ42的吞噬(绿色荧光增多,上面两图以及图d),但是不影响Aβ42的降解(图e)。Incucyte有各种配套试剂,可以满足吞噬,内吞,代谢等实验。为什么Incucyte 那么火热呢?很简单,就是下面几点:培养箱内可长达数周的连续观察,最短几分钟间隔拍摄,减少人力,防止过多操作对细胞的伤害;6个板位,分别独立设置检测程序,可以兼容各种孔板和培养皿,通量高;高效简便的模块化软件设置和数据分析,输出图片、视频、生长曲线等多指标多参数;大于100种优化过的荧光试剂和耗材及详尽的Protocol.如果您不想再把细胞拿进拿出的拍摄,如果您想一次实验获得更多的实时信息的话,来试试Incucyte 吧!Download了解更多Incucyte 实时活细胞分析应用下载《第五版活细胞分析手册》 立即下载 -2022年上半年使用Incucyte 发表的文章 -Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cells.Biochemical Pharmacology 197 (2022) 11494017β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin.Ecotoxicology and Environmental Safety 233 (2022) 1133083,30-Diindolylmethane Enhances Fluorouracil Sensitivity via Inhibition of Pyrimidine Metabolism in Colorectal Cancer.Metabolites 2022,12, 410.An optimized method for obtaining clinical-grade specific cell subpopulations from human umbilical cord-derived mesenchymal stem cells.Cell Prolif. 2022 e13300.ATF3 -activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis.AUTOPHAGY https://doi.org/10.1080/15548627.2022.2046448Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level Center.Cell Communication and Signaling 2022, 20(1):71Correction to: Downregulation of fibronectin 1 attenuates ATRA‑induced inhibition of cell migration and invasion in neuroblastoma cells.Molecular and Cellular Biochemistry (2022) 477:1323–1326Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor.Cell Discovery ( 2022) 8:6Cytochrome P450 26A1 regulates the clusters and killing activity of NK cells during the peri-implantation period.J Cell Mol Med. 2022 26:2438–2450.DGKZ promotes TGFβ signaling pathway and metastasis in triple-negative breast cancer by suppressing lipid raft-dependent endocytosis of TGFβR2.Cell Death and Disease (2022) 13:105Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor.eBioMedicine 2022 77:103872Emodin targeting the colonic metabolism via PPARγ alleviates UC by inhibiting facultative anaerobe.Phytomedicine 104 (2022) 154106 AvailableExogenous iron impairs the anti-cancer effect of ascorbic acid both in vitro and in vivo.Journal of Advanced ResearchFluoride exposure induces lysosomal dysfunction unveiled by an integrated transcriptomic and metabolomic study in bone marrow mesenchymal stem cells.Ecotoxicology and Environmental Safety 239 (2022) 113672GABPA‑activated TGFBR2 transcription inhibits aggressiveness but is epigenetically erased by oncometabolites in renal cell carcinoma.J Exp Clin Cancer Res (2022) 41:173Genome-scale CRISPR–Cas9 screen reveals novel regulators of B7-H3 in tumor cells.J Immunother Cancer 2022 10:e004875.Glycopolymer Engineering of the Cell Surface Changes the Single Cell Migratory Direction and Inhibits the Collective Migration of Cancer Cells.ACS Appl. Mater. Interfaces 2022, 14, 4921−4930hnRNPL-activated circANKRD42 back-splicing and circANKRD42-mediated crosstalk of mechanical stiffness and biochemical signal in lung fibrosis.Molecular Therapy Vol. 30 No 6HTR1A Inhibits the Progression of Triple-Negative Breast Cancer via TGF-𝜷 Canonical and Noncanonical Pathways.Adv. Sci. 2022, 9, 2105672Human lysyl‑tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex.Cellular and Molecular Life Sciences (2022) 79:128Industrially synthesized biosafe vaterite hollow CaCO3 for controllable delivery of anticancer drugs.Materials Today Chemistry 24 (2022) 100917Knockdown of Peroxiredoxin V increased the cytotoxicity of non-thermal plasma-treated culture medium to A549 cells.AGING 2022Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells.Protein Cell 2022, 13(7):532–539Ligand-Directed Caging Enables the Control of Endogenous DNA Alkyltransferase Activity with Light inside Live Cells.Angew. Chem. Int. Ed. 2022Limiting dilution assay to quantify the self-renewal potential of cancer stem cells in hepatocellular carcinoma.Methods in Cell Biology, ISSN 0091-679X, https://doi.org/10.1016/bs.mcb.2022.04.010Long non‑coding RNA LSAMP‑1 is down‑regulated in non‑small cell lung cancer and predicts a poor prognosis.Cancer Cell International (2022) 22:181Low doses of niclosamide and quinacrine combination yields synergistic effect in melanoma via activating autophagy-mediated p53-dependent apoptosis.Translational Oncology 21 (2022) 101425Low-dose chloroquine treatment extends the lifespan of aged rats.Protein Cell 2022, 13(6):454–461Mutations and clinical significance of calcium voltage-gated channel subunit alpha 1E (CACNA1E) in non-small cell lung cancer.https://doi.org/10.1016/j.annonc.2022.02.208Network pharmacology and in vitro studies reveal the pharmacological effects and molecular mechanisms of Shenzhi Jiannao prescription against vascular dementia.BMC Complementary Medicine and Therapies (2022) 22:33Nonmetal Graphdiyne Nanozyme-Based Ferroptosis−Apoptosis Strategy for Colon Cancer Therapy.ACS Appl. Mater. Interfaces 2022, 14, 27720−27732Novel prognostic marker LINC00205 promotes tumorigenesis and metastasis by competitively suppressing miRNA-26a in gastric cancer.Cell Death Discovery (2022) 8:5Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice.Acta Pharmacologica Sinica (2022) 0:1–16Promoting role of pentraxin-3 in esophageal squamous cell carcinoma.Molecular TherapyPsoralidin, a natural compound from Psoralea corylifolia, induces oxidative damage mediated apoptosis in colon cancer cells.J Biochem Mol Toxicol. 2022 e23051Receptor activity‐modifying protein 1 regulates mouse skin fibroblast proliferation via the Gαi3‑PKA‑CREB‑YAP axis.Cell Communication and Signaling (2022) 20:52Redirecting anti-Vaccinia virus T cell immunity for cancer treatment by AAV-mediated delivery of the VV B8R gene.Molecular TherapyResearch on selective uptake of photosensitizer C3N4@RP by different cancer cells.Mater. Res. Express 9 (2022) 065402RNF4 silencing induces cell growth arrest and DNA damage by promoting nuclear targeting of p62 in hepatocellular carcinoma.Oncogene (2022) 41:2275–2286S100A9-CXCL12 activation in BRCA1-mutant breast cancer promotes an immunosuppressive microenvironment associated with resistance to immunotherapy.NATURE COMMUNICATIONS | (2022) 13:1481Schlafen 5 suppresses human immunodeficiency virus type 1 transcription by commandeering cellular epigenetic machinery.Nucleic Acids Research, 2022Shuxuetong injection and its peptides enhance angiogenesis after hindlimb ischemia by activating the MYPT1/LIMK1/Cofilin pathway.Journal of Ethnopharmacology 292 (2022) 115166SIK2 promotes ovarian cancer cell motility and metastasis by phosphorylating MYLK.Molecular Oncology 16 (2022) 2558–2574SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors.Cell Research (2022) 32:638–658SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma.Life Sciences 296 (2022) 120447Suppression of toxicity of the mutant huntingtin protein by its interacting compound, desonide.PNAS 119 (10) e2114303119Systematic Survey of the Regulatory Networks of the Long Noncoding RNA BANCR in Cervical Cancer Cells.J. Proteome Res. 2022, 21, 1137−1152The early‑stage triple‑negative breast cancer landscape derives a novel prognostic signature and therapeutic target.Breast Cancer Research and Treatment (2022) 193:319–330The SF3B1R625H mutation promotes prolactinoma tumor progression through aberrant splicing of DLG1.J Exp Clin Cancer Res (2022) 41:26The two‑faced role of ATF2 on cisplatin response in gastric cancer depends on p53 context.Cell & Bioscience (2022) 12:77Toosendanin, a late‑stage autophagy inhibitor, sensitizes triple‑negative breast cancer to irinotecan chemotherapy.Chinese Medicine (2022) 17:55TSG-6 promotes Cancer Cell aggressiveness in a CD44-Dependent Manner and Reprograms Normal Fibroblasts to create a Pro-metastatic Microenvironment in Colorectal Cancer.Int. J. Biol. Sci. 2022, Vol. 18Upregulation of ADAMDEC1 correlates with tumor progression and predicts poor prognosis in non-small cell lung cancer (NSCLC) via the PI3K/AKT pathway.Thorac Cancer. 2022 13:1027–1039-参考文献-【1】GABPA‑activated TGFBR2 transcription inhibits aggressiveness but is epigenetically erased by oncometabolites in renal cell carcinoma.J Exp Clin Cancer Res (2022) 41:173【2】Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells.Protein Cell 2022, 13(7):532–539【3】Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice.Acta Pharmacologica Sinica (2022) 0:1–16
  • 2015年核磁共振国际研讨会暨药物开发暑期学校举办
    2015年核磁共振国际研讨会暨药物开发暑期学校 在国家蛋白质科学中心&bull 上海成功举办   &ldquo 国家蛋白质科学中心&bull 上海前沿论坛&mdash &mdash 2015年核磁共振国际研讨会暨药物开发暑期学校&rdquo 于2015年5月30日-6月2日在上海生科院生化与细胞所蛋白质中心海科路园区举行。会议旨在加强我国生物大分子核磁共振波谱学领域与国际间的交流与合作、培养应用最新核磁共振方法进行蛋白质科学研究的高技术人才及年轻后备人才,体现我国在结构生物学领域的综合实力。 会议现场   核磁共振波谱学是唯一一项包揽过诺贝尔物理、化学、医学奖的技术,自1930年Rabi发现核磁共振现象开始,已有八位著名科学家因从事核磁共振或与核磁共振相关的研究而获得诺贝尔奖。现代高场液体核磁共振主要应用于生物大分子结构与功能研究,特点是可以获得原子分辨率的溶液结构、可以从不同时间跨度的动力学信息中(皮秒 - 秒)捕捉到蛋白质的位点特异性信息。蛋白质是生命活动的真正执行者,对其功能的研究具有重要的生物学意义和利用价值。而蛋白质三维结构的解析为蛋白质功能的确定提供重要线索。   核磁共振波谱在&ldquo 定量地了解细胞内部蛋白质分子动态运动过程、膜蛋白三维空间结构和动态特性、蛋白质折叠、研究弱相互作用的超大蛋白分子复合体&rdquo 等方面具有其独特的优势,与其它结构生物学研究方法如:X射线晶体衍射学、冷冻电镜等形成很好的合作互补。   近年来溶液核磁共振波谱在新的实验方法和应用上有了很大的突破,特别是基于蛋白质靶点的药物筛选,理性药物设计及研发和评价方面的应用受到越来越多的关注。   本次大会会议执行主席为蛋白质中心主任雷鸣研究员,周界文研究员和中心主任助理许琛琦研究员。参会人员包括来自美国、德国、英国和日本的核磁专家十余名,国内高校和科研单位学者,学生代表百余人,生物医药企业包括罗氏研发(中国)有限公司,礼来(中国)研发有限公司,深圳市海普瑞药业股份有限公司代表10余人,以及作为本次会议的主要赞助商布鲁克公司及相关领域重要仪器及设备公司代表10余人。   大会分为两个部分:   大会第一部分&ldquo 蛋白质核磁共振暨药物开发暑期学校&rdquo ,邀请核磁共振研究领域的多位专家讲授核磁共振基础理论、蛋白质溶液核磁共振技术、RDC,PRE和蛋白质溶液结构计算、核磁共振在基于片段的先导药物筛选和优化中的应用,使青年学者和研究生有机会与本领域权威科学家面对面交流,并得到高层次的技术培训和实际实验操作,包括快速核磁数据采集方式(非均匀采样)和波谱数据处理技术、药物分子片段核磁筛选技术、新动力学参数的测量方法和溶液三维动态结构计算软件XPLOR-NIH等。会议将为参会的国际和国内科学家提供高端学术交流平台和合作契机,提升国内蛋白质溶液核磁共振研究的整体水平,培训一批高技术核磁人才。   大会第二部分高端国际研讨会以&ldquo 生物大分子核磁共振波谱未来&rdquo 为主题,特邀美国科学院院士、美国国立卫生研究院(NIH)Adriaan Bax 研究员, 日本东京都立大学Masatsune Kainosho教授,美国哥伦比亚大学Arthur G Palmer教授, 德国慕尼黑赫尔姆霍茨中心结构生物学研究所Michael Sattler教授,美国哈佛大学医学院Gerhard Wagner教授,美国哈佛大学医学院教授、蛋白质中心周界文研究员和中国科学院院士、中国科学技术大学施蕴渝教授等七名生物大分子溶液核磁共振研究的国际权威专家来共同交流核磁前沿领域的最新进展,包括核磁共振波谱新方法、蛋白质分子动力学与功能关系研究、膜蛋白质溶液结构与功能研究、超大分子复合体与相互作用研究、蛋白质-RNA复合体研究和综合溶液核磁共振、X射线晶体衍射研究生物学问题等,探讨和展望溶液核磁共振在蛋白质相关研究中未来5-10年的研究发展趋势,存在的机遇及可能遇到的挑战。   蛋白质中心已经建成国际先进的液体核磁共振设施,不但拥有五套 600 至 900 兆赫兹的核磁共振谱仪,而且拥有专业人员提供配套技术支撑。蛋白质中心许琛琦,欧阳波和周界文研究团队使用核磁分析系统在淋巴细胞的信号转导和膜蛋白结构与功能研究方面取得突破,成果发表在国际知名期刊如《自然》(Nature)杂志上。   此次会议将为我国生物分子溶液核磁共振技术的展示提供一个窗口,搭建平台,打造具有国际影响力、世界一流水平的生物大分子核磁共振中心,加强国内核磁同行的实效性合作,达到信息、仪器等资源共享,推动核磁共振波谱在我国蛋白质科学基础研究和药物开发领域的拓展与应用。 合影   附录一:会议主席团成员简介:   雷鸣:中国科学院上海生命科学研究院生物化学与细胞生物学研究所副所长、国家蛋白质科学中心&bull 上海主任、国际蛋白质学会执委、中国生物化学与分子生物学会蛋白质专业委员会副秘书长。近期研究工作包括人类端粒结合蛋白调控端粒结构与端粒酶的分子机制、端粒与DNA修复因子的关系、表观遗产调控过程中重要蛋白质复合物的结构与功能,具有显著的国际影响力。   周界文:中国科学院上海生命科学研究院生物化学与细胞生物学研究所、国家蛋白质科学中心&bull 上海研究员,美国哈佛大学医学院教授。应用溶液核磁共振技术测定膜蛋白结构,探索他们的工作机制。近年来研发了一系列的用于膜蛋白研究的核磁共振与生物化学技术,世界上第一个用NMR测定了肌浆网受磷蛋白的溶液高分辨结构。研究组首次用NMR对丙型肝炎病毒感染宿主过程中的一个重要蛋白p7以及它与抑制剂金刚烷胺类药物结合位点的精细三维空间结构进行详细描述,这是目前使用核磁共振技术解析出的最大离子通道结构,此研究成果将有助于推动以p7为靶点的抗丙型肝炎病毒药物研究。   许琛琦:中国科学院上海生命科学研究院生物化学与细胞生物学研究所、国家蛋白质科学中心&bull 上海主任助理,研究员。研究方向为淋巴细胞的信号转导,运用多种分子生物学和结构生物学的手段研究(1)T淋巴细胞活化机制 (2) T淋巴细胞在疾病中的作用,在阐明人体免疫机制方面取得原创性和突破性进展。   附录二:学者代表简介:   Adriaan Bax: 美国国家科学院院士,美国国立卫生研究院(NIH)研究员。Bax 院士是国际蛋白质溶液核磁共振领域内最重要的推动者之一,他在多维核磁共振波谱学、发展核磁共振新方法和计算生物学方面做出了系统性贡献。   Masatsune Kainosho: 日本东京都立大学教授,发展新的蛋白质标记方法:立体阵列同位素标记(SAIL: Stereo-Array Isotope Labelling),应用于分子量为17kDa 的钙调蛋白(Calmodalin)和分子量为41kDa的麦芽糖糊精(Maltodextrin)结合蛋白质的合成。此方法所得到的NMR谱图比利用传统技术得到的NMR谱图更简单,信噪比更高,有可能将常规溶液核磁蛋白结构测定方法所能测定的分子量范围扩大两倍以上。   Arthur G. Palmer: 美国哥伦比亚大学教授, 研究方向包括核磁共振波谱方法的开发、分子动力学的计算和理论分析以及在蛋白质折叠上的应用、分子识别和催化。Palmer教授是生物核磁共振波谱学的必备教科书《Protein NMR Spectroscopy: Principles and Practice》(Academic Press, 1996 and 2007)的作者之一。他由于用多维NMR技术在测定溶液中蛋白质动力学方面的创造性学术成就获得2015年Laukien奖。(Laukien奖是核磁共振领域的最高奖项之一,创立于1999年的Laukien奖是为了纪念Bruker的创始人Gunther Laukien而设立,主要表彰杰出和前沿且有巨大潜在影响的磁共振实验研究。)   Michael Sattler:德国慕尼黑赫尔姆霍茨中心结构生物学研究所教授,主要研究方向包括多维核磁共振波谱学以及大分子量蛋白质蛋白质、蛋白质核酸相互作用。   Gerhard Wagner:美国国家科学院院士,美国哈佛大学医学院教授。近期主要工作包括大分子量蛋白质的结构解析以及蛋白蛋白的相互作用研究,以及发展核磁共振新的核磁采样方法和膜蛋白质体系实验方法。任Journal of Magnetic Resonance杂志编委,Journal of Biomolecular NMR杂志编委,Biochemistry杂志编委,Cell杂志副主编等。   施蕴渝: 中国科学技术大学教授,中国科学院院士,第三世界科学院院士。中国生物化学与分子生物学学会蛋白质科学专业委员会副主任。近期主要工作包括:用多维核磁共振波谱及计算生物学研究与重大疾病或重要生理功能相关的蛋白质结构,动力学与功能关系,以及蛋白质与蛋白质、核酸、配基的相互作用。   附录三:背景介绍   蛋白质是由基因编码、多种氨基酸聚合而成的生物大分子,是所有生命形式与生命活动的主要物质基础和功能执行者。蛋白质研究的突破将促进揭示生命现象的本质 从根本上阐明人类重大疾病的机理,为临床诊治提供新的方法和途径 推动医药、生物能源、生物材料等新型生物技术产业的发展。为此,我国&ldquo 中长期科技发展战略规划&rdquo 将蛋白质研究列为基础研究四大科学研究计划之一,并将建设蛋白质科学研究设施纳入国家重大基础设施计划予以支持。   国家蛋白质科学研究上海设施(简称&ldquo 上海设施&rdquo )围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业发展需求,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化,成为我国蛋白质科学研究和技术创新基地,形成具有国际一流水平和综合示范作用的蛋白质科学研究支撑体系,全面提升我国蛋白质科学研究能力。   上海设施总投资7.56亿元,主体位于上海市张江高科技园区海科路333号,总建筑面积3.3万平方米,拥有用于蛋白质结构研究的9大技术系统,即规模化蛋白质制备系统、蛋白质晶体结构分析系统、蛋白质核磁共振分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微镜系统、分子影像系统和数据库与计算分析系统。其中蛋白质晶体结构分析系统与蛋白质动态分析系统依托 &ldquo 上海光源&rdquo 建设蛋白质结构分析的&ldquo 五线六站&rdquo 。上海设施是继上海光源后第二个落户浦东张江的国家重大科技基础设施。上海设施于2010年12月26日正式开工,2014年3月竣工,至今已完成各项专业组验收及工艺鉴定,即将迎来国家验收。   上海设施作为当今全球生命科学领域第一家综合性的大科学装置,集先进科学装置和大型设备之大成,是探索生命奥秘的国之利器 上海设施的建成引起了国内外同行的高度关注 为上海率先建成世界级蛋白质科学中心奠定了良好的基础。   自2014年5月上海设施开放试运行以来,上海设施的运行维护团队为用户承担的国家科技战略先导专项、973、863、和国家自然科学基金的项目任务提供了强有力的科研保障和支撑服务:共执行用户课题210个,约2200人次 用户课题组120家,涉及40多家单位,以中科院和高校科研单位为主 地域覆盖主要有北京、上海、常州、杭州、石家庄、武汉、南京、厦门、长春、广州、澳门、香港等地。同时吸引了一批国际药企和国外优秀科学家开展前沿课题研究。用户使用设施的设备和服务做出了一系列优秀的成果,并在各领域的国际知名期刊上发表论文多篇。   上海设施技术团队坚持以自主创新为主,并与国际先进技术相结合,自主研发了国内首套将软件控制、硬件设备和生物应用进行整合的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,在样品处理通量上超过半自动化和传统的人工系统10-100倍,居于国际领先水平。自主研发了高精度激光双光镊系统:采用激光辐射压对微米级粒子进行捕获,通过高精度的测量技术实现亚纳米级位移和亚皮牛级力的测量,在蛋白质折叠、RNA聚合酶等研究领域提供单分子层次的信息。   上海设施建设同步组织建设国家蛋白质科学中心&bull 上海(简称&ldquo 蛋白质中心&rdquo ),负责设施运行管理。蛋白质中心依托中科院上海生科院,委托生化与细胞所实施管理,开展科学研究和国内外交流,力争在5-10年的时间逐步建设成为一个国际一流的蛋白质科学研究中心。目前中心已经到位学术带头人(PI)17名,其中包括中组部&ldquo 千人计划&rdquo 3人(含千人计划B类1人),国家&ldquo 杰出青年&rdquo 科学基金的资助2人,中组部&ldquo 青年千人计划&rdquo 5人,中科院&ldquo 百人计划&rdquo 或&ldquo 引进杰出技术人才&rdquo 7人。中心学术带头人作为首席科学家共承担国家科技部重大科学研究计划3项,科研团队承担中科院战略性先导(B类)专项&ldquo 生物超大分子复合体结构、功能与调控&rdquo 近三分之一研究任务。近两年来,中心科研团队使用蛋白质设施开展相关研究,并取得一系列重要研究成果,发表在《自然》《癌症细胞》等一系列国际权威学术期刊上。   &ldquo 大科学中心&rdquo 建设是中国科学院实施&ldquo 率先行动&rdquo 计划的研究所分类改革举措之一。2014年11月,依托上海设施与上海光源的&ldquo 中科院上海大科学中心&rdquo 作为首批试点&ldquo 大科学中心&rdquo 正式启动筹建,努力建设成为高效率开放共享、高水平国际合作、高质量创新服务的大科学研究中心,有效集聚国内外科研院所、大学、企业,开展跨学科、跨领域、跨部门协同创新,为中科院研究所分类改革起到了示范引领作用。   未来,&ldquo 上海设施&rdquo 将围绕蛋白质科学研究的前沿领域和国家人口健康与现代农业的战略需求,打造开放、协作、创新的国际一流蛋白质科学研究平台,充分发挥大科学装置的优势,助力国内生物医药产业,为实现上海创新驱动发展战略并带动长三角地区经济发展、建设全球有影响力的科创中心提供强有力的科技支撑。
  • 长生不老神丹妙药的炼丹技术一细胞时空隧道技术
    摘要:间充质干细胞,干细胞外泌体已经被广泛应用到了多个领域的临床研究中,是医药史上最为复杂的治疗性产品。间充质干细胞,外泌体直接输入注射治疗法永远也不可能修成正果,时间机器突破干细胞瓶颈所面临的重重困难和障碍,利用细胞时间隧道技术与衰老组织细胞进行胞质效应交换能生产出万能干细胞,是再生医学长生不老的“神丹妙药”。1、干细胞治疗技术尚不成熟面临一系列技术瓶颈近年来,间充质干细胞,外泌体已经被广泛应用到了多个领域的临床研究中,其中包括多项疾病的临床治疗在肝损伤、肾损伤等方面都展现出强大的修复再生能力。间充质干细胞外泌体具有间充质干细胞的生物学特性,并且其含有大量且种类繁多的蛋白质、细胞因子和生物活性物质。此外,间充质干细胞外泌体中的miRNA,可以调控基因表达,其比例比细胞更高,例如miR-155、let-7f、miR-199a、miR-221、miR-125b-5p和miR-22等,使得其能够参与多种生理和病理过程,起到对多项临床疾病的干预治疗。有望取代技术不成熟的间充质干细胞,成为细胞治疗时代的下一个风口。干细胞制品的复杂多能性,动态性、异质性问题从根本上挑战了药物的均一性、稳定性基本质量要求。是干细胞临床治疗技术绕不过去的一道弯。从以上资料中我们可以看到一方面是干细胞科研成果不断涌现,而另一方面又是干细胞治疗技术产品的不成熟,不断的遭遇到夭折。临床应用干细胞面临着一系列技术瓶颈,怎样突破干细胞技术瓶颈所面临的重重困难和障碍,去再创辉煌。这就要我们从干细胞基础领域里去做起寻找突破口。2、生命分子时间无处不在,干细胞与时间撞碰将化解所有的技术瓶颈自从H. G. Wells于1895年撰写了他的著名小说《时间机器》以来,时间旅行便成为一个流行的科幻小说主题,但是它能真的实现吗?建造一台把人运送到过去或是未来的机器可能吗?爱因斯坦企图解释时间,由于他提出测量时间要取决于观察者如何运动等苛刻条件,以至于未能完成对时间的真正理解。生命科学则不同,任何学者都能正确分辨DNA、蛋白质的时间。例如原核mRNA半衰期平均大约3min,真核mRNA的半衰期平均3h,有的寿命长达数天。正常的P53蛋白半衰期为20min,突变型P53-蛋白半衰期为2~12h,如人正常细胞一生只能分裂50~60次,而突变的癌细胞无限增殖性,成为“不死”的永生细胞。在分子端粒酶、糖蛋白糖链、P53蛋白半衰期上,生物时间概念无所不在,有了时间概念,时间机器也就不在话下了。然而这一切归根结底就还是干细胞临床应用基础理论出现了问题,干细胞目前还是处于分子遗传学水平,当干细胞临床应用真正踏入生命量子时代,基因对分子时间有了进一步认识。干细胞有了时间概念,终将化解当前临床转化所有的技术瓶颈。事实上干细胞逆分化也正是想要建造一座细胞逆时空隧道来低抗人类衰老。根据爱因斯坦的相对论,干细胞魂牵梦绕的时空隧道它会出现吗?3、分子遗传学细胞时空隧道技术分子遗传学己经成功制造了时间机器,但它却还不知道什么是时间机器。克隆羊“多莉”的诞生震惊了世界。多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可恢复的改变,还能完全恢复到早期胚胎细胞状态,最终仍能发育成与核供体成体完全相同的个体。以往的遗传学认为,哺乳动物体细胞的功能是高度分化了的,不可能重新发育成新个体。与这一理论相反,多莉终于被克隆出来了,它的诞生推翻了形成了上百年的上述理论,实现了遗传学的重大突破,为开发新的哺乳动物基因操作提供了动力,是一个了不起的进步。但直到现在,人们仍然不知道这就是时间机器,它使已分化的成熟体细胞在卵母细胞的时光中穿梭获得胚胎发育新生(细胞胞质效应技术实际上就是时间机器技术)。 生命科学制造的时间机器已有了大量的成功案例,现举例如下:鸡红血细胞是终末分化细胞,其细胞核不合成RNA或DNA,在与人Hela干细胞融合后,其细胞核可被Hela干细胞的细胞质激活而合成RNA和DNA,说明细胞质在基因表达中起重要作用。Hela干细胞miRNA等小分子在胞质效应中时光穿梭,使鸡红血细胞核获得激活,这是一例非常经典的分子遗传学时空机器技术。尽管大量工作表明细胞核和细胞质在不同动物的不同发育期均起重要作用,但二者间的相互作用、相互依存是胚胎发育过程中调控基因活动最重要环节之一。原肠胚期细胞质开始激活核内不同基因的活动,最初的基因产物移至细胞质中合成专一性蛋白质,它们又可回到核内,参与染色质的合成与复制,并调控另一些基因的活动。通过反复的核-质间相互作用,使未分化的细胞相继分化为定型的细胞,真正做到了细胞时间旅行。 4、量子遗传学细胞时间机器技术量子时间机器原理:细胞核移植实验和细胞移植的医学实践都已有了大量的成功案例,积累了丰富的文献资料。早期伯尔格(Berger)和施瓦格(Shweiger)作了伞藻的核移植,用年轻的和年老的细胞质分别与年老和年轻的细胞核分别在体外培养,10天中移植进去的老核变得年轻起来,而新核移植到衰老的细胞中则会受影响而老化,这说明胞质对核能产生影响。年轻的胞质能使衰老的细胞核恢复青春,年老的细胞质则使年轻的细胞核老化,根据这一原理我们制作了DNA时间机器,让生物细胞分子在细胞质效应中穿越时光。DNA相对论(DNA、蛋白质时间、空间、质量、能量的科学理论)是允许这一时空旅行发生在生物这种特定的时空结构中:一个旋转的生物细胞质宇宙,一个旋转的细胞核柱体,以及非常著名的虫洞—半透膜一条贯穿空间和时间的隧道,它成功构建了第一台细胞时间机器。 溶液通过弥散超滤作用,使细胞内高激发态物质向激发态低一侧流动,而miRNA等小分子由渗透压低向渗透压高的流动过程,最终达到动态平衡。DNA时间机器是通过年老细胞质(时间半衰期短)使年轻(时间半衰期长)的细胞核老化。年轻(时间半衰期长)的细胞质能使年老细胞核时间回到年轻,为癌症、干细胞研究又打开了一扇新的窗口,真正做到了细胞时间旅行。DNA时间机器这项生物量子技术成果将开拓癌症根本性治疗、干细胞应用、病毒快速减毒,解决小分子miRNA两面派特性的新工具(利用紫外吸收光谱测能技术掌握增减DNA核能)具有划时代的重大意义。生物时间机器技术(专利号;201309120065447.0) 5、长生不老神丹妙药的炼丹技术一细胞时空隧道技术时间机器突破干细胞瓶颈所面临的重重困难和障碍间充质干细胞,干细胞外泌体,都被归类为不同组织中多种不同的细胞群生物学特性,并且其中含有大量且种类繁多的蛋白质、细胞因子和生物活性物质,是医药史上最为复杂的治疗性产品。干细胞供者遗传背景千差万别,各种组织来源及不同代次的细胞区别显着,而且不同的技术路径、试剂仪器、操作手法等也会对细胞生理状态存在显着影响,干细胞,外泌体制品的动态性、异质性面临着重重困难和障碍。间充质干细胞,外泌体直接输入注射治疗法永远也不会修成正果,生命时空隧道技术为干细胞临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为:时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等部分组成。将间充质干细胞,外泌体加进在生物时间机器透析外柱內对透析柱內里的人体内采集的某组织衰老细胞,通过溶液及半透膜在时间机器中进行生长因子,激发态物质交换,然后再回输到衰老人体内的方法。 细胞时间机器膜外柱为干细胞等外泌体激发态高的细胞物质通过小分子miRNA等溶质向膜内柱人体内采集的衰老细胞及外泌体物质,撞碰移动从而激发调整了衰老细胞DNA蛋白质激发时间,干细胞时间在年老的细胞质时间中穿梭,能真实的回到过去年轻细胞时间(DNA氢介子结合能一份份合成就是DNA逆时间)。生物时间机器时空结构简单:一个旋转的生物胞质小宇宙,一个旋转的柱体,以及非常著名的虫洞-半透膜所组成。超滤膜根据需要通过干细胞小分子miRNA的大小设计,从干细胞中分离出miRNA以及外泌体来。 最常见的过滤膜具有0.8μm、0.45μm或0.22μm的孔径,也有设计成微柱多孔硅纤毛结构以分离40-100nm的miRNA外泌体。但最为关健一点是要密切利用时间测能技术来监测“干细胞种子”以及“人体内采集的衰老细胞土壤”移植时能量高低的透析时间差问题,这样才能做到安全有效的细胞时间旅行。 虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们都具有强大的细胞生长因子。1、利用超滤膜可以中筛选出专一人体内采集的某细胞分泌体miRNA;2、其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集的专一衰老细胞上;3、人体内采集的细胞与时间机器交换后可再监测安全有效性;4、生成某组织增强干细胞后可再进一步纯化分离,然后再安全回输到衰老人体内组织中。利用细胞时间隧道透析机与衰老组织细胞进行胞质效应交换,能生产出万能干细胞是再生医学长生不老的神丹妙药。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话15927431505☆相关资料,《自然》:打破间充质干细胞神话https://xw.qq.com/cmsid/20180927A0A9PL/20180927A0A9PL00DNA相对论是生命科学的第一生产力http://post.blogchina.com/p/2545288
  • 文献解读丨质谱联用技术对中药制剂中非目标成分的全面检测与鉴定及其策略
    本论文发表在Anal. Chem.(2008)80,8187-8194,介绍了中国药科大学仪器分析中心药物代谢与药代动力学重点实验室团队通过液相色谱-离子阱-飞行时间质谱联用技术建立的对中药制剂中非目标成分的全面检测与鉴定方法。 虽然现有文献记载了许多从草药制剂中鉴定成分的报告,但大多局限于目标成分。本文利用液相色谱-离子阱-飞行时间质谱(LC/MS-IT-TOF)技术,提出了一种全新的、通用的中草药制剂中非目标成分的鉴定方法。最初开发了一个简单的程序,用于从所有实验生成的离子中搜索常见的诊断离子。在此基础上,将具有相同离子的组分(质量误差根据桥接组分建立的家族网络 在明确识别非目标组分方面,目前开发的策略和方法仍有一定的局限性。首先,结合碎片比较方法的数据库查询在很大程度上取决于现有化学数据库的性能和信息含量,这意味着如果检测到的成分没有包括在目标化学数据库中,就不可能通过这种方法来识别这类成分。 第二,当在某些条件下不能产生相应的诊断离子时,诊断离子引导的族分类策略可能无法包含某些组分。而LC/MS谱图又会受应用的条件所限,为了解决这一限制,碎裂应在多个CID能量下进行,以产生足够的高响应碎片。 第三,受制于LC/MS方法学的固有局限,仅仅依靠LC/MS永远不足以明确识别非目标组分。由于这些局限性,我们不能排除某些组分的错误识别的可能性,特别是那些其真实结构没有被纳入目标化学数据库的成分。通过对两种复方制剂非目标成分的鉴定,证明了该方法的有效性和应用价值。这些限制并不妨碍它广泛应用于从各种复杂基质中识别非目标成分。从复杂混合物中鉴定非目标化合物在制药、代谢组学、环境分析等许多领域都具有重要意义。鉴于这些混合物中所含的化合物在结构上也是相关的,并且可以归类为家族,因此我们的策略将不仅在草药制剂中得到广泛的应用,也将在许多其他复杂混合物中得到广泛的应用,如环境和生物样品。
  • 梅里埃营养科学集团收购诺安检测
    2014年9月2日---梅里埃营养科学集团(以下简称梅里埃)收购诺安检测服务有限公司(以下简称诺安)的多数股权。诺安原属太平洋恩利国际控股有限公司,是国内领先的独立食品检测实验室。这次收购拓展了梅里埃对全球食品链的科学服务范围,并进一步巩固了梅里埃在亚洲食品安全和化学创新方面的市场领导者地位。   诺安由太平洋恩利国际控股有限公司创建于2003 年,拥有200 名员工,提供食品相关技术测试、培训、审核和咨询等服务。诺安在国内拥有两家获权威认证认可的实验室(分别位于青岛和宁波), 占地面积超过5600 平方米,为食品公司、政府和研究中心等各类客户提供服务。诺安是国内最早成立的独立食品检测实验室之一,发展至今,在农残重金属等污染物测试及提供解决方案方面已拥有无可争议的领先地位。诺安是国内广受认可的检测服务提供者,为大量的国内外公司的出口及国内市场业务提供服务。   梅里埃拥有与世界各地领先食品及饮料公司超过45 年的合作经验,在全球18 个国家有70 多个实验室,另外在美国、法国、巴西和中国还拥有5 个研发中心。梅里埃在中国的子公司实力可中国将和诺安检测服务有限公司合并成一个独立业务实体,太平洋恩利集团持有少数股权。   &ldquo 此次投资是梅里埃向外拓展,进入具有高增长潜力的动态市场战略的一部分。诺安将增强我们为中国和亚洲市场服务的能力。诺安与实力可在中国的业务高度互补,不仅与我们北京和上海实验室在地理位置上互补,也在高端化学领域带来专业技能知识上的互补。&rdquo 梅里埃营养科学集团总裁兼首席执行官Philippe Sans 说到。   &ldquo 诺安检测服务有限公司成立10 多年来,我们一直为其在强大的专业领导团队下,成长为国内领先的食品检测实验室而感到非常自豪。我们现已到达一个新起点,由食品检测国际专家主要控股,业务上一定会受益匪浅。这对太平洋恩利国际控股有限公司而言,是一个非常好的成果:通过持有少数股权,我们仍和诺安保持联系,同时,我们能够保持专注于我们的核心海鲜业务,&rdquo 黄裕祥(Ng Joo Siang)先生,太平洋恩利国际控股有限公司副总裁兼董事总经理说到, &ldquo 实力可和诺安的合并,将创建一个强大的组织,支持中国食品工业及政府维护食品安全, &rdquo 黄裕祥先生补充到。
  • 欧美克激光粒度仪应用体验的高速发展
    商用激光粒度仪从上世纪70年代面世以来,仪器的光学设计、各光电部件的规格和品质、样品适应性的干湿法进样系统性能、反演算法等方面均得到不断的进步。随着测量技术不断迭代升级,测试范围和灵敏度也在不断提高,加之激光粒度仪具有的测试范围宽、样品适应性广、测试过程便捷快速、维护需求少、重现性佳等优点,近些年其不断获得众多颗粒相关行业认可,逐步大量地取代了传统筛分、沉降、显微图像等方法成为了颗粒粒径分析和质控的主流仪器。随着技术的日臻成熟,用户对激光粒度仪的期待也逐步从复杂的科学仪器到简便的测量工具的转变。自2010年欧美克加入思百吉集团(Spectris plc.),成为马尔文帕纳科(Malvern Panalytical)的子品牌后,欧美克秉持集团公司以客户为中心的价值观,在新粒度仪开发中不仅着力于引进诸如低杂散光高动态范围光学设计、一体化多探测器工装装配工艺、双色光源全散射角覆盖、高精确度反演算法等等国际先机技术和工艺,同时针对客户测试应用和管理体验的实际需求也进行了重点的开发和改善。在一系列仪器的开发升级中除了始终保持高性能外,亦将与用户仪器应用体验息息相关的更高水平的自动化、智能化、标准化、易操作、少维护、好管理、更安全及友好的数据分析和报告输出等作为重要的发展方向和目标,使得以OMEC LS-609、Topsizer等为代表的系列激光粒度分析仪不断完善,在具有良好的测试性能同时满足用户的多种不同个性化需求,在简便了用户的日常操作维护管理的同时提供了更佳的使用体验。本文试着逐一地举例向读者简要介绍。测试与使用自动化针对越来越多企业使用激光粒度仪进行质控,许多实验室测样量大,技术人员工作负荷高的现象,欧美克在仪器硬件设计上不断增加了自动化控制功能,例如以自动对中或对中智能判断的主机搭配主流的SCF-105B全自动湿法进样循环系统、DPF-110自动化干法进样系统均可以实现一般测试全流程的软件自动化控制。通常情况下,用户仅需要按软件提示将多个干湿法样品依次加入到样品池,仪器可以对这些样品进行自动进样,自动分散,自动测量,自动输出测试报告结果的处理,同时仪器在测试结束后还可以自动进行清洗,多个样品批量测试过程已经被简化。湿法、干法进样器控制面板如上所述,针对质检人员的日常工作,软件专门设计了SOP(标准作业程序)功能,仅需两步(运行程序?加入样品)即可完成高质量粒度测试。软件同时搭配超阈值警告功能,系统根据测试结果自动进行特征粒径结果的阈值分析,直接给出样品是否符合设定的质量阈值的提示。操作者无需查看具体结果数值就可以轻松快速根据警示页面判断样品是否符合质控要求。智能化仪器智能化的目的主要是解决粒度仪测试时由于操作者忽略的仪器状态或加样错误等原因导致的结果的偏差。例如:欧美克开发了对中状态智能判断功能,开启后软件可以自动进行仪器背景状态和光学对中进行判断,根据判断结果自动采取对中或进入测试下一步的操作,为用户节省了大量的时间并延长了对中机构的寿命。在湿法测试中,加样量的智能识别和调整功能,系统会自动识别判断加样量,根据需要提醒操作者继续加样至满足要求或是在加样过量的情况下自动控制调低样品量后进行测量。在干法测试中,智能下料状态动态分析功能可以对流动性不佳样品下料的稳定性自动判断,同时将超量下料和下料中断时的光能信号和测量时间等进行自适应调整。以上的智能化功能保障了测试结果的可靠性,极大减少了测试分析人员的不熟练或疏失的影响。欧美克LS-909激光粒度分析仪同时,在粒度仪智能化设计中,多种影响测试因素的感知和自主分析功能是重要的一环。例如欧美克的干法测试系统皆含有直接定位于分散管的正压传感器及定位于窗口后方的负压传感器,相对于传统的仅对分散压输入处的压力控制,智能系统能对干法分散全过程的压力条件得到最真实的记录和控制,并使得仪器可以智能化自主判断仪器状态和测试数据的可靠性,有力保障了仪器长期使用分散测样条件的一致性和测试结果的重现性,使得原料药、制药及精细化工等行业方法的迁移,测试条件的追溯都有据可循,同时避免了欠压状态测试结果错误的影响。LS-909还带有自适应噪声抑制智能算法,能对探测器信号进行多次反演后进行原始功能自适应匹配修正再分析,有效的提高了仪器分析动态范围。此外,欧美克中高端粒度仪还具有折射率(包括实部和虚部)的自动分析计算等功能。可以通过结合多次取样测试结果的自动智能分析,给出推荐参数。标准化仪器的标准化包括仪器生产工艺和仪器测试条件的标准化,对于粒度测试结果的重现性是至关重要的。早先的激光粒度仪不同仪器之间的一致性较差,这主要是由仪器的多个光学部件在生产装配时的相对位置一致性不佳及杂散光水平不一致造成的。欧美克新的系列激光粒度仪在生产工艺上采用了一体式工装,包括主探测器、侧向、大角及后向探测器的所有探测器都由工装一次性定位,同时在所有探测器上设置仅对窗口颗粒开口的光学屏蔽罩,极大的减少了系统杂散光的干扰,保障了同型号不同仪器之间的测试结果的一致性。LS-609一体式工装定位大角探测器组同时进样器颗粒进样、分散的一致性也得到充分的考量和改进,例如:在开发湿法循环进样器SCF-105B的时候,面对传统电流控制离心泵转速精确度较低的问题,我们在进样器中加入了电机测速装置,通过数字反馈控制电机精确运转,从而保障了泵速显示真正的所见即所得,使得不同进样器之间的分散条件一致性得到提高,也保障了不同粘度介质测量的泵速数据真实可靠。又比如上章节提到的干法进样系统分散压传感器和负压传感器,使得粉体在下料后的全测量管道内状态精确可控,对于测试方法开发确定压力条件及测试中的欠压异常的甄别都有极大帮助。结合主机和进样系统的智能感知、精密控制功能,欧美克现代激光粒度仪真正实现了加样后全流程的测量方法和测试条件的标准化,当经过方法开发的这些对样品的条件被以SOP文件的方式固定下来后,只需要拥有最基本电脑操作和测试常识的操作人员均可以胜任标准化测试工作,同时测试过程条件的数字化记录可以随时用于追溯。欧美克SCF-105B、SCF-108A全自动湿法进样器欧美克DPF-110干法进样器易操作得益于高性能自动化智能化标准化的粒度仪开发,使得粒度仪可以满足用户高精确方法开发、低人工操作需求的标准化测试,逐步向高精密、傻瓜化的方向同时发展。针对粒度测试方法开发人员,欧美克粒度仪使用的集成粒度测试软件内置的大量数据分析筛选比对功能模块,例如除了拥有每个测试的独立报告外,系统还能够自动将多个测试的结果以统计数据图表呈现。且根据需要可以对这些数据按各种测试相关条件进行分类、筛选和排序。根据方法开发中大量数据统计和对比的需要,软件中同时集成了多报告的统计、比较和特征粒径趋势分析功能,通过这些功能使方法开发者可以轻松获得可视化过程结果,以用于测试条件的快速判断和决策。此外,软件还具有一键导出SOP功能,直接将方法开发中理想的测试条件,通过测试记录快速保存为标准化的SOP测量文件。现代化的欧美克集成粒度测试软件采用迭代开发模式,不断的进行优化和升级,不仅具有时代潮流风格的软件UI界面,其针对用户的文件操作、测试操作、数据分析等常见操作行为,进行分类分区图标化管理。在用户需要的大多数操作均可以以快捷按钮一键执行之外,我们通过大量用户操作行为分析,新的版本还将大量用户测量需要执行的多个连续操作进行合并,使其一样可以一键化执行,例如通过将常用SOP直接显示在操作面板上,用户仅需要双击软件测试面板上的SOP文件图标就可以执行完整的多样品测试,再比如传统手动测试需要的加介质、开启泵速循环、排气泡、对中、测背景等常规准备操作亦可以一键式点击仪器测样前准备按钮实现。欧美克Topsizer激光粒度分析仪
  • 关于肺癌,你需要知道的那些事。。。
    p   冬季时节,北方已开始供暖。上周辽宁省PM2.5爆表破1400的新闻刷爆朋友圈。PM2.5 1400是什么概念?就是伸手不见五指,“白天已懂夜的黑”,当然这么说可能有点夸张,不过你懂得。。。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201511/noimg/3c16ea2c-39ae-475c-90ff-ce7b16b9a7de.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 天空飘来五个字—东方饺子王! /span /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201511/noimg/4c443682-eb28-47f7-a34e-01bca4b82097.jpg" /    /p p style=" text-align: center " span style=" font-size: 14px " 出门时的装备 /span /p p   雾霾天,呼吸系统与环境接触频繁,且表面积较大,导致数百种大气颗粒物能直接进入并粘附在上下呼吸道和肺叶中,其中大部分被人体吸入;再加上雾霾天气导致近地层紫外线减弱,容易使得空气中病菌的活性增强,细颗粒物会带着细菌、病毒来到呼吸系统的深处,造成感染,以至于雾霾增加了患肺癌的几率。 /p p   肺癌,我国发病率、死亡率均位于第一的癌症,现在死亡率还在以每年4.45%的速度在上升。据北京市肿瘤防治办公室专家透露,10年间,北京市肺癌的发病率约增长了43%,肺癌的发病年龄趋于年轻化。2014年的我国肺癌发病率为万分之五,死亡率是万分之四,位于所有恶性肿瘤死亡率之首。2015年11月是第十五个“全球肺癌关注月”,借此机会,小编盘点了近年来肺癌领域的重大研究进展。 /p p    strong 肺癌发病病因 /strong /p p   主要有吸烟、环境污染、职业接触、肺部慢性病以及遗传基因易感性等。肺癌大部分是被“气”出来的,烟气、装修污染、空气污染等“气”是致癌的主要因素,肺癌高危人群应及早进行筛查,并建议早诊、早治。近日,中国科学院动物研究所膜生物学国家重点实验室发布科研文章“炎症因子CXCL13在环境污染引起肺癌中的关键作用”。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201511/noimg/b8ac0025-b05a-4a35-8c69-74a349a01429.jpg" / /p p    strong 肺癌筛查: /strong /p p    strong 1. 分子基因检测 /strong /p p   医学期刊《柳叶刀》(The Lancet)上的研究报道了这一测算14个基因在癌组织中的活性的检测如何提高预后判断的准确性,从而有助于指导对最常见的肺癌形式--非鳞状非小细胞肺癌的患者的治疗。该新的分子检测能够更好地识别手术后的早期死亡高危患者,因此可以成为考虑采用早期化疗的更有效的指南。 /p p    strong 2. 肿瘤突变检测 /strong /p p   10月27日,Agena Bioscience公司与Diatech Pharmacogenetics公司联合宣布行动计划,推出在结肠癌、肺癌和黑色素瘤治疗中具有CE-IVD认证标志的肿瘤突变检测。 /p p    strong 3. 肺癌低剂量CT筛查 /strong /p p   美国全国性肺癌筛查试验(NLST)的研究结果表明,低剂量螺旋CT (LDCT)筛查可使肺癌死亡率减少 20%。低剂量 CT 的优点之一是它非常灵敏。尽管低剂量CT 肺癌筛查能有效降低肺癌相关死亡率,但是这种筛查方法被“高假阳性率、过度诊断、辐射暴露和费用”等问题制约。 /p p   今年8月,GE医疗宣布,该公司开发的低剂量计算机断层扫描(LDCT)肺癌筛查方案(LCS)获得美国FDA批准,这也是FDA批准用于肺癌高危群体筛查的首个低剂量CT解决方案。此次批准同时也标志着FDA首次批准将CT设备用于疾病的筛查。 /p p    strong 4. FDG PET/CT、动态PET-CT和双能CT系统筛查 /strong /p p   研究证明FDG PET/CT在鉴别良恶性孤立性肺结节方面具有较高的敏感性和特异性。然而,这种特异性在肺部感染率或肉芽肿性肺部疾病发生率特别高的地区显著降低(大约为40%),被认为是不可靠的技术。动态PET-CT或双能CT系统(Dual Energy CT)可能是更好地鉴别孤立性肺结节的有用工具,需要进一步的研究是以确定阈值,规范筛查程序。 /p p    strong 5. 肺癌生物标志物筛查 /strong /p p   生物标志物一般是指可供客观测定和评价的一个普通生理或病理或治疗过程中的某种特征性的生化指标,通过对它的测定可以获知机体当前所处的生物学进程。对肺癌生物标记物的检查可以实现对疾病的鉴别、早期诊断以及预防、治疗过程的监控。非小细胞肺癌(NSCLC)的生物标志物主要有肿瘤相关性抗原(CEA、SCC、CYFRA21-1、CA125等)、酶类(EGFR、NSE、GST-& amp #960 、AHH、端粒酶等)、分子生物标记物(p53、KRAS、p16)。 /p p   当然,综合筛查方法(联合生物标志物和影像检查)可以实现足够高的统计功效、易获得、使用方便、无创性和高接受率、成本效益。 /p p    strong 6. 肺癌呼吸诊断技术 /strong /p p   呼出气体中可以检出肿瘤标志物,肿瘤标志物浓度与肿瘤存在密切相关可直接获得被检测者的生理和非生理参数。肺癌气体标志物源于癌细胞和肿瘤微环境的代谢,常与自由基诱导脂质氧化相关。呼出气体中VOCs检测对于早期癌症检测有显著潜力,可用于肺癌复发监测。 /p p    strong 7. 肺癌血液检测技术 /strong /p p   英国帝国理工学院发布,通过识别脱氧核糖核酸(DNA)中与癌症相关的基因变异特征来判断患者是否患有癌症。这种新开发的血液检测技术在实验中能实现对肺癌的更高效诊断,且整个检测过程比传统方法更简单、成本更低廉,如投入使用将有助于癌症预防和治疗。 /p p    strong 8. 液体活检 /strong /p p   以血液cfDNA为检测对象的液态活检具有的优势:样品的收集是无创或微创;可以随时采样,做到病灶相关Biomarker的实时掌握,解决了肿瘤时间维度上的异质性;血液内的cfDNA能综合地反应肿瘤整体情况,排除空间上的异质性。 /p p    strong 免疫细胞治疗 /strong /p p    strong 1. PD-1/PD-L1 /strong /p p   百时美施贵宝(BMS)公司PD-1免疫疗法Opdivo(nivolumab)获欧盟批准,用于既往已治疗过的局部晚期或转移性鳞状(SQ)非小细胞肺癌(NSCLC)患者。此次批准,标志着Opdivo成为过去10多年来,鳞状非小细胞肺癌(SQ-NSCLC)领域的首个重大治疗进展,该药同时也成为首个也是唯一一个在既往已治疗转移性SQ-NSCLC群体中展现出总生存(OS)利益的PD-1免疫疗法。 /p p   FDA批准Agilent旗下公司Dako的新型伴随诊断技术用于默克公司的非小细胞肺癌肺癌检测。PD-L1 IHC 22C3 pharmDx的伴随诊断技术通常被用于确定恶性非小细胞肺癌患者是否对默克公司的抗PD-1疗法Keytruda(pembrolizumab)有反应,该疗法目前已经得到FDA批准用于治疗肿瘤细胞表达PD-L1的转移性非小细胞肺癌患者,以及疾病恶化或进行铂化疗后的患者。 /p p    strong 肺癌的靶向治疗 /strong /p p    strong 1. ID蛋白 /strong /p p   ID是一类抑制DNA结合/分化的转录因子,ID蛋白能够二聚化并结合调节性的E蛋白来抑制肿瘤抑制基因的表达。之前的研究已经发现在各类癌细胞类型中有ID家族蛋白的高度表达,然而ID蛋白在癌细胞中过表达的具体作用目前并不清楚。针对这一问题,来自南京大学李小军教授课题组研究了ID3基因在A549癌细胞系中的过表达的生理意义,相关结果发表在《nature gene therapy》杂志上。作者认为他们发现了ID3抑制肿瘤的作用机理,并且可以成为用于诊断与治疗肿瘤恶化的靶点分子。 /p p    strong 2. HM61713 /strong /p p   勃林格殷格翰与韩美制药宣布了一项排他性许可合作协议,既对表皮生长因子受体突变阳性肺癌治疗的第三代表皮生长因子受体靶向治疗药物HM61713的开发和全球商品化权利。HM61713是一种新型第三代具有口服活性的、不可逆的、选择性的针对表皮生长因子受体突变的络氨酸激酶抑制剂(TKI)。这种化合物目前处于II期临床开发阶段,研究在对既往表皮生长因子受体靶向治疗药物已产生耐药性且携带T790M突变的非小细胞肺癌患者中开展,计划于2016年启动的III期试验。 /p p    strong 3. Iressa /strong /p p   FDA批准Iressa作为孤儿药,指定用于EGFR突变阳性的转移性非小细胞肺癌的治疗。Iressa是一种激酶抑制剂,而激酶可以促进具有EGFR突变的癌细胞发育。这种抑制剂可以用于治疗表达了EGFR突变的绝大多数肿瘤类型(外显子19缺失或者外显子21 L858R替换突变)。therascreen EGFR RGQ PCR试剂盒被同时批准,其可以用来检测确定肿瘤患者是否具有EGFR基因突变,以确定哪些患者可以使用Iressa进行治疗。“Iressa提供了另一种肺癌患者一线治疗的有效选择。这个批准为癌症治疗的靶向疗法提供了进一步的支持,”FDA药物评价和研究中心,血液和免疫产品办公室主任Richard Pazdur博士这样说道。 /p p    strong 肺癌预防 /strong /p p   想要预防肺癌就一定要有好的生活习惯。比如生活作息时间要有规律,保持充足睡眠和好的心态,戒烟戒酒,积极参加锻炼身体,增强体质的同时,要多吃蔬菜水果,尤其是富含维生素C、维生素E的食物,以利于肺部细胞的营养,同时要多喝水,特别是常处于吸烟环境的人更要多喝水,可加速排出体内有害物质。要尽量远离烟雾、氡气、汽车尾气、雾霾、厨房油烟等有害气体。如果无法避免接触这些气体,请带好口罩防护,并及时洗脸、漱口、清理鼻腔,有利于洗掉微小颗粒。 /p p style=" text-align: center " img title=" 0.jpg" src=" http://img1.17img.cn/17img/images/201511/noimg/c86b0cc6-2862-488b-9a24-cf26dc3a14f7.jpg" / /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制