当前位置: 仪器信息网 > 行业主题 > >

铁离子标准

仪器信息网铁离子标准专题为您提供2024年最新铁离子标准价格报价、厂家品牌的相关信息, 包括铁离子标准参数、型号等,不管是国产,还是进口品牌的铁离子标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铁离子标准相关的耗材配件、试剂标物,还有铁离子标准相关的最新资讯、资料,以及铁离子标准相关的解决方案。

铁离子标准相关的资讯

  • 青海省标准化协会发布 《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》等3项团体标准
    由海西州盐化工产品质量检验检测中心、青海省盐湖工业股份有限公司、青海省柴达木综合地质矿产勘查院、海西州质量技术检验检测中心、青海理工大学(筹)、茫崖市食品药品和质量技术检验检测中心等单位起草的《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》《工业氯化钙中钠、镁、钾含量的测定电感耦合等离子体原子发射光谱法》《硫酸钾镁肥中钙、镁、钠含量的测定电感耦合等离子体原子发射光谱法》3项团体标准,经征求意见、多次修改,已通过专家评审。根据《青海省标准化协会团体标准管理办法》相关规定,予以批准发布。标准发布日期为2023年12月26日,实施日期为2023年12月26日。团体标准号为: T/QAS 103-2023《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》;T/QAS 104-2023《工业氯化钙中钠、镁、钾含量的测定电感耦合等离子体原子发射光谱法》;T/QAS 105-2023《硫酸钾镁肥中钙、镁、钠含量的测定电感耦合等离子体原子发射光谱法》 青海省标准化协会2023年12月27日工业氯化钙中钠镁钾含量的测定.pdf硫酸钾镁肥中钙镁含量的测定.p工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅、和镍含量的测定.pdf团体标准的公告1.jpg团体标准的公告.jpg
  • CSTM团体标准《高纯试剂硝酸中铜、铅、钴、镍、锰、铁、镉、镓、锗、砷、锡、铍含量的测定电感耦合等离子体质谱法》等10项标准征求意见
    各位专家、委员及相关单位:中国材料与试验标准化委员会决定对《高纯试剂硝酸中铜、铅、钴、镍、锰、铁、镉、镓、锗、砷、锡、铍含量的测定电感耦合等离子体质谱法》、《化学试剂 碘化铵 》、《化学试剂 氯苯》、《化学试剂 二水合乙酸锌 》、《化学试剂 无水柠檬酸 》、《化学试剂 二乙醇胺 》、《化学试剂 间苯二酚 》、《生物化学试剂 蔗糖 》、《生物化学试剂 一水合 α-乳糖》、《钢质海底管道 腐蚀 超声测厚检测方法》团体标准征求意见稿公开广泛征求意见。 附件:关于CSTM团体标准《化学试剂 碘化铵 》征求意见的通知.pdf关于CSTM团体标准《高纯试剂硝酸中铜、铅、钴、镍、锰、铁、镉、镓、锗、砷、锡、铍含量的测定电感耦合等离子体质谱法》征求意见的通知.pdf关于CSTM团体标准《化学试剂 氯苯》征求意见的通知.pdf关于CSTM团体标准《化学试剂 二水合乙酸锌 》征求意见的通知.pdf关于CSTM团体标准《化学试剂 无水柠檬酸 》征求意见的通知.pdf关于CSTM团体标准《化学试剂 间苯二酚 》征求意见的通知.pdf关于CSTM团体标准《化学试剂 二乙醇胺 》征求意见的通知.pdf关于CSTM团体标准《生物化学试剂 蔗糖 》征求意见的通知.pdf关于CSTM团体标准《生物化学试剂 一水合 α-乳糖》征求意见的通知.pdf关于CSTM团体标准《钢质海底管道 腐蚀 超声测厚检测方法》征求意见的通知.pdf
  • 我国将制定18项钢铁、有色金属检测新标准
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国钢铁工业协会、中国有色金属工业协会、国家标准化管理委员会将主管制定18项钢铁、有色金属检测标准,其中涉及的仪器以电感耦合等离子体光谱法和电感耦合等离子体质谱法为主。另外还将修订17项钢铁、有色金属产品检测标准。 2014年第一批国家标准制修订计划之钢铁、有色金属检测标准制定   《钢板 抗凹性能试验方法》   本标准规定了金属板材抗凹性试验方法的试验原理、术语、试样、试验设备、试验程序、试验说明和试验报告。本标准规定了评价金属板材成形后部件抗凹性试验方法,主要用于汽车冲压件选材和优化,其他行业可参考使用。本标准适用于测定厚度0.2mm~3mm的金属板材。   《钢铁及合金 钙和镁含量的测定 电感耦合等离子体质谱法》   钢铁中痕量镁和钙元素多是由冶炼过程中的炉渣、炉衬及原材料等引入的,也有的是特意加入的,虽然其含量甚微,却起到十分微妙的作用。在钢的冶炼控制技术和钢洁净度不断提高的今天,优化和准确掌握钙、镁加入含量,严格控制、准确赋值钢铁中痕量的镁和钙含量具有重要的意义。   《高合金钢 多元素含量的测定 X-射线荧光光谱法(常规法)》   X射线荧光光谱法具有分析速度快、样品前处理简单、可分析元素范围广且不破坏样品、曲线线性范围宽、光谱干扰少等优点,应用范围非常广泛。与其他光谱分析方法相比,对于测定高含量元素和基体元素,具有独特的优势。因此,用X射线荧光光谱法测定高合金钢已为实验室普遍应用,但目前尚无国家标准和行业标准。为此,有必要制订高合金钢的国家标准分析方法,以填补此项空白,并与产品标准相适应。   《金属材料 高应变率扭转试验方法》   目前金属材料高应变率剪切性能主要采用分离式霍普金森扭杆试验技术测试,各研究者均基于相同的试验原理。但由于还没有试验方法的规范,各研究者在具体的处理方式上存在一定的差别,导致试验结果的不一致。通过本标准的制定和实施,可以提高金属材料高应变率下扭转力学性能测试结果的一致性和可比性,有利于提升对材料动态力学性能的认识,提高工程结构冲击响应的分析评估水平。   《活性炭吸附金容量及速率的测定》   目前国内外尚没有直接测定活性炭吸金性能的国家/行业方法标准,而是通过测定其它吸附参数(如碘吸附值、亚甲基蓝吸附值等)间接反映活性炭的吸金能力。但由于活性炭吸附金的机制与吸附碘等分子的机制存在明显的区别,因而采用间接碘值参数无法准确而有效的反映出活性炭的实际吸附金的能力。因此,亟需建立测定活性炭吸附金容量(Q值、K值)及吸附速率的方法标准,以便准确地评价活性炭吸附金的性能,为生产提供可靠的数据指标,有效的指导生产。   《纯铑化学分析方法 铂、钌、铱、钯、金、银、铜、铁、镍、铝、铅、锰、镁、锡、锌、硅的测定 电感耦合等离子体质谱法》   含铑系列合金和铑化合物及铑粉,在电子工业、军工、催化、测温、化工及首饰行业中具有不可替代的重要作用和广泛用途。这些产品大都需要以纯铑为原料来制备,铑的纯度直接影响和制约产品的使用性能及加工工艺。因此,制订电感耦合等离子体质谱法测定铑中杂质元素是非常迫切和必要的。   《工业硅化学分析方法 第X部分:汞含量的测定氢化物发生-原子荧光光谱法》   为了满足工业硅国家标准中增加汞元素的控制要求的需要,特提出制定工业硅中汞元素的测试方法标准。目前国内原子荧光光谱仪越来越普及,且该分析技术也越来越成熟,利用原子荧光光谱法能快速准确地测定工业硅中的汞元素含量,采用该方法制定统一的工业硅分析标准具有十分重要的现实意义。   《工业硅化学分析方法 第X部分:六价铬含量的测定 二苯碳酰二肼分光光度法》   随着工业硅生产工艺不断发展,伴随加工产品要求的不断提高及产品出口量的日益增加,越来越多的工业硅,尤其是单晶硅,多晶硅作为重要的原材料应用在电子行业。因此国内外客户对工业硅产品中有毒有害元素的限制要求越来越高。从客观上对我国工业硅产品的出口设立了绿色的壁垒。为了应对这一形势,提高我国工业硅在国际市场上的竞争力,规范六价铬等有害元素的检测,赢得国际用户对我国标准检测结果的认可势在必行。   《建筑用铝及铝合金表面阳极氧化膜及有机聚合物涂层、性能检测方法的选择》   由于铝合金建筑型材具有多种表面处理方式,而且又存在着大量的性能项目和试验方法,到底该选择何种表面处理方式,需要进行何种性能项目检测以及该选择何种试验方法进行评价,这些问题一直困扰着建筑工程师和铝合金建筑型材生产企业的技术人员,但目前还无相关的国家标准和其他权威技术资料以供使用,尽快制订《建筑用铝及铝合金表面阳极氧化膜及有机聚合物涂层、性能检测方法的选择》标准是十分必要的。   《铑化合物分析方法 第1部分:铑量的测定 硝酸六氨合钴重量法》   铑具有高熔点、高稳定性、高硬度和强耐蚀抗磨性等特性, 铑主要用作高质量科学仪器的防磨涂料和催化剂,而铑化合物在催化、电镀、有机合成制药、新能源的开发等方面有广泛的应用,铑化合物作为贵金属均相催化剂,已广泛用于氢甲酰化、加氢、羰基合成等重要的化工过程中。本项目的目的在于建立可靠的分析方法,准确测定铑化合物中的铑含量,为铑化合物产品的质量控制及其产品交易提供可靠的依据。   《区熔锗锭化学分析方法 第1部分 砷含量的测定 砷斑法》   区熔锗锭为锗的主要产品,世界产量每年大概在80吨左右,国内产量每年大概在60吨左右,其中约有70%左右,约42吨左右出口到美国、日本、比利时、德国等发达国家,国内最大的锗产品生产及供应商为云南临沧鑫圆锗业股份有限公司,其区熔锗锭的产销量占到了全国产销量的60%以上,其次为云南驰宏锌锗等8家公司在生产。随着锗材料应用领域的不断拓展,区熔锗锭的使用厂商要求生产单位提供区熔锗锭化学成分(杂质成分)检测数据,因此需要制定出相应的化学成分的检测方法标准。   《铜及铜合金软化温度的测定方法》   随着铜及铜合金产品在军工、航天航空、核电、船舶、冶金和高铁工业的广泛应用,特别是许多材料在高温环境下使用,材料在高温下的抗软化性能显得尤为重要。软化温度是指合金保温一小时后的硬度下降至原始硬度的80%时所对应的加热温度。软化温度的高低是评价合金材料抗高温软化性能的量化指标,目前国内外还没有测定铜及铜合金材料软化温度的方法,在高温下使用铜材的软化温度都是未知数 。因此有必要起草铜及铜合金软化温度的测定的国家标准。   《铅精矿化学分析方法 铊量测定 电感耦合等离子体原子发射光谱法》   《铜精矿化学分析方法 铊量的测定 电感耦合等离子体质谱法》   《锌精矿化学分析方法 铊量测定 电感耦合等离子体原子发射光谱法》   由于铊在自然界中含量很低,但对环境的污染和中毒的报道常有报道。随着科学技术的不断进步,近几年,铊被大量用于电子、化工、冶金、通讯等方面,具有很大的潜在危险。铊是一种稀散元素,以微量存在于铁、锌、铅等硫化物矿中,在冶炼过程中会产生废气、废水、废渣而进入环境,不可忽视。为对铊进行有效控制,建立矿物中铊的检测很有必要。   《铱化合物分析方法 第1部分:铱量的测定 硫酸亚铁电流滴定法》   铱的高熔点、高稳定性使其在很多特殊场合具有重要用途,新材料镀铱铼管用于国家航天军工事业,而铱化合物是重要的化工催化剂及制备其它铱试剂的原料。氯铱酸用于制造涂层电极,氯碱行业电解槽,也是重要的化工催化剂及铱试剂原料 三氯化铱是显示器的液显颜色材料 四氯化铱用于防腐涂料 Ir[Ⅲ]化合物是1-3-丁二烯的聚合催化剂,也是N2H4分解的催化剂,用于卫星姿态控制。本项目的目的在于建立可靠的分析方法,准确测定铱化合物中的铱含量,为铱化合物产品的质量控制及其产品交易提供可靠的依据。   《铱化合物分析方法 第2部分:银、金、铂、钯、铑、钌、等杂质元素的测定电感耦合等离子体发射光谱法》   铱化合物在催化行业中具有重要作用和广泛用途。铱化合物的纯度直接影响和制约产品的使用性能及加工工艺,国内已有多家单位生产。目前,铱化合物中无机杂质元素的测定没有统一的标准分析方法。为保证分析结果的准确和分析方法的标准化,制订电感耦合等离子体发射光谱法测定铱化合物中杂质元素是非常必要的。   《球墨铸铁件 超声波检测》   统一国内球墨铸铁件内部缺陷的检测方法,对铸件和检测仪器作出一些可探测要求的规定,同时对球墨铸铁缺陷的记录和评定也达成统一的认识。 适用大型球墨铸铁件(如风电类铸件)和小型球墨铁件(如压缩机类铸件)。 2014年第一批国家标准制修订计划之钢铁、有色金属检测标准修定
  • 多项光谱法将成为钢铁有色金属行业国家标准
    仪器信息网讯 2013年7月18日,国家标准委下达了2013年第一批国家标准制修订计划的通知。其中有关钢铁、有色金属检测方法制修订标准有35项,涉及的检测仪器包括火焰原子吸收光谱仪、ICP、ICP-MS、高频红外碳硫、分光光度计、试验机等。其中采用原子吸收光谱法的标准有8项,ICP法的有3项,XRF法1项,分光光度法4项。   在众多检测方法中,《海绵钛、钛及钛合金化学分析方法铜量的测定火焰原子吸收光谱法》修改了检测方法,引入原子吸收光谱法进行检测 《海绵钛、钛及钛合金化学分析方法铌量的测定5-Br-PADAP分光光度法及电感耦合等离子体发射光谱法》修改了检测方法,引入了ICP检测法。《含镍生铁 镍、钴、铬、铜、磷含量的测定 电感耦合等离子体原子发射光谱法》为初次制定,采用了ICP法 《纯铂化学分析方法钯、铑、铱、钌、金、银、铝、铋、铬铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体质谱法》为初次制定,采用了ICP-MS法,《硅铁 硅、锰、铝、钙、磷、钛、铬、铜、镍和铁含量的测定波长色散X-射线荧光光谱法(熔铸玻璃片法)》为初次制定,采用了波散XRF法。 《2013年第一批国家标准制修订计划的通知》中钢铁、有色金属行业检测标准 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 主管部门 归口单位 起草单位 铁矿石 铜含量的测定 火焰原子吸收光谱法 推荐 修订GB/T 6730.36-1986 ISO 5418-2:2006 2014 中国钢铁工业协会 全国铁矿石与直接还原铁标准化技术委员会 上海出入境检验检疫局、冶金工业信息标准研究院 海绵钛、钛及钛合金化学分析方法铜量的测定火焰原子吸收光谱法 推荐 修订 GB/T 4698.1-1996   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 西北有色金属研究院 锡精矿化学分析方法 第7部分:铋量的测定 火焰原子吸收光谱法 推荐 修订 GB/T 1819.7-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡精矿化学分析方法 第8部分:锌量的测定 火焰原子吸收光谱法 推荐 修订 GB/T 1819.8-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第10部分:镉量的测定 火焰原子吸收光谱法和EDTA滴定法 推荐修订 GB/T 10574.10-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第7部分: 银量的测定 火焰原子吸收光谱法和硫氰酸钾电位滴定法 推荐 修订 GB/T 10574.7-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第8部分:锌量的测定 火焰原子吸收光谱法推荐 修订 GB/T 10574.8-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第9部分:铝量的测定电热原子吸收光谱法 推荐 修订 GB/T 10574.9-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 含镍生铁 镍、钴、铬、铜、磷含量的测定 电感耦合等离子体原子发射光谱法推荐 制定     2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中钢集团吉林铁合金股份有限公司 海绵钛、钛及钛合金化学分析方法铌量的测定5-Br-PADAP分光光度法及电感耦合等离子体发射光谱法 推荐 修订 GB/T 4698.22-1996   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 西北有色金属研究院 锡铅焊料化学分析方法 第13锑、铋、铁、砷、铜、银、锌、铝、镉、磷、金量的测定 电感耦合等离子体原子发射光谱法 推荐 修订 GB/T 10574.13-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体质谱法 推荐 制定     2015 中国有色金属工业协会 全国有色金属标准化技术委员会 贵研铂业股份有限公司 硅铁 硅、锰、铝、钙、磷、钛、铬、铜、镍和铁含量的测定 波长色散X-射线荧光光谱法(熔铸玻璃片法) 推荐 制定     2014中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 邯钢 金属铬 磷含量的测定 铋磷钼蓝分光光度法 推荐 修订 GB/T 4702.3-1984   2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中信锦州金属股份有限公司等 海绵钛、钛及钛合金化学分析方法 硅量的测定 钼蓝分光光度法 推荐 修订 GB/T 4698.3-1996   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 西部金属材料股份有限公司 锡精矿化学分析方法第11部分:三氧化二铝量的测定 铬天青S分光光度法 推荐 修订 GB/T 1819.11-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第11部分:磷量的测定结晶紫-磷钒钼杂多酸分光光度法 推荐 修订 GB/T 10574.11-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡精矿化学分析方法 第10部分:硫量的测定 高频红外吸收法和碘酸钾滴定法 推荐 修订 GB/T 1819.10-2004   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 锡铅焊料化学分析方法 第12部分:硫量的测定 高频红外吸收光谱法 推荐 修订 GB/T 10574.12-2003   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南锡业股份有限公司 钽铌化学分析方法 氮量的测定 惰气熔融热导法 推荐 修订 GB/T 15076.13-1994   2015 中国有色金属工业协会 全国有色金属标准化技术委员会宁夏东方钽业股份有限公司 钢的硫印检验方法 推荐 修订 GB/T 4236-1984 ISO 4968:1979 2014 中国钢铁工业协会 全国钢标准化技术委员会 武汉钢铁(集团)公司、冶金工业信息标准研究院 钢管壁厚超声波检测方法 推荐 制定   EN10246-13:2007 2014 中国钢铁工业协会 全国钢标准化技术委员会 钢铁研究总院、冶金工业信息标准研究院 金属材料 高应变速率拉伸试验 第2部分:液压伺服与其他试验系统 推荐 制定   ISO 26203-2:2011 2014 中国钢铁工业协会 全国钢标准化技术委员会 宝山钢铁股份有限公司 金属材料 韦氏硬度试验 第1部分:试验方法 推荐 制定     2014 中国钢铁工业协会 全国钢标准化技术委员会 北京有色金属研究总院 金属材料 延性试验 泡沫金属的压缩试验方法 推荐 制定   ISO 13314:2011 2015 中国钢铁工业协会 全国钢标准化技术委员会 湖北出入境检验检疫局、武汉钢铁(集团)公司等 金属和合金的腐蚀 低铬铁素体不锈钢晶间腐蚀试验方法 推荐 制定     2015 中国钢铁工业协会 全国钢标准化技术委员会 宝钢不锈钢有限公司、冶金工业信息标准研究院 无缝和焊接铁磁性钢管(埋弧焊除外)自动全周向磁漏检测 推荐 修订 GB/T 12606-1999 ISO 10893-3:2011 2014 中国钢铁工业协会 全国钢标准化技术委员会 天津钢管集团股份有限公司、冶金工业信息标准研究院等 铬铁 氮含量的测定 中和滴定法 推荐 修订 GB/T 5687.4-1985   2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中钢集团吉林铁合金股份有限公司 金属铬 铬含量的测定 硫酸亚铁铵滴定法 推荐 修订 GB/T 4702.1-1997   2014 中国钢铁工业协会 全国生铁及铁合金标准化技术委员会 中信锦州金属股份有限公司等 铁矿石 全铁含量的测定 EDTA光度滴定法 推荐 制定     2014 中国钢铁工业协会全国铁矿石与直接还原铁标准化技术委员会 广东出入境检验检疫局、冶金工业信息标准研究院、宝山钢铁股份有限公司、中山大学 可渗透性烧结金属材料 透气度的测定 推荐 制定     2014 中国有色金属工业协会 全国有色金属标准化技术委员会 西安宝德粉末冶金有限责任公司 铝箔试验方法方法 第1部分:铝箔厚度的测定 称量法 推荐 修订 GB/T 22638.1-2008   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南浩鑫铝箔有限公司、厦门厦顺铝箔有限公司、华北铝业有限公司 铝箔试验方法方法 第2部分:针孔的检测 推荐 修订 GB/T 22638.2-2008   2015 中国有色金属工业协会 全国有色金属标准化技术委员会 云南浩鑫铝箔有限公司、厦门厦顺铝箔有限公司、华北铝业有限公司 铝箔试验方法方法 第3部分 铝箔的粘附性测定方法 推荐 修订 GB/T 22638.3-2008   2015 中国有色金属工业协会全国有色金属标准化技术委员会 云南浩鑫铝箔有限公司、西南铝业(集团)有限责任公司、华北铝业有限公司钛及钛合金化学成分分析取制样方法 推荐 制定     2014 中国有色金属工业协会 全国有色金属标准化技术委员会 宝钛集团有限公司、宝鸡钛业股份有限公司
  • 河北省金属学会发布《钢铁 酸溶硼含量的测定 电感耦合等离子体原子发射光谱法》等三项团体标准
    冀金字[2023]41号关于发布《钢铁 酸溶硼含量的测定 电感耦合等离子体原子发射光谱法》等三项团体标准的通知.pdf
  • 标准应对:GB/T39994-2021 《聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定》
    国家标准GB/T 39994-2021 《聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定》于2021年4月30日公开发布,2021年11月01日正式实施。 聚烯烃一般是作为耐腐蚀的比较轻的这种材料来进行应用的。聚烯烃管道材料主要有聚乙烯(PE)、聚丙烯(PP)、聚丁烯(PB)等,广泛应用于各行各业。 有关调研显示,2015年聚乙烯管道消费量达到550万吨,占聚烯烃管道产量的一半以上,但实际上市场对聚乙烯管道的原料消费量约330万吨,这意味着部分管道有可能使用非新生管道原料进行生产。而使用过的管材回收料和未使用过的管材专用料的物理性能存在巨大差异,使用这些原料制成管材在实际应用中会成为巨大的安全隐患,也将给整个塑料管道行业造成极其恶劣的社会影响,同时也给合规原材料生产商造成了无法估量的社会评价下降和经济损失。 该标准规定了聚烯烃管道及原料中铁、钙、镁、锌、钛、铜六种金属含量的测定方法,适用于各种聚烯烃管材、管件、阀门中六种金属含量的测定,也适用于混配料、回用料和回收料(再生料)中六种金属含量的测定。研究表明在聚烯烃管道原料或制品中添加回收料(再生料)会导致其铁、钙、镁、锌、钛、铜元素的含量发生明显变化,其中铁和钙元素的变化尤其明显。因此,对聚烯烃管道产品金属元素含量,尤其是铁和钙元素的含量进行测定,是甄别聚烯烃管道原料或制品中是否含有回收料(再生料)的一种有效途径。 标准中对于六种金属含量测定的方法有原子吸收法(AAS法)、电感耦合等离子体光谱法(ICP-OES法)、电感耦合等离子体质谱法(ICP-MS法),三种方法各有特点,客户可以根据样品量等情况进行选择。 岛津推荐仪器 ///特点:-高灵敏度、多元素同时检测-自动方法开发,自动智能结果判断-低运行成本消耗-操作简便,维护简单 岛津ICPMS-2030系列 典型应用实例 ICP-MS测定Ca、Fe等元素的时候,由于同质异位素、多原子离子等的干扰,岛津ICPMS-2030系列通过选择合适的质量数及碰撞气进行高效干扰消除。 岛津可以提供标准规定的三种测量方法所对应需要使用的仪器,其中ICPM-2030系列在应对大量样品、多元素同时分析及元素含量高、低均有的复杂样品方面具有其特有优势,非常适合于聚烯烃管道中六种金属元素的高效、高灵敏的常规分析。 本文内容非商业广告,仅供专业人士参考。
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—2008197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199
  • 544项推荐性国家标准公布 涉ICP、气相、离子色谱法等
    近日,中国国家标准化管理委员会公布《2022年第21号中国国家标准公告》,共544项推荐性国家标准和4项国家标准修改单。本次公布的中国国家标准涉及化工、材料、临床检测、化学、化工、环境、植物、食品等各个领域,检测方法涉及滴定法、红外吸收法、等离子体原子发射光谱法、γ能谱分析、辉光放电质谱法、气相色谱法、细胞计数法、透射电镜、二次离子质谱法、离子色谱法等。以下是部分与科学仪器及分析检测相关的标准:  纺织品 定量化学分析 第4部分:某些蛋白质纤维与某些其他纤维的混合物(次氯酸盐法),  炭黑 第29部分:溶剂可萃取物的测定,  锰铁、锰硅合金、氮化锰铁和金属锰 硫含量的测定 红外线吸收法和燃烧中和滴定法,  饲料中粗纤维的含量测定,  金精矿化学分析方法 第7部分:铁量的测定,  金精矿化学分析方法 第8部分:铁量的测定,  稀土金属及其氧化物中非稀土杂质化学分析方法 第1部分:碳、硫量的测定 高频-红外吸收法,  表面活性剂 工业烷烃磺酸盐 总烷烃磺酸盐含量的测定,  锆及锆合金化学分析方法 第26部分:合金及杂质元素的测定 电感耦合等离子体原子发射光谱法,  环境及生物样品中放射性核素的γ能谱分析方法,  塑料 差示扫描量热法(DSC) 第5部分: 特征反应曲线温度、时间,  反应焓和转化率的测定,  金矿石化学分析方法 第7部分:铁量的测定,  金矿石化学分析方法 第8部分:硫量的测定,  皮革和毛皮 化学试验 游离脂肪酸的测定,  纺织品 非织造布试验方法 第102部分:拉伸弹性的测定,  稀土铁合金化学分析方法 第1部分:稀土总量的测定,  稀土铁合金化学分析方法 第2部分:稀土杂质含量的测定 电感耦合等离子体发射光谱法,  稀土铁合金化学分析方法 第3部分:钙、镁、铝、镍、锰量的测 定 电感耦合等离子体发射光谱法,  稀土铁合金化学分析方法 第4部分:铁量的测定 重铬酸钾滴定法,  稀土铁合金化学分析方法 第5部分:氧含量的测定 脉冲-红外吸收法,  塑料 动态力学性能的测定 第11部分: 玻璃化转变温度,  金属锗化学分析方法 第3部分:痕量杂质元素的测定 辉光放电质谱法,  直接还原铁 金属铁含量的测定 溴-甲醇滴定法,  硫化橡胶或热塑性橡胶 硬度的测定 第7部分:邵氏硬度法测定胶辊的表观硬度,  硫化橡胶或热塑性橡胶 硬度的测定 第8部分:赵氏硬度(P&J)法测定胶辊的表观硬度,  塑料 环氧树脂 差示扫描量热法(DSC)测定交联环氧树脂交联度,  橡胶中镁含量的测定 原子吸收光谱法  生胶和硫化胶 用电感耦合等离子体发射光谱仪(ICP-OES)测定金属含量  橡胶 全硫含量的测定 离子色谱法  颗粒 激光粒度分析仪 技术要求  色漆和清漆 涂料中水分含量的测定 气相色谱法  摄影 冲洗废液 氨态氮含量的测定 (微扩散法)  摄影 冲洗废液 氨态氮总含量的测定 (微扩散凯氏氮法)  生物技术 细胞计数 第1部分:细胞计数方法通则  生物技术 核酸靶序列定量方法的性能评价要求 qPCR法和dPCR法  分子体外诊断检验 冷冻组织检验前过程的规范 第1部分:分离RNA  分子体外诊断检验 冷冻组织检验前过程的规范 第2部分:分离蛋白质  农产品中生氰糖苷的测定 液相色谱-串联质谱法  木薯叶片中黄酮醇的测定 高效液相色谱法  生橡胶 毛细管气相色谱测定残留单体和其他挥发性低分子量化合物 热脱附(动态顶空)法  皮革 化学试验 热老化条件下六价铬含量的测定  皮革 色牢度试验 耐汗渍色牢度  海洋石油勘探开发钻井泥浆和钻屑中铜、铅、锌、镉、铬的测定 微波消解-电感耦合等离子体质谱法  纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第1部分:分离RNA  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第2部分:分离蛋白质  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第3部分:分离DNA  纺织品 色牢度试验 耐摩擦色牢度 Gakushin法  表面活性剂 环氧丙烷聚合型表面活性剂中游离环氧丙烷的测定 气相色谱法  纳米技术 石墨烯粉体中金属杂质的测定 电感耦合等离子体质谱法  纳米技术 [60]/[70]富勒烯纯度的测定 高效液相色谱法  土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法  铬铒共掺钇钪镓石榴石晶体光学及激光性能测量方法  金属及其他无机覆盖层 热障涂层耐热循环与热冲击性能测试方法  金属及其他无机覆盖层 温度梯度下热障涂层热循环试验方法  锆化合物化学分析方法 钙、铪、钛、钠、铁、铬、镉、锌、锰、铜、镍、铅含量的测定 电感耦合等离子体原子发射光谱法  氮化铝材料中痕量元素(镁、镓)含量及分布的测定 二次离子质谱法  硬质合金 总碳量的测定 高频燃烧红外吸收法/热导法  氮化硅粉体中氟离子和氯离子含量的测定 离子色谱法  硫化橡胶 热拉伸应力的测定
  • 河北钢铁承钢氮化钒铁检化验标准填补国内空白
    9月23日,由全国生铁及铁合金标准化技术委员会授权河北钢铁集团承钢起草的氮化钒铁系列检化验行业标准顺利通过专家组审定,填补了国内行业相关领域的空白。  氮化钒铁是一种钢铁材料中微合金化的钒合金添加剂,性能优于钒铁和氮化钒,可广泛应用于高强度螺蚊钢筋、高强度管线钢、高强度型钢等产品生产。  氮化钒铁中主要元素的检测没有独立的分析标准,承钢技术人员在编制完成《氮化钒铁》国家标准的基础上,对氮化钒铁中钒、氮、氧、碳、硫、硅、锰、磷、铝等成分的检测方法进行深入的攻关、完善,形成了氮化钒铁系列9个检化验行业标准。  来自冶金工业信息标准研究院、北京钢铁研究总院、中国科学院等8家单位的26名专家,通过审定材料,听取标准起草编制工作汇报,对该标准的科学性、可操作性、知用性和先进性及标准文本结构的严密性、文字的流畅性等内容进行了严格审定,一致同意审定通过。  据悉,氮化钒铁系列检化验标准的制定,填补了国内行业相关领域的空白,为氮化钒铁的生产及评价产品的性能提供了标准依据,为打击伪劣产品,提升产品质量,推动产业升级和有序发展具有积极的促进作用。
  • 助推钢铁业高质量发展 | 钢中非金属夹杂物测定相关标准宣贯及研讨会成功召开
    8月18日、25日,由全国钢标准化技术委员会金相检验方法分技术委员会主办、北京欧波同光学技术有限公司承办的“钢中非金属夹杂物含量测定方法相关标准宣贯及技术研讨会”分别于上海和济南召开,以贯彻落实2023年2月实施的GB/T 30834-2022《钢中非金属夹杂物的评定和统计 扫描电镜法》和即将发布实施的GB/T10561-2023《钢中非金属夹杂物含量的测定 标准评级图显微检验法》两项标准,加强钢铁前沿检测技术交流,助推钢铁行业高质量发展。上海站会议现场济南站会议现场会议特别邀请宝武特种冶金有限公司高级主任师顾艳、首钢集团有限公司技术研究院主任研究员严春莲分别对两项标准进行宣贯和解读,东北大学冶金学院特殊钢冶研究所副所长李阳教授、宝钢研究院研保中心物理领域首席实验师邓照军、北京欧波同光学技术有限公司特聘专家/教授级高工宁玫、山东钢铁股份有限公司技术中心高级工程师孙雪娇就钢铁前沿检测技术进行研讨。欧波同集团董事长皮晓宇出席会议并致辞宝武特种冶金有限公司高级主任师顾艳GB/T 10561-2023《钢中非金属夹杂物含量的测定 标准评级图显微检验法》标准宣贯顾艳高级工程师对GB/T 10561-2023《钢中非金属夹杂物含量的测定 标准评级图显微检验法》标准进行宣贯,介绍了标准修订过程、修订原则、主要修订内容,以及标准存在的争议问题。2021年1月,根据国家标准化管理委员会国标委下达的项目计划,成立了起草小组,主要起草单位有宝武特种冶金有限公司 、冶金工业信息标准研究院、中科院金属研究所、首钢集团有限公司;2022年5月,通过了标准审定。标准主要修订内容包括术语和定义(非金属夹杂物、形态比、直径);原理(C类夹杂物、DS类夹杂物、非传统类夹杂物、析出相的评定、夹杂物评级界限值、夹杂物的计算公式、评级图片级别与夹杂物测定值的关系图、标准评级图谱等);取样方法;测定方法(观察方法、评定方法、A法和B法的通则等);结果表示(A法、B法)等。首钢集团有限公司技术研究院主任研究员严春莲GB/T 30834-2022《钢中非金属夹杂物的评定和统计 扫描电镜法》标准解读严春莲高级工程师从范围、术语、设备、方法原理、试样制备、试验步骤、检测结果、稀土RE/Pb/Bi夹杂物等多方面对GB/T 30834-2022《钢中非金属夹杂物的评定和统计 扫描电镜法》进行了详细解读,并重点介绍了夹杂物统计分析的参数设置(放大倍数、图像分辨率、图像驻留时间、检测面积、能谱采集时间、能谱分析方式、聚焦状态、电子束状态、最小颗粒尺寸、图像衬度、灰度阈值、视场重叠区等);夹杂物的三元相图绘制( 软件直接画图、数据处理后画图);夹杂物的相鉴定等内容。东北大学冶金学院特殊钢冶研究所副所长李阳教授报告主题:特殊钢中夹杂物的控制与检测李阳教授在报告中讲到,高品质特殊钢是未来发展方向,特殊钢一般用于制造各种机械零件,为满足装备制造业高速、重载、 精密、长寿的发展方向,其必须做到高洁净度、高均质化、高表面质量和长寿命。此外,李阳教授在报告中介绍了特殊钢棒线材的夹杂物控制要点,包括轴承钢的生产工艺关键与夹杂物控制、弹簧钢的生产工艺关键与夹杂物控制、齿轮钢的生产工艺关键与夹杂物控制;并讲述了Ca、Mg、RE处理特殊钢中夹杂物的产生、控制与检测,包括夹杂物检测技术的选择、OTS夹杂物自动分析电镜系统、Ca、Mg、RE处理后钢中夹杂物的全自动分析等内容。山东钢铁股份有限公司技术中心高级工程师孙雪娇报告主题:FIB分析技术在钢铁材料领域的应用孙雪娇高级工程师从双束显微镜原理及功能、在钢铁材料中的应用等方面展开介绍。山钢技术中心安装了赛默飞Helios 5 UX双束显微镜,并配备牛津能谱AZtecLive UltimMax100、牛津背散射电子衍射系统SymmetryS2 、三维重构系统 Avizo、原位形变样品台DDS-4、原位加热样品台等附件,该仪器具备高分辨场发射扫描电镜的所有功能,还可实现固体样品微纳结构制备及剖析,高质量TEM样品制备,三维状态分析以及离子束刻蚀、沉积等功能,同时可实现样品在加热、形变等状态下的实时观察,可应用海洋工程用钢、Cr-Mn-Ti系列齿轮钢、Cr-Mo齿轮钢、稀土处理特殊钢等检测,以及材料形变机制研究、微观组织变化研究等。北京欧波同光学技术有限公司特聘专家/教授级高工宁玫 出席济南站宝钢研究院研保中心物理领域首席实验师邓照军 出席上海站此外,会议期间,北京欧波同光学技术有限公司副总经理张国滨对欧波同公司以及欧波同在钢铁行业的系统解决方案进行了整体介绍,汇鸿智能科技(辽宁)有限公司工程师李超对自主研发的AI金相分析平台做了详细介绍。欧波同AI智能金相分析软件利用世界先进AI技术,批量照片素材给予机器学习,可自动对图像信息进行分析,并且可以进行人工干预提高准确率;结合自动化显微镜全自动分析,可通过操控显微镜自动寻找样品拍摄并进行AI自动分析,自动生成定制化报告,实现无人值守,高效检测。北京欧波同光学技术有限公司副总经理张国滨汇鸿智能科技(辽宁)有限公司工程师李超作为会议承办方,欧波同面向未来的总体战略,在进一步深化当前的国际战略合作伙伴关系,引进先进仪器设备和前沿技术,持续升级业务板块,完善技术服务的同时,还致力于通过智能化、定制化的实验室解决方案,服务国内广大用户,助力中国制造的飞速发展;另一方面,欧波同聚焦智能应用软件的自主研发,推动高端仪器与智能应用的深度融合,为我国高端工业制造领域的材料研发质控工作带来帮助。现场互动现场一隅上海、济南站宣贯及研讨的内容获得了参会代表的肯定和好评。据悉,接下来“钢中非金属夹杂物含量测定方法相关标准宣贯及技术研讨会”还将在鞍山、石家庄、武汉等地陆续举办,敬请期待!上海站合影留念济南站合影留念
  • 澳大利亚含磁铁玩具强制标准7月1日生效
    澳大利亚关于含有磁铁的儿童玩具的强制标准《消费者保护通报No.5含有磁铁的儿童玩具消费品安全标准》将于2010年7月1日正式生效。该强制性标准于2010年2月16日发布,主要采用了澳大利亚新西兰标准AS/NZS ISO 8124.1:2002玩具安全第1部分———机械和物理特性相关的安全方面,及其2号修订件(主要阐述了含危险性磁铁或磁铁部件的玩具的安全要求)。   含有细小强力磁铁是一种具有危害性的儿童玩具。儿童若吞下两片磁铁,或在不同时间分别吞下一片磁铁和一片或多片金属片,处在肠内不同区域的磁铁片就可能会隔过胃或肠内壁互相吸附在一起,压碎被夹住的内脏组织,阻止血液流通,酿成严重伤害,造成感染者死亡等事故。鉴于此,澳大利亚规定,自2010年7月1日开始,供应商应确保向澳大利亚提供的所有相关产品已经符合该强制性标准,否则将会被严厉罚款并召回产品。如果玩具含有松散的危险磁铁或磁性部件,其包装和说明书中应含有类似以下的声明:“警告!本产品含有小型磁铁。吞入体内的磁体可能在肠内相互吸附,导致严重感染甚至死亡。如果吞入或吸入磁铁,请立即就医。”此外,玩具中使用的磁铁应具有足够大的尺寸,以防止磁铁被吞入儿童口中。   本强制性标准适用于供14岁以下儿童玩耍的含有磁铁的产品,涉及含有磁铁的积木玩具、装饰玩具、磁铁套装玩具等,但不适用于下列产品:运动物品、露营产品、自行车、家用和公共运动场所设备、蹦床、电子游戏件、由燃气或蒸汽发动机供能的模型以及时尚珠宝。   统计数据显示,2009年宁波地区出口至澳大利亚的玩具总值近700万美元,其中不少为含有磁铁的儿童玩具,这使出口企业面临严峻的挑战。检验检疫部门提醒生产或出口此类玩具的企业:应加强对最新玩具法规和标准信息的了解,重视安全生产管理,严格按照欧美等发达国家和地区的强制性标准进行生产,加强冲击测试或使用周期测试,保证磁铁不会掉落,以保障儿童的安全。
  • 建筑用钢强制标准将洗牌钢铁业
    一位知情人士透露,作为年初出台的钢铁振兴规划的补充细则,钢铁行业准入条件、联合重组指导意见及建筑用钢强制标准三个方面将有规范。   其中,建筑用钢强制标准将可能淘汰强度400兆帕以下的钢筋,推广3级以上的螺纹钢。据上述知情人士表示,早在汶川地震后推广工作就已开始。   对此,攀钢集团成都钢铁有限责任公司市场管理部部长何忠语表示,新的强制标准出台将洗牌钢铁产品的“乱局”。据他介绍,其企业所在地中小钢企生产的钢铁产品市场占有率约有30%,但一些小钢企生产的产品规格较低,而且产能落后,这些产品给成都钢铁的销售带来了压力和冲击。“如果标准进行强制执行,将会直接淘汰这些落后产能,重塑市场作用明显。”   据了解,成都钢铁主要生产强度355-400兆帕的二三级螺纹钢和强度500兆帕的4级螺纹钢。其中3级螺纹钢占公司产量的55%,2级螺纹钢占45%,4级钢由于刚刚拿到生产许可证,还未投产。   也就是说,如果强制执行标准,将有45%的产能被淘汰。但何忠语并不担忧,“淘汰1级和2级螺纹钢是趋势,虽然有所影响,但相比对小钢企的冲击,这些产能的消失并不可怕”。他说,成都钢铁在生产方面已具备上一层次的能力,特别是4级螺纹钢已经拿到了生产许可证,应对新标准没有任何问题。   而一位不愿透露姓名的业内人士则表示,现在建筑用钢还有很多采用2级螺纹钢,如果强行更换标准,将大幅增加建筑成本,或将影响房地产行业。   中国钢铁工业协会发展与科学环境部吕卫表示,现在低于3级的钢筋还被大量应用,但从建筑层面来讲,这些低级钢筋直接影响建筑的质量安全,应该被强制淘汰。   其实,早在数月前,发改委就下发了抑制产能过剩的38号文,其中对钢铁业进行了引导规范,指出将尽快完善建筑用钢标准及设计规范,加快淘汰强度335兆帕以下热轧带肋钢筋,推广强度400兆帕及以上钢筋,促进建筑钢材升级换代。2011年底前,坚决淘汰400立方米及以下高炉、30吨及以下转炉和电炉,碳钢企业吨钢综合能耗应低于620千克标准煤,吨钢耗用新水量低于5吨,吨钢烟粉尘排放量低于1千克,吨钢二氧化硫排放量低于1.8千克,二次能源基本实现100%回收利用。
  • 青海省标准化协会公开征求《工业氯化钙中钠镁 钾含量的测定电感耦合等离子体原子发射光谱法》等3项团体标准意见
    各相关单位及专家:按照青海省标准化协会团体标准工作程序,标准起草单位已完成《工业氯化钙中钠镁钾含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》《工业盐中钙、镁、铁、钾、铝、钡、锶、锰、铅和镍含量的测定电感耦合等离子体原子发射光谱法》3 项团体标准征求意见稿,根据《青海标准化协会团体标准管理办法》的要求,现在网上公开征求意见,欢迎提出宝贵意见。征求意见截止时间为2023年11月15日,请您在截止日期之前将您的意见反馈至青海标准化协会。协会联系方式协会秘书处:刘伟朝:18297212652、韩建华:13909712796协会邮箱:qhsbzhxh@163.com意见征求涵15.pdf工业氯化钙中钠镁钾含量的测定-文本.pdf附件2:意见反馈表.doc硫酸钾镁肥中钙镁钠含量的测定-文本.pdf工业盐中10种金属离子含量的测定 -文本.pdf
  • 马来西亚下月开始实施钢铁进口检测标准
    国际贸易及工业部副部长拿督耶谷沙岸9月4日表示,为确保进口的钢铁符合品质标准,马来西亚将于10月13日实行进口钢铁标准检测措施,规定钢铁进口商须取得马来西亚规格及工业研究局批准的证书方可进口。这项措施将在马来西亚的古晋、民都鲁、巴生港、柔佛、亚庇及槟城海港实行,各港口已设立了钢铁检测实验室,避免因进口程序上的延误增加进口商的成本压力。
  • 中国计量测试学会发布《铜(铁)分析仪校准方法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由河北中测计量检测有限公司等单位牵头起草的《铜(铁)分析仪校准方法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年4月26日前将《征求意见反馈表》反馈至以下联系方式。联系人:周建林 电 话:13630813838地 址:石家庄市红旗大街 333 号河北工院大学科技园邮编:050051 电子邮箱:9570407@qq.c om附件3 征求意见反馈表.doc附件2 《铜(铁)分析仪校准方法》编制说明.pdf附件1 《铜(铁)分析仪校准方法》征求意见稿.pdf
  • 37项行业标准报批公示 涉光谱/离子色谱
    p   根据工业和信息化部行业标准制修订计划,相关标准化技术组织等单位已完成《氟硅酸钠生产废液处理处置方法》等7项化工行业标准、《发酵酒精单位产品能源消耗限额》等2项轻工行业标准、《变形铝及铝合金单位产品能源消耗限额 第1部分:铸造锭》等28项有色行业标准的制修订工作。 /p p   在以上37项行业标准批准发布之前,为进一步听取社会各界意见,特予以公示,截止日期2017年6月17日。 /p p   以上标准报批稿请登录《标准网》(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。 /p p   公示时间:2017年5月17日—2017年6月17日 /p p   附件:37项行业标准名称及主要内容 /p p style=" text-align: right "   工业和信息化部科技司 /p p style=" text-align: right "   2017年5月17日 /p p style=" text-align: center " strong 37项行业标准名称及主要内容 /strong /p table width=" 600" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr class=" firstRow" td width=" 30" p style=" text-align:center " strong 序 /strong br/ & nbsp & nbsp & nbsp strong 号 /strong /p /td td width=" 127" p style=" text-align:center " strong 标准编号 /strong /p /td td width=" 172" p style=" text-align:center " strong 标准名称 /strong /p /td td width=" 434" p style=" text-align:center " strong 标准主要内容 /strong /p /td td width=" 123" p style=" text-align:center " strong 代替标准 /strong /p /td /tr tr td colspan=" 5" width=" 886" valign=" top" p style=" text-align:left " strong 化工行业 /strong /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5206-2017 /p /td td width=" 172" valign=" top" p 氟硅酸钠生产废液处理处置方法 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了氟硅酸钠生产废液的来源、氟硅酸钠生产废液的主要成分及含量、处理处置方法、环境保护要求。 br/ & nbsp & nbsp & nbsp 本标准适用于磷肥副产氟硅酸钠生产过程中产生的废液。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5207-2017 /p /td td width=" 172" valign=" top" p 化学镀镍废液处理处置方法 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了化学镀镍废液处理处置的术语和定义、处理处置方法、环境保护与安全。 br/ & nbsp & nbsp & nbsp 本标准适用于化学镀镍废液的处理处置。化学镀镍生产中因存放、被污染等原因失效或者废弃使用的镀镍液的处理处置参考适用。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5208-2017 /p /td td width=" 172" valign=" top" p 黄磷生产废渣处理处置方法 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了黄磷生产废渣处理处置方法的术语和定义、黄磷生产废渣的组成、处理处置方法和环境保护。 br/ & nbsp & nbsp & nbsp 本标准适用于电炉法黄磷生产废渣的处理处置。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5209-2017 /p /td td width=" 172" valign=" top" p 黄磷生产尾气处理处置方法 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了黄磷生产过程中产生的尾气处理处置方法的术语和定义、黄磷尾气处理处置、环保要求。 br/ & nbsp & nbsp & nbsp 本标准适用于电炉法黄磷生产过程产生的黄磷尾气的处理处置方法。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5169-2017 /p /td td width=" 172" valign=" top" p 离子交换技术处理重金属废水技术规范 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了离子交换技术处理重金属废水系统的术语和定义、污染物与污染负荷、总体要求、工艺设计、主要工艺设备和材料、检测与过程控制、劳动安全与职业卫生,以及运行与维护。 br/ & nbsp & nbsp & nbsp 本标准适用于离子交换技术处理阳离子态重金属废水,特别是经过适当的化学处理后仍未达到排放标准的废水,可作为环境影响评价、环境保护设施设计与施工、环境建设项目验收和运行管理的技术依据。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5218-2017 /p /td td width=" 172" valign=" top" p 氟硅酸铵单位产品能源消耗限额及计算方法 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了氟硅酸铵单位产品能源消耗的术语和定义、能耗限额要求、统计范围及统计方法、计算方法、节能管理与措施。 br/ & nbsp & nbsp & nbsp 本标准适用于以含氟废气生产氟硅酸铵的企业进行单位产品能耗的计算、控制与考核、以及新建项目的能耗控制。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p HG/T & nbsp & nbsp 5219-2017 /p /td td width=" 172" valign=" top" p 碳酸钾单位产品能源消耗限额及计算方法 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了转窑炉煅烧法和流化床法生产的碳酸钾单位产品能源消耗限额的术语和定义、技术要求、统计范围和计算方法、节能管理与措施。 br/ & nbsp & nbsp & nbsp 本标准适用于转窑炉煅烧法和流化床法碳酸钾生产企业能耗的计算、控制和考核。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td colspan=" 5" width=" 886" valign=" top" p strong 轻工行业 /strong /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p QB/T & nbsp & nbsp 5161-2017 /p /td td width=" 172" valign=" top" p 发酵酒精单位产品能源消耗限额 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了发酵酒精单位产品能源消耗限额的术语和定义、技术要求、统计范围、计算方法和节能管理与措施。 br/ & nbsp & nbsp & nbsp 本标准适用于发酵酒精生产企业进行能耗的计算、考核以及对新建项目的能耗控制。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p QB/T & nbsp & nbsp 5042-2017 /p /td td width=" 172" valign=" top" p 聚氨酯合成革绿色工艺技术要求 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了聚氨酯合成革清洁生产技术过程的分极、要求、数据采集和计算方法。 br/ & nbsp & nbsp & nbsp 本标准适用于采用干法、湿法、后处理生产工艺制合成革企业清洁生产工艺的设计和实施。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td colspan=" 5" width=" 886" valign=" top" p strong 有色行业 /strong /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 694.1-2017 /p /td td width=" 172" valign=" top" p 变形铝及铝合金单位产品能源消耗限额& nbsp 第1部分:铸造锭 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本部分规定了变形铝及铝合金铸造锭单位产品能源消耗限额的技术要求、计算原则、计算范围、计算方法和节能管理与措施。 br/ & nbsp & nbsp & nbsp 本部分适用于采用重熔用铝锭、铝液及废料作为原料生产变形铝及铝合金铸造锭生产企业单位产品能耗的计算和考核,以及对新建项目的能耗控制。 /p /td td width=" 123" valign=" top" p YS/T & nbsp & nbsp 694.1-2009 /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 694.2-2017 /p /td td width=" 172" valign=" top" p 变形铝及铝合金单位产品能源消耗限额& nbsp 第2部分:板、带材 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本部分规定了变形铝及铝合金板、带材单位产品能源消耗限额的技术要求、计算原则、计算范围、计算方法和节能管理与措施。 br/ & nbsp & nbsp & nbsp 本部分适用于变形铝及铝合金板、带材生产企业单位产品能耗的计算、考核,以及对新建项目的能耗控制。 /p /td td width=" 123" valign=" top" p YS/T & nbsp & nbsp 694.2-2009 /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 694.3-2017 /p /td td width=" 172" valign=" top" p 变形铝及铝合金单位产品能源消耗限额& nbsp 第3部分:箔材 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本部分规定了变形铝及铝合金箔材单位产品能源消耗限额的技术要求、计算原则、计算范围、计算方法和节能管理与措施。 br/ & nbsp & nbsp & nbsp 本部分适用于铝箔生产企业单位产品能耗的计算、考核,以及对新建项目的能耗控制。 /p /td td width=" 123" valign=" top" p YS/T & nbsp & nbsp 694.3-2009 /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 694.4-2017 /p /td td width=" 172" valign=" top" p 变形铝及铝合金单位产品能源消耗限额& nbsp 第4部分:挤压型材、管材 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本部分规定了一般工业用变形铝及铝合金挤压型材、管材单位产品能源消耗限额的要求、计算原则、计算范围及计算方法和节能管理与措施。 br/ & nbsp & nbsp & nbsp 本部分适用于一般工业用变形铝及铝合金挤压型材、管材生产企业单位产品能耗的计算、考核,以及对新建项目的能耗控制。 /p /td td width=" 123" valign=" top" p YS/T & nbsp & nbsp 694.4-2012 /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1169-2017 /p /td td width=" 172" valign=" top" p 再生铅生产废水处理回用技术规范 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了再生铅企业生产废水处理技术要求与回用原则,不包括再生铅企业的生活污水。 br/ & nbsp & nbsp & nbsp 本标准适用于除铅精矿以外所有以含铅废料为原料的再生铅生产废水处理与回用。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1170-2017 /p /td td width=" 172" valign=" top" p 再生铅生产废气处理技术规范 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了再生铅企业生产废气的治理、设计、施工、验收和运行的技术要求。 br/ & nbsp & nbsp & nbsp 本标准适用于除铅精矿以外所有含铅废料为原料的再生铅生产过程中所产生的生产废气治理工程,可作为再生铅企业建设项目环境影响评价、工程咨询、设计、施工、设备安装、调试、环境保护验收及建成后运行与管理的技术依据。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.1-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第1部分:锌量的测定& nbsp Na2EDTA滴定法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中锌量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中锌量的测定。测定范围:10.00%~90.00%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.2-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第2部分:铅量的测定& nbsp 原子吸收光谱法和Na2EDTA滴定法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中铅量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中铅量的测定。方法1测定范围:0.10%~5.00%;方法2测定范围:>5.00%~20.00%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.3-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第3部分:铜、铅、铁、铟、镉、砷、钙和铝量的测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中铜、铅、铁、铟、镉、砷、钙和铝量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中铜、铅、铁、铟、镉、砷、钙和铝量的测定。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.4-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第4部分:氟量的测定& nbsp 离子选择电极法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中氟量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中氟量的测定。测定范围:0.050%~1.50%。本部分为仲裁方法。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.5-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第5部分:氟量和氯量的测定& nbsp 离子色谱法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中氟量和氯量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中氟量和氯量的测定。测定范围:氟0.010%~1.00%,氯0.050%~5.00%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.6-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第6部分:铁量的测定& nbsp Na2EDTA滴定法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中铁量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中铁量的测定。测定范围:5.00%~35.00%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.7-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第7部分:砷量和锑量的测定& nbsp 原子荧光光谱法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中砷量和锑量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中砷量和锑量的测定。测定范围:砷0.0010%~0.25%,锑0.0010%~0.25%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.8-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第8部分:汞量的测定& nbsp 原子荧光光谱法和冷原子吸收光谱法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中汞量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中汞量的测定。测定范围:0.00010%~0.060%。本部分方法1为仲裁方法。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.9-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第9部分:镉量的测定& nbsp 原子吸收光谱法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中镉量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中镉量的测定。测定范围:0.010%~0.80%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1171.10-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 再生锌原料化学分析方法& nbsp 第10部分:氧化锌量的测定& nbsp Na2EDTA滴定法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了再生锌原料中氧化锌量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰、粗制氧化锌、烟道灰、瓦斯泥/灰、含锌烟尘、含锌物料,不包括废锌电池、废涂层)中氧化锌量的测定,此氧化锌量指氯化铵-氨水浸出锌量减去水溶性锌量得到的锌量,以氧化锌计。测定范围:15.00%~85.00%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1172-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 冶炼用铜废料取制样方法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本标准规定了冶炼用铜废料的取样、制样程序及方法。 br/ & nbsp & nbsp & nbsp 本标准适用于冶炼用铜废料化学成分检测用试样的采取和制备。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1173-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 冶炼用铜废料化学分析方法 烧失量的测定 & nbsp & nbsp 称量法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本标准规定了重量法测定冶炼用铜废料烧失量。 br/ & nbsp & nbsp & nbsp 本标准适用于冶炼用铜废料中烧失量的测定。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1174-2017 /p /td td width=" 172" valign=" top" p 废旧电池破碎分选回收技术规范 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了废旧锂离子电池和镍氢电池破碎分选回收处理过程的术语和定义、总体要求、破碎分选、安全环保要求。 br/ & nbsp & nbsp & nbsp 本标准适用于湿法冶炼处理废旧锂离子电池和镍氢电池(包括废旧小型电池、动力蓄电池包、蓄电池模块、单体电池)的破碎分选。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1175-2017 /p /td td width=" 172" valign=" top" p 废旧铅酸蓄电池自动分选金属技术规范 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了废铅酸蓄电池自动分选的总体要求、技术要求、安全要求和环境保护要求。 br/ & nbsp & nbsp & nbsp 本标准适用于采用机械破碎和水力分选工艺处置废铅酸蓄电池的回收企业。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1176-2017 /p /td td width=" 172" valign=" top" p 重有色冶金炉窑热平衡测定与计算方法(铜底吹炉) /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了铜底吹炉热平衡测定与计算基准、设备概况与生产工艺流程、热平衡测定条件、热平衡测定项目与方法、物料平衡、热平衡、主要能耗指标、热平衡测定结果分析与改进方法。 br/ & nbsp & nbsp & nbsp 本标准适用于铜底吹炉的热平衡测定和计算。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1177-2017 /p /td td width=" 172" valign=" top" p 铝渣 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了炼钢脱氧用铝渣的分类、技术要求、试验方法与检验规则、包装、运输和质量证明书等内容。 br/ & nbsp & nbsp & nbsp 本标准适用于铝生产加工、铝电解、铝再生熔炼等领域产生的铝渣。 /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1178-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 铝渣物相分析X射线衍射法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本标准规定了X射线衍射法分析炼钢脱氧用铝渣物相的方法。 br/ & nbsp & nbsp & nbsp 本标准适用于铝渣的物相分析。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1179.1-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 铝渣化学分析方法& nbsp 第1部分:氟含量的测定& nbsp 离子选择电极法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了炼钢脱氧用铝渣中氟含量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于铝渣中氟含量的测定,测定范围(质量分数):0.10%~3.50%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1179.2-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 铝渣化学分析方法& nbsp 第2部分:金属铝含量的测定& nbsp 气体容量法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了炼钢脱氧用铝渣中金属铝含量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于铝渣中金属铝含量的测定,测定范围(质量分数):5.00%~35.00%。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1179.3-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 铝渣化学分析方法& nbsp 第3部分:碳、氮含量的测定 & nbsp & nbsp 元素分析仪法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了炼钢脱氧用铝渣中碳、氮含量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于铝渣中碳、氮含量的测定。 /span /p /td td width=" 123" valign=" top" p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p span style=" color: rgb(255, 0, 0) " & nbsp /span /p /li /ol /td td width=" 127" valign=" top" p span style=" color: rgb(255, 0, 0) " YS/T & nbsp & nbsp 1179.4-2017 /span /p /td td width=" 172" valign=" top" p span style=" color: rgb(255, 0, 0) " 铝渣化学分析方法& nbsp 第4部分:硅、镁、钙含量的测定 & nbsp & nbsp 电感耦合等离子体发射光谱法 /span /p /td td width=" 434" valign=" top" p span style=" color: rgb(255, 0, 0) " & nbsp & nbsp & nbsp 本部分规定了炼钢脱氧用铝渣中硅、镁、钙含量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于铝渣中硅、镁、钙含量的测定。 /span /p /td td width=" 123" valign=" top" span style=" color: rgb(255, 0, 0) " /span p   /p /td /tr tr td width=" 30" valign=" top" ol class=" list-paddingleft-2" li p /p /li /ol /td td width=" 127" valign=" top" p YS/T & nbsp & nbsp 1180-2017 /p /td td width=" 172" valign=" top" p 锗精矿单位产品能源消耗限额 /p /td td width=" 434" valign=" top" p & nbsp & nbsp & nbsp 本标准规定了锗精矿单位产品能源消耗限额的要求、统计范围、计算方法、计算范围、节能管理与措施等。 br/ & nbsp & nbsp & nbsp 本标准适用于以含锗褐煤、煤渣(灰)为原料生产锗精矿的单位产品能耗的计算、考核,以及对新建项目的能耗控制。 /p /td td style=" word-break: break-all " width=" 123" valign=" top" p   /p /td /tr /tbody /table
  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 钢研纳克获批设立钢铁新材料领域国家标准验证点
    近日,国家标准化管理委员会批准钢研纳克检测技术股份有限公司设立钢铁新材料领域标准验证点。标准在助推我国高质量发展转型过程中的基础性、战略性和引领性作用日益凸显,标准化在我国现代产业体系发展中的支撑和引领作用不言而喻,其中标准的质量至关重要。开展标准验证工作,对标准关键内容的科学性、合理性、先进性、正确性、适用性等进行评价,不仅可以提高标准的质量,为深化标准化工作改革提供技术支持,更有利于提升标准化对产业发展的科技支撑水平。标准验证点的设立正是集合特色领域的资源服务国家重大战略、重大工程、国民经济重要行业、新兴产业和重点项目的标准化发展。NCS CHINA随着材料发展进入数据驱动的高速阶段,钢铁新材料的新产品和新方法的大量涌现,带来标准质量的潜在风险,钢铁新材料领域的标准化需求日益旺盛。建立钢铁新材料领域标准验证点旨在钢铁新材料领域实现资源整合提升标准化科技支撑力量,未来将通过建立标准验证技术体系、建立协同高效工作机制、实施标准验证提升标准质量、融通验证资源创新市场服务、推动验证技术国际交流合作等工作规划推进待验证标准涉及到的产品研发、生产工艺、技术指标、服役应用的适用性和质量提升,实现其全产业链、全流程、全生命周期、全域的标准化技术路径,用标准化、可靠数据支撑新的标准验证体系,实现钢铁新材料领域标准的高质量发展,助力中国钢铁新材料领域与标准验证相关的科研创新成果的有效转化。
  • 宝钢制订钢铁表面纳米尺度薄膜国家标准
    日前,由宝钢股份研究院负责起草的国家标准《辉光放电光谱法定量分析钢铁表面纳米尺度薄膜》,通过了全国微束分析标准化技术委员会的评审。评审专家还建议,鉴于该标准在国际上亦属首次提出,可在适当时候转化为国际标准。   对钢铁表面进行涂镀处理,是目前提高钢铁产品抗腐蚀性能的主要途径,如镀锌、彩涂产品等。随着涂镀工艺的发展,真空镀膜、闪镀等新的表面处理技术可以使薄膜厚度减薄至几百个到几个纳米,不仅降低了生产成本,而且减少了环境污染。但是,如何准确控制和分析纳米尺度薄膜的厚度及成分,国际上一直没有统一标准。   宝钢从2003年开始对纳米尺度薄膜的表征技术展开深入研究,并在国内冶金行业率先应用辉光放电光谱法,积累了丰富的经验。2007年,国家标准委下达了制订《辉光放电光谱法分析钢铁表面纳米尺度薄膜》国家标准的计划。宝钢因在这一领域起步较早,并已具备较强研发实力,理所当然地承担起了该标准的起草工作。   为做好标准的起草工作,宝钢研究院进行了大量的准确度和精密度试验,并与近20家高等院校、科研院所和钢铁同行开展了技术交流,最终完成了标准起草工作,并顺利通过国家评审。
  • 《钢铁行业智能制造标准体系建设指南(2023版)》征求意见
    近日,工业和信息化部组织有关单位编制完成了《钢铁行业智能制造标准体系建设指南(2023版)》(征求意见稿),公开征求社会各界意见。征求意见稿提出,到2025年,建立较为完善的钢铁行业智能制造标准体系,累计研制45项以上钢铁行业智能制造领域标准,基本覆盖基础共性和装备层、车间层、工厂层、企业层、产业链协同层等各层级标准,优先制定基础共性标准以及绿色低碳、产品质量、生产安全等关键应用场景标准,突出标准在先进制造技术与新一代信息技术相互融合和迭代提升过程中的引导作用,积极参与国际标准研制,为世界钢铁工业可持续发展做出中国贡献。如有意见或建议,请填写《征求意见反馈信息表》发送至 KJBZ@miit.gov.cn (邮件主题注明:钢铁行业智能制造标准体系建设指南征求意见反馈)。时间:2023年5月23日-2023年6月23日;电话:010-68205261。附件:1. 钢铁行业智能制造标准体系建设指南(2023版)(征求意见稿).docx2. 征求意见反馈信息表.doc
  • 井水变色续:初步检测铁、锰离子含量较高
    3月10日、12日眉山日报 连续报道了东坡区秦家镇新星村村民家中的井水出现了变色的奇特现象,引起了社会和相关部门的高度关注,村民家的井水到底是出了什么问题呢?   调查517户   246户存在饮水困难   3月13、14日,市国土资源局东坡区分局和东坡区水务局、环保局、疾控中心、秦家镇工作人员和915地质队专家等组成的专家调查组对秦家镇农户反映的饮用水、井水水质变差情况进行了现场调查。调查组在调查中发现该片区并无涉水企业,也无规模化畜禽养殖场,但有50%左右水井里的水刚抽起来很清亮,但隔一段时间就会变成铁锈红色,并附有沉淀物,特别是井水遇到像茶水、洗衣粉之类的就极易变成黑色。   调查组调查了该片区的农户517户,1809人,调查结果显示,其中水质有问题并影响生活用水的246户,涉及秦家镇新星村4、5、6、7、8五个组。调查组还发现,凡是水井深在15米以上的都可能有铁、锰超标的现象,而且都是近两年由于地下水位低、农户加深水井后才出现的。   铁、锰离子超标   暴气处理或沙缸过滤有一定效果   3月15日,记者在东坡区水务局看到一份名为《眉山市国土资源局东坡区分局关于东坡区秦家镇邓天文等农户水井水质情况调查》的函,在函上,相关部门得出的结论是:邓天文等农户小型机井取水的主要含水层是古岷江阶地下部沙砾卵石层中的地下水,该地层岩性中含有大量的铁、锰元素,故导致存在沙砾卵石层中地下水的铁、锰离子含量较高。当地下水抽至地表后,地下水中的铁离子由低价铁变成高价铁,导致地下水变成红色,这种含铁离子较高的地下水和茶水、洗衣粉等产生化学反应使水的颜色变得更深。   “村民水井以前没有加深前,尚未触及到这个层面,水井加深后,触及到含铁、锰离子较高的层面,水中铁、锰离子等必然增加,经过初步检测,铁、锰离子都超标,铁离子超标约为20倍,锰离子超标约为3倍。”东坡区水务局介绍,目前只是检测到铁、锰两项指标,其它指标要等疾控中心进行进一步检测。“可能在16号会出来一些指标。”   水务局相关负责人介绍,长期饮水铁、锰离子含量较高的地下水,会影响人的身体健康,建议村民互相帮助,到没有水质的井水抽水喝,或是对抽出的地下水进行暴气处理或用沙缸等过滤,这样可有效降低铁、锰离子含量从而改善水质。   “现在是枯水期,等到汛期来时,这种状况将好转。”这位负责人还表示,目前,他们正在向上积极争取项目,争取在万胜镇建一个大型水厂,到时将会覆盖到秦家片区,村民喝水难的问题将得到大幅度解决。
  • 卫生部拟废止食品中锌铜铁限量卫生标准
    根据《食品安全法》和国务院办公厅《食品安全整顿工作方案》要求,卫生部组织开展了食品中污染物安全标准修订工作。经研究并参考国际食品法典标准,拟不再将锌、铜、铁作为污染物指标,拟废止《食品中锌限量卫生标准》(GB13106-91)、《食品中铜限量卫生标准》(GB15199-94)、《食品中铁限量卫生标准》(GB15200-94)三项标准。现公开征求意见,请于2010年7月4日前按以下方式反馈意见:传真010-67711813或电子信箱food204@163.com。
  • 浅谈现有锂离子电池检测标准
    p   由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。 /p p    strong 1 电池安全性能检测标准简介 /strong /p p   目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。 /p p   应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3) /p p   和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。 /p p   目前,国内外常用的锂离子电池标准列表归纳于表1。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p    strong 2 现有标准的侧重点分析 /strong /p p   现行的主要标准可概括为以下几类: /p p    strong 2.1 主要针对运输过程中的外部环境和机械振动 /strong /p p   如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。 /p p    strong 2.2 主要针对设计和制造过程 /strong /p p   如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。 /p p    strong 2.3 主要针对锂离子电池电性能和安全性 /strong /p p   如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。 /p p    strong 3 现有标准的不足 /strong /p p   过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。 /p p   根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。 /p p   迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。 /p p   在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。 /p p    strong 4 结束语 /strong br/ /p p   安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。 /p p   随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局) /i /span /p
  • 2023离子色谱标准解读上:从国标看IC新的市场机会
    仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。敬请期待!!!(点击可查看会议议程及报名方式)。离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境、化工、能源、生物、医药、食品、化妆品等领域;同时,与MS、AFS的联用技术等也丰富了离子色谱的应用领域,开发了一系列具有实用性的分析方法。(点击进入离子色谱专场)1983年,中国核工业第五研究所刘开禄研究员带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1。经过40年的发展,我国离子色谱行业已经步入高质量发展阶段。2018年6月7日,国家标准GB/T 36240-2018 离子色谱仪发布。该标准规定了离子色谱仪的要求、试验方法、检验规则和标志、包装、运输和贮存等,适用于所有的离子色谱仪,包括电导检测器、紫外-可见光检测器和电化学检测器。该标准为离子色谱仪的生产、检测和使用提供了统一的要求和规范,有助于提高产品的质量和可靠性,减少不同厂家、不同品牌之间的差异和矛盾,进一步规范了离子色谱仪的市场。近些年来,离子色谱方法标准也在持续完善中。据不完全统计,离子色谱近5年发布国家标准19项,行业标准35项。这些标准主要涉及石油化工、冶金、环保/水工业、矿业/地质、农业、食品、公共安全、电子/电气、卫生/医药等行业。详细的行业分布如下图。一、国标:新增了多项检测指标2023年3月17日,国家市场监督管理总局(国家标准化管理委员会)批准发布《GB/T 5750-2023生活饮用水标准检验方法》(以下简称“饮用水检验新标”),代替GB/T 5750-2006《生活饮用水标准检验方法》,自2023年10月1日起实施。1985年首次发布为GB/T 5750—1985,2006年第一次修订为GB/T 5750.1~GB/T 5750.13—2006,本次为第二次修订。饮用水检验新标作为生活饮用水检验技术的推荐性国家标准,与GB 5749-2022《生活饮用水卫生标准》配套,是GB 5749-2022的重要技术支撑,为贯彻实施GB 5749-2022、开展生活饮用水卫生安全性评价提供检验方法。该标准新增了多项离子色谱检测指标,其中无机非金属指标部分增加高氯酸盐指标;有机物指标丙烯酸新增离子色谱检测方法;农药指标草甘膦新增离子色谱检测方法;消毒副产物指标一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸新增离子色谱检测方法,进一步扩大了离子色谱行业的应用范围。二、离子色谱新的市场机会(1)对于供水行业,2023版GB/T 5750的实施带来了水质分析工作全流程要求更加规范、实现新增指标的方法全覆盖的时间窗口期短且要求高、新增高效检测方法对水源水检测覆盖不足等挑战。供水行业需覆盖从原水到用户龙头的全过程,并兼顾检测能力和检测效率,对实验室现有的检测方法进行全面优化和替代。(2)对于供水行业检测部门,应加快推进标准应用实施工作,深入理解新标准下的质量控制要求,将其贯穿于供水检测工作全流程中,对拟选用的标准方法进行方法的适用性验证,加强优化离子色谱技术的应用,以确保新增指标检测方法全覆盖。(3)第三方检测实验室需依据新标准尽快完成新增方法的验证工作,扩大检测能力范围。三、新增指标对于饮用水安全具有重要意义(1)高氯酸盐高氯酸盐是近两年才引起社会高度关注的污染物。2022年3月,国家卫健委发布《生活饮用水卫生标准》(GB 5749—2022),首次将高氯酸盐纳入管控指标,并设定标准限值70 微克/升。环境中的高氯酸盐污染基本上是人为活动导致的。其中,最主要的是将高氯酸盐作为强氧化剂,用于火箭推进剂、烟花制造、军火工业、爆破作业等领域,以及将其作为添加剂的润滑油、染料涂料等产品的生产过程,通过各种方式进入环境中,导致污染分布与产业布局紧密相连。此外,用智利阿塔卡马沙漠硝石等为原料的化肥,施加后也会将部分高氯酸盐带入环境中。高氯酸盐的主要危害是影响人体甲状腺的正常功能,原因在于高氯酸盐的电荷和离子半径与碘离子非常接近,可以与碘离子竞争直接进入人体的甲状腺,阻碍人体对碘的吸收,使人体缺碘而导致甲状腺肿大,俗称“大脖子病”。因此高氯酸盐的检测对于人体健康具有重要意义。(2)丙烯酸水中丙烯酸的来源包括生物来源和人为污染源排放,生物来源主要是浮游植物分解DMSP产生,人为来源主要是人为将含有丙烯酸的工业废水排入河流以及近岸海域。丙烯酸是一种重要的基础有机原料,我国丙烯酸产能已达到19.5万吨/年。丙烯酸的危害主要是对水体和生物体的危害,丙烯酸对眼睛、鼻粘膜有刺激性,对淡水藻类等生物也有较大毒性,其急性毒性L(E)C50值甚至能够达到0.1 mg/L。离子色谱法测定丙烯酸,操作简便,无需复杂前处理,灵敏度高、选择性好、重复性佳,且所用试剂绿色环保,成本低。(3)草甘膦水中草甘膦主要来源于农药残留。据部分科学家认为草甘膦对4000多个基因产生损伤影响,导致很多严重的疾病(如阿尔海默症,帕金森症,自闭症等),因此生活饮用水及水源中草甘膦的检测显得尤为重要。草甘膦是许多使用广泛除草剂中的有效活性化学成分,对多年生根杂草非常有效,广泛用于橡胶、桑、茶、果园及甘蔗地。草甘膦在全球130个国家广泛的使用在杀虫剂领域,美国大约占20%的使用量,约2.8亿磅,人均1磅。研究发现,全美70%的家庭饮用水中检测到草甘膦,浓度在0.085-0.33ppb,美国环保部设置了0.4ppb的上限。采用阴离子交换色谱法分离水样中的草甘膦,经柱后衍生,用荧光检测器检测,简便高效。(4)卤代乙酸类(包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)自来水厂采用的饮用水消毒工艺在保障居民供水安全和降低介水传染病方面发挥了重要作用,被誉为20世纪公共卫生领域内最伟大的成就之一。然而,饮用水消毒工艺过程中所使用的氯、二氧化氯、氯氨、臭氧等消毒剂能够与水中的有机前体物发生反应而生成消毒副产物(disinfection byproducts,DBPs)。饮用水中DBPs的出现使人们对其暴露所带来的健康危害产生了很大的担忧。目前,研究已发现卤代乙酸类具有发育毒性,主要表现为吸收胎和畸形发生率增加、软组织和各种器官发育异常、胎仔出生体重和身长降低等。因此为了保障生活饮用水的卫生安全,对饮用水中卤代乙酸进行监测非常重要。附表 2023年发布的离子色谱检测国标(部分)序号行业标准名称发布日期1水工业GB/T 5750.5-2023生活饮用水标准检验方法第5部分 无机非金属指标(氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐)第6部分 金属和类金属(锂、钠、钾、镁、钙)第8部分 有机物指标(丙烯酸)第9部分 农药指标(草甘膦)第10部分 消毒副产物指标(亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)2023-03-172石油化工GB/T 35212.4-2023天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第4部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成2023-05-233冶金GB/T 3884.12-2023铜精矿化学分析方法 第12部分:氟和氯含量的测定 离子色谱法和电位滴定法2023-08-06
  • 40年兑现"工匠"承诺 铸就钢铁业检测的中国标准
    工人是把工作完成,工匠是把工作做精",这是武钢国家级检验工作室创始人朱有发对工匠的理解和定位。"刚进武钢我就被分到质检化验室,一转眼,40年过去了,一个专业干了一辈子,我现在肯定是工资最高的工人",朱有发骄傲的说。  从学徒到"检测专家"  1976年,朱有发以优秀知青的身份进入武钢,他用接下来的40年佐证了自己"一项工作干上一辈子"的初衷和愿望。  朱有发一进厂只是检验科的学徒,1977年,他第一次独立操作检验钢中磷元素是否合格,后来,为了杜绝失误,对可能产生误差的环节心里有数,朱有发开始报名各种培训班,弥补自己知识结构中的缺失。付出就有回报,他逐渐成长为同期学徒中的佼佼者。1986年,他更是利用业余时间,进行了系统的化学学习和培训,为自己截下来的前行,打好基础。  1996年,朱有发从钢铁分析岗位被调到原料检验岗位。武钢每年采购3000多万吨,200多种各类矿石原料,价值更是高达几百亿元,出厂产品的质量直接和原料挂钩,朱有发每天要和各种矿石打交道,他开始自学《化学分析》和矿石相关的专业知识。他感概,"遇到不懂的就问,问不明白的就自己查,越查越觉得要学的还很多"。  近年来,随着武钢快速发展,矿石原料特质越来越复杂,原有的传统分析方法已经远远不能满足检验需求,朱有发经过查阅大量资料,实验和对比,撰写了20多个检验项目的方法,同时,针对钢铁冶炼中释放的有害元素,他将检验环节可以检出的危害的进行研究和论证,推出了《磷的在线快速准确测定法》,并成为行业标准,得到广泛推广。现在,朱有发更多的是解决一些疑难检测,去相关企业交流授课,但是,他并没有停止学习,朱有发说,"学到了才是自己的财富,才能学以致用"。  创新只为解决工友的需求  矿石检测是一项需要现代化设备配合的严谨工作,在40年的工作中,朱有发不仅对原料本身进行了深入的学习,对于检验方法和设备也进行了研究和切实的创新,朱有发说,"很多设备创新都是出于解决一个小问题和工人的实际需要"。  多年前,朱有发的一位女学生,在更换设备配件时,不慎被机器将一个手指的肌腱割断,朱有发遗憾地说"孩子是研究生,会拉小提琴,年纪轻轻,手指就废了"。后来,朱有发将设备进行了创新改造,更换部件全部采用自动化,再也不需要人工更换,避免了工作中的伤害。现在,武钢的很多公司和产业上游,以及同样需要此设备进行检验的机构都应用了他的创新改进。  事实上,看不见的伤害每天都围绕着钢铁工人。我国一直使用的是日本的电热式熔融炉,但是操作中热辐射和可能的热灼伤对工人伤害较大,而且价格很贵,国产的一般几万元,进口的则要十几万美元,为了给厂里节约,朱师傅对国产和进口设备进行了仔细研究,并听取了同事的意见,设计了隔离式的熔融炉,避免了熔炉热可能产生的危险。该成果获得全国发明博览会银奖和国家专利。  朱有发说,几十年来,他亲历了武钢转型发展的巨大变化。"那时我们买日本人的设备,人家安装的工程师到厂里来一看,你们这么多工人,可是技术却很落后 现在我们用自己研发的设备,操作人员少了,但是精确度和效率却大大提升了,外国设备反而成了摆设。"  如今,在只有高中学历的朱有发的带领下,武钢质检工作室已经成为产业行业创新的代表,朱有发也成为有名的"技术专家"。  朱有发还有几个月就到退休年龄了,他仍旧记得自己刚进厂时的情景,"大门一开,人流和自行车流一涌而出,壮观极了,特别骄傲自己是武钢人"。如今,他的学生们都已经成长为行业骨干,可以独挡一面。朱有发说,退休后,他还会钻研矿石检测,如果武钢需要他,学生需要他,他仍旧愿意奉献自己的一切。
  • 钢铁与炼焦化学工业新标准大幅度降低细颗粒物排放
    环境保护部公告 公告 2012年 第43号 关于发布《铁矿采选工业污染物排放标准》等8项国家污染物排放标准的公告   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,防治污染,保护环境,保障人体健康,现批准《铁矿采选工业污染物排放标准》等八项标准为国家污染物排放标准,并由我部与国家质量监督检验检疫总局联合发布。   标准名称、编号如下:   一、铁矿采选工业污染物排放标准(GB 28661-2012).pdf   二、钢铁烧结、球团工业大气污染物排放标准(GB 28662-2012).pdf   三、炼铁工业大气污染物排放标准(GB 28663-2012).pdf   四、炼钢工业大气污染物排放标准(GB 28664-2012).pdf   五、轧钢工业大气污染物排放标准(GB 28665—2012).pdf   六、铁合金工业污染物排放标准(GB 28666-2012).pdf   七、钢铁工业水污染物排放标准(GB 13456—2012代替GB 13456-1992).pdf   八、炼焦化学工业污染物排放标准(GB 16171-2012代替 GB16171-1996).pdf   按有关法律规定,以上标准具有强制执行的效力。   以上标准自2012年10月1日起实施。   以上标准由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,下列标准废止:   一、《钢铁工业水污染物排放标准》(GB 13456-92)   二、《炼焦炉大气污染物排放标准》(GB 16171-1996)   特此公告。   (此公告业经国家质量监督检验检疫总局陈钢会签)   二○一二年六月二十七日   主题词:环保 排放标准 钢铁 焦化 公告 钢铁与炼焦化学工业排放标准发布 标准实施将大幅度降低细颗粒物排放量   中国环境报讯 环境保护部日前发布了7项钢铁工业污染物排放系列标准与《炼焦化学工业污染物排放标准》,这是继2011年《火电厂大气污染物排放标准》(GB13223-2011)之后,环境保护部再次发布对环境空气质量有重大影响的行业排放标准。   我国的钢铁和焦炭生产量连续多年世界第一,2011年我国粗钢产量为6.83亿吨,占世界总产量的44.75% 焦炭产量约4.28亿吨,占全球焦炭总量的62%左右。同时,钢铁和焦炭产能过剩矛盾突出,落后产能仍占有相当大的比例,行业污染物排放量大,是影响环境空气质量的重点行业。   与现行标准相比较,新标准有如下特点:   一是以系统标准加强环境管理。钢铁工业系列排放标准覆盖了铁矿采选、烧结(球团)、焦化、炼铁、铁合金、炼钢和轧钢等排放环节的全过程环境控制,增强了标准的可操作性,形成了一个系统的钢铁工业污染物排放标准体系。《炼焦化学工业污染物排放标准》涵盖了对所有焦炉及生产过程排污环节的环境管理。   二是污染物项目设置更加科学、全面。考虑主要污染物总量与行业特征污染物控制要求,钢铁工业系列排放标准增加了总氮、总磷、总铅、总铬、总汞等14项水污染物指标,其中11项为重金属和有毒污染物项目,以及二恶英、氮氧化物等5项大气污染物指标。《炼焦化学工业污染物排放标准》增加了多环芳烃(PAHs)等15项行业特征污染物指标。   三是提高了污染物项目的控制要求。新标准均大幅收严了烟尘、二氧化硫和化学需氧量的排放限值,新增了氮氧化物等污染物的排放限值,针对环境敏感地区制定了更严格的水和大气污染物的特别排放限值。对焦化行业产生的苯、氰化氢、酚类以及多环芳烃(PAHs)等对人体健康危害严重的有毒有害物质进行了严格控制。   四是明确了分步实施新标准的管理要求。对新建企业要求自2012年10月1日起实施新标准,对现有企业设置了过渡期,要求在2015年1月1日达到新建企业的污染控制水平。既考虑了新老污染源的区别,又考虑了技术进步和产业优化升级,体现了以环境保护优化经济发展的指导思想。   作为行业准入的门槛,新标准的实施将会进一步加快淘汰落后产能和企业间兼并重组的步伐,必将促使一批生产装备落后、资源能源消耗高、环境污染严重、小而弱的企业被淘汰出局,对推动钢铁和焦化行业经济结构调整和经济增长方式转变,促进工业生产工艺和污染治理技术进步具有积极意义。同时,新标准的实施将大幅度降低烟粉尘的排放量,特别是可吸入颗粒物(PM10)和细颗粒物(PM2.5)的排放量,极大促进城市环境空气质量的改善。《炼焦化学工业污染物排放标准》有利于充分利用WTO规则,积极应对国际贸易争端,保护我国的正当贸易和环境权益。
  • 锂离子电池产业政策研究及检测标准分析
    p   随着锂离子电池应用领域的不断扩大,其安全问题现已经成为了各方关注的焦点。 /p p   本文简要汇总了我国锂电池工业产业最新发展趋势及世界主要发达国家对于锂电池工业产业的政策倾斜,提出了我国锂电池产业发展的建议 研究了锂离子电池安全性检测标准现状及存在的问题,提出了应对策略和建议。 /p p    strong 1 我国锂电池工业产业现状 /strong /p p   锂离子电池作为新能源产品具有显著的优势,世界各国开始将锂电池工业作为引领未来能源发展的支持产业之一。 /p p   目前, 中国已成为仅次于日本的锂离子电池生产大国。 据不完全统计,中国锂离子电池的产量已经占到全球的 70%,达到了 16 亿只,市场价值近 50 亿美元,其中 70%以上出口。 我国锂电池行业已经从传统的小型电子产品,逐步向电动自行车、电动汽车等领域拓展。 /p p   电动汽车的核心技术是动力电池。 从新能源汽车产业链上来看, 因有色金属资源具有极强的地域性,上游原材料企业将会非常集中 对核心技术的掌控,使中游电池厂商将成为行业发展最大的受益者 而整车厂商在这场行业盛宴中利润微薄。 目前,新能源汽车价格居高不下, 原因之一是动力电池组成本太高,如一辆造价 26 万元的丰田普锐斯,电池成本在 8 万元左右,占了整车成本的三分之一。 因此,国内电动汽车厂商纷纷加大投入, 用于新型锂电池材料、制作工艺、技术的开发研究,期待尽快研制出成本较低的动力锂电池组,以降低电动汽车整车成本,加快行业发展。 /p p   动力锂离子电池的主要材料有:正/负极材料、电解液和隔膜。 随着国家对该行业的重视和投入力度的加大, 越来越多新的公司加入到动力电池的研发和生产中来,未来市场格局将面临改变。 以电解液为例进行分析: 电解液是锂离子电池四大关键材料之一,号称锂电池的“血液”,是锂离子电池获得高电压、高比能等性能的保证。 电解液占锂离子电池成本的 12%左右,毛利率接近 40%。 锂离子电池对电解液要求比较高,但目前用量却很少。 比如一块手机电池只用 3 g, 比重很小,2 000 t 电解液可供生产 6 亿块手机电池。 /p p   目前全球锂电池电解液市场供求基本平衡,主要是靠现有锂电池市场。 但是,汽车动力电池对电解液的需求量较大, 一辆车需要 40 kg 左右。 预计到2012 年,新能源车的年产量将达到 100 万辆,按每辆新能源汽车电池电解液 40 kg 计算,100 万辆混合动力汽车将带动 4 万吨电解液的需求。 /p p   目前国内电池生产商电解液的配套已基本实现国产化,生产企业主要有国泰华荣化工、杉杉股份、珠海赛纬电子、天津金牛、汕头金光、广州天赐等 10余家,年生产能力都在千吨级以上,可满足我国目前的锂电池生产需要,并有部分出口。总体来看, 我国锂离子电池的生产尚处于起步时期。 由于国家对于锂离子电池工业的政策支持,我国不少电池厂以及一些有实力的企业集团均看到了中国锂离子电池的潜在市场, 正准备或已不惜投巨资生产理离子电池, 这些作法将会进一步促进我国锂离子电池工业产业的发展 & nbsp 。 /p p   strong  2 主要发达国家锂电池工业产业投资政策 /strong /p p    strong 2.1 /strong 美国美国锂电暂任主席、 美国布罗德普公司董事长瑞夫· 布罗德博士,在第四届华南锂电高层论坛发表的演讲中提到了最近美国政府提出的新经济刺激计划。 根据布罗德博士介绍,当前美国政府正前所未有地加大财政力度支持工业界发展。 在美国政府的财政资助计划中, 有 20 亿美金是用于电池工业的发展 其中约 12 亿美金,主要用在做锂电池和锂电池芯的发展方面。 瑞夫· 布罗德博士称,在这一整个工业界绝无仅有的资助行动当中, 锂电池行业被放在重点当中,是“重中之重”。 /p p   2009 年 8 月份,奥巴马总统签署了一项为 48 个电池有关的项目提供资金援助的计划, 这次援助计划的目的是为电动/混合动力汽车开发更有效的电池和电力驱动系统,援助的总金额达 24 亿美元,推出后将极大刺激中西部地区的发展。 奥巴马总统宣称美国政府需要的是“面向未来的汽车,以及用来驱动这种汽车的技术”。 /p p   虽然这一揽子援助计划主要面向的是汽车电池及电力驱动系统, 但面向消费领域的电池技术也能从中受益。 因为几乎所有的消费电子类产品如电动工具等都非常需要电力强劲、 能持续工作数日的电池来供电, 而现有的产品则只能提供几个小时的电力供应。 /p p   strong  2.2 /strong 德国2009 年年初, 德国政府拿出 5 亿欧元用于资助电动汽车的研发。 其中资助锂离子电池的研发费用为 5 900 万欧元。在 2007 年制定的“高科技战略”中,德国政府已将电动汽车的关键技术———锂离子电池作为攻坚项目。 /p p   为了完成这一项目,产业界五大巨头巴斯夫、博世、EVONIK、LiTec、 大众和科学界与应用界的 60 家单位结合,组建了锂离子电池“创新联盟”:企业界出资 3.6 亿欧元,联邦科研部资助 6 000 万欧元。据悉,以上还仅仅是联邦一级的研发投入。 为了抢占市场先机,各州政府也有一批资金的投入。 例如北威州的投入就达 6 000 万欧元。北威州之所以舍得投入,除了想成为“电动汽车的模范区域”之外,更重要的是想让 “北威州的轿车工业尽快生产世界领先的电动汽车”。 /p p    strong 2.3 /strong 日本日本经济产业省近日披露,日本力争在 2010 年将新型锂离子电池用于下一代电动汽车。 日本日立制作所宣称, 将投资 200 亿日元至 300 亿日元,到2015 年将目前面向混合动力车生产的锂电池产能提高约 70 倍。 据称,日立将通过加大投资和扩大其位于茨城县东海事业所的产能, 尽快实现大容量新型锂离子电池的量产, 产品将主要向美国通用汽车公司提供。 /p p   2009 年 5 月 15 日,丰田、日产汽车公司及松下电器公司等相关企业签署协议, 合力开发统一规格的新一代汽车锂电池,并计划在 2 年内实现量产。 东芝公司决定, 斥资 500 亿日元开发电动汽车用的锂离子电池, 这种高效动力电池将于两年内进入半商品化生产,计划在 2011 年之前将高性能锂离子电池增至适于不同特性的 3 个种类, 即除了目前的普通型之外, 还将分别开发支持混合动力车和电动汽车等高输出功率型以及高能源密度型的锂离子电池。普及电动汽车的一个关键问题是需要建立足够的电力补充设施。 为此,东京电力公司宣布,将带头参与有关的基础建设, 明年在首都 圈先建 200 多个充电站,3 年后增加将到 1 000 个以上。 日本各大汽车公司也积极响应、参与有关研究和工程,热切期盼“脱石油”时代能尽早来到日本。 目前,东京电力公司已经成功开发出了大型快速充电器, 每 10 min 完成充电,所能行驶的路程是 60 km,充电时间大大缩短,进一步加快了日本普及使用电动车的步伐。据日本汽车研究所预计,按照现在混合动力车的普及程度推算,到 2020 年,日本国内的混合动力车将达到约 360 万辆。 如果高性能锂离子电池得到普及,混合动力车有可能进一步达到 720 万辆的水平。 /p p    strong 2.4 对我国锂电池工业产业发展的建议 /strong /p p   1) 加强科研投入力度。 国家应该将高能量密度、 高效率新型锂离子电池的研发提升到国家级战略高度,制定和实施有关新型锂离子电池材料、生产工艺、制造技术的“973”等高层次课题专项,吸引广大锂离子电池科学家及相关企事业单位广泛参与。 /p p   2) 明确产业方向,理顺管理职能。国家应该将锂离子电池工业产业作为国家“十二五”期间重点支柱的基础产业之一,加大投入力度,同时,成立专门管理锂离子电池工业产业的行业协会组织, 统一管理和协调我国锂离子电池工业产业的发展。 /p p   3) 提高锂离子电池工业知识产权。 目前锂离子电池材料、 制作工艺等关键技术的知识产权均属国外所有,要想在锂离子电池工业产业中占据高地,必须研发创造属于我国知识产权的关键技术。 /p p   4) 加快锂离子电池标准化体系建设。 提高我国锂离子电池工业标准化水平, 使锂离子电池标准体系建设适应快速发展的锂离子电池工业, 积极应该国际社会技术性贸易壁垒 。3 锂电池安全性检测标准简介及问题分析 /p p   3 strong .1 锂电池安全性检测主要标准 /strong /p p strong /strong   锂离子电池由于存在燃烧、爆炸等安全性隐患,国际社会针对锂离子电池安全性制定了一系列的规章、制度以及国际标准、行业标准等。我国锂离子电池产品检验主要依据的相关标准主要有:联合国《关于危险货物运输建议书》第 38.3条款锂电 池 运 输 安 全 性 能 测 试 (UN 38.3) GB-T8897.1-2003 《原电池 第 1 部分 总则》 GB 8897.2-2005 《原电池 第 2 部分 外形尺寸和技术要求》 GB8897.4-2008 《原电池 第 4 部分 锂电池的安全要求》 GB/T 18287-2000 《蜂窝电话用锂离子电池总规范》 GB/T 19521.11-2005《锂电池组危险货物危险特性检验安全规范》 GB/Z 18333.1-2001 《电动道路车辆用锂离子蓄电池》 YD 1268.1-2003 《移动通信手持 机 锂 电 池 的 安 全 要 求 和 试 验 方 法 》 QC/T 743-2006 《电动汽车用锂离子蓄电池》 QB/T 2502-2000《锂离子蓄电池总规范》 SN/T 1414.3-2004 《进出口蓄电池安全检验方法 第 3 部分 锂离子蓄电池》 SJ/T11169-1998 《锂电池标准》。 /p p   现行的国际主要锂离子电池安全性检测标准主要有:IEC 62133:2002 《含碱性或其他非酸性电解质的蓄电池和蓄电池组-便携式密封蓄电池和蓄电池组的安全性要求》 IEC 62281:2004《运输中锂原电池和电池组及 锂 蓄 电 池 和 电 池 组 的 安 全 》 UL 1642:2006《锂电池》 IEEE 1625:2004《便携式计算机用蓄电池标准》 IEEE 1725:2006 《蜂窝电话用蓄电池标准》。 /p p    strong 3.2 锂电池安全性检测标准分析 /strong /p p   目前, 国内外锂离子电池安全性检测标准基本都是符合性检测型标准,即标准规定短路、过充电、强制放电、振动、冲击、挤压、针刺、重物撞击、跌落、温度试验、低气压等电气、机械和环境方面的试验项目, 用以模拟电池在正常使用以及可预见的误用时的应用情况,确保产品在这些情况下的安全性。 这种标准形式具有判据清晰、操作性好的优点,只需针对成品电池进行试验室检测即可判定是否符合标准,缺点则是无法全面有效地保障产品的质量与安全性, 因为安全性作为产品性能的一个组成方面是在产品设计与制造过程中形成并确立的, 现行标准的考核对象与此存在偏差, 此外安全试验是破坏性检验,只能采用抽样检测的方式进行,这种方法本身也存在一定的风险概率。 /p p   对比国内外标准可见, 我国锂电池安全标准欠缺整体规划。 一方面国家与行业两级标准间,以及各类行业标准间缺乏协调,标准对象存在一定的交叉、重复,另一方面标准没有统一的指导思想,既 span style=" color: rgb(127, 127, 127) " /span 有单纯的安全标准,又有包括电性能、环境适用性能及安全性能等全部要求的总规范性质的标准。 相比较而言,国外标准在工作思路及相互间关系上则较为统一、协调,如 IEC 针对产品安全性单独制定标准,其他标准如产品总规范规定电性能等其他要求, 安全要求直接引用安全标准 IEEE 则针对不同用途分别制定包括安全要求在内的产品总规范。 /p p    strong 4 关于锂离子电池安全性检测标准工作的建议 /strong /p p   工业和信息化部已经成立了电子产品安全标准工作组,准备开展锂离子电池安全标准工作,并提出了制定便携式锂离子电池安全标准的工作目标 。 结合我国锂离子电池工业产业发展及安全标准现状,建议我国锂离子电池安全性检测标准制定工作注意以下几个方面: /p p    strong 1) 建立统一的锂离子电池安全性检测国家标准。 /strong 考虑到锂离子电池的生产、营销、使用等遍及国民经济各领域, 应以最高级别的国家标准的形式制定统一的锂离子电池安全性检测标准。 为保持安全标准的统一, 应将现行国家与行业标准的技术内容以包含或整合的方式加以替代 将来随着锂离子电池的发展,通过标准修订的方式更新其安全要求,不再另行制定其他安全标准。 /p p    strong 2) 统一的安全标准应该与锂离子电池的产品情况相适应。 /strong 目前锂离子电池大致划分为能量型和功率型两大类,两类产品在材料、设计结构等方面存在一定差异,在相同的安全前提下,其标准的试验方法乃至要求都可能不同。便携式电池属于能量型, 包括手机、 笔记本电脑、 数码相机和摄像机用锂离子电池等, 而电动工具、 电动自行车和电动汽车用锂离子电池可归为功率型, 建议分别制定能量型和功率型锂离子电池安全标准。制定锂离子电池安全标准时要掌握 “适度”原则, 即标准应寻求并建立产品安全与性能的最佳结合点,因为安全性越好往往意味着电性能越差。 /p p    strong 3) 锂离子电池安全性检测标准内容应涵盖产品设计及制造工艺,并建立相应的监管认证机制 /strong 。绝大多数锂离子电池的安全问题是由现行安全标准难于模拟的内部短路缺陷所引起的, 因此应将锂离子电池的设计和制造过程全面纳入质量控制体系方能有效避免产品内部短路的隐患。 新制定的安全性检测标准应将其内容拓展至产品上游的设计与生产环节。 建议国家质检部门在依据新的安全性标准开展锂离子电池强制安全认证工作时, 除最终产品安全性检测外,还应对包括产品设计与工艺评审、制造过程监督等内容进行认证, 并参照质量体系认证做法,建立定期复查与随机抽检的制度,如此将可确保标准内容最大限度地得以贯彻与实施。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自 /i /span span style=" color: rgb(127, 127, 127) " i span style=" font-size: 16px " Chinese Battery Industry(电池工业),第16卷第3期2011年6月 /span /i /span i style=" font-size: 16px color: rgb(127, 127, 127) " (魏宇锋,张继东,费旭东,吴晓红,陈 相,上海出入境检验检疫局) /i /p
  • 2023离子色谱标准解读下:从行标看在线IC应用领域
    仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题(点击查看会议议程及报名方式)。离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境、化工、能源、生物、医药、食品、化妆品等领域;同时,与MS、AFS的联用技术等也丰富了离子色谱的应用领域,开发了一系列具有实用性的分析方法。近些年来,离子色谱方法标准也在持续完善中。据不完全统计,离子色谱近5年发布国家标准19项,行业标准35项。行标主要涉及环保、冶金、矿业/地质、石油化工、农业、公共安全、食品、医药、玩具/消费品等领域。2023年发布的离子色谱检测行业标准有多项涉及在线离子色谱检测,且涵盖了环保、煤化工等行业。在线离子色谱品类可能存在新的行业增长点,可加速扩展环境、煤化工等领域。更多离子色谱标准解读见:《2023离子色谱标准解读上:从国标看IC新的市场机会》1、 仪器品类相比前几年发布的离子色谱检测行业标准,2023年发布的标准涉及到在线离子色谱(点击进入专场)品类。比如,2023年12月5日,生态环境部发布的《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》;2023年5月5日,海关总署发布《SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法》。在线离子色谱逐渐应用到更多的行业。随着在线离子色谱标准的陆续发布,这一行业可能会迎来新的发展机遇。这些标准的制定和实施将有助于规范市场,提高产品质量,推动技术创新,从而促进整个行业的繁荣发展。对于在线离子色谱的生产和销售企业来说,这些标准的发布将为其提供更加明确的发展方向和更广阔的市场空间,可能将为其带来新的业绩增长点。2、 环保行业2023年12月5日,生态环境部发布《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》,标准号HJ 1328—2023。该标准于2024年7月1日正式实施,规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。该标准所监测的水溶性离子包括Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+和Ca2+。在线监测技术一种基于现场的采样分析技术,可以提供高时间分辨率的监测数据,在组分变化非常迅速的污染过程,在线监测能充分发挥其优势,捕捉到PM2.5快速上升时组分的变化,可以为环境保护政策和标准的制定提供重要的基础依据。与采用实验室手工分析方法的现行标准相比,该标准具有自动化程度高、干扰因素较少等优点,可用于指导我国颗粒物组分自动监测工作的开展,推动环境空气细颗粒物浓度持续下降。3、 煤化工行业2023年5月5日,海关总署发布《SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法》,本标准规定了离子色谱法在线吸收测定吸收液中氟离子和氯离子的详细方法。煤是国民生产和生活必不可缺的能源和化工原料,煤的质量不仅与环境污染相关,对煤化工等以煤为原材料的行业和发电厂等用煤大户也至关重要。国家市场监督管理总局发布的标准 GB/T 17608-2022《煤炭产品品种和等级划分》中,煤中氟和氯的含量都是划分煤炭等级的重要指标。传统的分析方法每次仅能测定其中一种元素,还不能实现自动化,大大影响分析效率。燃烧炉-离子色谱联用系统是燃烧裂解技术和离子色谱技术的结合,一次分析即可测定不同类型的卤素,不仅克服了传统离线燃烧技术效率低下的缺点,还避免了人为操作可能带来的误差,分析结果更加准确和稳定。附表:近5年发布的离子色谱国标和行标(部分)序号行业标准名称发布日期1石油化工GB/T 35212.4-2023天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第4部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成2023-05-232GB/T 41946-2022 橡胶 全硫含量的测定 离子色谱法2022-12-303GB/T 40395-2021 工业用甲醇中铵离子的测定 离子色谱法2021-08-204GB/T 40111-2021石油产品中氟、氯和硫含量的测定 燃烧-离子色谱法2021-05-215GB/T 40062-2021 变性燃料乙醇和燃料乙醇中总无机氯的测定方法 离子色谱法2021-04-306GB/T 39305-2020再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法2020-11-197GB/T 37907-2019 再生水水质 硫化物和氰化物的测定 离子色谱法2019-08-308HG/T 6116-2022 废弃化学品中硫、氟、氯含量测定 氧弹燃烧 离子色谱法2022-09-309SN/T 5307-2021 石油产品 氟、氯和硫的测定 直接燃烧-离子色谱法(石油)2021-06-1810GB/T 41068-2021纳米技术 石墨烯粉体中水溶性阴离子含量的测定 离子色谱法2021-12-3111GB/T 41067-2021纳米技术 石墨烯粉体中硫、氟、氯、溴含量的测定 燃烧离子色谱法2021-12-3112冶金GB/T 3884.12-2023铜精矿化学分析方法 第12部分:氟和氯含量的测定 离子色谱法和电位滴定法2023-08-0613GB/T 42276-2022氮化硅粉体中氟离子和氯离子含量的测定 离子色谱法2022-12-3014GB/T 39285-2020 钯化合物分析方法 氯含量的测定 离子色谱法2020-11-1915GB/T 38216.2-2019钢渣 氟和氯含量的测定 离子色谱法2019-10-1816GB/T 37385-2019硅中氯离子含量的测定 离子色谱法2019-03-2517YS/T 1593.4-2023 粗碳酸锂化学分析方法 第4部分:阴离子含量的测定 离子色谱法2023-04-2118YS/T 1569.4-2022 镍锰酸锂化学分析方法第 4 部分:硫酸根含量的测定 离子色谱法2022-09-3019YS/T 1497-2021 铂化合物分析方法 杂质阴离子含量测定 离子色谱法2021-12-0220YS/T 1496-2021 钯化合物分析方法 杂质阴离子含量测定 离子色谱法2021-12-0221YS/T 1472.6-2021 富锂锰基正极材料化学分析方法 第 6 部分:硫酸根含量的测定 离子色谱法2021-12-0222YS/T 445.16-2020 银精矿化学分析方法 第16部分:氟和氯含量的测定 离子色谱法2020-12-0923YS/T 1380-2020 铑化合物化学分析方法 氯离子、硝酸根离子含量的测定 离子色谱法2020-12-0924环保/水工业HJ 1328—2023《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》2023-12-0525HJ 1288-2023 水质丙烯酸的测定离子色谱法2023-02-0926HJ 1271-2022 环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法2022-12-1227HJ 688-2019 固定污染源废气 氟化氢的测定 离子色谱法2019-12-3128HJ 1076-2019 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法2019-12-3129HJ 1041-2019 固定污染源废气 三甲胺的测定 抑制型离子色谱法2019-10-2430HJ 1040-2019 固定污染源废气 溴化氢的测定 离子色谱法2019-10-2431HJ 1050-2019水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法2019-10-2432GB/T 5750.5-2023生活饮用水标准检验方法第5部分 无机非金属指标(氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐)第6部分 金属和类金属(锂、钠、钾、镁、钙)第8部分 有机物指标(丙烯酸)第9部分 农药指标(草甘膦)第10部分 消毒副产物指标(亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)2023-03-1733矿业/地质SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法2023-05-0534SN/T 5305-2021 铅精矿中氟和氯含量的测定 离子色谱法2021-06-1835SN/T 5254-2020 煤中氟和氯的测定 高温水解-离子色谱法2020-08-2736DZ/T 0064.28-2021 地下水质分析方法 第28部分:钾、钠、锂和铵量的测定 离子色谱法2021-02-2237DZ/T 0064.51-2021 地下水质分析方法第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定离子色谱法2021-02-2238玩具/消费品GB/T 41525-2022玩具材料中可迁移六价铬的测定 离子色谱法2022-07-1139QB/T 5529-2020 口腔清洁护理用品 水溶性焦磷酸盐和三聚磷酸盐的检测方法 离子色谱法2020-12-0940JY/T 0575-2020 离子色谱分析方法通则2020-09-2941GB/T 40895-2021化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法2021-11-2642农业NY/T 3943-2021 水果中葡萄糖、果糖、蔗糖和山梨醇的测定 离子色谱法2021-11-0943NY/T 3902-2021 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法2021-05-0744NY/T 3513-2019 生乳中硫氰酸根的测定 离子色谱法2019-12-2745食品YC/T 377-2019 卷烟 主流烟气中氨的测定 浸渍处理剑桥滤片捕集-离子色谱法2019-12-2646SN/T 5120-2019 进出口食用动物、饲料中亚硝酸盐测定 比色法和离子色谱法(食品)2019-09-0347SN/T 5120-2019 进出口食用动物、饲料中亚硝酸盐测定 比色法和离子色谱法(食品)2019-09-0348公共安全GA/T 1918-2021 法庭科学 亚硝酸根离子检验 化学和离子色谱法2021-10-1449GA/T 1946-2021 法庭科学 盐酸、硫酸和硝酸检验 化学和离子色谱法2021-10-1450GA/T 1628-2019| 行业标准| 法庭科学 生物检材中草甘膦检验 离子色谱-质谱法2019-10-1451电子/电气GB/T 37861-2019电子电气产品中卤素含量的测定 离子色谱法2021-05-2152GB/T 37861-2019电子电气产品中卤素含量的测定 离子色谱法2019-08-3053DL/T 2280-2021 燃煤电厂烟气中三氧化硫含量的测定 异丙醇溶液吸收 离子色谱法2021-04-2654卫生医药YY/T 1675-2019 血清电解质(钾、钠、钙、镁)参考测量程序(离子色谱法)2019-10-23仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。在环境领域,离子色谱被广泛应用于大气、水质、土壤等监测方面,具有稳定性好、重现性好、精密度高等优势。会议特别举办了“离子色谱在环境领域中的应用”专场。届时,甘肃省环境监测中心教授级高级工程师张宁将分享《大气干湿沉降物中氮磷的离子色谱测定》,哈尔滨工业大学(深圳)副教授张冠将分享《电催化处理垃圾渗滤液及其含氮含氯副产物离子色谱分析》,四川大学建筑与环境学院研究员黄荣夫将分享《离子色谱-质谱联用技术在环境污染物分析中的应用》,桂林电子科技大学教授张敏将分享《离子色谱微型化研究进展》,敬请期待!!!点击可查看全部报告专家及内容(点击图片也可进入会议详情页面)。
  • “湖北空气负氧离子浓度地方标准”出台 监测数据将公示
    11月18日,“湖北省空气负氧离子浓度等级”地方标准(以下简称标准)正式实施。该标准制定科学客观,公众易于理解,对湖北省空气负氧离子浓度的监测、评估和服务,以及指导公众健康生活,具有重要作用。  湖北省空气负氧离子浓度等级地方标准由湖北省气象局和湖北省林业科学研究院联合起草,结合湖北地域气候、地貌类型等特点,利用2014年湖北省逐10min的空气负氧离子浓度数据,统计各小时平均值作为建模数据,以反映空气的平均状态,建立空气负氧离子浓度等级。  标准界定:当负氧离子浓度100个/cm3时为Ⅴ级,当负氧离子浓度在100~500个/cm3时为Ⅳ级,当负氧离子浓度在500~1000个/cm3时为Ⅲ级,当负氧离子浓度在1000~1500个/cm3时为Ⅱ级,当负氧离子浓度≥ 1500个/cm3时为Ⅰ级。  据了解,湖北是全国较早开展空气负氧离子观测和应用的省份之一。2013年10月,由湖北省气象局和湖北省林业厅共同开展全省空气负氧离子站网建设,湖北省气象信息与技术保障中心、湖北省林业科学研究院作为具体承建单位于2014年1月完成了空气负氧离子观测仪器站网的建设,2014年3月提供湖北省空气负氧离子浓度的实时监测和服务。  随着湖北省空气负氧离子浓度等级地方标准的出台实施,湖北空气负氧离子浓度监测数据及相关服务产品也将陆续开始对公众发布。
  • 《橡胶 全硫含量的测定 离子色谱法》——标准上新啦
    《橡胶 全硫含量的测定 离子色谱法》——标准上新啦原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼陈洁 郑洪国1月29日1月29日,国家标准计划《橡胶 全硫含量的测定 离子色谱法》,公示阶段已经结束,距离其正式实施也不远了。 本项标准等同采用国际标准ISO:19242-2015,规定了离子色谱仪测定生胶、硫化胶和非硫化胶中硫含量的检测方法,样品通过管式炉燃烧法或氧瓶燃烧法制备。氧瓶燃烧法无法准确测定硫含量低于0.1%及含有金属盐并形成不溶金属硫酸盐的橡胶样品。针对以上难点,采用更合适的管式炉燃烧方法,扩大了样品测试的范围并且提高了准确性,对产品安全、风险防范及提升橡胶制品的检测能力有着重要作用,该标准将会取代《GB/T 4497.1-2010 橡胶全硫含量的测定》。国家标准计划 各位“实验猿”都很清楚,对于固体样品和高粘度样品中的有机卤素和硫,必须将其处理为溶液状态才能在离子色谱上进行测试。上述样品的前处理方法有传统的氧弹燃烧和在线燃烧炉。氧弹瓶及内部结构在线燃烧炉样品中卤素和硫的前处理方法对比简单、快速、准确的卤素及硫测试方法一直吸引着大家的关注。前处理主要有氧瓶/氧弹燃烧离子色谱法和CIC在线燃烧(管式炉)离子色谱法,在线燃烧离子色谱在操作使用及样品测试上具有明显优势。不同前处理方法对比(点击查看大图)飞飞:CIC在线燃烧离子色谱是什么?赛老师:CIC在线燃烧离子色谱全称为燃烧炉-离子色谱联用技术。 飞飞:它的原理是什么?赛老师在全自动分析过程中,氩气氛围下样品在燃烧炉中高温裂解,随后被氧气氧化,所得气体产物被吸收液吸收,zui后进入离子色谱中分析。 飞飞那它能分析哪些离子?赛老师由于物质经燃烧、氧化及吸收的特殊性,其主要用于分析有机物中卤素和硫。 飞飞燃烧离子色谱具体应用在哪些领域呢?赛老师几乎所有能够燃烧的样品,均可通过燃烧炉离子色谱进行分析,该技术可在环保、电子元件、石油化工、材料、染料及医药等众多领域得到广泛应用。 典型应用一、CIC在线燃烧离子色谱测定石脑油馏分 石化行业作为我国支柱行业,在国民经济的发展中起着举足轻重的作用。原油气中的卤素和硫,会引起生产设备的腐蚀,进而造成环境污染,同时还会向下游产品传递,因此卤素和硫的监测十分必要。CIC燃烧离子色谱仪CIC燃烧流程及原理(点击查看大图) 滑动查看更多 石脑油馏分样品中卤素和硫的分离谱图CIC对于石化行业中卤素和硫的测定具有以下技术优势:1. 一次进样可同时分析样品中总硫和卤素;2. 可选气体、液体或者固体自动进样器,满足不同样品的测试需求;3. 燃烧过程实时监控,可选精细燃烧模式,保证样品充分燃烧,重复性好;4. 仪器自带清洗步骤,保证样品结果的重复性和准确性。 典型应用二、CIC在线燃烧离子色谱-测定OLED有机光电材料中的卤素 作为国家十四五规划新材料发展战略之一,OLED有机发光材料将会迎来广阔的发展前景,但其常为复杂的高纯有机基质,所含的卤素杂质浓度低,样品量小,对分析测试带来极大的挑战。 低浓度卤素标样分离谱图(点击查看大图)典型样品分离谱图(点击查看大图) 滑动查看更多CIC 对于有机光电材料中卤素的测定具有以下技术优势:1.可测定限度低至ppm级的硫和卤素,样品检出限可低至0.038~0.1mg/Kg;2.经充分燃烧后硫和卤素释放彻底,样品基质完全消除;3.赛默飞特色的氢氧根体系及高容量离子交换色谱柱(IonPac AS19),提供高基体样品基质兼容能力,可满足高氮含量有机材料中痕量Br的检测;4.样品及标样均通过同一燃烧通道,确保测定结果的准确性;5.全自动化的燃烧-吸收-分析过程,人工干预少,空白低,满足ASTM现行方法要求。 “只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图 滑动查看更多 总结CIC在线燃烧离子色谱不仅可以满足石油、化工、高分子材料及环境固废中较高含量卤素和硫的分析,对于新型有机光电材料中低浓度卤素测定,也能够提供简单、便捷的操作及准确可靠的实验结果,为新型材料的研究发展及品控提供了可靠的技术保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制